
A Methodology To Specify DEVS Domain Specific Profiles And Create
Profile-based Models

Stéphane GARREDU, Evelyne VITTORI, Jean-François SANTUCCI, Dominique URBANI
University of Corsica, UMR CNRS 6134, Quartier Grossetti, BP 52 20250 Corte, France

{garredu ;vittori ;santucci}@univ-corse.fr durbani@laposte.net

Abstract

Discrete EVent System Specification (DEVS) is a
popular formalism which allows specifying and
simulating models. Its main drawback is that its
implementation is simulator-specific, i.e. models have to
be programmed using an Object-Oriented Language
(OOL).
In this paper, we introduce DEVS profiles, which are
specializations/restrictions of DEVS meta-model, and we
explain how to create a DEVS Profile for non-computer
scientists. We distinguish two kinds of users: the
metamodelers and the modelers.
Models designed with DEVS profiles can be mapped onto
platform specific models and to object code using a
Model Driven Architecture (MDA) approach. DEVS
profiles improve the reusability of models.

Keywords: Discrete event simulation, MDA, DEVS
domain specific profiles, methodology

1. Introduction

DEVS formalism, introduced by Pr. Zeigler [1] [2], has
been used for years now in the community of modelling
and simulation: it lies on a strong mathematical basis, and
it is a generic formalism, based on discrete events. It has
great abilities to be extended, to fit several domains.
DEVS also provides a simulator attached to each model.
But the main drawback of such a formalism is its
implementation: DEVS models must be implemented
using an Object Oriented Language (OOL). Hence, a
scientist who would want to create and simulate his
models has to know a domain and an OOL, in order to
use a DEVS framework.
Our research team has been working for more than fifteen
years on DEVS formalism and its applications, and a part
of this team is currently working on DEVS adaptability,
trying to enable non-computer scientists to use it without
writing code. The main idea is to use DEVS abilities with
software engineering to create models, in order to
facilitate the modelling step, and improve portability and
re-usability.

First of all, we compared, using several criteria, some
languages and formalisms for which mappings towards
DEVS had been performed, and we highlighted the need
to create a new formalism [3] and described the approach
for the creation of such a formalism [4]. Then we defined
two major constraints:

a) This formalism must be easy to use
b) It must be able to be mapped onto DEVS formalism
(i.e. it must be close to DEVS though)

The second constraint lead us to reason in those terms: if
such a formalism is close to DEVS, we could see it as a
particular specialization or restriction of DEVS
formalism.
We can imagine that without modifying the formal
definition of DEVS atomic and coupled models (i.e.
without defining a new DEVS extension), it would even
be possible to specialize them for different domains. Such
a specialization would be more interesting if it is platform
independent and not tied to a particular DEVS
framework. It implies that mappings will have to be
performed: to do so, we use knowledge inherited from
software engineering to help scientists during the whole
modelling process, and we chose to follow a MDA
approach.
Model Driven Architecture (MDA) is an open approach
that was created by the OMG: it is a set of standards and
ideas in which every element is seen as a model. Even
transformations between models are models themselves.
The benefits of using such an approach are that a part of
the models used are platform-independent, and thus
reusable.
The main purpose of this paper is to introduce the DEVS
Profile concept, replacing it in a larger context: a
modeling environment.
This paper is organized as follows: the first section is
dedicated to background; we will focus on the concepts
used further in this paper (DEVS, UML, MDA, meta-
models…).
The following section is about DEVS Profiles, we
introduce a basic DEVS meta-model then we present the
concepts with which such a meta-model can be
specialized: we give an example of such a specialization.
We also explain how to provide a step-by-step help

353
IEEE IRI 2011, August 3-5, 2011, Las Vegas, Nevada, USA
978-1-4577-0966-1/11/$26.00 ©2011 IEEE

during all the modelling steps, considering two levels: the
“modeller level” and the “user level” and we give a
graphical representation of our profile. In the last section,
we conclude this paper by discussing about our
methodology and our work in progress.

2. Background

In this section we present several concepts which will
be used in the description of our approach. The first part
is dedicated to DEVS, its models and their
implementation, the second one outlines UML properties
and presents UML profiles, while the third one highlights
the main features of a model-driven approach like MDA.

2.1. DEVS formalism

DEVS formalism was introduced in the seventies by Pr.
Zeigler, it is based on discrete events, and it provides a
framework with mathematical concepts based on the sets
theory to describe the structure and the behavior of a
system.
Almost any system can be modelled with DEVS, if it has
finites states and finite transitions between its states, in a
finite time interval, and interacts with its environment
through events sent and received on ports.
The tiniest element in DEVS formalism is the atomic
model (figure 1).
An atomic model is able to evolve by itself but it also can
react to external events: it describes the behaviour (or a
part of it) of the studied system and is defined as follows:

AM = < X, Y, S, ta, �int, �ext, � >

- X is the input ports set, through which external events e
are received;
- Y is the output ports set, through which external events
are sent;
- S is the states set of the system;
- ta is the time advance function (or lifespan of a state);
- �int is the internal transition function;
- �ext is the external transition function;
- � is the output function;
At the beginning of the algorithm, the model remains in a
given state s∈S for a duration d = ta(s) if no external
event occurs on any input port.
When d expires, the system performs y=�(s) (i.e. it sends
a message on one of the output ports), then it triggers an
internal transition from the current state s to another state:
�int(s).
If an external event x∈X occurs before d expires, the
system carries out an external transition from s to
�ext(s,e,x). In both cases, the system is now in a new state
s’ during d’ = ta(s’) and the algorithm restarts.

A DEVS coupled model shows how atomic models are
connected to each other; it gives a hierarchical view of
the system and describes the links between its sub-
models. It also can link an output of one of its sub-models
to one of its own outputs.

Figure 1. DEVS atomic model

DEVS atomic and coupled models can be textually
described, but, in order to be simulated, the system must
be modelled within a DEVS-oriented framework: the
models must be programmed using an object-oriented
language.
Once an atomic model is programmed, its associated
simulator is almost automatically provided, and once a
coupled model is defined, its coordinator is also almost
automatically provided (i.e. it coordinates all the
simulators and/or the coordinators of the models it is
composed of).
The simulation is initiated by the root coordinator which
is the root of the hierarchical simulator. There are several
DEVS simulation environments, such as CD++ [5], a
framework which uses C++, or JDEVS [6] which uses
JAVA.

2.2. UML and MDA

Unified Modeling Language is a graphical set of
modeling formalisms: it provides a toolkit which enables
one to model the structural aspects of a system as well as
its behavior [7].
UML is owned by the Object Management Group, and its
current version is UML 2.3 [8]. Its main advantage is that
it is considered as a standard formalism by a large
worldwide community of users.
An UML model (Class diagram, Use Case diagram…) is
an abstraction of a system from the real world located at
the lowest abstraction level: M0. Such an abstraction
takes place at a higher level: M1. It is defined by its meta-
model at a higher level: M2. This meta-model describes,
using a language or formalism, the elements that can be
used todesign the model and their relationships with each
other.

354

Figure 2. Modeling levels hierarchy and
relationships with UML

Such a description is defined at a higher level by Meta
Object Facility (MOF), a language used to describe other
languages. This level is M3. MOF it is defined on itself,
i.e. it is described in MOF terms. Hence, there is no level
higher than M3 (figure 2).
MDA (Model Driven Architecture) [9] is a software
design approach initiated by the OMG in 2001 to
introduce a new way of development (figure 3) based
upon models rather than code.
With MDA approach, everything is a model, even the
transformations between models are considered as
models.
MDA defines a set of guidelines for defining models at
different abstraction levels, starting from Computational
Independent Models (CIMs) to platform independent
models (PIMs), then from PIMs to platform specific
models (PSMs) which are tied to a particular technology
(i.e. platform). The translation from one PIM to one or
several PSMs is to be performed automatically by using
transformation tools. MDA also enables transforming a
PSM into source code. The great advantage of such an
approach is the great reusability of models.
OMG provides a set of standards dedicated to this
approach. Although UML was at the beginning the basis
of the OMG works on MDA, it is now MOF which
appears to be the most basic standard.

According to this standard, every formalism involved in a
MDA process at any level (PIM, PSM) is to be specified
by a metamodel expressed in terms of MOF elements.
The QVT (Query Views Transformation) standard
provides a standard formalism to define transformation
between models expressed in MOF compliant formalisms.
UML still provides a common and useful visual notation
for the description of software artifacts at several levels
and from several points of view.

Figure 3. Overview of MDA abilities

Theoretically, a MDA process can be followed without
using UML. However, OMG considers it as a favorite
formalism, arguing that it has become a real used standard
and that its meta-model is fully defined Since its 1.3
version, UML also includes a set of mechanisms which
provide a help during the modeling process, in all its
steps: UML Profiles [10].
UML profiles allow customizing UML meta-model by
specializing some of its elements, for instance putting
restrictions on them, but without adding anything to it:
this meta-model has to be considered, following the
OMG, as a “read-only model, that is extended without
changes by
profiles”.
A Profile can be defined to fit a particular platform
(J2EE, .NET…) or domain (real-time…). It must be able
to be applied to or retracted from a model. Profiles are
composed of three elements: stereotypes, tagged values,
constraints: their purpose is to customize the metamodel.
Those elements allow the use of a terminology that can fit
particular domains and the use of different symbols than
the usual ones supplied by UML.

355

They also enable to specify existing semantics or to add
new ones to the meta-model, to give additional
information when a model is transformed into another
model (mapping rules), to restrict the metamodel by
adding to it constraints (written in Object Constraint
Language for instance).
As shown on figure 4, our approach is not directly linked
to UML profiles (even if they are a part of MDA
architecture, and used in model mappings), but we
thought it was necessary to take a glance at their global
philosophy: as UML profiles allow the specialization of
UML meta-model by adding restrictions to it, DEVS
Profiles are a way to specialize DEVS meta-model: the
following section explains how.

Figure 4. A MDA approach to transform DEVS
profiles onto code

The purpose of this paper is to focus on the M2 level. The
mappings located at M2 level are performed with M2M
(Model TO Model) tools, while the final mapping is
performed using M2T (Model TO Text) tools. Every PIM
can be reused because of its portability properties. MDA-
compatible software are able to do so. This approach is
summed-up in the previous figure.

3. DEVS profiles

In this section, we explain our vision of DEVS
extensibility, introducing DEVS Profiles. Such profiles
can be built for a domain-specific modeling purpose. As
it was mentioned before, extending DEVS with profiles
does not add anything to DEVS meta-model, i.e. no new
elements are added to it (neither new sets, nor new
functions…). We only specialize DEVS meta-model by
specifying it and modifying its classes: DEVS Profiles
metamodel derived from DEVS metamodel.

3.1. The DEVS metamodel

The DEVS meta-model can be designed using UML class
diagrams. To do so, the first step is to identify the classes.
A coupled model is composed of two models at least,
whether they are atomic or coupled.

Every atomic model has at least one state. A state must
have at least one variable defined: the duration of lifespan
of the state. Hence, it must have at least one transition
defined: the one accessed with �int(s). A transition is a
path from one state to another one, and it can be internal
or external. Every kind of model has ports. A port can be
waiting for external messages (input events), which will
trigger �ext function, or it can send messages (output
events) when � function is triggered.
Associated code can be added to �. A port is able to
belong to a coupled or an atomic model and it can be
linked to another port. Figure 5 shows a basic DEVS
meta-model.

3.2. DEVS profiles philosophy

The DEVS meta-model must be seen as a starting point
for defining DEVS profiles. In our philosophy, no new
classes can be added to DEVS meta-model, because it
would mean that DEVS models definition have changed.
The purpose of DEVS profiles is not to create a new
DEVS extension but to simplify the modeling process,
and of course simulation.
We can identify two user types which are involved in the
profiles mechanism: the meta-modeler and the modeler.
The former will work at the M2 level, the latter at the M1
level (see figure 4).
The user who wants to create a DEVS profile is seen as a
“meta-modeler”. He is supposed to be able to handle
DEVS concepts. He defines the concepts which will be
handled by the final user, or “modeler”.
Creating a DEVS profile allows the meta-modeler to
modify classes in order to adapt the DEVS meta-model to
a particular domain. Classes variables which remain
undefined can be given a particular type, relationships
between classes can be redefined, and the attributes of the
classes can be changed if those changes are compatible
with the initial DEVS meta-model.
The concepts handled by the meta-modeler can be given a
graphical notation. The meta-modeler uses a meta-
modeling framework.
The modeler, who can be the meta-modeler himself or
another person, will use this meta-model within a
modeling framework. He will design his models using the
concepts defined at the higher level by the meta-modeler.
The metamodeler must define the rules which will link
the modified metamodel to the basic one. Such a user
designs UML models without being aware of the code
used in the UML modeling framework he is using, the
modeler designs his DEVS models without having any
knowledge of the code behind. Once his models are
defined, they can be mapped onto DEVS PIMs, those
DEVS PIMs onto a DEVS PSM, and this PSM onto
object code in order to be

356

Figure 5. A basic DEVS metamodel

simulated: the main idea is the transparency of those
operations. A meta-modeler has to know DEVS
formalism, whereas a modeler has not.

3.3. A formalism which can be defined as a
profile

In [11], we defined a new formalism to help non
computer scientists to specify DEVS models. As this
formalism is not too different from DEVS formalism, we
show here how to create a profile for this language.
The basic elements of our language are: models, states,
events, transitions, ports.
Even if those elements seem very close to DEVS
formalism, and to every other formalism based on states
and transitions, we are convinced that they will be easier
to handle, because the G.U.I. could provide a step-by-step
help and makes some concepts more transparent. A model
must have a name, and may have input and/or output
ports. In this case, the ports must be named. An input port
takes place on the left side of the state, while an output
port takes place on the right side. A model must have, at
least, one state.
A state, once created, must be given a name.
When the user specifies a state, sometimes he gives at
least one state variable which can take several numerical
values, and he considers there is one single state with a
state variable. However, from the modeler’s point of view
there are as many states as the state variable can have. But

we chose to represent the state as a simple one. Usually, it
is easier to simulate states with a few state variables. Each
state has a time duration value (considered as a particular
state variable), by default this duration is infinite, but
must be changed by the user. When duration expires, it
generates a particular event, because it comes from the
model itself.
An event is defined with an input/output port, and a
value. An event specified using an output port will
automatically be sent on the given port just before the
autotransition of the current state is fired. A transition is
graphically represented by an oriented arrow between two
states. There are two different arrows, depending on the
transition type: if it is triggered by an external event, the
arrow will be full, if it is triggered by a clock event, when
maxDuration expires (we name it autotransition) it will
have a thin white line inside.

3.4. Defining a profile

Starting from the DEVS meta-model, we can define the
profile of this formalism. As its purpose is to enable non-
computer scientists to define simple DEVS models, we
can only work on DEVS atomic models. We do not use
the CoupledDEVS class anymore. The ExternalTransition
and InternalTransition classes become EventTransition
and AutoTransition. As links between ports no longer
exist, we can suppress the Port class and use ports as
simple attributes of EventTransition and AutoTransition.
The AtomicDEVS class can be removed, since it is not
used by our formalism, as long as there are no links
between two AtomicDEVS.

357

We consider maxDuration as a mandatory attribute of the
State class, and we consider that a state may have
variables seen as attributes. We do not use the StateVar
class anymore. We give in figure 6 the meta-model of the
DEVS Profile for non-computer scientists which could
have been designed by the meta-modeler.
We chose to represent our metamodels (figures 5 and 6)
with UML class diagrams, because it is a well-known,
easy-to-read formalism, but other tools could have been
used, such as EMF Ecore (and its graphical representation
EMF Ecore Diagrams).

Figure 6. The tailored DEVS metamodel which
describes our profile

3.5. Using a profile

Now, the modeler can use this meta-model in a modeling
framework in order to create a model. Such a model can
be under the form on the example shown on figure 7.
It is helped by a contextual step by step defined by the
metamodeler himself. At a higher abstraction level, the
tailored meta-model can be linked to DEVS basic
metamodel using rules. This can be done under a MDA
approach. The purpose of this approach is to define links
between those two meta-models, in order to transform a
DEVS Profile PIM to a basic DEVS PIM. Those links can
be expressed with MOF QVT. Then, this basic DEVS
PIM could be mapped onto a DEVS PSM and this PSM
can be used to generate the corresponding classes in a
DEVS-oriented framework.

4. Conclusion

We have introduced in this paper the DEVS Profiles
concept, and gave an example of a definition of DEVS
Profiles, using a simple graphical language. Of course,
many other profiles could be created, following the
process we described here.

Such profiles could be used to specialize DEVS meta-
model for domain-specific purpose. We chose the
example of a profile for non-computer-scientist. By using
“non-computer scientist” expression, we mean persons
who are domain experts but not in computer science. In a
near future we will try to test our simple language defined
as a profile with other scientists (biologists, chemists…).
We are currently programming an environment which
enables the metamodeler to create DEVS profiles, which
could be used by the modeler to design models according
to this profile. This modeler does not need to know a
programming language to create his models.
Following a MDA approach, those models will be
mapped onto object oriented code. We are using MDA-
oriented software, such the Eclipse plugins Acceleo, or
Kermeta, in
order to complete those mappings.
Using a MDA-oriented approach, every DEVS-profile
model is designed without taking into account platform
constraints, which improves its reusability.
Another very important step is to define an advanced
DEVS metamodel, taking into account complex
conditions and actions.

5. References

[1] Zeigler, B. Theory of Modeling and Simulation – Academic
Press, 1976

[2] Zeigler, B. P., H. Praehofer, and T. Kim. 2000. Theory of
Modeling and simulation. 2nd ed. Academic Press

[3] S. Garredu, E. Vittori, J.-F. Santucci and A. Muzy.
“Specification Languages As Front-end Towards DEVS
Formalism”, ISEIM 2006: The First International Symposium
on Environment Identities and Mediterranean Area, Corte

[4] Garredu, S., P.A. Bisgambiglia, E.Vittori and J.F. Santucci.
2007. “Towards The Definition Of An Intuitive Specification
Language”. In Proceedings of the Simulation and Planning in
High Autonomy Systems (AIS) & Conceptual Modeling and
Simulation (CMS).

[5] Wainer, G. “CD++: a toolkit to definediscrete event
models”. Software, Practice and Experience. Vol.32, No.3. pp.
1261-1306. November 2002

[6] Jean-Baptiste Filippi and Paul Bisgambiglia JDEVS: “An
implementation of a DEVS based on formal framework for
environmental modelling” Original Research Article
Environmental Modelling & vSoftware, Volume 19, Issue 3,
March 2004, Pages 261-274
[7] G. Booch, J. Rumbaugh, and I. Jacobson. “The Unified
Modeling Language User Guide”. Addison-Wesley, 1998.

[8] OMG Unified Modeling Language: Superstructure, version
2.3
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/

358

[9] http://www.omg.org/mda/

[10] Lidia Fuentes-Fernández and Antonio Vallecillo-Moreno.
“An Introduction to UML Profiles” in UPGRADE : European
Journal for the Informatics Professional, Vol. V, No. 2, April
2004

[11] Garredu, S., E. Vittori and J.F. Santucci. 2009. “A DEVS-
oriented intuitive modeling language”. In SpringSim
Proceedings of the 2009 Spring Simulation Multiconference,
article n°155

359

