
A Logical High-Level Framework for Critical
Infrastructure Resilience and Risk Assessment

Sadie Creese Michael H. Goldsmith
e-Security Group,

International Digital Laboratory, University of Warwick,
Coventry, CV4 7AL, UK

E-mails: {s.creese, m.h.goldsmith, a.adetoye}@warwick.ac.uk

Adedayo O. Adetoye

Abstract—Critical Infrastructures (CIs) play crucial roles in
modern societies and our reliance on their proper functioning
even in the face of accidental failures and deliberate targeted
attacks makes their protection of paramount importance. A
notable characteristic of CIs is their interdependencies that may
exist at many levels and facets of the infrastructure, and which
may sometimes lead to unforeseen and unexpected interactions.
In particular, the underlying dependencies may induce domino
effects in the propagation of failure impacts with devastating
consequences and pose serious threats. Thus, technologies that
provide new insights and visibility into the infrastructure de-
pendencies, helping stakeholders to understand root causes and
to predict the propagation of failure impacts are valuable for
the assessment of risks and the engineering of resilience into the
infrastructure. This paper presents a logical framework for the
high-level modelling of CI dependencies along with analytical
tools for automated reasoning about resilience properties of CIs.

I. INTRODUCTION

Modern societies increasingly rely on the effective func-
tioning of CIs to provide essential services such as telecom-
munications, transport, healthcare, energy, water and so on.
It is thus crucial that CIs are resilient to natural and man-
made assaults on its components. However, an important
factor to note, from the perspective of resilience and risks,
is the fact that the components within the CI are typically
interconnected and dependent on each other in various ways
that make it difficult to fully know the potential impact of
failures. Furthermore, when we factor in the typical scale
and complexity of modern CIs, determining the resilience
of the infrastructure to attacks can be daunting. Even when
we do know the dependencies that exist within the CI at a
point in time, CIs are by nature emergent, which means that
their organic growth and evolution may lead to unforeseen
and subtle interdependencies, which can introduce new single-
points-of-failure and pose other systemic risks.

In order to cope with some of these issues various
simulation-based approaches (see [1]) have been proposed
to help understand the dependency dynamics of CIs and
help infrastructure owners to engineer resilience into their
systems and to help governments to plan for local and national
disasters. In most of the cases, simulation-based approaches
are bottom-up: modelling the operational engineering details
of infrastructure elements and connecting together the various

CI elements in a simulation environment. The objective is
that by perturbing the behaviour of the CI elements and their
environments in the simulation, the resultant failure can give
insight into the behaviour of the real network. However, a
limitation of this approach is that the simulation needs to
reflect fairly similar topologies to the real system and the
models themselves need to be fairly detailed at the engineering
level to yield results with reasonable fidelity. Because of the
detailed engineering information required to build models,
modellers are usually domain experts, who must have intimate
knowledge of the operation of the infrastructure entities and
their environments. This is one of the reasons why existing
models are typically sector-specific. However, the nature of
CIs is that they cross multiple sectors, which may have differ-
ent models, cultures, and ways of reasoning about resilience
issues. Merging results from multiple sectors into a coherent
resilience plan is therefore a challenge.

Our analysis framework takes a top-down approach: driving
the analysis from high-level abstractions of system interactions
that can be easily mapped to business objectives to the neces-
sary level of details to capture the system risk and resilience
properties of interest. Because of modularity, models within
our framework can be incrementally refined. We specifically
note the distinction in this approach because managers do
not typically conceptualise resilience and risk at the level of
engineering details (which may not necessarily be available
across sectoral and ownership boundaries) necessary to build
high-fidelity simulation models. When the necessary details
for a segment of the CI are not available, as is often the
case, our top-down abstraction framework makes it relatively
straightforward to substitute those unknown segments with
abstract entities that can still be meaningfully reasoned about
in terms of their failure impacts. This is enabled by a concept
of externalities, which describes events or entities outside of
an organisation’s control, but which impact the organisation
in some way and whose detailed internal structure or mode of
operation may not be fully known but is only approximated.

Another important factor to consider about CIs is that
ownership typically spans both the public and private sec-
tors, and subsystems that rely on each other may be owned
by competing organisations. However, certain systemic risks
are better dealt with not only from within the individual

7978-1-4577-1035-3/11/$26.00 ©2011 IEEE

ownership boundaries, but also at a system-of-systems level
through joined-up risk mitigation – whereby organisations
cooperate to make the overall system-of-systems more resilient
to devastating attacks. Obtaining the necessary information for
coordinating risk mitigation within the CI is a major challenge.
We have begun to study how we may develop means within
our framework whereby, when it is not desired or expedient
to directly share information, infrastructure owners can mean-
ingfully share artefacts of their own high-fidelity analysis with
other CI owners or government to benefit from joined-up risk
mitigation without compromising confidentiality.

It is however natural for CI subsystem stakeholders to ask
various resilience and risk questions which pertain to the
impact of failures on their own systems. We highlight some
of such questions:

1) Where in my infrastructure and what assets are exposed
under a given failure or attack scenario and how resilient
is my system?

2) How resilient is my system to failures in other organi-
sations that I rely on?

3) How sensitive are my assets and services to fluctuations
in the capacities of suppliers?

4) How effective are my risk controls and what level of
service continuity can they sustain in the face of attacks
of various capabilities and capacities?

These questions address various aspects of a CI – such as
vulnerability, resilience, robustness and effectiveness of risk
controls. To answer questions such as these, we are developing
a logical framework that is capable of high-level reasoning
about dependencies within CIs, using this information in the
evaluation of resilience properties of the system and the as-
sessment of risks. The framework comprises a domain-specific
modelling language for describing the CI and its dynamics,
a formalism and calculus for automated reasoning about the
interplay between dependencies, failures and controls within
a model, and supporting tools which provide analytical What
If capabilities for deriving infrastructure dependencies, root
cause and effects, and impact propagation paths. The insight
thus gained from the analytical tools are valuable for decision
support for risk assessment, providing new visibility into
the resilience properties of the infrastructure that otherwise
would have remained difficult to determine due to unknown
dependencies and the typical scale and complexity of the CI.

II. CONCEPTUAL MODEL

This paper presents the modelling and analysis frame-
work that is being developed within the project SATURN
(Self-organising Adaptive Technology Underlying Resilient
Networks)1, a collaboration between UK industry and
academia, which is sponsored by the UK Technology Strategy
Board and the Engineering and Physical Sciences Research
Council. The project SATURN seeks to develop methodologies
for resilient, self-healing CIs through the following overarch-
ing objectives: to understand the nature and communicability

1www.saturn-project.org.uk

of dependencies between organisations; to analyse consequent
risks under various threat and vulnerability models, and in
particular to estimate their impact across a system of systems;
and to enable collaborative risk-mitigation strategies across a
CI of heterogeneous organisations, and potentially to support
agile and smart self-healing middleware.

To achieve these objectives, we have developed a top-down
SATURN conceptual model through which we structure the
CI ecosystem and its environment. The conceptual model is
designed around organisations, which are structured into four
strategic layers2: the Enterprise, Information, Technology, and
Physical layers [2]. This top-down, high-level layering allows
us to, for example, map business objectives at the enterprise
layer of an organisation to entities in other layers such as the
information and technology layers, and to study how failures
originating from within the organisation or externally to it
at any of those layers might impact the business objectives.
The entities of interest in our model may be tangible or
conceptual, and they include Assets, Controls, Vulnerabilities,
Risks, and Externalities, which are mapped to the different
layers of the organisation as Fig. 1 illustrates. We have
developed a formal ontology which maps common CI assets,
controls, vulnerabilities and risks to the SATURN layers. The
objective is that the formal ontology will serve as a vehicle
for information and knowledge sharing about vulnerabilities,
dependencies, criticality and risks between CI organisations
during collaborative risk mitigation.

SATURN Mappings

Technology Layer

Physical Layer

Information Layer

Enterprise Layer

Fig. 1. Conceptualisation of a CI Organisation, mapping its assets, vulner-
abilities, controls, and risks to SATURN Layers, and showing dependencies
between entities.

While the concepts of organisational assets, risk controls,
vulnerabilities, and risks are clear; we highlight the notion
of externalities, which describe events and things, outside the
organisation and which typically cannot be directly controlled
by the organisation, that impact upon the organisation. We are
primarily concerned about externalities that increase the risks
to organisations. Externalities may thus be viewed as events or
things originating from the organisation’s environment which
impact upon the organisation. Examples of externalities in-
clude natural and man-made disasters, physical and electronic
cyber attacks, economic and regulatory environment, and so

2The SATURN layers presented in this paper have been chosen because of
the types of assets, vulnerabilities and controls that may be found in those
layers. We are currently consulting with our community of interest on how the
layers map to their current organisational practices and whether refinements
and additional layers may be necessary within various sectors of the CI.

8

on. Fig. 2 demonstrates how an externality at the technology
layer of an organisation, in the form of an attack on a technol-
ogy layer asset, may propagate through dependencies to other
assets at the information layer, and ultimately to the enterprise
layer. More concretely, this could be an attack on, say, a
database system (technology layer asset), which corrupts say
employee records or trade secrets (information layer assets),
leading to wrong management decisions or wrong application
of enterprise policies (enterprise layer assets) at the enterprise
layer. The study of risks associated with the propagation of
the effect of attacks and other incidences that are facilitated
by dependencies within an organisation is one of our key
concerns.

Technology Layer Attack

Physical Layer

Information Layer

Enterprise Layer

Fig. 2. The propagation of the effect of a Technology Layer attack across
and within the layers of an organisation.

The layers in our conceptual model are described as follows.
The enterprise layer circumscribes those aspects of an organi-
sation that deal with the strategic, operational, legal, regulatory
and human facets of all the activities carried out within the
organisation. The information layer contains all the intangible
information assets relevant for the proper functioning of the
organisation, such as electronic data, intellectual property
rights, digital content generated by the organisation and so on,
which the organisation will want to protect from unauthorised
assess and modification. The technology layer encompasses
all the technological assets and mechanisms used in the fulfil-
ment of the strategic business objectives of the organisation.
These may include specific pieces of hardware assets such
as computer servers, networks, and routers, as well as control
mechanisms such as access control systems and electronic data
protection mechanisms like cryptographic protection schemes.
The physical layer circumscribes all the physical infrastruc-
tures and services necessary for the proper functioning of the
organisation, such as water, power, buildings, land, physical
barriers, road access networks and so on, which may be owned,
leased, or shared with other organisations and third parties
within or external to the CNI ecosystem.

Since each organisation is viewed as possessing an instantia-
tion of the SATURN layers in a specific configuration, it is nat-
ural to ask how events happening at layers of one organisation
within the CI ecosystem might affect those of another. In other
words, we wish to know what sort of dependencies may exist
between CI organisations, and whether we can systematically
identify these, based on sectors of the CI ecosystem, and

adaptively activate controls to more effectively mitigate risks.
So, conceptually, we view the CI ecosystem as being made
up of several “stacks” of SATURN layers interconnected by
various dependencies that may cross layer boundaries within
an organisation onto other stacks and layers in other organisa-
tions (see Fig. 3). The partitioning of the organisation into the
layers allows us to study, for example, how the exploitation
of vulnerabilities at the technology and information layer
of an organisation might impact, say, the enterprise layer
of another organisation; or how the mutual destruction of
the physical layer infrastructures of two geographically co-
located organisations might impact a third organisation. The
reader should note that our analyses are not limited only
to organisation-centric views and that we can reason about
impacts, cause and effects, as well as risks, independently
of their layer or organisational mappings, even though we
have structured the CI ecosystem by organisations and layers.
Indeed, in practice the view of infrastructure protection is often
from the perspective of owning organisations (a single stack
with associated externalities), but it may also be carried out
as a partnership between CI organisations and the government
(the multi-stack view).

Fig. 3. Conceptualisation of a CI ecosystem as interacting multiple SATURN
Stacks, showing intra- and inter-organisational dependencies at various layers.

III. ANALYTICAL FRAMEWORK

Any analysis of the resilience properties of CIs must take
into account the various dependencies that may exist within the
infrastructure. However, the dependencies may be subtle, and
the scale, complexity and emergent nature of the infrastructure
system will make the manual maintenance of the dependency
relations tedious. Since humans are not particularly best suited
for this task, our analytical framework does not require the
dependency relationships to be built directly, as is typically
done in simulation-based approaches [1], rather, our modelling
approach derives dependency relationships by logical deduc-
tions backed up by formal axioms about dependency relation-
ships [3]. The axioms and rules for deriving dependencies
are based on the architectural properties of the dependency
relationships, for example, indirect dependencies are derived
by applying transitivity rules to direct dependencies, and co-
dependencies are derived when the failure of an entity leads to

9

the simultaneous failure of multiple dependent entities [3]. The
built-in dependency analysis can be augmented with model-
specific rules for reasoning about cause and effects and impact
propagation within the model.

We argue that extracting and reasoning about dependencies
based on logical axioms and rules is conceptually simpler,
less tedious and less error prone because it is automated. It
also means that the effect of local changes to the model can
be propagated to the whole model in a principled manner,
which does not require the modeller to reason about the global
impact of local changes, facilitating modularisation. This is
very important, especially for large and rapidly evolving CIs
where subtle dependencies may exist that are unknown to
the managers, and also because the natural evolution of the
infrastructure may introduce new, and break existing, depen-
dency relationships so that the maintenance of the dependency
model becomes tedious. Furthermore, since the modeller is
only required to specify direct service relationships, and direct
impacts of failures, the information needed to build the model
are easier to obtain from system and risk managers. For ex-
ample, information about which entities provide what services
to others could be readily obtained from system managers,
and impacts of externalities on entities within the organisation
may be obtained from technical and other risk registers where
appropriate.

In order to describe the CI environment within our analytical
framework, we have introduced the domain-specific modelling
language SDML (which stands for SATURN Dependency
Modelling Language) as a front-end to the analytical frame-
work. Currently, SDML serves as the primary means of inter-
acting with our analytical framework, whereby the user can
describe the architecture, properties, dynamics, and configura-
tion of components within the infrastructure network and carry
out automated reasoning about the impacts of failure on the
network. To ease modelling, the SDML syntax is deliberately
designed to have a natural language feel, but it is backed up
by a formal semantics. A preliminary description of SDML
is presented in [3]. We have developed an integrated develop-
ment environment, based on the popular Eclipse platform, to
provide advanced model editing and basic dependency graph
visualisation. To make model development even more simple
and natural, we are now working on a new 3D visualisation
environment to serve as the primary basis for building the
CI model through an interactive 3D graphical drag-and-drop
environment to set up the CI model and visually carry out
What If analysis within the environment. Internally, the visual
model is translated to SDML and fed to the analytical engine.

A. Some SDML Constructs

To get a feel of the use of SDML to model a CI for the
discovery of dependencies, and to reason about the propaga-
tion of failures in a What If scenario, we shall describe some
key SDML constructs in this section. Because SDML is very
close to natural language, the meaning of each of its constructs
is obvious and intuitive from the syntax. However, a formal
model pins down the precise semantics of the language.

The language uses the isA and hasProperty constructs to
build type and object hierarchies, which is familiar from
object-oriented systems. SDML also provides built-in types,
mainly to simplify and support common problems and patterns
in CI modelling and analysis. For example, the built-in data
type GPS represents a global positioning system location,
which is often used in location-based reasoning such as in
studying the coverage and impact of floods and earthquakes.
The GPS type allows the specification of the longitude, lati-
tude, and altitude properties of a physical entity, and based
on this information can calculate distances (through built-
in operators) between entities based on their GPS locations.
There is also a GPSList data structure that stores a list of GPS
locations, useful for assets that span large GPS locations, such
as a segment of road or railway. The hasProperty construct
is used to specify that an entity has a property in SDML. For
example, the SDML declaration Physical Entity hasProperty
location : GPSList specifies that the entity Physical Entity
has a property location, which has a data type GPSList. This
means that the a Physical Entity may have a location property
described as a list of GPS coordinates. Now suppose that
we further declare that Road isA Physical Entity, then the
entity Road inherits the location property from the base type
Physical Entity. This hierarchical structuring is familiar from
object-oriented design paradigm.

To facilitate high-level abstraction of the status of CI
components, we have a distinguished built-in property state,
which describes current state of the component. SDML has
two built-in values that may be assigned to the state property
of any entity: Normal or Failed, which can be used to reason
abstractly about the operational status of the entity. When an
entity, say A, is in the Failed state, then the predicate fails(A)
holds. The user may also specify custom states through the
hasState and hasFailState constructs. This may be useful
for domain specific reasoning about CI entities, for example,
in road network management, we may want to distinguish
situations when the road is lightly congested but can still
be used from a severely congested state, when it may be
practically unusable. So, we may declare that Road hasState
LightlyCongested; Road hasFailState HeavilyCongested to
signal that, in addition to the states Normal and Failed,
the entity Road may also have states LightlyCongested and
HeavilyCongested and that HeavilyCongested is considered a
failure state for roads. Hence, the predicate fails(Road) holds
whenever Road is in the state HeavilyCongested or Failed.
Note that the notion of failure generally represents when an
entity is in an undesirable state. However, for events that
are by nature undesirable such as flooding and earthquake,
failure simply refers to their occurrence, so that fails(Flood)
represents a flooding incident.

To reason about direct service provision between CI entities
and direct impact of failures, we have respectively introduced
the providesService and impacts constructs. So the declaration
Generator providesService Electricity to Machine specifies
the dependency of Machine on Generator for the supply
of Electricity as a service. Similarly, the declaration Flood

10

impacts Road specifies that the physical externality Flood
has an impact on Road. Without further refinement of the
impacts statement to specify more precisely how flood impacts
road, the default interpretation in the analytical tool will be
that flooding makes the road fail: fails(Flood) ⇒ fails(Road).
We shall demonstrate shortly how declarations can be used
to describe the dynamics of an infrastructure system, for
example, we can refine the model to state precisely how Flood
impacts Road, e.g. by causing heavy congestion, in which
case the state of the road segment impacted by flood might
be changed to HeavilyCongested during flooding in a nearby
area. The reader should note that we can specify lists of entities
in SDML constructs. For example, the configuration Gener-
ator, National Grid providesService Electricity to MachineA,
MachineB suggests that MachineA and MachineB both have
Generator and National Grid as redundant Electricity sources.

To capture the detailed behavioural model of entities and
the dynamics of infrastructure systems, we have introduced
the notion of constraints, which are constructs that can be used
to describe the dynamics of the system under state changes.
So, for example, to specify that the electricity sources to
MachineA and MachineB are configured redundantly, we
might specify a constraint which states that these machines
fail only when all the electricity sources have failed:

Generator, National Grid providesService Electricity to
MachineA, MachineB;
BeginConstraint MachineA, MachineB

(forall s : Electricity in ServiceIn. fails(s)) => state = Failed ;
EndConstraint

This constraint applies to both MachineA and MachineB,
as declared in the list of entities after the BeginConstraint
header. The body of a constraint is usually a sequence of
statements that describe how the states of an entity changes
based on its interaction with its environment. Each declaration
is of the form Condition => Action; or, for multiple actions,
Condition => {Action1; . . . ;Actionn; }. The actions typically
specify state changes in entities when the condition on the
left of => is satisfied. Within the body of the constraint,
various sets of entities that interact with the constrained
entity are made available. In this example, we used the set
ServiceIn, which represents the set of services provided
to the constrained entity. In this case, the set contains the
Electricity services provided by the National Grid and the
Generator. Similarly, ServiceOut is the set of services
provided by the constrained entity to others. Whereas, when
reasoning about impacts, ImpactIn and ImpactOut are
respectively the sets of entities that directly impact or are
impacted by the constrained entity. Elements of these sets
can be selected via filters and property constraints. In this
example, the set ServiceIn is filtered by the Electricity
service type. Hence, forall s : Electricity in ServiceIn selects
only the services that are of type Electricity, which happens
to be the entire set in this case. So the condition (forall
s : Electricity in ServiceIn. fails(s)) holds only when
all incoming services of type Electricity fail - a redundant
configuration. Existential quantifiers may also be used. For

example, a condition (exists s : Electricity in ServiceIn.
fails(s)) holds whenever any incoming Electricity service
fails. The right hand side of => specifies the state change
that happens in MachineA or MachineB: it assigns the built-in
Failed value to the built-in state property of the entities
whenever all their incoming electricity supplies fail. We
could more succinctly achieve the same behaviour that the
example constraint on MachineA and MachineB specifies by
using the SDML requires construct instead. The statement
MachineA, MachineB requires Electricity means that the
machines require electricity to operate, and will fail if their
electricity supply fails. Note that whenever an entity fails in
the built-in Failed state, the default semantics is that all the
services that it provides also fail (transitioned to the Failed
state).

B. What If Analyses

An important capability for dependency discovery, and
resilience and risk assessment in CI management is the ability
to play What If games, to know how the infrastructure
behaves under various event combinations. SDML provides
constructs for carrying out automated What If analyses against
an infrastructure model. In particular, we may query for the
impact of failures of any set of entities on a given set of
entities. Suppose that an infrastructure owner wishes to verify
that a simultaneous failure of assets A and B cannot be
induced by a combination of failures of some other entities,
say, C,D,E, and F . Then, the What If specification to verify
this requirement is:

BeginWhatIf
over C, D, E, F assert{ not fails(A) && not fails(B); }

EndWhatIf

In What If blocks the analytics engine searches the state
space for conditions under which the statement(s) in the assert
block holds. More precisely, all entities are initially configured
to be in non-failed states, and subsets of the entities listed
in the over clause3 are made to fail to verify the effects of
the failures on the validity of the assert block statements. In
this example, starting from when all entities are in a non-
failed state, non-empty subsets X ⊆ {C,D,E, F} are then
constructed such that for all G ∈ X , fails(G) holds, and the
impact of that failure is propagated to the dependent entities
within the model to discover combinations that lead to the
simultaneous failure of A and B. If such combinations exist,
the analysis tool reports back the failure propagation paths that
led to the simultaneous failure. Various logical combination of
model entity failures can be verified against. For example not
fails(A) || not fails(B) finds the combination of states that
lead the failure of at least one of A or B. Recall that fails(A)
holds whenever A is in the (built-in) Failed state or any of
the domain-specific fail states of A introduced through the
hasFailState construct.

We may carry out type-based or property-based What If
analyses to filter out interesting sets of assets for which we

3If the over clause is omitted, the set of all model entities is implied.

11

want to understand events and configurations under which they
are potentially vulnerable. In the following What If queries:

locs isA GPSList; loc=gps1, gps2, ...;
BeginWhatIf

over J, K, L, M assert{ exists A : Physical Entity . not fails(A);}
assert{(exists A : Physical Entity .

GPS.distance(locs, A.location)) < 10. not fails(A);}
EndWhatIf

the first assertion is a type-based analysis which looks for
the combination of failures of entities J,K,L and M that
can lead to the failure of any entity of type Physical Entity
within the model. The second query is property-based, and it
uses the built-in GPS function that calculates shortest distance
between two sets of GPS locations. Since the over clause is
not used in the second assert statement, the assertion finds
the combination of any set of entity failures that can lead to
the failure of any Physical Entity within the model that is
situated, based on its location property, within a 10 km radius
of the specified GPS locations locs. As the example suggests,
advanced type and property-based criteria can be used to
filter out the assets of interest for the What If analysis.

IV. SAMPLE MODEL AND ANALYSIS

To demonstrate the modelling of the impact of CI de-
pendencies and how it might pose risks, we consider an
example that is based on the Buncefield oil storage and transfer
depot explosion in the United Kingdom on 11 December
2005 [4]. Here we demonstrate in particular how a high-
level abstraction of the system can help to quickly identify
potential risks posed to target entities by events associated
with other infrastructure entities. Because the Buncefield depot
stores flammable assets, the potential risk of explosions is
quite obvious, but the combination of events leading to the
explosion and the resulting impacts on the local environment
and economy may not be immediately obvious. Since the
analysis tool can perform exhaustive search on the state space
of the system, all possible combination of initial events that
can lead to the target end states can be accounted for. The
identification of such initial events is a key stage during risk
analysis, where the risk analyst can then prioritise the events
according to their likelihood of occurring.

In this example we have focussed on the impact of fire
explosion on the depot and the adjoining areas. To illustrate the
impact of co-dependencies due to geographical co-location, we
also show, at a very high level, how an explosion at the depot
might impact a local organisation. If such an organisation also
provides services to other organisation, which may not be
necessarily geographically located nearby, then we can study
how the impact of the explosion may be propagated down-
stream by the geographical co-dependencies and the service
dependencies. In this example we chose Northgate Information
Solutions (NIS), looking at the associated problems from the
perspective of its customers. NIS is a major provider of IT
services to the human resources, local government, education
and public safety markets, which had its headquarters located
within the vicinity of the depot and was impacted at its

physical, technology, information and enterprise layers by the
explosion. Also, because NIS serves many other organisation,
it is easy to see how the impact might have been far-reaching.
For example, given that the event occurred in the run-up to the
Christmas celebrations there was a real economic implications
for families of staff at the organisations that NIS provided
Payroll management services to.

According to the detailed review carried out into the causes
of the explosion [4], late on Saturday 10 December 2005
a delivery of unleaded petrol from the Thames/Kingsbury
pipeline (TKP1) started to arrive at Tank 912 (T912) within the
Buncefield depot. At about 05:30 on 11 December, the safety
system (S912, which we refer to as a type of ShutoffSensor in
the model) in place to shut off the supply of petrol to the tank
to prevent overfilling failed to operate. Petrol cascaded down
the side of the tank and as overfilling continued, the vapour
cloud formed by the mixture of petrol and air flowed over the
protective wall around the tanks, dispersed and flowed west
off site towards the Maylands Industrial Estate. At 06:01 on
Sunday 11 December 2005, the first of a series of explosions
took place. The main explosion, which appears to have been
centred on the Maylands Estate car parks, was massive. The
explosions caused a huge fire which engulfed more than 20
large storage tanks over a large part of the Buncefield depot.
The fire burned for five days, destroying most of the depot [4].

The high-level model of the infrastructure entities of interest
is shown in Fig. 4 and the associated dependency graph is
shown in Fig. 5. The model specifies the behaviour of the
ShutoffSensors as controls to prevent the fuel Tanks from
overflowing, and how fire, depending on the proximity to
tanks during overfilling might impact the tanks. Furthermore
we show in the model, how fire depending on its magnitude
and proximity might impact the NIS infrastructure. In practice
this might be two models, one belonging to the risk managers
at the Buncefield depot, and the other belonging to the risk
managers of NIS. These two have to communicate risks in
order for NIS in particular to benefit from a realistic account
of the risk due to fire explosion posed to its organisation and
services due to its location. However, we simplify this in the
model by assuming perfect knowledge.

As can be seen from Fig. 4 the model specifies that a
ShutoffSensor attached to a tank ensures that all the pipelines
servicing that tank will be switched off as long as the Shut-
offSensor itself has not failed. The behavioural constraint on
Tank specify that if a pipeline servicing the tank is in the On
state, and the tank itself is not full, then the state of the tank
changes to Full. Clearly, this is a very coarse approximation
of the dynamics of filling a tank, but since this behaviour
is not relevant for the current analysis this approximation is
sufficient. The point is that the modeller can later refine this
behaviour modularly if so desired, for example, to model the
time it takes for a Tank to overflow from empty. The second
Tank constraint is similar to the first: if the tank is Full and one
of its supplying pipeline is still on, then the tank transitions
to the Overflowing state. The third and final constraint for the

12

Physical Entity hasFailState Destroyed, Exploded;
Physical Entity hasProperty location : GPSList;
Fire hasFailState Small, Explosion; Fire impacts Physical Entity;
Tank,Pipeline, ... isA Physical Entity; Tank hasState NotFull, Full;
Tank hasFailState Overflowing; T912, T910, T915, ... isA Tank;
TKP1, TKP2, ... isA Pipeline; S912, S910, S915, ... isA ShutoffSensor
S912 providesService OverflowShutoff to T912;
TKP1 providesService Petrol to T912; TKP1.state = On;
S910 providesService OverflowShutoff to T910;
TKP2 providesService Petrol to T910; TKP2.state = On;...
BeginConstraint ShutoffSensor

(exists t : Tank in ServiceConsumers. forall p : Pipeline in
t.ServiceProviders. not fails(this) && t.state==Full)
=> p.state = Off;

EndConstraint
BeginConstraint Tank

(exists p : Pipeline in ServiceProviders. p.state==On
&& state==NotFull) => state = Full;

(exists p : Pipeline in ServiceProviders. p.state==On
&& state==Full) => state = Overflowing;

(exists f : Fire in ImpactIn. state==Overflowing &&
GPS.distance(location, f.location) < 0.01)
=> { f.state = Explosion; state=Exploded; }

EndConstraint
NIS isA Physical Entity; NIS.location=...; Fire.location = ...;
NIS providesService Payroll, ... to A, B, C, ...;
BeginConstraint NIS

(exists f : Fire in ImpactIn. f.state==Explosion &&
GPS.distance(location, f.location) < 1) => state = Destroyed;

(forall s in ServiceOut. state==Destroyed => s.state = Failed;
EndConstraint
BeginWhatIf

assert{ not fails(NIS);}
EndWhatIf

Fig. 4. SDML high-level model of the impact propagation of the Buncefield
depot explosion to an adjoining organisation.

Tank type specifies that if there is any fire within 10 meter
(0.01 km) radius of an Overflowing tank, then the fire turns
into an Explosion, and the state of the tank itself is transitioned
to Exploded.

In order to study the potential impact of failures in the
Buncefield depot on an organisation such as the NIS that is
located within a relevant radius of the depot, we “set fire” to
the depot in the model and the What If analysis checks whether
there can be any combination of events that can lead to the fail-
ure of NIS. The NIS organisation’s infrastructure is modelled as
providing Payroll services to other organisations A,B,C,
To model the impact of fire on NIS, the behavioural constraint
specified for NIS in the model specifies that if there is a
fire explosion within 1km radius of the NIS facility, then the
impact is that facility will be destroyed: hence the state is set
to Destroyed. Furthermore, as the second constraint on NIS
specifies, the destruction of the infrastructure means that all
the services provided from it will fail as a result.

The What If block specifies the analysis of interest, which
is to find the condition under which NIS fails.That is, the
events that can transition NIS into any of its specified fail
states. But we could also check the impact of a tank explosion
on other infrastructure component within Buncefield and the

services that they provide, such as the supply of aviation fuel
to Gatwick and Heathrow Airports. The result of the What
If analysis will return obvious and less-obvious sequence of
events that may lead to the desired end-states. In particular,
in this example, one of such scenarios is when the overflow
sensor S912 fails and there is a fire within the vicinity of the
tank T912. Such information can be useful to the managers
of the Buncefield depot, although it may not come as a
surprise to them. However, one of our objectives is to develop
safe ways to share such information between organisations,
so that organisations such as NIS in this case can adjust its
risk exposure, contingency plans and disaster recovery plans
accordingly. More generally, the sharing of such information
can help CI organisations engage in meaningful joined-up risk
mitigation activities.

NIS

BA C ...

Fire
T912

T915

T910

...

S915

S912

S910

...

TKP3

TKP1

TKP2

...

Payroll, ...

Payroll,...

Payroll,...

Payroll, ...

OverflowShutoff

OverflowShutoff

OverflowShutoff

OverflowShutoff

Petrol

Petrol

Petrol

Petrol

Fig. 5. Dependency graph of the Buncefield depot model.

V. RELATED WORK

We briefly highlight here a few related frameworks for the
modelling and analysis of CI systems. The CIMS c© framework
is an agent based CI modelling and simulation platform.
CIMS c© was developed to provide a portable and highly vi-
sual tools to identify and graphically display interdependency
weaknesses and vulnerabilities to the critical portions of the
infrastructure or operations [5]. Similarly to our approach, it
allows high-level reasoning about CI states. CIMS c© is fully-
fledged simulation environment which allows network nodes
to be connected external simulations or even physical sensor. A
related tool from the developers of CIMS c©, called CIPRSim,
is a modelling and simulation framework that visually portrays
the interactions between infrastructure components and allow
users to link multiple hazard and specific critical infrastruc-
ture sector analysis modules, including physical components,
through a distributed environment [6]. The DIESIS Project
has developed ontology-driven techniques and tools for the
characterisation of CI interdependencies. It uses a knowledge-
based system to create abstractions of CI domains and it is
designed to support a federated environment for simulating
CI models [7]. In our framework, we use a formal ontology
to map assets and other entities to the SATURN layers,
and the ultimate aim is that our ontologies will also serve

13

as a platform for information and knowledge sharing about
vulnerabilities and risks between CI managers during joined-
up risk mitigation.

VI. CONCLUSION

We have designed a framework for the high-level modelling
of CIs underpinned by a SATURN conceptual model. The high-
level framework allows us to carry out automated What If
analyses for the discovery of dependencies and the assessment
of resilience and risks. The analytical framework will give
new insight and visibility into the dynamics and potential
vulnerabilities of the CIs as a useful additional decision
support platform for CI managers. The supporting analytical
tools are being developed. The current implementation of the
analytical engine uses Drools Expert [8] rule-based system4 for
reasoning about cause and effects and states, but we suspect
that the rule engine might not scale to system models with
extremely large state space and we are therefore planning to
use the FDR CSP [9] model checker5. A key advantage of our
framework is that it allows modular building of the infrastruc-
ture, allowing users to model the aspect of the system that
they wish to study and to progressively refine the abstractions
by introducing more states, and adding new constraints to the
infrastructure model while the tool mechanises the discovery
of dependencies and vulnerabilities through automated What If
analyses. Moreover, the ability to reason about infrastructure
systems in SDML, a simple natural language-like language
makes the system more accessible to a wider audience. We are
also in the process of developing an interactive 3D interface
for the visual modelling of the CI. A key area of future work
is to support confidentiality-preserving sharing of information
and knowledge about high-fidelity models developed by dif-
ferent CI organisation to facilitate meaningful joined-up risk
mitigation, while minimising confidential information leakage.
We argue that this will be valuable from a system-of-systems
resilience engineering and risk management perspective, but
not at the cost of too much sensitive information leakage,
which currently constitutes a major barrier to the sharing of
information between CI organisations and government.

4www.jboss.org/drools/
5http://www.fsel.com/

REFERENCES

[1] P. Pederson, D. Dudenhoeffer, S. Hartley, and M. Permann, “Critical in-
frastructure interdependency modeling: A survey of U.S. and international
research,” Idaho National Laboratory, Idaho Falls, Idaho 83415, Tech.
Rep. INL/EXT-06-11464, August 2006.

[2] A. Adetoye, S. Creese, M. Goldsmith, and P. Hopkins, “A modelling
approach for interdependency in digital systems-of-systems security - ex-
tended abstract,” in 5th International Conference On Critical Information
Infrastructures Security. Athens, Greece, LNCS 6712, Springer Verlag,
2010.

[3] A. O. Adetoye, S. Creese, and M. H. Goldsmith, “Analysis of depen-
dencies in critical infrastructures,” in 6th International Conference On
Critical Information Infrastructures Security. To appear, 2011.

[4] Lord Newton of Braintree, “The Buncefield Incident 11 December 2005:
The final report of the Major Incident Investigation Board. Volume 1,”
Report of The Buncefield Major Incident Investigation Board, 2008.

[5] D. D. Dudenhoeffer, M. R. Permann, S. Woolsey, R. Timpany, C. Miller,
A. McDermott, and M. Manic, “Interdependency modeling and emer-
gency response,” in Proceedings of the 2007 Summer Computer Simu-
lation Conference, SCSC 2007, San Diego, California, USA, July 16-19,
2007, G. A. Wainer, Ed. Simulation Councils, Inc, 2007, pp. 1230–1237.

[6] S. Walsh, S. Cherry, and L. Roybal, “Critical infrastructure modeling:
An approach to characterizing interdependencies of complex networks
& control systems,” in Human System Interactions, 2009. HSI ’09. 2nd
Conference on, may 2009, pp. 637 –641.

[7] V. Masucci, F. Adinolfi, P. Servillo, G. Dipoppa, and A. Tofani,
“Ontology-Based Critical Infrastructure Modeling and Simulation,” in
Critical Infrastructure Protection III, C. Palmer & S. Shenoi, Ed., 2009,
pp. 229–+.

[8] M. Proctor, “Relational declarative programming with JBoss drools,”
in SYNASC, V. Negru, T. Jebelean, D. Petcu, and D. Zaharie,
Eds. IEEE Computer Society, 2007, p. 5. [Online]. Available:
http://dx.doi.org/10.1109/SYNASC.2007.87

[9] M. Goldsmith, “CSP: The Best Concurrent-System Description Language
in the World - Probably!” in Communicating Process Architectures 2004,
I. R. East, D. Duce, M. Green, J. M. R. Martin, and P. H. Welch, Eds.,
Sep. 2004, pp. 227–232.

14

