
Experiences of using LQN and QPN tools for performance modeling of a
J2EE Application

Nidhi Tiwari
nidhi_tiwari@infosys.com

Prabhakar Mynampati
Prabhakar_Mynampati@infosys.com

Infosys Technologies Limited

Performance of a J2EE application is influenced by the underlying
infrastructure, operating system and middleware parameters. Usually a
reactive approach of testing is used to configure these, which is costly and
lengthy. Consequently a proactive approach of performance modeling is
required. Layered Queuing Networks and Queuing Petri Nets are two such
effective techniques for tuning environment. This paper articulates our
experiences with these techniques for a J2EE application. The relative
attributes of the two techniques are listed to provide an insight on their
suitability in a context.

1. Overview

For any J2EE application to deliver the expected
quality of service, firstly it needs to be designed and
built properly so that it does not have any bottlenecks.
Secondly it needs to be hosted in a conducive
environment for meeting its non-functional
requirements of response time, throughput etc. The
second step here leaves architects perplexed as most
of these applications have intricate layers of software
(application servers, web servers and database
servers) which need to be configured appropriately for
threads, pools, processes. These then in turn be
hosted on adequate hardware having the complexity
of resource sharing and multi-processor systems to
get the optimum performance in deployment
environment.

Now assuming that a system is free of any application
bottlenecks how should one approach the problem of
setting so many variables suitably with minimum cost
and time to get optimum performance? One easy way
is to test and tune, however this is costly and time
consuming. Instead software modeling can be used to
proactively determine the environment for desired
quality of service without incurring large costs.

To substantiate this, here we demonstrate the usage
of two popular modeling techniques, Layered Queuing
Network (LQN) [CARLRADS] [WOOD2003] and

Queuing Petri Nets (QPN) [KOUN2003]. For these can
be used to model scheduling strategies, simultaneous
resource possession, synchronization, blocking and
contentions for hardware as well as software
resources. The relative strengths and weaknesses of
these techniques are also discussed to assist in
determining the appropriateness of one of these in a
given context.

The remainder of this paper is organized as follows.
Section 2 gives a sketch of various forms of
performance models based on literature survey.
Section 3 gives a brief on LQN modeling. QPN and
HQPN formalism are introduced in section 4. Section
5 describes the SPECjAppServer2001 application and
its configuration details used for performance
modeling study. The LQN and QPN models of the
given application are constructed in section 6 and 7
respectively. The analysis of outputs of applications’
LQN and QPN models are presented, along with
measured results for comparison purpose, in section
8. Comparison of LQN and QPN models is given in
section 9. Section 10 concludes this paper with
summary and conclusions for these techniques.

2. Literature Survey

Several approaches have been proposed for early
software performance analysis. These performance
modeling methods are used for:

• comparing two or more system architectures
• determining optimal value of various parameters

(system tuning)
• finding performance bottlenecks
• characterizing the workload on the system
• determining the number and size of components

(capacity planning) and
• predicting the performance at future loads

To facilitate this kind of early analysis and to make
these models easily usable for developers group,
number of methods and tools for automating various
activities involved in performance modeling has been
developed. We briefly describe various approaches,
corresponding methods and tools available to realize
the performance modeling based on literature survey
[BALS2004], [INFEDAC], [VERN1987] [DONA1995]:

Queuing Network Models (QNM) – One of the
popular approaches for performance modeling is
QNM. In a queuing network model computer system is
represented as a network of queues, where the
network of queues is a collection of service centers
which symbolize the system resources and customers
which depict the users/transactions. Initial QNMs were
designed to model resource contentions among
independent jobs; they lacked the parallel system and
synchronization representation [VERN1987]. Later
they were extended, to represent the synchronization,
simultaneous resource possession, software
resources and dynamic software characteristics
resulting in Extended Queuing Networks (EQN),
Stochastic Rendezvous Network (SRVN) and Layered
Queuing Networks (LQN).

Developing the QNM from a system architecture
specification (in UML or Use Case Map) and then
solving them are two crucial steps in the overall
performance analysis process. In this direction a lot of
good work has been done by Murray Woodside, Dorin
C. Petriu [PETR2002], Roy Gregory Franks
[GREG1999], Dr. Connie U. Smith [PERFENG],
Daniel A. Menasce [MENA1997] and others, by
providing the methods and tools to automate these
two steps for developers.

Mary Vernon, John Zahorjan and Edward D.
Lazowksa noted that QNM have the balanced
accuracy and efficiency [INFEDAC], as they can be
efficiently solved using analytical computational
methods to obtain a certain degree of accuracy in
results.

Stochastic Petri-Nets (SPN) – Another popular
approach for performance modeling is based on Petri-
nets. These started with the classical Petri-nets, which
consisted of places to represent servers, tokens that
reside at the places and transitions that represent
events causing tokens to move from place to place

[VERN1987]. These models allowed the analysis of
both functional and non-functional properties of the
systems. The classical Petri-nets evolved over time as
SPN (Stochastic Petri-Nets), CPN (Colored Petri-
Nets), GSPN (Generalized Stochastic Petri-Nets),
QPN (Queuing Petri-Nets) and HiQPN (Hierarchical
Queuing Petri-Nets).

Jane Hillstone [HILL2001] finds that the
synchronization structures used in SPN makes them
complex to construct and analyze. However the use of
such low level notations gives them unrestricted
expressiveness and equips them to model large
classes of systems. As the SPN models are based on
state chart diagrams, they depict the dynamic
behavior of the system but provide very little insight
into the system structure.

SPN models are based on the concept of markov
chains; solutions of which can be used directly to
compute the steady state performance measures.
These results are very close to the actual results. The
underlying markov process for low level PN models
can be manually obtained and numerically solved. But
as the SPN advances to GSPN and above, generation
and solution of the markov process becomes
complicated and needs to be done using computers.
The major problem is that this markov solution method
suffers from the state space explosion problem.

Stochastic Process Algebra (SPA) – The third
approach to performance modeling commonly used by
practitioners is based on Process Algebra. Process
algebras are the mathematical theories to model
concurrent systems by means of their algebra and
provide solutions for examining the system structure
and their behavior [DONA1995]. Thus process algebra
models help in describing and analyzing both
functional and performance properties of software
specification.

Based on this approach following modeling tools and
techniques have been developed: TIPP (Time
Processes and Performability evaluation), EMPA
(Extended Markovian Process Algebra), and PEPA
(Performance Evaluation Process Algebra)
[BALS2004]. These tools use either the software
system design specified using process algebra and
the associated performance parameters or UML
diagrams like collaboration and state chart diagrams
for SPA model creation.

Like SPN, these models are also capable of
representing large class of systems and capturing the
dynamic system behavior as they use low level
notations. Jane Hillstone also mentions that
equivalence relation in process algebra makes it
possible to compare two or more SPA models
[HILL2001].

All these variety of performance models can be
evaluated using analytical methods [JAIN1991] or
simulation techniques [PETR2004]. The significant
outputs obtained from their evaluation are throughput,
utilization and response time, which can be used for
the software system’s performance study. Amongst
these, the QNM and SPN are widely practiced and
have evolved over the time to include most of the
system components. For this reason we chose the
LQN and QPN methods of these, to perform software
modeling for our case study. In this paper we show
how use of these for the given J2EE application,
helped us to find the exact number of software
resources to be configured in respective layers for a
defined workload.

The next 2 sections give brief overview of LQN and
QPN modeling techniques.

3. Layered Queuing Network

Layered Queuing Network (LQN) models
[CARLRADS] are used to model the concurrent and
distributed systems. LQN use the concept of layers to
naturally model the software servers in the multi-tier
system architectures with their nested services and
calls. Software servers are modeled as tasks, and
hardware resources as devices in an acyclic graph.

Any software object which has its own thread of
execution can be modeled as task [WOOD2003].
These tasks can have properties like queue,
scheduling disciplines and multiplicity. The various
classes of services provided by a task are defined
using entries and their hardware demands. The
service requests from one entry to another form the
arcs of the LQN model.

Figure 1 below shows the LQN model for the create
login-id transaction of simple client-server application
using the graphical notations of tasks, entries and
devices. Multiple clients accessing the server from
their machines have been modeled using multiple
tasks and CPUs in LQN below.

Figure 1: Simple Client-Server LQN model

The utilization, throughput, response time and queuing
delays obtained by solving LQN model are used to
diagnose the system for bottlenecks and scalability.
What-if analysis can be done by varying the LQN input
parameters like user load, multiplicity of hardware
devices or software tasks.

4. Queuing Petri Nets and Hierarchical

Queuing Petri Nets

Queuing Petri Nets formalized by Dr Falko Bause, is a
combination of Queuing networks and Petri Nets to
model the hardware and software aspects of system
behavior [KOUN2003]. Using QPN models, in addition
to the synchronization and blocking of software
resources; hardware contentions and scheduling
strategies can also be modeled.

In this formalism, a processing device is modeled as
queuing place consisting of two components: queue
and depository. The queuing place and its notation are
shown below figure 2.

Figure 2: A Queuing Place and its Notation

The software processes are modeled using ordinary
places. And the number of software processes
(threads, connection pools etc) is specified as the
number of process tokens available in these places.
Transitions represent the conditions/events that can
move a request token to next queuing place.

For efficient numerical analysis of complex QPN
models, Dr Falko Bause developed the HQPN
formalism exploiting the hierarchical structures. In
HQPN a queuing place known as subnet contains
whole QPN instead of single queue. A subnet place
might contain an ordinary QPN or again another
HQPN allowing for multiple hierarchical level nesting.

Detailed description of LQN is available in
[WOOD2003] [CARLRADS]. QPNs and HiQPN details
are given in the article [KOUN2003] by Samuel
Kounev and Alejandro Buchmann.

Next section briefly introduces the
SPECjAppServer2001 benchmark which will be
modeled to study the LQN and QPN techniques for
software and hardware bottlenecks identification.

CPU
disk

server

CPU

create

createSer

queue depository

client

5. The SPECjAppServer2001 Benchmark
Application

SPECjAppServer2001 [SPECORG] is an Enterprise
JavaBeans (EJB)TM benchmark to measure the
scalability and performance of J2EE servers and
containers. We decided to take this application for
performance modeling study as its workload is based
on a large distributed application, claimed to be big
and complex enough to represent a real-world e-
business system. The benchmark emulates a
manufacturing, supply chain management (SCM) and
order/inventory system, representative of one in use at
a Fortune 500 company. Manufacturing, Supplier &
Service Provider, Customer, and Corporate are the
four business domains, implemented using EJB
components, in the benchmark.

Before modeling this application we need to know the
application architecture and deployment environment,
the request classes to be modeled, hardware and
software resources used by those request classes and
their corresponding service demands on the hardware
resources.

For this reason, initial deployment environment was
taken from [KOUN2003] as shown in figure 3. It has a
WebLogic server (WLS) as application server
(AppServer) and Oracle 9i database server (DBS) for
data persistence.

Figure 3: SPECjAppServer2001 deployment diagram

The NewOrder and ChangeOrder transactions in order
entry application of customer domain were identified
for modeling. The deployment diagram in figure 3
suggests that following software and hardware
resources were used during these transactions
processing:
• A WLS thread
• The CPU of a WebLogic server
• The network between a WebLogic server and the

database server
• A database connection
• The CPU of the database server
• A database server process
• The disk subsystem of the database server (I/O)

Table 1 from reference document [KOUN2003] lists
the service demands (CPU time) for the two request
classes of system for our further study. These service
demands values in reference document were
determined by conducting some experiments with the
order entry application and measuring the time spent
by each transaction at each resource [KOUN2003].
The network service demands were ignored as all
communications were taking place over a 100MBit
LAN and communication times were negligible.

Transaction
Type

WLS-CPU
(in sec)

DBS-CPU
(in sec)

DBS-I/O
(in sec)

NewOrder 0.07 0.053 0.012
ChangeOrder 0.026 0.016 0.006

Table 1: Workload Service Demands

The creation of LQN and QPN models for this
SPECjAppServer2001 benchmark are described
below.

6. LQN Model for SPECjAppServer2001

The formulation of LQN model for the given J2EE
application is explained here. LQN modeling starts
with identification of nodes for the acyclic graph. So
first the high level component instances in application
architecture (figure 3) were modeled as shown figure 4
as following LQN tasks:
• Users - The multiple users accessing the system

with some think time were modeled as multiple
‘Users’ reference tasks.

• Application server (AppServer) – Multiple
instances of ‘AppServer’, which was an active task
as it received request from users and sent it to
Database server, were represented in model.

• Database server (DBServer) – Database
connection pool having multiple instances of
database connection was modeled in the LQN as
multiple ‘DBServer’ tasks.

• Database Disk (DBDisk) – ‘DBDisk’ was modeled
as multiple pure server tasks to model the
database disk I/O operations.

Next the hardware devices (processor and disk)
shown in the application deployment diagram (figure 3)
were mapped to LQN devices/processors in figure 4:
• User Processor (UserP) – Multiple users accessed

the system from separate machines, therefore
multiple ‘User’ processors were shown in LQN
model.

• Application Server Processor (AppP) – All the
application server instances were running on
single machine, so application server processor
was modeled as a process sharing device.

• Database Server Processor (DBP) – Single DB
server executed multiple database instances in
sharing mode, therefore it was modeled as
process sharing device.

Internet
Client 2

Client n

Client 1

AppServer
Oracle 9i
Database

• Database Disk (DBDiskP) – Only one database
disk was considered in deployment diagram and
as DB disk has First-In First-Out (FIFO)
scheduling, it was modeled as single device
having FIFO scheduling.

For LQN construction, once the nodes are identified,
they are connected as per deployment environment.
Thus above mentioned tasks and processors were
connected using the arcs referring the links in
deployment diagram as shown below in figure 4. The
transaction flow paths are used to model the entries
corresponding to the services provided by each task.

The NewOrder transaction was modeled by adding the
corresponding entries in all the tasks with their service
demands as shown in the figure 4. All the synchronous
requests from entries to entries were modeled with the
probability 1 for the number of calls for each entry.

Figure 4: SPECjAppServer2001 LQN model

The flow of a NewOrder request in the given LQN
model starts at the client task, waiting for the given
think time. Next the request is queued at the
AppServer task queue, waiting for the WLS thread.
Once WLS thread is available the request is
processed by the CreateW entry for the given service
time on the WLS CPU in process sharing mode.
Subsequently, the request is queued and processed in
similar manner on the DBServer and DBDisk tasks,
and their processors.

7. HQPN Model for SPECjAppServer2001

Assuming the SPECjAppServer 2001 deployment
environment as shown in figure 3, the HQPN model
for its NewOrder transaction was built. The HQPN
model is shown in figure 5.

Figure 5: HQPN model of SPECjAppServer2001

The clients, AppServer CPU, DB server CPU, DB
server Disk were represented with queuing places in
the HQPN model. The database server was
represented with DB subnet place to reduce state
space explosion problem. The software resources like
WLS threads, db connection pools, db processes were
represented as ordinary places with equivalent number
of tokens.

The traversal path of a client request in the model is as
follows [KOUN2003]: Every client request spends the
user specified think time at the client queue and then
moves in the client depository. The request waits in
the client depository for the availability of application
server thread.

Once the WLS thread is available, the request is
transitioned to the queue of the AppServer CPU place,
where it receives the service from the CPU of
application server for the specified service demand
time. The request then moves to the depository of the
AppServer place and waits for the JDBC connection.
After obtaining the connection, the request enters into
DB subnet place, which is the input place of the DB
subnet.

In the DB subnet, the request is processed in similar
fashion at the DBServer and DBDisk queuing place.
After completing all the processing request moves
back to the Client queuing place, releasing the DB
Process, DB connection pool and AppServer thread.

The total response time for the client request in the
HQPN model is calculated by summing up the
residence times at the queue and depository of all
queuing places and ordinary places in the client
processing chain. Thus in this case, total response
time for the NewOrder transaction would be sum of
residence time at client depository, application server
CPU queue and depository, DB process queue, DB
server CPU queue and DB I/O queue.

AppP

DBP

DBDisk

createU
(0,0,0)

createA
(0.07,0,0)

createDB
(0.053,0,0)

createDisk
(0.012,0,0)

Users

AppServer

DBServer

DBDisk

(1,0,0)

(1,0,0)

(1,0,0)

UserP

Clients with think time

 db pool

App.
Server-CPU

DB
Subnet

Threads

8. Performance Models Analysis

The LQN and QPN performance models built above
were used for what-if analysis. The various test
conditions used and their results are described in this
section. Case 1, 2 and 3 used the single class models
with different settings for multiplicity of webserver
threads and CPU’s to identify the system bottlenecks
and configure these parameters for required
performance. While case 4 used the multi-class
models to demonstrate the accuracy of the modeling
results for multiple request classes too.

Generally, the performance models are acceptable if
they predict the system resource utilizations and
throughputs within 10% and response time prediction
within 30% [HLIU2004]. Considering this, we
experimented on the LQN and HQPN performance
models built above for different configurations using
the LQNS [GREG1999] and HiQPN [KOUN2003]
tools.

For LQNS tool the LQN format files were used to
provide the input models. The creation of LQN input
files and execution of LQNS tool were quick and less
resource intensive. The required performance
measures were directly pulled from its output text file.
Thus throughput and utilizations of the devices were
picked from the output files. While the response times
taken were the service times for the user entries in the
output file as it includes - queuing for all processors,
service time at all processors, queuing for all serving
tasks and phase one service times at all serving tasks
in the request’s path [GREG2005].

For HiQPN tool, its user interface was used to input
the HQPN model. The HiQPN input model creation
and execution were time consuming and resource
intensive as compared to LQN model. Operational
laws were applied on its output to get the values of
required performance metrics.

Next the results of these two models are compared
against the measured results taken from reference
document [KOUN2003] by calculating the percentage
error for each case. The analysis of these models for
different configurations is also given concisely.

Case 1:
Initially, the NewOrder transaction was considered for
study. The system was configured to have 80 system
users having average think time of 200 ms, 40 WLS
threads, 40 JDBC connections and 30 DBS
processes.

LQN model input file [GREG2005] for NewOrder
transaction with same configuration settings was
processed with LQNS tool. Appendix A shows the
input LQN file for this case. The output file of LQNS for

this case is given in Appendix B. Same information
was used for HQPN input and using the operational
laws, required performance measures were computed
from its output. The performance metrics obtained
from [KOUN2003], LQNS and HQPN tools with their
percentage errors are shown in table 2.

Metric Test

Result
LQN
Model

LQN
Error

QPN
Model

QPN
Error

WLS-CPU
Utilization

100% 99.9% 0.1% 100% 0%

DBS-CPU
Utilization

65% 75% 15% 75% 15%

NewOrder
Throughput

13.41 14.28 6.3% 14.28 6.3%

NewOrder
Response
Time

5.7 sec 5.4
sec

5.2% 5.4
sec

5.2%

Table 2: Case1 performance metrics

The output metrics of the LQN and QPN models were
used for analyzing the hardware bottlenecks, software
contentions and overheads as follows.

The LQNS output file points that 39.9 WLS threads
were used out of the available 40 WLS threads,
indicating that there may be contention for WLS
threads. Besides the 99.9% WLS CPU utilization in file
establishes it as a saturated device. Thus, on study of
the CPU utilizations at various servers, the AppServer
was identified to be the bottleneck device.

The LQNS tool reported the number of DBServer and
DBDisk tasks (i.e. the processes or threads) utilized in
this case as 2.75 and 0.20 respectively. Thus the rest
37 DBServer and 29 DBDisk threads were lying idle in
memory and consuming memory. Consequently,
reducing the number of threads to the required
number would help reducing the memory costs and
improve the system performance. The HQPN tool also
reported the level of concurrency as the mean token
population at each processing center which was used
for similar analysis of the software
contentions/overheads.

Case 2:
As indicated in previous case, there may be
contention for WLS threads, so in this case the
number of WLS threads was increased to 60, keeping
other configuration same as in case 1. Thus the test
and modeling were done with following configuration:
80 system users with average think time of 200 ms, 60
WLS threads, 40 JDBC connections, and 30 DBS
processes. Following table summarizes the results of
test and the results from modeling tools.

Metric Test

Result
LQN
Model

LQN
Error

QPN
Model

QPN
Error

WLS-CPU
Utilization

100% 99.99
%

0.1% 100% 0%

DBS-CPU
Utilization

65% 75.71
%

15% 75% 15%

NewOrder
Throughput

13.43 14.28 6.3% 14.28 6.3%

NewOrder
Response
Time

5.73
sec

5.39
sec

5.2% 5.39
sec

5.2%

Table 3: Case2 performance metrics

The performance results in this case were found to be
similar to Case 1. Nevertheless the response time
remains 5.4 sec which is same as in case 1 against
the expectation that it would decrease. The lqn model
output files reveal that though the wait time reduced
from 2.63 to 1.25, the service time at AppServer
increased from 2.77 to 4.14 because of increased
concurrency level. This signals that for a saturated
device; increasing the number of threads or processes
may not help in improving the performance.

Case 3:
Of the above two case, the bottleneck for the
SPECjAppServer2001 for the deployment given in
figure 3 was detected to be at the AppServer.
Therefore in this case one more CPU was added at
the AppServer. For testing and modeling, system was
configured to have 30 clients with 1 sec think time,
infinite WLS threads, DB connection pools and DB
processes. The table 4 gives the results of testing,
LQN modeling and QPN modeling with corresponding
percentage deviations.

Metric Test

Result
LQN
Model

LQN
Error

QPN
Model

QPN
Error

WLS-CPU
Utilization

68% 65% 4.4% 64% 5.8%

DBS-CPU
Utilization

91% 98% 7.6% 96% 5.4%

NewOrder
Throughput

17.56 18.59 5.8% 18.28 4.1%

NewOrder
Response
Time

0.673
sec

0.613
sec

8.9% 0.623
sec

8%

Table 4: Case3 performance metrics

Study of these performance metrics evinces that by
adding one WLS CPU and changing the system
configuration as mentioned above, the throughput has
increased to 17.57 and response time has reduced
drastically to 0.67 sec. As the user load is shared by
two processors, the utilization has also come down to
68% per processor.

Case 4:
After verifying the two modeling techniques for single
transaction in above cases, in this case these
techniques were examined for transaction mix.
NewOrder and ChangeOrder transactions of
SPECjAppServer2001 were modeled and tested for
20 clients (10 for each request class) with average
think time of 1 sec, 10 WLS threads (5 for each
request class) and infinite number of DB connection
pools and DB disk processes. Service demands for
each entry on respective software servers input to

models were picked up from table 1. The total number
of users was uniformly distributed with ratio 1:1, for
these two transactions.
The results of testing, LQN modeling and QPN
modeling for this case are summed up in table 5 given
below.

Metric Test

Result
LQN
Model

LQN
Error

QPN
Model

QPN
Error

WLS-CPU
Utilization

77% 78% 1.2% 76% 1.2%

DBS-CPU
Utilization

64% 55% 14% 54% 15.6%

NewOrder
Throughput

7.47 7.8 4.4% 7.4 0.2%

ChangeOrder
Throughput

9.15 9.03 1.3% 9.22 0.7%

NewOrder
Response
Time

0.318
sec

0.276
sec

13.2% 0.34
sec

6.9%

ChangeOrder
Response
Time

0.104se
c

0.106
sec

1.9% 0.084
sec

19.2%

Table 5: Case4 performance metrics

Looking at the results in all the above cases it can be
inferred that the model prediction errors of both LQN
and QPN for single and multi-class requests are within
the acceptable range [HLIU2004]. Except for the DBS-
CPU utilization where the error is found to be 15%.
This could be because of the data collection
methodology used for performance testing and/or for
measuring the service demand values in the reference
paper [KOUN2003]. For instance if there were some
other processes running on the database server, they
would have also accounted for in DBS-CPU
utilization.

9. LQN and QPN Comparison

The above section described how both LQN and QPN
models of a J2EE application can be efficiently used to
analyze the software and hardware configuration in
deployment environment. Also the performance results
obtained from these models were observed to be
close. Now in this section we examine the key
differences found in using the given software modeling
methodologies.

As the efficacies of two techniques for modeling
system performance are comparable, application
architects often face the dilemma of which one to
choose for a given problem context. To assist in this
regard, we explore some of the substantial differences
between LQN and QPN models on grounds of their
usability, features, solution techniques, limitations,
tools availability etc:
• QPN can be used to analyze both functional and

performance aspects of system. Whereas LQN
gives only the performance measures of a system.

• LQN can be analytically solved using the
approximate MVA techniques with minimal

resources; while QPN is analytically solved using
Markov process thus requires resources that are
exponential in the size of the model to produce
exact results.

• The accuracy in system’s software contention
results is less in analytical LQN model as
compared to corresponding QPN model results.

• The LQN models can be used for modeling any
number of concurrent user requests. However the
QPN model cannot be used for large number of
concurrent requests due to state space explosion
problem.

• LQN does not have any computational limitations,
so can be modeled for any number of layers
(tiers)/resources. Nevertheless the QPN
computation model becomes exponentially
complex with addition of each ordinary place and
queuing place.

• LQN supports both the open (geometric
distribution) and closed requests. While the QPN
is restricted only to modeling the closed requests.

• LQN can be used to model synchronous,
asynchronous and forward calls. So the
messaging systems can also be modeled with
LQN. QPN supports only synchronous calls.

• LQN model consists of convenient primitives
notations which makes LQN construction simple,
convey more semantic information and guarantee
that these models are well-formed (i.e. stable and
deadlock free) [DONA1995]. On the other hand,
the low level notations used in QPN give it added
expressive power with some readability
complexity.

• In QPN memory size constraints for performance
can be modeled more accurately than in the LQN.

Here we observe that LQN and QPN have their own
benefits and constraints. Thus, one of these should be
appropriately chosen for modeling based on the trade-
off between resource, time and accuracy requirements
in the given context.

10. Summary and Conclusions

This paper presents how to use the two popular
analytical modeling techniques, LQN and QPN for
evaluating the performance of J2EE systems. It
demonstrates how these techniques can be used for
finding the approximate number of software resources
to be configured in respective layers at a defined
workload. Thus reduce the memory cost and increase
the availability of memory for respective servers for a
given J2EE application. The performance results
obtained from corresponding analytical tools for
SPECjAppserver2001 models are compared with its
measurement results.

Modeling results in this paper reveal that the
performance parameters like resource utilizations,
throughputs and response time values obtained from
both these modeling techniques are within the
acceptable limits except for DBS-CPU subjecting to
the measurement methods used. Based on these
observations we conclude that it is time and cost
effective to proactively do the performance modeling,
rather than deploying the system on different
configurations and carrying out many experiments

Other conclusions from the experience of using the
two analytical modeling tools are as following. LQN
solver adopts the approximate solutions in solving
MVA, and so its performance results sometimes
deviate from the actual measurement results. Its
counterpart, the HQPN tool analyses the model with
the help of Markov chains and solves the balance
equations using numerical methods to give accurate
results. However it was found that it greatly suffers
from state space explosion problem and takes huge
amount of resources and time for large number of user
requests and/or components. Hence performance
analysis using LQN models was found to be better
approach as it has got a balance of efficiency and
accuracy.

Acknowledgements

We acknowledge the use of LQNS tool by Murray
Woodside and Greg Franks from Carleton University.
We thank Dr. Falko Bause from the University of
Dortmund for the HiQPN tool. We also acknowledge
reference of the paper by Samuel Kounev and
Alejandro Buchmann for SPECjAppServer2001
benchmark’s readings and HQPN model.

References

[BALS2004] Simonetta Balsamo, Antinisca Di Marco,
Paola Inverardi, “Model-Based Performance Prediction
in Software Development: A Survey”, IEEE
Transactions on Software Engineering, 30(5), May
2004.
[CARLRADS] http://www.sce.carleton.ca/rads/
[DONA1995] S. Donatelli, J. Hillston, and M. Ribaudo,
“A comparison of Performance Evaluation Process
Algebra and Generalized Stochastic Petri Nets”, In
Proc of 6th International Workshop on Petri Nets and
Performance Models, Durham, North Carolina, 1995.
[GREG1999] Roy Greg Franks, “Performance Analysis
of Distributed Server Systems”, PhD thesis, Carleton
University, Canada, Dec 20, 1999.
[GREG2005] Greg Franks, Peter Maly, Murray
Woodside, Dorin C. Petriu, Alex Hubbard. “Layered
Queuing Network Solver and Simulator User Manual”,
Carleton University, Canada, Dec 15, 2005.

[HILL2001] J. Hillston, L. Recalde, M. Ribaudo, and
M. Silva, “A comparison of the expressiveness of SPA
and bounded SPN models, In Proceedings of the 9th
International Workshop on Petri Nets and Performance
Models, Germany, September 2001.
[HLIU2004] Henry H. Liu, Pat V. Crain, “An Analytic
Model For Predicting The Performance Of SOA-Based
Enterprise Software Applications”, 30th International
Computer Measurement Group Conference, USA,
December 5-10, 2004.
[INFEDAC] www.inf.ed.ac.uk
[JAIN1991] Raj Jain, “The Art of Computer Systems
Performance Analysis”, Published by John Wiley &
Sons, Inc. 1991.
[KOUN2003] Samuel Kounev and Alejandro
Buchmann, “Performance Modelling of Distributed E-
Business Applications using Queuing Petri Nets”, IEEE
International Synopsium on Performance Analysis of
Systems and Software 2003.
[MENA1997] D. A Menasce, "A Framework for
Software Performance Engineering of Client/Server
Systems," Proc. of the 1997 Computer Measurement
Group Conference, FL, December 9-12, 1997.
[PERFENG] http://www.perfeng.com/
[PETR2002] Dorin Petriu, Murray Woodside, "Software
Performance Models from System Scenarios in Use
Case Maps", Proc. 12 Int. Conf. on Modeling Tools
and Techniques for Computer and Communication
System Performance Evaluation (Performance
TOOLS), 2002.
[PETR2004] Dorin B. Petriu and Gabriel Wainer, “A
DEVS Library for Layered Queuing Networks”, Int
workshop on Modeling and Applied Simulation, Italy,
Oct 28-30, 2004.
[SPECORG] http://www.spec.org/osg/jAppServer2001/
[VERN1987] M. Vernon, J. Zahorjan, and E.
Lazowska, “A comparison of performance Petri nets
and queueing network models”, In Proc. of Int.
Workshop on Modelling Techniques and Performance
Evaluation, Paris, 1987.
[WOOD2003] Murray Woodside, “Layered Resources,
Layered Queues and Software Bottlenecks: A tutorial”
Performance Tools 2003 conference, Sept 2, 2003.

Appendix
Appendix A: LQN model

G
"Simple 3 tier application"
0.00001
100
1
0.5
#End of general information
-1

#Processor information
P 4
p UserP f
p WebP s
p DBP s
p DBDiskP f
#End of processor info
-1

#Task Information
T 0
t Users r user -1 UserP z 0.2 m 80
t WebSer n createW -1 WebP m 40
t DB n createDB -1 DBP m 40
t DBDisk n createDisk -1 DBDiskP m 30
#End of Task information
-1

#Entry Information
E 0
s user 0 0 0 -1
y user createW 1 0 0 -1
s createW 0.07 0 0 -1
y createW createDB 1 0 0 -1
s createDB 0.053 0 0 -1
y createDB createDisk 1 0 0 -1
s createDisk 0.012 0 0 -1
#End of Entry Information
-1

Appendix B: LQN solution

Service times:

Task Name Entry Name Phase 1
Users user 5.40004
WebSer createW 2.79972
DB createDB 0.192588
DBDisk createDisk 0.0143659

Throughputs and utilizations per phase:

Task Name Entry Name Throughput Phase 1 Total
Users user 14.2856 77.1427 77.1427
WebSer createW 14.2856 39.9956 39.9956
DB createDB 14.2856 2.75123 2.75123

DBDisk createDisk 14.2856 0.205225 0.205225

Utilization and waiting per phase for processor: UserP

Task Name Pri n Entry Name Utilization Ph1 wait
Users 0 80 user 0 0

Utilization and waiting per phase for processor: WebP

Task Name Pri n Entry Name Utilization Ph1 wait
WebSer 0 40 createW 0.999989 1.26857

Utilization and waiting per phase for processor: DBP

Task Name Pri n Entry Name Utilization Ph1 wait
DB 0 40 createDB 0.757135 0.0626121

Utilization and waiting per phase for processor: DBDiskP

Task Name Pri n Entry Name Utilization Ph1 wait
DBDisk 0 30 createDisk 0.171427 0.00236592

	CMG 2006 Main Menu
	Papers by Subject
	Papers by Author
	Acrobat® Help
	Search

