
DDML: a support for communication in M&S 
 

Oumar Maïga 
Université des Sciences, 

Techniques et Technologies 
Bamako, Mali 

maigabababa78@yahoo.fr 
 

Ufuoma Bright Ighoroje 
African University 

of Science and Technology 
Abuja, Nigeria 

uighoroje@aust.edu.ng 
 

Mamadou Kaba Traoré 
CNRS UMR 6158, LIMOS 

Université Blaise Pascal 
Clermont-Ferrand, France 

traore@isima.fr 
 

 
 

Abstract  
This paper presents a new approach to simulation modeling 
for discrete event systems that integrates two system design 
perspectives: object-oriented paradigm and system theoretic 
approach. The resulting formalism is a highly communicable 
visual language called DDML (the DEVS Driven Modeling 
Language) which federates modeling concepts from UML 
(Unified Modeling Language) and DEVS (Discrete Event 
System Specification). Such a combination facilitates the 
modeling process and improves communication between 
experts in the system domain and experts in modeling and 
simulation domain. A case study of urban traffic modeling is 
given to illustrate the use of DDML as a support for 
communication in Modeling and Simulation.  
 
Keywords: DEVS, DDML, UML. 

I.  INTRODUCTION  
Modeling is a process of abstract knowledge representation of 
a real or conceived system. In modeling and simulation of 
complex systems, it is important that the abstract model 
should accurately capture the structural and behavioral aspects 
of the system. It is often difficult to develop a simulation 
model in the early stages of system development because this 
would require knowledge of the system domain, modeling 
methodology, and model execution techniques. Domain 
experts are concerned with system characteristics, problems 
and behavior. Simulation experts use mathematical formalisms, 
algorithms, and/or computer programs to develop abstractions 
of systems. These abstractions must be translated into a 
simulation semantic to investigate system properties. Due to 
the difference in concerns and expertise between domain 
engineers and simulation experts, it is required to utilize a 
framework that supports communication and cooperation 
between domain experts and experts in modeling and 
simulation. What is needed to achieve this is an intermediate 
notation which is highly communicable, expressive, and low 
enough to reduce the complexity of code synthesis for 
simulation and analysis. This representation should be able to 
express the structural and behavioral characteristics of 
complex systems without ambiguities. This is the case in the 
area of software, systems, and data engineering where Unified 
Modeling Language (UML) [1], System Modeling Language 
(SysML) [2], and Entity Relationship Diagrams (ERD) [3] 
respectively have been used as specifications that provide easy 
visual constructs that facilitates cooperation between domain 

engineers and technical experts. Employing similar constructs 
for simulation modeling would facilitate the system 
development process. 
Our objective is to propose a visual language to increase 
communication between domain experts and M&S experts and 
to allow automated simulation code generation. 

The approach combines the use of UML and the DEVS 
formalism [4]. UML is used for domain analysis; therefore 
domain experts can bring the accurate knowledge about the 
system. DEVS is used at the simulation stage, allowing 
simulation specialists to carry on their expertise. The same 
way UML is well recognized as a modeling standard for 
software development, the DEVS paradigm is recognized as a 
computation model that unifies discrete event formalisms [13]. 
Also, it has been proven that continuous systems can have an 
approximated representation in DEVS, either by discretizing 
the simulation time or by using the quantization method [4]. 

A major issue is the gap between the representation 
obtained from domain analysis and the simulation model 
generated for this system. Domain experts and simulation 
experts need to communicate, sharing a common language to 
get from the domain knowledge to the application of 
simulation techniques. We have defined the DDML (DEVS 
Driven Modeling Language) for this purpose. It is a visual 
language that augments the UML class diagram with DEVS 
concepts. So, UML class diagrams can be built first, and then 
augmented to produce DDML classes. The operational 
semantics of DDML is given by the well-established DEVS 
simulation algorithms, so the simulation code can be 
automatically generated from the DDML classes. 

The rest of the paper is organized as follows: after a brief 
review of the state of the art in Section II, we present our 
approach in Section III where DDML syntax and semantics 
are exposed. An application is shown in Section IV; it focuses 
on the urban traffic of the city of Bamako (Mali). Concluding 
remarks are given in Section V. 

II. STATE OF THE ART 
In the literature, there are two broad classes of approaches for 
defining a domain specific language based on UML. One class 
of approaches involves the use of UML profiles [1] using 
stereotypes and user-defined properties (tagged values). This 
approach allows benefiting from existing tools that support 
UML notation for modeling and code generation. It also 
allows a precise definition of the concrete syntax of the 
language but does not allow the clear definition of the abstract 

2012 IEEE 21st International WETICE

1524-4547/12 $26.00 © 2012 IEEE

DOI 10.1109/WETICE.2012.112

239

2012 IEEE 21st International WETICE

1524-4547/12 $26.00 © 2012 IEEE

DOI 10.1109/WETICE.2012.112

239

2012 IEEE 21st International WETICE

1524-4547/12 $26.00 © 2012 IEEE

DOI 10.1109/WETICE.2012.112

238



syntax of the domain-specific language because it also inherits 
problems of UML (i.e., the lack of precise semantics). The 
other class of approaches uses MOF (Meta Object Facility) to 
extend the UML metamodel or define directly the language 
metamodel independently of UML. The problem with this 
approach is the need to develop a new supporting tool for the 
language. It allows a clear definition of the abstract syntax, 
concrete syntax and semantics. Other approaches use UML 
profiles to define the concrete syntax and a metamodel for 
defining the abstract syntax of the language. 

Related works address some visual notations and 
realizations for DEVS models. Some notable graphical 
approaches integrating UML to DEVS modeling include 
DEVS/UML [5], Executable UML with DEVS (eUDEVS) [6], 
and the object-oriented co-modeling methodology [7]. 
DEVS/UML provides a representation of DEVS models as 
UML state machines. A simulator has been proposed for such 
models. The issue here is the difficulty of expressing DEVS 
concepts in UML state machines. eUDEVS approach is doing 
the opposite of DEVS/UML, i.e. it transforms UML models 
into DEVS models but the models obtained are in a restricted 
class of DEVS called FD-DEVS (Finite and Deterministic 
DEVS). Other approaches such as CD++ Builder [8], 
PowerDEVS [9], and DEVS graph [10] are based on the 
definition of new languages. In [7] the authors present an 
approach using a subset of UML to support the process of 
object-oriented modeling based on DEVS. This approach uses 
UML to model parts of the behavior of objects and DEVS to 
complete the missing discrete event information. They use the 
use case diagrams, class diagrams and sequence diagrams of 
UML. The procedure to transform a given sequence diagram 
model in DEVS is adapted only to finite sets of states. 

Our approach is close to the latter, apart from that we 
address also systems with infinite state sets. We provide a 
clear definition of the abstract syntax of DDML by a 
metamodel in UML with OCL (Object Constraint Language) 
constraints. We associate a concrete syntax and a well-defined 
operational semantics. Our approach presents two advantages: 
it gives a complete methodological approach allowing various 
experts in the loop, and the resulting visual language allows 
the automated generation of simulation code. DDML is also 
amenable to formal analysis (this is a very important aspect 
though not discussed in this paper). 

III. DDML APPROACH 
The methodology is based on two major stages: 
(1)  Domain analysis, where the domain class diagram is built 

according to the knowledge provided by domain experts. 
All entities are identified and described in terms of 
attributes and methods. 

(2)  Identification of dynamic components as atomic or 
coupled models, and specification of their structure and 
behavior. Simulation experts must closely discuss with 
domain experts to drive this stage. Indeed, domain experts 
provide knowledge on components behavioral rules and 
simulation experts translate them in terms of state sets, 
state transitions, output functions and time advance 

functions (according to the DEVS-driven semantics of 
DDML). The visual aspect of DDML makes these 
exchanges easier since the mathematical descriptions are 
hidden behind DDML’s intuitive and user-friendly nature. 
DDML has an abstract syntax and an associated concrete 

syntax which borrows visual elements from UML. The main 
element in DDML is a model, which is an augmented UML 
class (Figure 1). Additional information are input and output 
ports through which the model interacts with other models and 
dynamics that translate the way the model behaves in time. 
While a classical UML modeling would include ports in the 
attributes and would use a UML state chart to express the 
dynamics, we prefer highlighting these elements differently. 
Ports are public attributes that carry data and they require their 
corresponding data structure be clearly specified (as UML 
classes, primitive types or even DDML models in their turn). 
UML state chart are not adequate to describe models behavior 
for simulation, due to the fact that the simulation time must 
explicitly be taken into account. In addition, it is important 
that such behavior is visually linked to the model; indeed, the 
attributes, methods, and more specifically the ports are used in 
the specification of the dynamics. More about ports and 
dynamics are detailed in the language’s abstract syntax. 
 

 
Figure 1. DDML model 

A. DDML abstract syntax 
The metamodel defining DDML abstract syntax is given in 
Figure 2. A Model is either an AtomicModel (i.e., it cannot be 
decomposed) or a CoupledModel (i.e., it is decomposed into 
smaller models, which in their turns can be atomic or coupled). 
Models interact with each other through IOInterfaces (or 
ports), some are InputPort (for the receipt of data) and some 
are OutputPort (for the storage of data generated by the 
model). All data are viewed as AbstractEvents, some are 
events, and some are Bags (i.e., a group of events received at 
the same time). 

At any given time, an AtomicModel is in a particular 
state. The state of a system is defined using assignments on 
StateVariables and these are defined by their name and 
domain. A moderately sized system can have an unimaginable 
size of state spaces. The size of the state space can even 
become infinite leading to a problem of state explosion. In 
order to represent a system with a large number of states, we 
use a finite number of state variables (after abstracting the key 
variables that can give a reasonable description) to partition 
the state space into a finite number of Configurations. A 
Configuration is a partition or subdivision of the state space 
into non-overlapping and nonempty subsets of states. It is 
defined by a set of properties upon the state variables. Each 

240240239



Configuration has a TimeAdvance function that maps each 
member state to a real time advance. We classify 
Configurations in DDML based on their timeAdvance and 
state activities. The activities are the operations that are 
carried out by the system when in that state. Based on this, we 
have Finite (to represent a Configuration with a definite 
duration); Passive (to represent a Configuration with an 
infinite duration); and Transient (to represent a Configuration 
that transits instantaneously). State transitions occur between 
states in an atomic model. As a result of grouping of states 
using state variables, these transitions should be seen as 
transitions between Configurations rather than transitions 
between definite states. State transitions could be internal, 
external, or confluent. Before entering the next Configuration, 
a reconfiguration of the state variables occurs (computation). 
The Internal transition occurs automatically when the life time 
(defined by the timeAdvance function) has elapsed. The 
system automatically transits into a new Configuration. At the 
beginning of such transition, an output (lamda) is sent out 
through an output port. Since the life time of an Infinite 
Configuration is infinite, it does not undergo internal 
transition. The External transition occurs when a system 
receives an external input (trigger) or disturbance that forces it 

to change its Configuration. The Conflict transition 
corresponds to the confluent function of DEVS. It is used as 
an alternative to the select function in the coupled network to 
resolve conflicts within the system. 

The CoupledModel and its components (Models) are 
connected via Couplings. The couplings are split into EIC 
(External Input Coupling, couplings of coupled model input 
ports to input ports of some components), EOC (External 
Output Coupling, couplings of component output ports to 
output ports of the coupled model), and IC (Internal Coupling, 
couplings of component output ports to input ports of 
components). Components in a coupled model are concurrent 
and asynchronous. Concurrency implies that they are parallel 
but in the case of mutual exclusion, a Select (corresponding to 
the select function in DEVS specification) is used for 
arbitration. It is simply a list of components sorted by 
decreasing priorities. 

Times Traces describes the History of the system under 
consideration within a time frame. This is defined as a trace of 
the Model. AM_FootPrint is a trace of an Atomic_Model (IOS) 
and CM_FootPrint is a trace of Coupled_Model (CN). They 
are composed of tuples in succession from the first to the last. 

 

 
Figure 2. DDML abstract syntax 

 

B. DDML concrete syntax 
The metamodel of the concrete syntax associated to the 
notions is given in Figure 3. Models (Atomic & Coupled) are 
represented like UML classes and as such they possess 
properties like having attributes (including complex attributes 

realized by composition, association, and aggregation), 
functions (or subroutines), and being subject to inheritance. 
Models have input and output ports indicated with arrows as 
shown. These ports are labeled with their name and type 
(name: type). The last compartment is used to draw either the 
state transitions chart for an atomic model or the coupling 

241241240



network for a coupled model. In realizing these transitions, 
some function calls might be made to some functions defined 
in the third compartment. 

The notation for Configuration is a box with four 
compartments for label, properties, activities, and time 
advance. For External transition, we use a broken arrow and 
this transition must appear before the edge of the box (top or 
bottom) and directed towards the lateral sides. There are also 
labels for the input event causing the transition and 
computation (re-configuration of state variables) at the end of 
the transition. For Internal transition, we use a straight line 
with arrow and this must appear at the right edge of the box 
and directed towards the left edge of another box. There are 

labels for lamda (output event at the beginning of the 
transition) and computation at the end of the transition. 
Confluent transition originates from the top right corner and is 
directed towards the back. Some transitions may be directed 
towards different Configurations depending on some 
conditions. This transition is a conditional transition 
represented with a diamond with the condition specified 
within the diamond and arrows pointing to different 
Configurations. 

The notation for EIC is a dashed line, IC is a continuous 
line, and EOC is a line-dot-dotted line (Figure 4). It is also 
important to label these components. 
 

 
Figure 3. DDML concrete syntax 

 

IV. APPLICATION TO URBAN TRAFFIC 
We have applied our methodology and the use of DDML to 
the modeling and simulation of the urban traffic in Bamako, 
the capital city of Mali. We limited ourselves to the zone 
drawn on Figure 4 which is a very critical area, due to its 
importance in the transportation network of the city and to 
numerous traffic jams that occur there in a day. The zones 
marked with circled GEN are those from which users enters 
the area. The zones with circled ACC absorb the traffic. 

It was commonly admitted that simulation is a powerful 
means for urban planning agents to understand the traffic in 
this area, to forecast various futures under various assumptions 
and to build strategies for developing the city’s transportation 
system. But the urban traffic experts alone could not 
synthesize the simulation code which could serve for this 
purpose. We then applied our methodology. 

 
Figure 4. Area under study  

242242241



The static structure of the traffic network obtained from 
domain analysis is shown in Figure 5. Blue classes are directly 
identified from domain experts’ knowledge. These classes are 
refined into a technical class diagram (we do not present these 
details here) after thorough discussions with these experts. 

Red classes are generic DDML models which 
relationships with blue classes (inheritance) are established by 
DEVS experts. Then, these experts can go into more 
specification using DDML and focusing on all dynamic 
entities recognized as atomic or coupled models. 

Two such specifications are presented hereafter. We 
cannot be exhaustive in presenting all models of the entire 
specification. We only aim at showing how simulation 
concerns can easily be introduced with DDML, starting with 
the UML class diagram. 

Figure 5. Domain knowledge of the urban traffic 

A. Traffic light 
A traffic light (Figure 6) successively display three colors 
(Green, Yellow, Red) when it is on. If the traffic light is off, 
the posted color is Black. The light can receive through 
Control port an order to turn on (1) or off (0). The Signal port 
stores the last color displayed by the traffic light (in the shape 
of icons). Configurations are: OFF, GO, READY-TO-STOP, 
STOP, tempOFF (for temporary state before going off) and 
tempON (for temporary state before going on). A single state 
variable called Status is used to capture these configurations. 
Being in any of them the display function is called. This 
function, as well as setters and getters are defined since the 
building of the UML technical class diagram. 

In a steady situation, the traffic light successively goes 
from GO to READY-TO-STOP (after 5 time units), then to 
STOP (after 1 time unit), and then again to GO (after 3 time 
units). During the transition from GO to READY-TO-STOP 
the light sends Yellow in its Signal port; during the transition 
from READY-TO-STOP to STOP it sends Red; during the 
transition from STOP to GO it sends Green. 

For any state different from OFF, when the light receives 
0 in the Control port, then it operates an external transition to 
tempOFF (just for getting the opportunity to output Black), 
before operating an internal transition to the OFF passive 

configuration. If 1 is received by the light at any time in the 
OFF state (therefore the only constraint mentioned is that the 
elapsed time e in this state should be greater than 0), the latter 
operates an external transition to tempON (for getting the 
opportunity to output Green), before operating an internal 
transition to GO. 

B. Modeled area 
Crossroads as well as the whole area are coupled models. 
Crossroads are composed of traffic lights, roads, platforms 
(single places connecting roads), generators (of cars) and 
accumulators (to collect leaving cars). We split the whole area 
in five zones: Badalabougou, King Fad’s Bridge, ENSUP, 
Dabanani market and Administrative city. Each zone is a 
coupled model and can receive and send cars to other zones 
under authorized circumstances (authorizations are also events 
sent between coupled components, e.g. a car can be sent to a 
zone if the latter is not already full; therefore the receiver 
should notify the sender of its current situation; the Authin and 
Authout ports are used for that purpose). The traffic model is 
shown in Figure 7. 

The Eclipse-DDML tool [16] has been used to build the 
DDML models. This tool is integrated into the SimStudio 
platform which has a Java implementation of the DEVS 
simulation protocol [12]. The Eclipse-DDML converts the 
visual model obtained by drag-and-drop into an XML file. 
This latter one is translated into SimStudio classes by the 
means of an XSLT parser. 

V. CONCLUSION 
We presented in this work a methodology for the design of 
discrete events simulation models based on the DDML 
language. This methodology allows a hierarchical and 
modular construction of complex models starting from the 
UML domain class diagram, and then augmenting them with 
DEVS simulation concepts. While DEVS mathematical 
specifications are difficult to manipulate, this approach 
enables a visual design as well as a level of details which is 
closer to implementation. The resulting language is intended 
to provide a unified support for discrete event system 
modeling and simulation, by taking advantages of UML and 
by tailoring it specifically for the DEVS paradigm. This helps 
balance the design strength of UML for object modeling and 
expressiveness of the DEVS formalism for developing discrete 
event simulation models in a simple and intuitive way, and 
therefore improves communication between experts during the 
design stage. Moreover, supporting tools exist for DDML 
modeling and automated Java code synthesis. 

One must notice that collaboration is constant throughout 
the DDML process between domain experts and simulation 
experts, but some tasks are mostly driven by one or the other 
group. Another remark is that we have intuitively shown here 
the mapping of the semantic domain of DDML into DEVS. A 
more formal work has been done about this mapping, which 
we cannot exhibit in this paper due to the lack of space. 
 

243243242



 
Figure 6. Traffic light atomic model 

 

 
Figure 7. Traffic coupled model 

 

REFERENCES 
[1] OMG, UML. http://www.omg.org/spec/UML/2.3/ 
[2] OMG, System Modeling Language TM (SysML) Version 1.2, June 2010. 

http://www.omg.org/spec/SysML/1.2/ 
[3] P. Chen and P. Pin-Shan, The Entity-Relationship Model – Toward a 

Unified View of Data, in: ACM Transactions on Database Systems 
Volume 1 Issue 1 (March 1976) 9-36. 

[4] B. Zeigler, H. Praehofer, T. Kim, Theory of Modeling and Simulation 
2nd Edition, Academic Press (2000). 

[5] J. Mooney, DEVS/UML – A Framework for Simulatable UML Models, 
M.Sc. Thesis, Computer Science and Engineering Dept., Arizona State 
University, Tempe, AZ, USA (2008). 

[6] J.L. Risco-Martin, J.M. De La Cruz, S. Mittal, and B.P. Zeigler, 
eUDEVS: Executable UML with DEVS, Simulation Volume 85 Issue 
11-12 (November 2009) 750-777. 

[7] C.H. Sung and T.G. Kim, Object-Oriented Co-Modeling Methodology 
for Development of Domain Specific Models, G.A. Wainer and P.J. 
Mosterman (Eds.), Discrete-Event Modeling and Simulation: Theory 
and Applications, CRC Press (2010). 

[8] B. Matias, G. Wainer, and R. Castro, Advanced IDE for Modeling and 
Simulation of Discrete Event Systems, in: Proc. Symposium on Theory 
of Modeling and Simulation, (SCS Spring Simulation Multiconference, 
Orlando, FL. 2010) #125. 

[9] E. Pagliero, M. Lapadula, and E. Kofman, Power-DEVS: An Integrated 
Tool for Discrete Event Simulation (in Spanish), in: Proc. RPIC (San 
Nicolas, Argentina, 2003). 

[10] H.S. Song and T. G. Kim, DEVS Diagram Revised: A Structured 
Approach for DEVS Modeling, in: Proc. European Simulation 
Conference (Eurosis, Belgium, 2010) 94 – 101. 

[11] B.I. Ufuoma., M.K. Traoré. A Graphical Editor for the DEVS Driven 
Modeling Language. Proceedings of The ESM 2011. 

[12] M.K. Traoré, SimStudio: a Next Generation Modeling and Simulation 
Framework, in Proc. ACM/IEEE 1st International Conference on 
Simulation Tools and Techniques for Communications, Networks and 
Systems (Marseille, France, March 3-7 2008) #67. 

[13] H. Vangheluwe, DEVS as a Common Denominator for Multi-Formalism 
Hybrid Systems Modeling, in: Proc. IEEE International Symposium on 
Computer-Aided Control System Design (IEEE Computer Society Press, 
Alaska, 2000) 129-134. 

244244243


