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Abstract—This paper aims to estimate the trigger event in the 

DEVS formalism by the Bayesian networks. To validate this 

approach, we develop a simulation tool for wildfire spread 

which could be used as decision making for fires control and 

containment.  In fact, this work attempt to foster the 

integration between two concepts: Bayesian networks, known 

as powerful tools for representing uncertain events, and the 

DEVS formalism, a discrete event simulation formalism known 

by the modeling process of complex natural systems. Thus we 

have introduced Bayesian networks to show up fire spread 

graph and the probability of states transitions can be 

calculated by the use of the joint probability distribution. This 

probability is then introduced to the fire spread Cell-DEVS 

model in order to simulate wildfire propagation.  

The present paper stated as follows: Firstly we introduce the 

wildfire spread phenomena; we follow by describing some 

closely related works. After, we present the specification 

formalism DEVS and some of its extensions, then, we introduce 

Bayesian networks. Our approach is then presented and some 

simulations are done.  At the end, we conclude this work with a 

conclusion and perspectives. 

Keywords-Modeling and Simulation; Discrete Event Systems 

Specifications; Cell-DEVS; Bayesian Networks; Wildfire Spread 

Simulation 

I.  INTRODUCTION  

The natural disasters (fires, floods, tsunamis, 
hurricanes...) have a considerable human and economic cost. 
The annual economic losses combined to catastrophes over 
the world rose on average to 75.5 billion dollars in the 
Sixties, to 659.9 billion dollars in the Nineties [1]. Their 
increases these last years reinforce the need to step up 
prevention, fight and control. 

Nowadays, the modeling and simulation formalisms are 
more and more used in order to help to forecast and 
understand these complex phenomena. Nevertheless, these 
phenomena are very complex to study due to the great 
number of parameters taken in consideration. In the majority 
of the cases, these parameters remain uncertain and 
inaccuracy. 

The lacks or partial knowledge on certain systems, cause 
this fact of uncertainty. This point was studied by some 
theories amongst them, the probability theory which remains 

an approximate but effective means to define complex 
systems or misdiscribed ones. The result of this approach has 
more chances to be coherent according to objectives and 
constraints of the system. 

On the other hand, simulation manages models in order 
to produce behavioral data, i.e. to evolve/move the states of 
the model over time [2]. Simulation is then similar to 
experience [3][4], given the possibility of predicting the 
behavior of complex systems. 

The focus of our work refer to the development of a 
cellular specification system described by the discrete event 
system specification (DEVS) combined with Bayesian 
networks in order to simulate forest fires growth including 
uncertainty in inputs data. 

II. LITERATURE REVIEW 

The well-known applications are FARSITE [5] and 
BehavePlus [6][7][8]. Both are based on the analysis of 
experts and professionals of forest fires domain.  

Many other works were directed in this field, among 
them, we can cite: SiroFire [9], HFire [10], Prometheus [11], 
PyroSim [12]. Each one differs from the other by, the nature 
of the affected data (vegetation, atmosphere, topography…), 
studied behaviors and models [13]. Others have treated the 
fuzzy character of the system entries [14][1], whereas some 
tried to formalize the problem by a precise mathematical 
model instead of its complexity [15][16][17]. 

To give a convivial aspect, certain researchers tried to add 
the real-time aspect to this application aided by geographic 
information system GIS and defining a dynamic structure 
space [13][18][19]. 

III. SUBSET OF CURRENT THECHNIQUES 

A. The DEVS Formalism 

1) Introduction 
The DEVS formalism “Discrete EVent system 

Specification”, was introduced by Professor B.P. Zeigler 
[20]. It is based on mathematical theory of dynamic systems 
[2]; it is a reference for coupling heterogeneous models. In 
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fact this formalism is adapted to a great number of 
applications [21]. 

The DEVS formalism is a hierarchical and modular 
modeling approach, centered around the state concept. In its 
basic form, it does not take in account the system structure 
evolution; only the states can evolve/move [1]. 

Each system is described by two points: functional 
(behavioral) and structural aspect [22]. Likewise, DEVS 
formalism is composed of two types of models: atomic 
models and coupled models [2]. The atomic model 
represents the basic behavior of the system whereas the 
coupled model, its internal structure.  

2) Atomic Model 

The atomic models are the basic components of the 

formalism; they describe the behavior of the system “Fig. 1”. 

Their operation is close to the “state-machines”. Formally, an 

atomic model DEVS is specified by 7-tuple (1): 

 AM=<X,S,Y,δint,δext,λ,ta> (1) 

Where 

X: input events set;  

S: states set; 

Y: output events set; 

δint : S→S : internal transition function, models the states 

changes caused by internal events; 

δext : Q×S→S : external transition function, defines the state 

changes due to external events; 

Q={(s,e) | s∈S.0≤e≤ta(s)} : total states and e describes the 

elapsed time since the last transition of the current state s; 

λ: S→Y : output function, maps the internal state onto the 

output set; 

ta:  S→ℜ+
 : time advance function, it is the lifetime of the 

state. 

Figure 1.  DEVS atomic model semantics 

3) Coupled Model 
A coupled model DEVS is modular and presents a 

hierarchical structure, which allows the creation of complex 
models starting from atomic and/or coupled models. It is 
described by (2): 

 CM=<Xself,Yself,D,{Md | d∈D},EIC,EOC,IC,select> (2) 

Where 

Xself : set of possible inputs of the coupled model, 

Yself : set of possible outputs of the coupled model, 

D : set of names associated to the model components, 

Md | d∈D: set of the coupled model components, these 

components are either atomic or coupled DEVS model, 

EIC: set of External Input Coupling, 

EOC: set of External Output Coupling, 

IC: defines the Internal Coupling, 

Select: 2
D→D: tie-break selector 

4) DEVS Variants 
While studying complex natural systems, it is frequent 

that a certain number of parameters are imperfectly defined. 
To deal with this problem, the multi-formalism DEVS 
provides several extensions making it more flexible [22], 
[23]. These extensions have consequently acts either on the 
transitions functions, or the states and their lifetime. In both 
cases, these changes modify the structure of the models 
and/or the simulation algorithms. 

The following list is not exhaustive of DEVS variants. 
We note Fuzzy-DEVS [24], Min-Max-DEVS [25], iDEVS 
[1], Cell-DEVS [26] and Parallel DEVS [27]. These 
extensions handle inaccuracy and uncertainty property of 
events and states. Uncertainty intervenes on the states 
changes level, whereas the inaccuracy intervenes either on 
the state lifetime or the event values.  

These last years, the cellular models gained in popularity 
[28] especially the cellular automata [29]. They can be 
defined as being an infinite N-dimensional lattice of cells 
whose values are updated according to a local rule. This 
update is made simultaneous and synchronically for each cell 
and its neighborhood [30]. 

However, the cellular automata require usually very high 

times computing, mainly due to their synchronous nature. 

The variant Cell-DEVS solves this problem by employing 

DEVS formalism [23], [29]. Cell-DEVS extended the 

formalism of DEVS to represent the cellular models. Each 

cell is defined as an atomic model whereas the cell space is 

represented by a coupled model.  

B. Bayesian Neworks 

1) Overview 
The human been environment is difficult to describe, 

precisely, when we lack the necessary resources to deal with 
imperfect data or partial knowledge of complex system. It is 
a tough problem to treat uncertain and inaccurate parameters 
with a precise mathematical theory, so we need an estimation 
to assess theses parameters and the well-known theory which 
copes with that is the probability theory.  

Bayesian network is a probability distribution; it 
combines two theories, the probability theory and the graph 
theory [31]. A Bayesian network is a Directed Acyclic Graph 
(DAG) composed by Nodes and Edges. Nodes express 
random variables whereas Edges represents influences 
between them. 
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2) Graphical Notation 
The complete specification of a Bayesian network 

requires to specify, on the one hand its structure (DAG), and 
on the other hand, its parameters (probability distribution 
table). To realize that, we can use two possible approaches: 
human expertise or machine learning [32]. 

In the expertise case, network structure definitions begin 
by identifying the possible nodes and the distinction between 
informational variables (observable) from hypothetical ones 
(non-observable). The probability relationships between 
them are referred to as the observation model [33].  

For each variable, we associate a node and edges 
represent both causal relationships and conditional 
independence relationships “Fig. 2”. 

 

 

 

 

 

Figure 2.  Example of a Bayesian Network 

3) Conditional Independency 

Two distinct variables A and C are d-separated if, for all 

paths between A and C, there is an intermediate variable B 

such that either “Fig. 3”:   

• Connection is serial or diverging and B is 
instantiated or, 

• Connection is converging (V-structure) [32], [34]. 

 

If A and C are not d-separated, we call them d-connected. 

 
 

 

 
 

 

 

 

 

Figure 3.  Basic structure of Bayesian Networks 

The corresponding probability can be given by (3)-(6): 

 

• Serial case  “Fig. 3 a” 

 p(B|C, A) = p(B|C) = p(B|parents(B)) (3) 

• Divergent case “Fig. 3 b” 

 p(B|C, A) = p(B|C) = p(B|parents(B)) (4) 

• Convergent case “Fig. 3 c” 

 p(C|A, B) = p(C|parents(C)) (5) 

with  
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Where pa(Xi) is set of parents of the random variable Xi  on 
the graph. The conditional independence relationship 
encoded in a Bayesian network can be stated as follows: a 
node is independent of its ancestors given its parents. 

IV. APPROACH AND METHODOLGY 

A. Identified Parameters and Cell States 

Due to the dynamic and complex nature of wildfire, it is 
impossible to identify, capture and model all influential 
parameters with absolute accuracy [14], [15], [16], [35]. 

Three parameters groups determine the fire spread ratio: 
vegetation type (caloric content, density...); fuel properties 
(vegetation size) and environmental parameters (wind speed, 
humidity and slope...) [36]. The flaming fire evolves/moves 
according to the direction of the wind, its velocity and the 
relative humidity. 

In order to test our approach, we have chosen two main 
variables: wind speed and relative humidity. The wind speed 
is provided by the Beaufort scale measurements, it is an 
empirical measure that relates wind velocity to observed 
conditions at sea or on land; whereas the humidity influences 
the wildland fire behavior by increasing the risk factor. Low 
relative humidity is an indicator of high fire danger. A dry 
and powerful wind, associated with a dry ground, 
enormously increase the fire propagation [1].  

Firstly, we distinguish five possible states that a cell can 
take. Each cell represents a limited area of the forest:  

• Nonflammable area (N): It can be a road, a surface 
of water or just an empty surface.  

• Unburned area (U): It is a passive state; it represents 
any fuel which is not consumed yet by fire.  

• Burning area (B): represents a consuming fire.  

• Ember area (E): A small, glowing piece of coal or 
wood, as in a dying fire.  

• Ash area (A): It is afterburning state; it is the final 
combustion process state. At this stage, the 
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nonvolatile products and residue were formed when 
matter is burnt.  

B. Bayesian Model for Wildfire States Transitions 

The model presented in this part describes in a data-
processing way the empirical reasoning of the firemen of the 
Departmental service of Fire and Help (SDIS) of Haute-
Corse France [1]. 

• On the grounds of the South of France, and with 
homogeneous vegetation, a fire growth as spreading 
elliptical wave, following the wind direction.  

• The firefighters estimate this propagation at 
approximately 3 to 8% of the wind speed according 
to the characteristics of the ground (slope, density 
and nature of the vegetation). 

• A hot, dry and powerful wind, associated with a dry 
and inclined ground, enormously increase fire 
growth probability. 

• The wind has a more influence on the fire 
propagation than humidity.  

• The wildland for the studied area is assumed 
uniform and is represented by a constant coefficient. 

• The neighborhood list depends on the wind speed 
and its direction. 

Many parameters characterize forest fire propagation. All 
of them are related to each others and in the major case are 
sullied with uncertainty and inaccuracy. Let take an event, 
inaccuracy can intervene either on the time or value. Hence, 
inaccuracy is relating to its value while uncertainty concerns 
its realization. The use of Bayesian networks is thus 
appropriate for such problem.  

For simplicity’s sake, we suggest to consider two 
parameters for wildfire spread in order to test our approach: 
wind speed (W) and relative humidity (H) “Fig. 4”. In this 
figure, Cc means the current state whereas Cn the neighbor 
cell. p(Cn=B|Cc=B) is conditional probability that is, given 
that the event Cc is Burning has occurred, or will occur, the 
probability the Cn will in Burning state will also occur; 
whereas pW is prior probability that is Windy day. 

 

 

 

 

 

 

 

Figure 4.  State transitions Bayesian network model 

 

We assume that the environmental parameters are 
uniform over the whole simulated space. 

C. Coupled Model for Cellular DEVS Fire 

The fire spread is defined as the propagation process that 
all burning cells ignite their unburned neighboring cells. The 
fire area is modeled as a cellular space, and each cell 
corresponds to a sub-area of the fire. 

The fire area is represented as a 2D cell space of 200 by 
200 rectangular cells whose dimension depends on the 
resolution of the spatial data. Each cell represents one atomic 
model which is linked to 8 neighbors to form coupled model. 
Nearest neighbors used for square Geometry [23], we use the 
ignite event I as an input port for each atomic model. 

The coupled model is a combination of two cells (atomic 
model) “Fig. 5”. The left AM represents the current cell 
whereas the right one is the nearest cell. Each cell DEVS 
specification is defined by (1): 

X={(W,w),(I,i),(H,h)} 

Where W,I,H represent respectively the input ports i.e. Wind, 

Ignition, and Humidity, whereas w,i,h correspond to the 

estimate value of W,I,H; 

S={U,B,E,A} 

Y={(I,i)} 

δint(B)=E 

δint(E)=A 

δext(U,e,W?w)=B, δext(U,e,I?i)=B, δext(U,e,H?h)=B 

λ(B)=I!i 

λ(E)=I!i 

ta(U)= ∞ 

ta(B)= τ 

ta(E)= τ 

ta(A)= ∞ 

 

Where ta: lifetime of states; τ: is calculated by (8): 
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Where ws is wind speed and cl is the cell length 

 
 

 

                                                                                   

 

 

 

 

Figure 5.  DEVS Coupled Model  
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V. SIMULATIONS AND RESULTS 

A. Experiments Design 

Our simulation model is based on two modules: Event 
estimation module and atomic model DEVS “Fig. 6”. The 
first module presented in the graph assesses the different 
parameters of the fire growth significant factors. This 
assessment is based on probability distribution table 
extracted by empirical reasoning of firemen.   

Initially, we fill the probability distribution table based 
on firemen reasoning; after we present the different observed 
values to the Event Estimation module whose function is to 
estimate these parameters.  

Each cell represents an atomic model DEVS in the 
simulation model. It performs its local computation of the 
possible ignited neighboring cells based on the estimated 

events W, H and I, the computed parameter τ (8), wind 
direction and current cell position “Fig. 6”. 

 

 

 

 

 

 

 

 

Figure 6.  Simulation Model for Event  Triggering Estimation 

B. Experiments Results 

For this example we will define these parameters as 
following:  

• Wind Force: Slight breeze, it corresponds to number 
2 in Beaufort scale (5 to 11 km/h);  

• Wind Direction: Southerly wind, it blows from the 
south to the north;  

• Humidity coefficient: Wet (85%);  

• Wildland: Closely spaced; 

• The propagation velocity is considered constant. We 
suppose that it is equal to 3% of the wind speed. 
This percentage is the lowest value given by the 
SDIS; 

• The virtual forest is constructed as a grid of 200x200 

cells where each cell represents an area of 2.5×2.5 
m² (6.25/ m²) which is the spatial resolution of 
ALSAT.2A satellite. The total area is 250.000 m². 

As mentioned previously, we assume that uniform 
parameters characterize the cell space, i.e. the direction and 
wind speed are constant along the forest fire area, also for the 

humidity factor. The “Fig. 7” represents some simulation 
results in different time periods. 

 

 

 

 

 

 

 

 

 
 

Figure 7.  Wildfire spread evolution 

We have also calculated the burned area during this 
simulation; the “Fig. 8” depicts its evolution. 

   

 

Figure 8.  Flaming Front Propagation Speed 

VI. CONCLUSION AND PERSPECTIVES 

This work investigates how discrete event simulation 
DEVS can be used with Bayesian networks for handling 
uncertain parameters for wildfire spread framework.  

Initially, a state of the art was given on the topic, 
followed by a brief definition of modeling and simulation 
paradigms. A focus on DEVS formalism and its extensions 
was done. An outline of Bayesian networks was developed 
and the last point was the presentation of our approach and 
its implementation. 

Through this work we showed that it is possible to use 
our approach to model the intuitive reasoning of the 
professionals and implement it by using an adapted tool like 
DEVS formalism. Taking into account uncertainties in state 
transitions allow providing a tolerable simulation result. The 
result is certainly vague, but has more chance to be 
interpreted correctly. 

For that it was necessary, initially, to identify the relevant 
parameters. These were considered to be important only by 
their degrees of influence on the phenomenon. The most 
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significant parameters in the wildfire spread are those having 
the most influence on the fire, these parameters are wind, its 
direction and humidity rate. 

However many others factors need to be taken in 
consideration to see the real influence of each of them and 
consequently the model must be more complete, 
nevertheless, the resulting application is a simulator of forest 
fires propagation, integrating imperfect data. Hence, many 
other parameters still remain to be integrated (temperature, 
topology of the ground, inflammability, heights of the 
vegetation…) in order to improve quality of simulation and 
get more realistic results.  
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