
Parallel & Distributed Simulation with DEUS

Michele Amoretti, Marco Picone, Stefano Bonelli, Francesco Zanichelli

Department of Information Engineering
Universita degli Studi di Parma, Italy

michele.amoretti@unipr.it

ABSTRACT

This paper illustrates how parallel & distributed simula­

tion capabilities have been introduced in DEUS, our tool

for the analysis of complex systems. Its essential Java API

provides basic interfaces and classes for modeling nodes,

events and processes that characterize the structure and dy­

namics of any complex system. By supporting parallel &

distributed simulations across multiple computing nodes,

DEUS enables the analysis of large-scale complex systems.

Its experimental validation has been obtained by means of

the distributed simulation of a significant complex system,

i.e. a large peer-to-peer network.

KEYWORDs: PDES tools, complex systems, peer-to­

peer networks.

1. INTRODUCTION

Complex systems are dynamic systems composed of inter­

connected parts that as a whole exhibit one or more prop­

erties that could not be gathered from the properties of the

individual parts. Examples of complex systems are found

in nature, such as ant colonies, human economies, climate,

nervous systems, cells and living things, including human

beings, as well within modern energy and telecommunica­

tion infrastructures, ranging from networked embedded sys­

tems to large scale peer-to-peer architectures.

Quantitative approaches for analyzing the dynamics of

complex systems have to consider a broad range of con­

cepts, from analytical tools, statistical methods and com­

puter simulations to distributed problem solving, learning

and adaptation. Very often closed-form, analytical evalu­

ation is not feasible, thus simulation remains the only vi­

able evaluation methodology. Hence, performing a simula-

978-1-61284-383-41111$26.00 ©20 11 IEEE 600

tion means mimicking the occurrence of events over time,

and recognizing their effects as represented by states of the

modeled complex system. Future events occurrences in­

duced by states must be scheduled (i.e. planned). In contin­

uous simulation state changes occur continuously in time,

while in discrete simulation the occurrence of an event is

instantaneous and fixed to a selected point in time. Con­

tinuous simulation models can be converted into discrete

models, which are more easily managed and thus most used.

Depending on the characteristics of the system to be simu­

lated, the reliability of the answer required, and many other

factors, discrete simulation can be either event driven (in

which time jumps from event to event), or time driven (in

which time proceeds at a constant step) may be more appro­

priate. Continuous simulation refers to differential equation

models, while discrete simulation refers to discrete time or

discrete event models.

In this context, our research activity focuses on discrete

event simulation [14] of large complex networked systems,

that are characterized by events that are not guaranteed to

occur at regular intervals, and by the lack of a bound on the

time step (i.e. it should not be so small as to make the sim­

ulation run too long, nor so large as to make the number of

events unmanageable). Examples are distributed computing

systems based on the peer-to-peer paradigm, with randomly

joining and leaving nodes, but also emergency rescue and

crisis management scenarios, where rescuers do not arrive

and leave at regular time intervals.

We are developing a general-purpose discrete event simula­

tion environment, called DEUS [4]. With respect to our pre­

vious work [1], here we illustrate a new version of DEUS,

supporting parallel & distributed simulation (PDES) based

on a hybrid approach, that avoids violating the causality

constraint among events scheduled on distributed queues.

Indeed, we consider the latter as the most suitable strat­

egy to maintain consistency among logical processes when

communication among them are frequent, which is the case

of distributed simulation of networked complex systems.

With respect to the sequential version, PDES-based DEUS

allows to simulate larger complex systems, e.g. peer-to-peer

networks with size increased by two orders of magnitude

(from 104 to 106 nodes).

The paper is organized as follows. Section 2 illustrates

the basic principles of our DEUS simulator. Section 3 de­

scribes how parallel & distributed simulation is effectively

supported by the most recent release of DEUS. Section 4

shows the performance of the simulator with an event-based

implementation of the Chord peer-to-peer overlay scheme.

Section 5 discusses related work, and section 6 concludes

the paper with a summary of the work done and a proposal

for future work.

2. DEUS SIMULATION TOOL

Discrete event simulation (DES) works by maintaining a

list of events sorted by their scheduled event times. Ex­

ecuting events results in new events being scheduled and

inserted into the event list as well as events being deleted

and removed from the event list. Such a fundamental prin­

ciple is the basis of most DES tools, including our general­

purpose simulation environment, called DEUS [1]. The es­

sential Java API of DEUS, which can be downloaded from

the project site [4], allows developers to implement (by sub­

classing):

• nodes (i.e. the parts which interact in a complex sys­

tem, leading to emergent behaviors: humans, pets,

cells, robots, intelligent agents, etc.)

• events (e.g. node births/deaths, interactions among

nodes, interactions with the environment, logs, etc.)

• processes (either stochastic or deterministic, constrain­

ing the timeliness of events)

In DEUS, a node represents a system characterized by a set

of possible states, whose transition functions may be imple­

mented either in the source code of the events that can be

associated to the node, or in the source code of the node

itself.

The first solution is appropriate if we do not want to set in

the node class definition all the possible node behaviors, but

leads to events that must be specific for one or few kinds

of nodes. For example, consider DEUS nodes represent­

ing computational Grid nodes, hosting computational and

storage resources. We could implement different resource

discovery events, each one with its own routing strategy.

Such events take into account the structure of the simulated

601

Grid node, while the latter is designed independently of the

events that could affect it.

The second solution puts the whole specification of the node

behavior on the node itself, and allows to implement events

that potentially work on any kind of node. For example,

consider two DEUS node classes Car and Boat, extending

an abstract class Transport, with function startEngine. An

event StartEngineEvent, either associated to a Car or to a

Boat, would have a generic reference to a Transport object,

and trigger startEngine on it.

3. PDES WITH DEUS

Parallel & distributed simulation (PDES) refers to the con­

current simulation of several model components, each one

contributing to the simulation of a composite system model.

Model simulators can be either geographically dispersed,

or executed on each processor of a multiprocessor archi­

tecture. The objectives of PDES are manifold: increas­

ing the speed, increasing the size of models, exploiting the

greater graphics capability provided by specialized nodes,

etc. Sequential simulators guarantee causality between

events by generating a total ordering of events according to

their scheduling times. Distributed simulators, however, are

prone to causality violations. To avoid it, they must respect

the causality constraint [6], stating that

"a simulation of a model consisting of mod­

ular components which exclusively communi­

cate through their modular input/output couplings

obeys the causality constraint, if and only if

each modular component simulator processes the

events in nondecreasing timestamp order".

Several approaches to PDES have been developed in three

decades of research. They are categorized as conserva­

tive, optimistic, or hybrid [5, 14]. Conservative solutions

strictly avoid violating the causality constraint. Optimistic

approaches temporarily violate it, but then detect and re­

pair the violations. The hybrid solution is a compromise

between the two other approaches. It weakens the conser­

vative "block until safe-to-process" rule in a sense that if

the time instant of the occurrence of an external event is in

the time interval [8, tj, it allows progressing simulation un­

til the forecasted next event instant t' E [8, tj, but further

progression only with controlled probability.

In the following we recall the conservative solution pro­

posed by Chandy and Mistra [2]. Then we illustrate how it

has been adapted in order to be implemented within DEUS,

becoming a hybrid strategy. Other approaches are under de­

velopment, and will be illustrated in a future work.

3.1. Conservative Strategy

Suppose to have a simulation of a system composed by

many nodes. The whole set of nodes is divided in subsets,

and each subset is assigned to a logical process (LP) run­

ning on a different host. Thus, each LP is responsible for a

group of nodes.

Sometimes one node being simulated on one host generates

an event that is associated to another node being simulated

on another host. Using the following notation for events:

e(sender, receiver, s cheduled_time) (1)

Nodes are instantiated and initialized during the simulation,

by means of birth events. Each node n has an identifier

id (n). Each LP is responsible for a fraction of the identifier

space. Node identifiers are randomly assigned to nodes, for

which if a LP generates a node birth event, depending on

the node identifier the event is inserted in the local queue

or sent to the destination LP. If the list of available LPs is

static and known in advance, this operation is trivial. If LPs

can join and leave dynamically, it is necessary to manage

the redistribution of the nodes. Here we consider the sim­

plest case, i.e. we suppose the number of hosts and their

responsibilities in respect to identifiers are fixed and known

in advance by each LP.

Going back to distributed event scheduling, there are two

possible situations: t(LP2) ::; h2 (which is good, e is put

in the queue of LP2) , or t(LP2) > h2 (which is bad).

The general conservative solution states that, on the i-th

logical process, next internal event e(LPi, LPi, ti i) can be

processed if and only if ti i < tjNj i=- i, where tji is

the scheduled time of last received event e(LPj, LPi, tji).
Thus, a logical process blocks when it has not received

events from all its influencing logical processes.

A deadlock may occur when there is no event present in one

of the input queues of a logical process, for which it cannot

consume events in the other queues, resulting blocked. The

usual scheme to avoid deadlock is by using null messages to

announce the absence of outputs for a certain period in the

future [14]. When a logical process has an event for another

logical process, say at time 10, it also sends a null-message

to other logical processes announcing that it has advanced

to time 10 and will not have an output prior to 10. Thus,

602

Figure 1. Internal Architecture of a Logical Process.

Local EVL is the Queue of Events - Generated by the

LP Itself, or by External Ones.

other logical processes can process all the events received

prior to 10.

As almost every parallel & distributed simulation system,

DEUS cannot adopt this approach, because when LPi pro­

duces an event e(LPi,LPj,ti j) it does not mean that the

virtual time (VT) at LPi is tij; in general it is ti ::; ti j.

3.2. Hybrid Strategy

Being DEUS a general-purpose simulation tool, it allows

the analysis of systems where complexity arises from the

number of nodes and from the huge communication ex­

change among them, as well as of systems composed by

few partially interconnected elements exhibiting a complex

internal behavior. Peer-to-peer networks are an example of

the former kind in which each node potentially interacts

with any other node and the simulation load is due to the

network size and to the frequent data exchange. A repre­

sentative example of the latter kind is given by a hardware

system where a few statically connected modules cope with

a high number of internal events while limited inter-module

communication takes place. In the case of a P2P network,

the simulation needs to allow each LP (whose architecture

is illustrated in figure 1) to communicate with any other,

thus yielding to a completely connected graph. For the

other type of systems, specific communication links among

LPs (representing the hardware modules) should be defined,

thus improving the independence of each LP and providing

a better exploitation of the system parallelism.

In order to put less constraints on the designer and to make

simulation independent from the number of available LPs,

the current choice is to maintain a fully connected graph

among LPs. This allows the simulation of both kinds of

aforementioned systems, although performance improve­

ments cannot be achieved for partially connected complex

systems. Additionally, this design choice has been benefi­

cial with respect to deadlock prevention. With a completely

connected configuration deadlock prevention is guaranteed

and derives from a structural property of the simulator in

which a specific albeit sometimes constraining limitation

has been introduced. Each communication between LPs in

a completely connected graph can give rise to other commu­

nications in arbitrary future points of time and in unknown

directions, thus any communication between LPs is seen as

a point of synchronization. To guarantee that constraints on

temporal causality are met, no LP can advance beyond the

point in time of the next envisioned communication, even

though, at execution time, it will not be influenced by any

event message. In this way the simulation progress is fa­

vored since it does not need to take into account the ac­

tual interconnections among system components which are

forcedly considered as independent.

Even load distribution over an arbitrary number of LPs is

obtained by dividing the the total number of DEUS nodes

and of initial events equally among the available LPs. Be­

ing the majority of events usually related to a specific DEUS

node it is assumed that runtime generated events will pre­

sumably be distributed in the same way as nodes. Commu­

nications between nodes result into the creation of events,

each associated to the destination node. In the case of a

node executed on a remote LP, event scheduling cause an

event message to be sent to the destination LP. When the

received message is processed, the event is recreated and

scheduled in the local event queue.

Initially, our plan was to tackle the design of the distributed

version of DEUS following Chandy-Misra approach [2],

which is based on null messages as a mean for synchroniz­

ing logical processes. Nevertheless, having a completely

connected LP graph, we had to introduce a number of

changes. The resulting parallel & distributed simulation ap­

proach is based on a barrier algorithm, whose main loop

includes the following steps:

1. Lookahead computation/estimation: each LP exam­

ines its event queue looking for the first occurrence

of an external communication; the virtual time of the

related event is considered as the safe Local Virtual

Time Horizon (LVTH), by which other LPs can pro­

cess their events without violating temporal causality

constraints;

2. Communication of the LVTH: as envisioned by the

null message mechanism, each LP transmits its com­

puted LVTH value to all other LPs.

3. Agreement on a common LVTH: after the second step

each LP is aware of the time horizon computed by each

603

other LP for which it assumes no communication will

take place. Thus, the worst case horizon, i.e. the clos­

est one, is obtained for the whole system1.

4. Processing of events until the common LVTH: each

LP retrieves and executes events from its queue up to

the point of time corresponding to the LVTH. At this

exact time, the LP (or more LPs if they all computed

the same lookahead in the first phase) which obtained

the shortest horizon will surely have processed events

related to external communications.

5. End of the communication exchange: either in the case

a LP has sent events to other LPs or otherwise, it is

required to send a notification message to every other

LP in order to guarantee that in the current iteration no

other communication will be received.

6. Message queue check/inspection: each LP examines

its inbound message queue, inserts any received event

and waits for (if necessary) any notification of end of

communication exchange (sent at previous phase).

After each loop iteration, message queues have been possi­

bly modified and are examined to compute the new LVTH.

With respect to the original Chandy-Misra protocol, it has

been necessary to impose a progress based on constant time

intervals, to guarantee the independence of load distribution

from the specific simulation. Such kind of solution, called

Conservative Time Windows has been proposed also in [10]

and [11]. Thus, our solution can be considered to be hybrid,

in between Chandy-Misra and Conservative Time Windows

approaches.

In Chandy-Misra's strategy, both event messages and null

messages contribute to define, thanks to their timestamp,

the virtual time (VT) of the sender logical process, which

is the guarantee for not receiving communications before

that VT. In DEUS, as already stated, when LPi generates

e(LPi, LPj, ti j), supposing VTi = ti , in general it means

that the VT at LPi is ti ::::: ti j' Thus, the message that is

sent at step 2 of the above algorithm does not include the

information VTi = ti , but the worst-case estimate of next

communication triggered by LPi.

We recall the, if the execution of an event requires the inter­

action of the associated node with other nodes to retrieve in­

formation about their current status, new "communication"

events must be scheduled. Even better, the best practice is to

collect neighborhood information in advance, by schedul­

ing the appropriate events. From a general viewpoint, it

1 This mechanism based on a centralized barrier does not scale well. We
plan to improve the efficiency of the algorithm by using a dissemination
barrier, instead.

Figure 2. DEUS Components that Realize Distributed

Simulations.

can be observed that the rarest and more foreseeable are the

communications, the longest are the execution bursts.

The worst-case estimate of next communication can be very

tight, if the problem does not allow to know with certainty

that next communication will be performed in the far fu­

ture. In general, the notion of lookahead in distributed dis­

crete event simulation is the characteristic that a LP predicts

future messages on the basis of messages it has already re­

ceived. This lookahead can be the result of the incorpora­

tion of more problem-specific system knowledge into the

model specifications, as well as due to the properties of the

service time distributions. Simulation performance is di­

rectly related to the lookahead estimation.

Finally, to support distributed simulation in DEUS we had

to provide it with a communication infrastructure that al­

low distributed instances of the simulation tool to exchange

messages and to be coordinated by a centralized controller.

Moreover, we introduced a mechanism for which the logs

created by each LP are collected, at the end of each exe­

cution, and merged, to be processed by the statistical tools

that were already available within DEUS. The resulting ar­

chitecture is illustrated in figure 2. The Master Controller

(MC) is the front-end of the simulation tool, allowing to set

the configuration file describing the simulation, the IP:port

of machines running Local Controllers (LCs), as well as the

total number of LPs that will be automatically distributed

and assigned to LCs. The MC is also responsible for col­

lecting log files from LCs at the end of the simulation pro­

cess.

4. EXPERIMENTAL EVALUATION

As a benchmark, we implemented the distributed simula­

tion of a Chord ring, i.e. a well-known peer-to-peer net­

work based on the decentralized structured model (DSM).

It is demonstrated that, with high probability, the number of

nodes that must be contacted to find resource in an N -node

604

network is O(1og N) [13].

Our distributed simulation includes the construction of a

large Chord ring and the propagation of several queries.

The Chord ring is split in m equal slices, each one assigned

to a different logical process (LPs). Message propagations

over the Chord ring (represented by communications events

among peers) may involve several LPs, although last hops

are usually concentrated in the same slice.

The Master Controller (MC) has been executed on a virtual

Windows Server machine (the MC is involved just for few

seconds at the beginning and at the end of the simulations).

Local Controllers (LCs) have been executed on a cluster

consisting of four Linux machines, each one being equipped

with two Intel Xeon E5504 2.00GHz (quadcore processor)

and 16GB of RAM. Each LC ran on one node of the cluster,

and created up to 8 LPs - one per core.

We measured the elapsed time, speedup (i.e. the ratio be­

tween the elapsed times of the sequential and parallel solu­

tions) and efficiency (i.e. the ratio between the speedup and

the number of LPs) versus the number of logical processes

(from 1 to 32), for a Chord ring made of 2.5 . 105 nodes

(figure 3), and for one made of 106 nodes (figure 4). In the

first case, parallelization is not very convenient: the max­

imum speedup is 3.2, obtained with 8 LPs (very far from

the theoretical limit, i.e. m, the number of LPs). The rea­

son of these bad results is that, by increasing the number

of LPs, the Chord ring (which is relatively small) becomes

too much fragmented, for which message propagations in­

volve too many LPs. Indeed, parallelization gets more con­

venient in the case of the Chord ring with 1 million nodes:

the speedup matches the theoretical limit when m = 2 and

m = 4, and is acceptable also with m = 8 (in this case,

8m = 6.2, that is not so far from 8).

5. RELATED WORK

CD++ [15] is a modelling environment that allows to de­

fine and execute modesl specified with the DEVS formal­

ism (not to be confused with our DEUS tool) [14]. In

CD++ is a simulation environment developed in C++, that

directly manages DEVS models. CD++ is a sound tool and

has also a GUI for the configuration and execution of the

models. There is also a parallel implementation of the tool,

called PCD++, based on optimistic approaches like Time

Warp [8, 9]. Unfortunately, CD++ is not suitable for simu­

lating large-scale complex systems with dynamically evolv­

ing structure, such as peer-to-peer networks, because it does

not allow to include network construction and modifica­

tion within simulated processes - the structure of the system

Figure 3. Elapsed Time, Speedup and Efficiency Versus

the Number of Logical Processes, for a Simulated

Chord Ring Made of 2.5 . 105 Nodes.

must be pre-defined before the actual simulation starts.

In [7], the authors present a simple method called micro­

synchronization to exploit the parallelism inside each logi­

cal process (LP). Different from the previous work, such as

lookahead accumulation and local time warp, they keep the

traditional usage of lookahead among LP s unchanged, and

however, they impose the relaxed sequential event schedul­

ing inside each LP, which can indirectly improve the looka­

head. The experimental evaluation of the proposed method

shows that it can improve the performance of conservative

parallel simulation of computer networks to some extent.

Cheon et al. propose to combine the parallel DEVS for­

malism [14] and the peer-to-peer paradigm, introducing a

customized new DEVS protocol for distributed simulation

in which logical processes solve the synchronization prob­

lem by themselves, without involving a coordinator [3]. The

idea is highly appealing, but other than the developed pro-

605

Figure 4. Elapsed Time, Speedup and Efficiency Versus

the Number of Logical Processes, for a Simulated

Chord Ring Made of 106 Nodes.

totype, there is no evidence of its application on complex

and large-scale models.

More recently, another implementation of the DEVS for­

malism called DEVS/RMI system has been presented in

[16], as a natively distributed simulation system based on

standard implementation of DEVS. The DEVS/RMI system

is also built to support auto-adaptive and reconfiguration of

simulations during run-time. Because Java RMI supports

the synchronization of local objects with remote ones, no

additional simulation time management needs to be added

when distributing the simulators to remote nodes. Several

tests have proven that our distribution protocol based on

XML is more simple, efficient and light of any Java RMI

-based solution.

In [12], Seo et al. introduce DEVS/Grid, a distributed simu­

lation framework allowing DEVS M&S activities over Grid

computing infrastructures. The solution relies on existing

Grid management framework, such as Globus, and provides

a number of interesting functionalities such as cost-based

hierarchical model partitioning, dynamic coupling restruc­

turing, automatic model deployment, remote simulation ac­

tivation, self-communication setup, M&S name directory

service. In future developments of parallel & distributed

DEUS we will take into account DEVS/Grid facilities.

6. CONCLUSIONS

In this paper we have illustrated the implementation of a

hybrid strategy for distributed simulations into our DEUS

open source tool. We discussed the internal organization

of distributed DEUS and the importance of lookahead es­

timate. The effectiveness of such enhancement has been

illustrated by using DEUS to simulate a Chord ring with a

large number of nodes.

As future work, we plan to introduce an automatic load

balancer, as well as different distributed simulation strate­

gies, such as optimistic and probabilistic ones, in order to

confirm the general-purpose nature of DEUS. Moreover,

we plan to perform new tests, considering other challeng­

ing problems related to the study of peer-to-peer networks

(node churn, node mobility, etc.).

REFERENCES

[1] M. Amoretti, M. Agosti, F. Zanichelli, "DEUS: a Discrete

Event Universal Simulator", 2nd ICST/ACM International

Conference on Simulation Tools and Techniques (SIMUTools

2009), Roma, Italy, March 2009.

[2] K.M. Chandy, J. Mistra, "Distributed Simulation: A Case

Study in Simulation and Design of Distributed Systems",

IEEE Trans. on Software Engineering, Vol.5, No.5, pp.440-

452,1979.

[3] S. Cheon, C. Seo, S. Park, B. P. Zeigler, "Design and Im­

plementation of Distributed DEV S Simulation in a Peer to

Peer Network System", Military, Government, and Aerospace

Simulation, 2004.

[4] DSG, "DEUS: a simple tool for complex simulations",

DEUS project [website], April 16, 2011, Available:

http://code.google.com/p/deus/

[5] A. Ferscha, G. Chiola, "Self-Adaptive Logical Processes: the

Probabilistic Distributed Simulation Protocol", 27th Annual

Simulation Symposium, La Jolla, California, April 1994.

[6] R. M. Fujimoto, "Parallel Discrete Event Simulation", Comm.

ACM, Vol.33, No.7, pp.30-53, 1990.

606

[7] S. Lin, X. Cheng, J. Lv, "Micro-synchronization in Conser­

vative Parallel Network Simulations", 2009 ACMlIEEE/SCS

23rd Workshop on Principles of Advanced and Distributed

Simulation, Lake Placid, NY, USA, June 2009.

[8] Q. Liu, G. Wainer, "Lightweight Time Warp - A Novel Proto­

col for Parallel Optimistic Simulation of Large-Scale DEV S

and Cell-DEV S Models", 12th IEEE International Sympo­

sium on Distributed Simulation and Real Time Applications

(IEEE DS-RT 2008), Vancouver, BC, Canada, October 2008.

[9] Q. Liu, G. Wainer, "A Performance Evaluation of the

Lightweight Time Warp Protocol in Optimistic Parallel

Simulation of DEV S-based Environmental Models", 23rd

ACMlIEEElSCS Workshop on Principles of Advanced and

Distributed Simulation (pADS'09), Lake Placid, NY, USA,

June 2008.

[10] B.D. Lubachevsky, "Bounded lag distributed discrete event

simulation", SCS Multiconference on Distributed Simulation,

San Diego, California, USA, February 1988.

[11] D.M. Nicol, "Performance bounds on parallel self-initiating

discrete event simulations", ACM Transactions on Modeling

and Computer Simulation, Vol. 1, No.1, pp.24-50, January

1991.

[12] C. Seo, S. Park, B. Kim, S. Cheon, B.P. Zeigler, "Imple­

mentation of Distributed High-performance DEV S Simula­

tion Framework in the Grid Computing Environment", High

Performance Computing Symposium, Arlington, VA, USA,

April 2004.

[13] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M.

F. Kaashoek, F. Dabek, H. Balakrishnan, "Chord: A Scal­

able Peer-to-peer Lookup Protocol for Internet Applications",

IEEElACM Transactions on Networking, VoLll, No.1, 2003.

[14] B. P. Zeigler, H. Praehofer, T. G. Kim, THEORY OF MOD­

ELING AND SIMULATION, 2nd Edition, Academic Press,

2000.

[15] G. Wainer, "CD++: a toolkit to develop DEV S models",

Software - Practice and Experience, Vol.32, No.13, pp.1-46,

November 2002.

[16] M. Zhang, B.P. Zeigler, P. Hammonds, "DEV SIRMI-An

Auto-Adaptive and Reconfigurable Distributed Simulation

Environment for Engineering Studies", International Test &

Evaluation Association (ITEA) Journal of Test and Evalua­

tion, Vol.27, No.1, pp.49-60, MarchiApril 2006.

