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ABSTRACT 

This paper illustrates how parallel & distributed simula­

tion capabilities have been introduced in DEUS, our tool 

for the analysis of complex systems. Its essential Java API 

provides basic interfaces and classes for modeling nodes, 

events and processes that characterize the structure and dy­

namics of any complex system. By supporting parallel & 

distributed simulations across multiple computing nodes, 

DEUS enables the analysis of large-scale complex systems. 

Its experimental validation has been obtained by means of 

the distributed simulation of a significant complex system, 

i.e. a large peer-to-peer network. 

KEYWORDs: PDES tools, complex systems, peer-to­

peer networks. 

1. INTRODUCTION 

Complex systems are dynamic systems composed of inter­

connected parts that as a whole exhibit one or more prop­

erties that could not be gathered from the properties of the 

individual parts. Examples of complex systems are found 

in nature, such as ant colonies, human economies, climate, 

nervous systems, cells and living things, including human 

beings, as well within modern energy and telecommunica­

tion infrastructures, ranging from networked embedded sys­

tems to large scale peer-to-peer architectures. 

Quantitative approaches for analyzing the dynamics of 

complex systems have to consider a broad range of con­

cepts, from analytical tools, statistical methods and com­

puter simulations to distributed problem solving, learning 

and adaptation. Very often closed-form, analytical evalu­

ation is not feasible, thus simulation remains the only vi­

able evaluation methodology. Hence, performing a simula-
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tion means mimicking the occurrence of events over time, 

and recognizing their effects as represented by states of the 

modeled complex system. Future events occurrences in­

duced by states must be scheduled (i.e. planned). In contin­

uous simulation state changes occur continuously in time, 

while in discrete simulation the occurrence of an event is 

instantaneous and fixed to a selected point in time. Con­

tinuous simulation models can be converted into discrete 

models, which are more easily managed and thus most used. 

Depending on the characteristics of the system to be simu­

lated, the reliability of the answer required, and many other 

factors, discrete simulation can be either event driven (in 

which time jumps from event to event), or time driven (in 

which time proceeds at a constant step) may be more appro­

priate. Continuous simulation refers to differential equation 

models, while discrete simulation refers to discrete time or 

discrete event models. 

In this context, our research activity focuses on discrete 

event simulation [ 14] of large complex networked systems, 

that are characterized by events that are not guaranteed to 

occur at regular intervals, and by the lack of a bound on the 

time step (i.e. it should not be so small as to make the sim­

ulation run too long, nor so large as to make the number of 

events unmanageable). Examples are distributed computing 

systems based on the peer-to-peer paradigm, with randomly 

joining and leaving nodes, but also emergency rescue and 

crisis management scenarios, where rescuers do not arrive 

and leave at regular time intervals. 

We are developing a general-purpose discrete event simula­

tion environment, called DEUS [4]. With respect to our pre­

vious work [1], here we illustrate a new version of DEUS, 

supporting parallel & distributed simulation (PDES) based 

on a hybrid approach, that avoids violating the causality 

constraint among events scheduled on distributed queues. 

Indeed, we consider the latter as the most suitable strat­

egy to maintain consistency among logical processes when 

communication among them are frequent, which is the case 

of distributed simulation of networked complex systems. 



With respect to the sequential version, PDES-based DEUS 

allows to simulate larger complex systems, e.g. peer-to-peer 

networks with size increased by two orders of magnitude 

(from 104 to 106 nodes). 

The paper is organized as follows. Section 2 illustrates 

the basic principles of our DEUS simulator. Section 3 de­

scribes how parallel & distributed simulation is effectively 

supported by the most recent release of DEUS. Section 4 

shows the performance of the simulator with an event-based 

implementation of the Chord peer-to-peer overlay scheme. 

Section 5 discusses related work, and section 6 concludes 

the paper with a summary of the work done and a proposal 

for future work. 

2. DEUS SIMULATION TOOL 

Discrete event simulation (DES) works by maintaining a 

list of events sorted by their scheduled event times. Ex­

ecuting events results in new events being scheduled and 

inserted into the event list as well as events being deleted 

and removed from the event list. Such a fundamental prin­

ciple is the basis of most DES tools, including our general­

purpose simulation environment, called DEUS [ 1]. The es­

sential Java API of DEUS, which can be downloaded from 

the project site [4], allows developers to implement (by sub­

classing): 

• nodes (i.e. the parts which interact in a complex sys­

tem, leading to emergent behaviors: humans, pets, 

cells, robots, intelligent agents, etc.) 

• events (e.g. node births/deaths, interactions among 

nodes, interactions with the environment, logs, etc.) 

• processes (either stochastic or deterministic, constrain­

ing the timeliness of events) 

In DEUS, a node represents a system characterized by a set 

of possible states, whose transition functions may be imple­

mented either in the source code of the events that can be 

associated to the node, or in the source code of the node 

itself. 

The first solution is appropriate if we do not want to set in 

the node class definition all the possible node behaviors, but 

leads to events that must be specific for one or few kinds 

of nodes. For example, consider DEUS nodes represent­

ing computational Grid nodes, hosting computational and 

storage resources. We could implement different resource 

discovery events, each one with its own routing strategy. 

Such events take into account the structure of the simulated 
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Grid node, while the latter is designed independently of the 

events that could affect it. 

The second solution puts the whole specification of the node 

behavior on the node itself, and allows to implement events 

that potentially work on any kind of node. For example, 

consider two DEUS node classes Car and Boat, extending 

an abstract class Transport, with function startEngine. An 

event StartEngineEvent, either associated to a Car or to a 

Boat, would have a generic reference to a Transport object, 

and trigger startEngine on it. 

3. PDES WITH DEUS 

Parallel & distributed simulation (PDES) refers to the con­

current simulation of several model components, each one 

contributing to the simulation of a composite system model. 

Model simulators can be either geographically dispersed, 

or executed on each processor of a multiprocessor archi­

tecture. The objectives of PDES are manifold: increas­

ing the speed, increasing the size of models, exploiting the 

greater graphics capability provided by specialized nodes, 

etc. Sequential simulators guarantee causality between 

events by generating a total ordering of events according to 

their scheduling times. Distributed simulators, however, are 

prone to causality violations. To avoid it, they must respect 

the causality constraint [6], stating that 

"a simulation of a model consisting of mod­

ular components which exclusively communi­

cate through their modular input/output couplings 

obeys the causality constraint, if and only if 

each modular component simulator processes the 

events in nondecreasing timestamp order". 

Several approaches to PDES have been developed in three 

decades of research. They are categorized as conserva­

tive, optimistic, or hybrid [5, 14]. Conservative solutions 

strictly avoid violating the causality constraint. Optimistic 

approaches temporarily violate it, but then detect and re­

pair the violations. The hybrid solution is a compromise 

between the two other approaches. It weakens the conser­

vative "block until safe-to-process" rule in a sense that if 

the time instant of the occurrence of an external event is in 

the time interval [8, tj, it allows progressing simulation un­

til the forecasted next event instant t' E [8, tj, but further 

progression only with controlled probability. 

In the following we recall the conservative solution pro­

posed by Chandy and Mistra [2]. Then we illustrate how it 

has been adapted in order to be implemented within DEUS, 



becoming a hybrid strategy. Other approaches are under de­

velopment, and will be illustrated in a future work. 

3.1. Conservative Strategy 

Suppose to have a simulation of a system composed by 

many nodes. The whole set of nodes is divided in subsets, 

and each subset is assigned to a logical process (LP) run­

ning on a different host. Thus, each LP is responsible for a 

group of nodes. 

Sometimes one node being simulated on one host generates 

an event that is associated to another node being simulated 

on another host. Using the following notation for events: 

e( sender, receiver, s cheduled_time) (1) 

Nodes are instantiated and initialized during the simulation, 

by means of birth events. Each node n has an identifier 

id ( n). Each LP is responsible for a fraction of the identifier 

space. Node identifiers are randomly assigned to nodes, for 

which if a LP generates a node birth event, depending on 

the node identifier the event is inserted in the local queue 

or sent to the destination LP. If the list of available LPs is 

static and known in advance, this operation is trivial. If LPs 

can join and leave dynamically, it is necessary to manage 

the redistribution of the nodes. Here we consider the sim­

plest case, i.e. we suppose the number of hosts and their 

responsibilities in respect to identifiers are fixed and known 

in advance by each LP. 

Going back to distributed event scheduling, there are two 

possible situations: t(LP2) ::; h2 (which is good, e is put 

in the queue of LP2) , or t(LP2) > h2 (which is bad). 

The general conservative solution states that, on the i-th 

logical process, next internal event e(LPi, LPi, ti i )  can be 

processed if and only if ti i < tjNj i=- i, where tji is 

the scheduled time of last received event e(LPj, LPi, tji ). 
Thus, a logical process blocks when it has not received 

events from all its influencing logical processes. 

A deadlock may occur when there is no event present in one 

of the input queues of a logical process, for which it cannot 

consume events in the other queues, resulting blocked. The 

usual scheme to avoid deadlock is by using null messages to 

announce the absence of outputs for a certain period in the 

future [ 14]. When a logical process has an event for another 

logical process, say at time 10, it also sends a null-message 

to other logical processes announcing that it has advanced 

to time 10 and will not have an output prior to 10. Thus, 
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Figure 1. Internal Architecture of a Logical Process. 

Local EVL is the Queue of Events - Generated by the 

LP Itself, or by External Ones. 

other logical processes can process all the events received 

prior to 10. 

As almost every parallel & distributed simulation system, 

DEUS cannot adopt this approach, because when LPi pro­

duces an event e(LPi,LPj,ti j) it does not mean that the 

virtual time (VT) at LPi is tij; in general it is ti ::; ti j. 

3.2. Hybrid Strategy 

Being DEUS a general-purpose simulation tool, it allows 

the analysis of systems where complexity arises from the 

number of nodes and from the huge communication ex­

change among them, as well as of systems composed by 

few partially interconnected elements exhibiting a complex 

internal behavior. Peer-to-peer networks are an example of 

the former kind in which each node potentially interacts 

with any other node and the simulation load is due to the 

network size and to the frequent data exchange. A repre­

sentative example of the latter kind is given by a hardware 

system where a few statically connected modules cope with 

a high number of internal events while limited inter-module 

communication takes place. In the case of a P2P network, 

the simulation needs to allow each LP (whose architecture 

is illustrated in figure 1) to communicate with any other, 

thus yielding to a completely connected graph. For the 

other type of systems, specific communication links among 

LPs (representing the hardware modules) should be defined, 

thus improving the independence of each LP and providing 

a better exploitation of the system parallelism. 

In order to put less constraints on the designer and to make 

simulation independent from the number of available LPs, 

the current choice is to maintain a fully connected graph 

among LPs. This allows the simulation of both kinds of 

aforementioned systems, although performance improve­

ments cannot be achieved for partially connected complex 



systems. Additionally, this design choice has been benefi­

cial with respect to deadlock prevention. With a completely 

connected configuration deadlock prevention is guaranteed 

and derives from a structural property of the simulator in 

which a specific albeit sometimes constraining limitation 

has been introduced. Each communication between LPs in 

a completely connected graph can give rise to other commu­

nications in arbitrary future points of time and in unknown 

directions, thus any communication between LPs is seen as 

a point of synchronization. To guarantee that constraints on 

temporal causality are met, no LP can advance beyond the 

point in time of the next envisioned communication, even 

though, at execution time, it will not be influenced by any 

event message. In this way the simulation progress is fa­

vored since it does not need to take into account the ac­

tual interconnections among system components which are 

forcedly considered as independent. 

Even load distribution over an arbitrary number of LPs is 

obtained by dividing the the total number of DEUS nodes 

and of initial events equally among the available LPs. Be­

ing the majority of events usually related to a specific DEUS 

node it is assumed that runtime generated events will pre­

sumably be distributed in the same way as nodes. Commu­

nications between nodes result into the creation of events, 

each associated to the destination node. In the case of a 

node executed on a remote LP, event scheduling cause an 

event message to be sent to the destination LP. When the 

received message is processed, the event is recreated and 

scheduled in the local event queue. 

Initially, our plan was to tackle the design of the distributed 

version of DEUS following Chandy-Misra approach [2], 

which is based on null messages as a mean for synchroniz­

ing logical processes. Nevertheless, having a completely 

connected LP graph, we had to introduce a number of 

changes. The resulting parallel & distributed simulation ap­

proach is based on a barrier algorithm, whose main loop 

includes the following steps: 

1. Lookahead computation/estimation: each LP exam­

ines its event queue looking for the first occurrence 

of an external communication; the virtual time of the 

related event is considered as the safe Local Virtual 

Time Horizon (LVTH), by which other LPs can pro­

cess their events without violating temporal causality 

constraints; 

2. Communication of the LVTH: as envisioned by the 

null message mechanism, each LP transmits its com­

puted LVTH value to all other LPs. 

3. Agreement on a common LVTH: after the second step 

each LP is aware of the time horizon computed by each 
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other LP for which it assumes no communication will 

take place. Thus, the worst case horizon, i.e. the clos­

est one, is obtained for the whole system1. 

4. Processing of events until the common LVTH: each 

LP retrieves and executes events from its queue up to 

the point of time corresponding to the LVTH. At this 

exact time, the LP (or more LPs if they all computed 

the same lookahead in the first phase) which obtained 

the shortest horizon will surely have processed events 

related to external communications. 

5. End of the communication exchange: either in the case 

a LP has sent events to other LPs or otherwise, it is 

required to send a notification message to every other 

LP in order to guarantee that in the current iteration no 

other communication will be received. 

6. Message queue check/inspection: each LP examines 

its inbound message queue, inserts any received event 

and waits for (if necessary) any notification of end of 

communication exchange (sent at previous phase). 

After each loop iteration, message queues have been possi­

bly modified and are examined to compute the new LVTH. 

With respect to the original Chandy-Misra protocol, it has 

been necessary to impose a progress based on constant time 

intervals, to guarantee the independence of load distribution 

from the specific simulation. Such kind of solution, called 

Conservative Time Windows has been proposed also in [ 10] 

and [11]. Thus, our solution can be considered to be hybrid, 

in between Chandy-Misra and Conservative Time Windows 

approaches. 

In Chandy-Misra's strategy, both event messages and null 

messages contribute to define, thanks to their timestamp, 

the virtual time (VT) of the sender logical process, which 

is the guarantee for not receiving communications before 

that VT. In DEUS, as already stated, when LPi generates 

e(LPi, LPj, ti j), supposing VTi = ti , in general it means 

that the VT at LPi is ti ::::: ti j' Thus, the message that is 

sent at step 2 of the above algorithm does not include the 

information VTi = ti , but the worst-case estimate of next 

communication triggered by LPi. 

We recall the, if the execution of an event requires the inter­

action of the associated node with other nodes to retrieve in­

formation about their current status, new "communication" 

events must be scheduled. Even better, the best practice is to 

collect neighborhood information in advance, by schedul­

ing the appropriate events. From a general viewpoint, it 

1 This mechanism based on a centralized barrier does not scale well. We 
plan to improve the efficiency of the algorithm by using a dissemination 
barrier, instead. 



Figure 2. DEUS Components that Realize Distributed 

Simulations. 

can be observed that the rarest and more foreseeable are the 

communications, the longest are the execution bursts. 

The worst-case estimate of next communication can be very 

tight, if the problem does not allow to know with certainty 

that next communication will be performed in the far fu­

ture. In general, the notion of lookahead in distributed dis­

crete event simulation is the characteristic that a LP predicts 

future messages on the basis of messages it has already re­

ceived. This lookahead can be the result of the incorpora­

tion of more problem-specific system knowledge into the 

model specifications, as well as due to the properties of the 

service time distributions. Simulation performance is di­

rectly related to the lookahead estimation. 

Finally, to support distributed simulation in DEUS we had 

to provide it with a communication infrastructure that al­

low distributed instances of the simulation tool to exchange 

messages and to be coordinated by a centralized controller. 

Moreover, we introduced a mechanism for which the logs 

created by each LP are collected, at the end of each exe­

cution, and merged, to be processed by the statistical tools 

that were already available within DEUS. The resulting ar­

chitecture is illustrated in figure 2. The Master Controller 

(MC) is the front-end of the simulation tool, allowing to set 

the configuration file describing the simulation, the IP:port 

of machines running Local Controllers (LCs), as well as the 

total number of LPs that will be automatically distributed 

and assigned to LCs. The MC is also responsible for col­

lecting log files from LCs at the end of the simulation pro­

cess. 

4. EXPERIMENTAL EVALUATION 

As a benchmark, we implemented the distributed simula­

tion of a Chord ring, i.e. a well-known peer-to-peer net­

work based on the decentralized structured model (DSM). 

It is demonstrated that, with high probability, the number of 

nodes that must be contacted to find resource in an N -node 
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network is O(1og N) [ 13]. 

Our distributed simulation includes the construction of a 

large Chord ring and the propagation of several queries. 

The Chord ring is split in m equal slices, each one assigned 

to a different logical process (LPs). Message propagations 

over the Chord ring (represented by communications events 

among peers) may involve several LPs, although last hops 

are usually concentrated in the same slice. 

The Master Controller (MC) has been executed on a virtual 

Windows Server machine (the MC is involved just for few 

seconds at the beginning and at the end of the simulations). 

Local Controllers (LCs) have been executed on a cluster 

consisting of four Linux machines, each one being equipped 

with two Intel Xeon E5504 2.00GHz (quadcore processor) 

and 16GB of RAM. Each LC ran on one node of the cluster, 

and created up to 8 LPs - one per core. 

We measured the elapsed time, speedup (i.e. the ratio be­

tween the elapsed times of the sequential and parallel solu­

tions) and efficiency (i.e. the ratio between the speedup and 

the number of LPs) versus the number of logical processes 

(from 1 to 32), for a Chord ring made of 2.5 . 105 nodes 

(figure 3), and for one made of 106 nodes (figure 4). In the 

first case, parallelization is not very convenient: the max­

imum speedup is 3.2, obtained with 8 LPs (very far from 

the theoretical limit, i.e. m, the number of LPs). The rea­

son of these bad results is that, by increasing the number 

of LPs, the Chord ring (which is relatively small) becomes 

too much fragmented, for which message propagations in­

volve too many LPs. Indeed, parallelization gets more con­

venient in the case of the Chord ring with 1 million nodes: 

the speedup matches the theoretical limit when m = 2 and 

m = 4, and is acceptable also with m = 8 (in this case, 

8m = 6.2, that is not so far from 8). 

5. RELATED WORK 

CD++ [ 15] is a modelling environment that allows to de­

fine and execute modesl specified with the DEVS formal­

ism (not to be confused with our DEUS tool) [ 14]. In 

CD++ is a simulation environment developed in C++, that 

directly manages DEVS models. CD++ is a sound tool and 

has also a GUI for the configuration and execution of the 

models. There is also a parallel implementation of the tool, 

called PCD++, based on optimistic approaches like Time 

Warp [8, 9]. Unfortunately, CD++ is not suitable for simu­

lating large-scale complex systems with dynamically evolv­

ing structure, such as peer-to-peer networks, because it does 

not allow to include network construction and modifica­

tion within simulated processes - the structure of the system 



Figure 3. Elapsed Time, Speedup and Efficiency Versus 

the Number of Logical Processes, for a Simulated 

Chord Ring Made of 2.5 . 105 Nodes. 

must be pre-defined before the actual simulation starts. 

In [7], the authors present a simple method called micro­

synchronization to exploit the parallelism inside each logi­

cal process (LP). Different from the previous work, such as 

lookahead accumulation and local time warp, they keep the 

traditional usage of lookahead among LP s unchanged, and 

however, they impose the relaxed sequential event schedul­

ing inside each LP, which can indirectly improve the looka­

head. The experimental evaluation of the proposed method 

shows that it can improve the performance of conservative 

parallel simulation of computer networks to some extent. 

Cheon et al. propose to combine the parallel DEVS for­

malism [14] and the peer-to-peer paradigm, introducing a 

customized new DEVS protocol for distributed simulation 

in which logical processes solve the synchronization prob­

lem by themselves, without involving a coordinator [3]. The 

idea is highly appealing, but other than the developed pro-

605 

Figure 4. Elapsed Time, Speedup and Efficiency Versus 

the Number of Logical Processes, for a Simulated 

Chord Ring Made of 106 Nodes. 

totype, there is no evidence of its application on complex 

and large-scale models. 

More recently, another implementation of the DEVS for­

malism called DEVS/RMI system has been presented in 

[16], as a natively distributed simulation system based on 

standard implementation of DEVS. The DEVS/RMI system 

is also built to support auto-adaptive and reconfiguration of 

simulations during run-time. Because Java RMI supports 

the synchronization of local objects with remote ones, no 

additional simulation time management needs to be added 

when distributing the simulators to remote nodes. Several 

tests have proven that our distribution protocol based on 

XML is more simple, efficient and light of any Java RMI 

-based solution. 

In [12], Seo et al. introduce DEVS/Grid, a distributed simu­

lation framework allowing DEVS M&S activities over Grid 

computing infrastructures. The solution relies on existing 



Grid management framework, such as Globus, and provides 

a number of interesting functionalities such as cost-based 

hierarchical model partitioning, dynamic coupling restruc­

turing, automatic model deployment, remote simulation ac­

tivation, self-communication setup, M&S name directory 

service. In future developments of parallel & distributed 

DEUS we will take into account DEVS/Grid facilities. 

6. CONCLUSIONS 

In this paper we have illustrated the implementation of a 

hybrid strategy for distributed simulations into our DEUS 

open source tool. We discussed the internal organization 

of distributed DEUS and the importance of lookahead es­

timate. The effectiveness of such enhancement has been 

illustrated by using DEUS to simulate a Chord ring with a 

large number of nodes. 

As future work, we plan to introduce an automatic load 

balancer, as well as different distributed simulation strate­

gies, such as optimistic and probabilistic ones, in order to 

confirm the general-purpose nature of DEUS. Moreover, 

we plan to perform new tests, considering other challeng­

ing problems related to the study of peer-to-peer networks 

(node churn, node mobility, etc.). 
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