
532 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 4, JULY 2012

Collaborative Modeling Process for Development of
Domain-Specific Discrete Event Simulation Systems

Changho Sung and Tag Gon Kim, Senior Member, IEEE

Abstract—The discrete event systems specification (DEVS) for-
malism supports the object-oriented (OO) specification of discrete
event models in a hierarchical, modular manner. If a system that is
to be modeled is domain-specific, the development of models with
the use of the DEVS formalism would require domain knowledge
about the system as well as to understand DEVS semantics. This
paper proposes a collaborative modeling process to compensate for
the lack of professional engineers. To compensate, this modeling
process utilizes three types of engineers: domain engineer, model-
ing and simulation (M&S) engineer, and platform engineer. The
process consists of four steps: conceptual modeling, model par-
tition, model implementation, and model integration/simulation.
The system requirements are used to specify domain models in
the conceptual modeling step, and the models are partitioned into
two types: discrete event-level model (DEM) and behavioral-level
model (BM). The DEM is specified as the DEVS formalism, and the
BM is defined as algorithms and equations. Each model is imple-
mented separately, and the implemented models are integrated and
simulated flexibly by using a dynamic linking library. The model-
ing process is then applied to develop a war game simulator. The
advantage of this modeling process is that the collaborative work
is related to the whole series of steps. This collaboration maximally
utilizes the capabilities of the professional engineers by seamlessly
separating yet correlating their works.

Index Terms—Collaboration, discrete event systems specifica-
tion (DEVS), domain-specific, modeling process, simulation sys-
tems, unified modeling language (UML).

I. INTRODUCTION

D ISCRETE event modeling can be considered as a process
of abstract knowledge representation of a real-world sys-

tem. As a model, the representation should be executable within
a simulation environment to analyze the modeled system with
respect to modeling objectives. The process may be based on
the different world views for modelers, such as event-oriented,
process-oriented, and object-oriented (OO). Among them, the
OO approach may be the most compatible with a real-world

Manuscript received October 28, 2010; revised February 13, 2011; accepted
March 14, 2011. Date of publication April 29, 2011; date of current version June
13, 2012. This work was supported by the Defense Acquisition Program Admin-
istration and Agency for Defense Development under Contract UD080042AD,
Korea. This manuscript is an extended version of the invited talk given by T. G.
Kim at the 2009 Spring Simulation Multiconference—DEVS Integrated M&S
Symposium, San Diego, CA. This paper was recommended by Associate Editor
S. Ramaswamy.

The authors are with the Department of Electrical Engineering, Korea Ad-
vanced Institute of Science and Technology, Daejeon 305-701, Korea (e-mail:
chsung@smslab.kaist.ac.kr; tkim@ee.kaist.ac.kr).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCC.2011.2135850

Fig. 1. Difficulty of developing domain-specific simulation systems.

system from the system-theoretic viewpoint of model represen-
tation [1].

The system-theoretic representation first specifies a system as
a set of inputs, a set of outputs, and a set of states. It then defines
a set of operations on the representation. The discrete event
systems specification (DEVS) formalism [2], which represents
a discrete event system from the system-theoretic viewpoint, is
known to be compatible with the OO world view. Moreover,
formalism supports the hierarchical and modular specifications
of discrete event models, which allows us to assemble previously
developed component models in a flexible manner.

Given our modeling objectives, the modeling and simula-
tion (M&S) of domain-specific systems requires a great deal
of domain knowledge. Fig. 1 shows the difficulty of develop-
ing models for domain-specific complex systems. Assume that
an advanced software engineer has a great deal of knowledge
of software technologies, such as programming. When a soft-
ware engineer develops a weather forecast simulation model,
he needs information for a weather system. Although he has
weather data details, he cannot make the best use of the data
in the development of the simulation model due to his lack of
domain-specific knowledge about meteorology. In addition to
his lack of domain knowledge, the software engineer may fail
to develop the model due to his lack of M&S skills. The simu-
lation model is defined by a set of instructions, rules, equations,
and constraints to generate output behaviors from inputs (I/O).
Thus, a modeler has to specify the relationship of the I/O and
the dynamics. No matter how much the software engineer may
have learned from meteorology, he cannot develop the weather
model without certain M&S theory. Hence, M&S theory experts
are needed as well.

To overcome the difficulty of developing domain-specific
simulation systems, we propose a collaborative modeling

1094-6977/$26.00 © 2011 IEEE

SUNG AND KIM: COLLABORATIVE MODELING PROCESS 533

process. The process is based on hardware/software (HW/SW)
codesign [3], system integration [4], and a collaboration method
[5]. The purpose of the process is to put the right professional en-
gineers in the right place. Domain engineers analyze functional
requirements about domain knowledge, and M&S engineers
design the discrete event model by using the analyzed require-
ments. Platform engineers [6] implement the models and com-
pose the real systems. Therefore, the development of a domain-
specific discrete event simulation system requires cooperative
teamwork among experts throughout the whole modeling pro-
cess, and this paper describes that modeling process.

This paper is organized as follows. Section II presents several
of the related works and previous approaches to the M&S of a
domain-specific system. Section III introduces some of the ba-
sic knowledge about modeling a system. Section IV discusses
the roles of professional persons and the necessity of collabo-
ration. Our proposed collaborative modeling process and case
studies are described from Section V to Section VII. Finally,
Section VIII concludes the discussion.

II. RELATED WORKS

In past years, there have been some efforts to develop software
systems of particular problem domains. Typically, the domain-
specific software engineering [7] is a methodology to analyze
regions of the particular domains and build domain-specific
software architecture (DSSA) and application software. The
DSSA needs to be adapted to the culture of the domain to which
it is being applied. The domain model, reference requirements,
and reference architecture are represented by using the tools
and methodology that the application developers in the domain
traditionally used. DSSAs address component reuse [8] and
substitutability by identifying the components and topologies
reused across architectures in a given application domain, and
this reduces development and maintenance costs.

The unified modeling language (UML) is a widely used visual
modeling language that is fit for different software development
methods and every phase of the software life cycle. The UML
2.0 provides 13 diagram types that enable engineers to model
several different views and abstraction levels [9], and then the
engineers use the diagrams to describe the domain model of the
DSSA [10]. For that reason, the UML has been a representa-
tive modeling language for domain analysis, and it serves as a
bridge between application domains and discrete event system
models.

In the DEVS-based M&S domain, Hong proposed embed-
ment of the UML diagrams into the development process of
DEVS models for the first time in [11]. The UML was used
as a means of communication between a system domain and
DEVS models. M&S engineers develop a simulation model by
using documents that are produced by domain engineers. These
documents are UML diagrams, and a sequence diagram is trans-
formed into a DEVS diagram. As another study, eUDEVS [12]
was proposed, which was an automatic M&S process to de-
velop DEVS models. The tool transforms the UML diagrams
into DEVS atomic and coupled models automatically by using
XML. However, UML modeling power is not complete enough

Fig. 2. Comparison with previous research.

to represent discrete event models. In addition, the approaches
are the sequential process. Thus, the DEVS models are not built
before the developers draw UML diagrams completely.

To overcome the drawbacks of the sequential development
process, a comodeling methodology [13] had been proposed
in a previous research. This methodology is similar to HW/SW
codesign. A model is partitioned into two modeling levels for an
object, and each model is developed by using DEVS and UML.
The advantage of this methodology is that the domain engineers
and the M&S engineers can work simultaneously through a
predefined interface. However, the previous research does not
mention the development process of simulator architecture from
simulator requirements, and it does not formally specify the
discrete event system with the predefined interface.

On the other hand, there is ample research that supports the
division of roles to develop complex software systems in the
software engineering field. Since software development is a dif-
ficult and complex task, Zhu et al. [14] proposed a role-based
software process for the development of software. Similarly, the
modeling Turnpike (mTurnpike) [6] clearly separates the task
to model and program domain-specific models from the task
to transform them into the final compilable code. This design
strategy improves the separation of concerns between model-
ers and platform engineers. Modelers do not have to know how
domain-specific concepts are implemented and deployed in de-
tail, and platform engineers do not have to possess detailed
domain knowledge and UML modeling expertise. This sepa-
ration of concerns can reduce the complexity of application
development and increase the productivity in modeling and pro-
gramming domain-specific concepts.

To contribute to these existing works, this paper proposes an
efficient and systematic modeling process to develop domain-
specific system models. As shown in Fig. 2, the common solu-
tion is the employment of UML as a means of communication
between complex problem domains and the discrete event sim-
ulation model. We agree that the UML helps the DEVS model
development. However, the UML is limited in its ability to
represent the DEVS model because it lacks attributes, such as
arbitrary events and random time advance. In addition, UML

534 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 4, JULY 2012

is a visual syntax for software modeling, not a formalism. This
makes it hard for its designers to execute and verify the sim-
ulation model. In our approach, we use the UML only as a
secondary means of DEVS model development. Another prob-
lem of previous research studies is their failure to specialize the
work of experts in the M&S process. To overcome this problem,
we propose a collaborative modeling process that helps us to
maximize the abilities of experts by seamlessly separating yet
correlating their works.

The collaboration approach, of course, has been studied in
system M&S. Barjis [15] introduced collaborative, participa-
tive, and interactive modeling in the systems engineering. He
discussed collaboration and interaction among modeling ex-
perts and system users to model and simulate complex systems.
Particularly, system users are involved in system development
process. However, the role of experts and users are concep-
tual; therefore, there is a lack of detailed and formal description
about their interaction. Our previous research [16] also discussed
collaboration among M&S stakeholders, including modeling ex-
perts and users.

This paper focuses on collaboration among experts about
M&S except system users. Our approach is described in Fig. 2.
We partition the system modeling into two levels according to
model abstraction level: abstract behavior and detailed physical
operation. With the collaborative work, the model partitioning
skill in the proposed modeling process allows us to develop
the discrete event systems efficiently and flexibly through the
modified specification formalism. In addition, the collaborative
modeling process improves the reusability of the partitioned
models.

III. BACKGROUNDS

This section provides background knowledge about modeling
a system. The UML is a well-known standard language for the
development of OO systems. The UML allows us to easily
understand system requirements and specifications. The DEVS
formalism is a general methodology to describe discrete event
systems, and we use a DEVSim++ library [17] to model and
simulate a DEVS model.

A. Unified Modeling Language and Requirements Diagram of
System Modeling Language

The UML is a standardized language to specify, visualize, and
document the artifacts of an OO system under development [18],
[19]. Note that UML is not a kind of modeling methodology, but
instead it provides a visual syntax that we can use to construct
models. It simplifies the complex process of software design and
presents the various views of a system, thus making a blueprint
for construction [20]. Objects contain information and may per-
form functions, and UML models have a static structure and
dynamic behavior. The former relates to the type of objects and
the relationship among them, and the latter denotes the functions
of the systems [21]. This section describes only three diagrams
among several UML diagrams. The diagrams include a use case
diagram, a class diagram, and a sequence diagram that is a
subdiagram of an interaction diagram. For a detailed analysis

of systems requirements, we use a system modeling language
(SysML) requirements diagram [22].

1) Requirements Diagram: A SysML requirements diagram
is a new diagram that is intended to cover the UML short-
age. It helps engineers to better organize requirements, and it
also shows explicitly the various kinds of relationships between
different requirements. The diagram can fill the gap between
natural-language-based specifications, which are too ambigu-
ous and informal, and the UML uses case diagrams. In addition,
the SysML requirements diagram can facilitate the transforma-
tion of user requirements into system requirements and improve
the requirements’ traceability throughout the design life cycle.

2) Use Case Diagram: A use case diagram is a behavior di-
agram that defines a set of use cases that comprises the actors
and the relationships between them. As a behavioral classifier,
the diagram defines a sequence of actions, which are performed
by one or more actors and a system, which results in an observ-
able value to one or more actors. For system developers, this is
a technique to gather system requirements from a user’s point
of view.

3) Class Diagram: A class diagram is a structure diagram
that shows a set of classes, interfaces, and/or collaborations
and the relationships among these elements. A class includes
the name, attributes, and operations. This diagram is a central
modeling technique that is a part of nearly all OO methods and
represents the static part of a system.

4) Sequence Diagram: A sequence diagram is an interac-
tion diagram that focuses on the temporal ordering of messages
among objects. A sequence diagram depicts a sequence of ac-
tions that occur in a system; therefore, it is a very useful tool
to easily represent the dynamic behavior of the system. This
diagram includes objects and messages in a 2-D form. The hor-
izontal axis shows the life of the objects that it represents, while
the vertical axis shows the sequence of the creation or invocation
of these objects.

B. Discrete Event Systems Specification Formalism

The DEVS formalism specifies discrete event models in a
hierarchical and modular form. With this formalism, one can
perform modeling more easily by decomposing a large sys-
tem into smaller component models with a coupling specifica-
tion between them. There are two kinds of models: atomic and
coupled [2].

An atomic model is the basic model and contains the specifi-
cations for the dynamics of the model. A coupled model provides
the method of assembly of several atomic and/or coupled mod-
els to build complex systems hierarchically. An overall system
consists of a set of component models, either atomic or coupled,
thus exhibiting a hierarchical structure. Each DEVS model, i.e.,
either atomic or coupled, corresponds to an object in a real-
world system to be modeled [23]. Within the DEVS framework,
model design may be performed in a top-down fashion, while
model implementation is conducted in a bottom-up manner.

1) Simulation of Discrete Event Systems Specification
Model: Simulation of a DEVS model can be done by com-
municating hierarchical abstract simulators, the architecture of

SUNG AND KIM: COLLABORATIVE MODELING PROCESS 535

Fig. 3. Graphical notation of DEVS atomic model.

which is the same as the DEVS model architecture. The ab-
stract simulators are a set of distributed simulation algorithms
that can be implemented in a sequential as well as in a dis-
tributed computing environment [24]. Since DEVS models are
developed in an OO manner, OO programming languages, such
as C++ and JAVA, are appropriate for implementation of a
DEVS M&S environment. In fact, the first such C++ imple-
mentation is DEVSim++ [17] in which modeling facilities and
abstract simulators are explicitly separated. Within the envi-
ronment, modeling facilities are opened to modelers; abstract
simulators are not accessible externally. The modelers can de-
velop DEVS models by using a modelers’ interface, which is
a set of application programming interfaces (APIs) to specify
DEVS models in DEVS semantics. Thus, APIs for the specifica-
tion of DEVS models are defined such that there is a one-to-one
correspondence between APIs and functions in the formalism.
Once DEVS models are developed by using the facilities and
APIs, engineers can perform a simulation of such models, thus
using abstract simulators that are embedded in DEVSim++.

Various implementations for DEVS M&S are available in
public domains, and the DEVS Standardization Group [25]
is making an ongoing effort to standardize DEVS model-
ing/simulation environments.

2) Graphical Representation: An atomic model of the
DEVS formalism is illustrated in a labeled graph. There is no
standard for the graphical representation of an atomic model. In
this paper, we define the DEVS graph as follows:

G = 〈V,E〉

where V is a set of sequential states with scheduled time, where
V = S with ta of S, and E is the internal or external transition
with labels, where E ⊆ V × V with a label (X ∪ Y).

The graphical notations are defined as shown in Fig. 3. A
state with [0, tS] means that a model waits for any input events
in simulation time tS at the state. A solid line means an external
transition with an input event, and a dotted line means that
an internal transition happens after an output event occurs in
an output function. The graphical representation allows us to
understand the DEVS atomic model on sight.

IV. ROLE OF EXPERTS

Commonly, system engineering requires many professional
engineers from diverse areas. Among them, we employ three
types of engineers in this paper: domain engineers for domain
and requirements engineering; M&S engineers to construct the

overall modeling process of discrete event systems; and platform
engineers to program and test the simulators.

A. Domain Engineers

Domain engineering (DE) is a software engineering disci-
pline that includes the identification, analysis, and design of
domain-specific capabilities. In general, DE builds software ar-
chitectures and reusable assets to address the problems of system
development within a domain. The three main activities of DE
are domain analysis, domain design, and domain implementa-
tion [26]. Domain engineers are the people who perform the DE
activities. They perform the domain analysis with domain in-
formation, which are gathered through questionnaires, domain
expert interviews, a review of relevant information from doc-
umentation, reverse reengineering of existing systems, and in-
dependent research [27]. Based on the domain requirements,
the domain engineers generate the behavioral-level model
(BM), which includes mathematical equations, algorithms, and
strategies.

B. Modeling and Simulation Engineers

M&S engineering refers to the use of models, including em-
ulators, prototypes, and simulators, either statically or over
time, to develop data as a basis to make managerial or tech-
nical decisions [28]. The activities of M&S engineering are
requirements engineering, modeling theory, simulator imple-
mentation/verification, model validation, model behavior anal-
ysis, and performance evaluation. In this paper, M&S engineers
are in charge of the M&S of discrete event systems according
to domain requirements. They are especially interested in the
high-level abstract behavior of objects. They generate the dis-
crete event-level model (DEM), which is specified as the DEVS
formalism.

C. Platform Engineers

Platform engineers are general program developers who im-
plement simulation models by using model specifications for
domain engineers and M&S engineers. They also take charge of
construction of the simulation environment, such as geographic
information system (GIS), DB, and user interface, and they pos-
sess expertise in the platform technologies on which models are
deployed. In general, platform engineers do not have to know
the details of domain-specific concepts.

D. Collaborative Work

As we have seen in Section I, the cooperation among experts
of the various fields is essential to model and simulate domain-
specific, complex systems. Fig. 4 shows the role of each expert in
developing domain-specific discrete event simulation systems.
The M&S of domain-specific systems requires the integration of
each expert’s professional knowledge. The domain requirements
consist of textbooks, field experience, physics, and several data
sources, such as conversions about the weather. They are the
necessary, basic units to understand the dynamics of the systems,
and they are used by domain engineers, who major in electrical

536 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 4, JULY 2012

Fig. 4. Expert cooperation for M&S.

engineering, military topics, physics, etc. The material contains
the operational requirements of a discrete event simulator, and
it is utilized to model conceptual logic and architecture as well
as to provide algorithms that detail the operations of a system.
M&S engineers observe the domain objects with a view that
allows them to analyze the high-level aspects of the objects.
On the other hand, domain engineers design detailed algorithms
of physical phenomena. Furthermore, designed models that are
developed by M&S engineers are used to implement a simulator
by platform engineers, who use software technologies, including
several programming languages and tools. In general, domain
engineers analyze the domain requirements, and they are also
the end users, who execute the simulator. Therefore, platform
engineers have to implement a simulator in cooperation with the
domain engineers to apply a demand from end users. In brief,
collaborative work among professional engineers is essential to
develop domain-specific systems.

V. COLLABORATIVE MODELING PROCESS

In HW/SW codesign, the system specification is partitioned
into hardware and software parts for the concurrent design pro-
cess. After that, each part is implemented and then integrated
for cosimulations [3]. The proposed collaborative modeling is
based on this HW/SW codesign. The process is a procedure to
develop simulation systems by separate groups of professional
engineers, who cooperate with each other. The professional en-
gineers are domain engineers, M&S engineers, and platform
engineers, as we have mentioned in Section IV.

The development of domain-specific discrete event systems
is a difficult task, which requires a high degree of expert knowl-
edge from the engineers who are involved. The proposed process
is similar to the general system development process [29], which
include the progression from requirements analysis to system
testing. As shown in Fig. 5, the overall modeling process is par-
titioned into four parts: conceptual modeling, model partition,
model implementation, and model integration/simulation. The
process begins from analyzing system requirements specifica-
tion that is generated by system users. The users are expected

to tell the professional engineers what needs to be done as well
as the motivation for the development from the system user’s
perspective. Conceptual modeling step involves requirements
analysis and an understanding of domain knowledge. After the
conceptual modeling, the designed model is partitioned into
two levels: DEM and BM. These partitioned models are inde-
pendently implemented by platform engineers. Finally, the sep-
arately implemented models are integrated via communication
interfaces, which are predefined within the modeling formalism
and supporting libraries.

In a practical manner, each process step supports technical
collaboration. Collaborative work is applied from the begin-
ning to the end. The first step, making domain models and the
simulator’s architecture, involves drawing UML and SysML di-
agrams in practice. The diagrams have to be drawn with the
collaboration of all engineers. In the second step, each model
is specified by using a suitable formal description, such as the
DEVS formalism and mathematical equations. The communi-
cation interface between formal descriptions has to be defined,
the engineers collaborate over the formalism specifications. In
the third step, the experts implement their models separately in
the programming viewpoint. Finally, the implemented form of
the BM is linked dynamically to the DEM; thus, collaboration
in the run-time execution is supported technically.

A. Conceptual Modeling

The first step of the modeling process is the conceptual model-
ing of a system. A conceptual model is a statement of the content
and the internal representations that are the user’s and the de-
veloper’s combined concept of the model. The model includes
logic and algorithms, and it explicitly represents assumptions
and limitations. The purposes of the conceptual modeling in
the domain-specific simulation systems are to clearly define the
meaning of terms and concepts that are used by domain engi-
neers to discuss the problem and to find the correct relationships
among various concepts. The conceptual model is the basis for
subsequent application developments in the domain, and it is
built by data modeling. A requirements engineering approach
can be used to model the data [30]. The conceptual model is also
made independent from implementation details by representing
the model with symbols, such as UML and entity relationships).
We adapt UML diagrams and SysML requirement diagrams for
the conceptual modeling process. Normally, the graphical ap-
proaches are more efficient than text-based analysis [31]. In [32],
UML is used for the conceptual modeling of the structure and
behavior of a system. SysML is applied to the development
of simulation systems, especially conceptual analysis, such as
requirements modeling [33], [34].

A general complex system consists of structural and behav-
ioral parts. In order to express the parts of the system, we use
UML use case, class, sequence diagrams, and a SysML re-
quirements diagram. Note that other UML diagrams can be
optionally required in addition to the basic diagrams for de-
tailed analysis. We call the diagrams for conceptual modeling
as the domain model. The domain model is made by collabo-
rative work among experts. All diagrams are drawn according

SUNG AND KIM: COLLABORATIVE MODELING PROCESS 537

Fig. 5. Overall collaborative modeling process.

to an analysis of requirements, and domain engineers and M&S
engineers take part in analyzing and modeling simulation sys-
tem requirements from an OO point of view. Platform engineers
take charge of the deployment and implementation of a system.
After that, they design the simulator architecture together by
using the domain models.

B. Model Partition

The domain model that was developed in the conceptual mod-
eling step is decomposed into submodels from a top-down per-
spective. The architectural design is completed from an OO
modeling viewpoint. The OO modeling approach for system
modeling views a system as an object in which its representa-
tion and associated operations are explicitly defined. A designed
model presents an object, and the model is partitioned into two
modeling levels of the object in terms of layered structure ar-
chitecture [13]: DEM and detailed BM. The domain model de-
scribes the dynamic behavior of an object, and the behavior
includes the I/O events of a model, state transitions, and opera-
tions that are processed by specific events and state transitions.
Among them, state transitions by I/O events are described by
M&S engineers by using the DEVS formalism, and detailed
operations at specific states are described by domain engineers

Fig. 6. Simple war game model partition.

by using algorithms and mathematical equations. Fig. 6 shows
a simple example of model partitioning.

Assume that a system consists of four military objects. An
enemy aircraft moves to attack our airbase, and one of our
radars detects the aircraft. In order to defend our airbase, a

538 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 4, JULY 2012

Fig. 7. Example. Phase and state transition.

command and control system decides what and how we attack,
and then, a missile is launched at the enemy aircraft. This system
is modeled as a simple war game, and a general war game
model is conducted by I/O events. Each object is represented as
a DEVS atomic model, and messages in the events are created
by calculating mathematical equations and algorithms, such as
movement equations and shortest path algorithms. Specifically,
an aircraft moves to update its current position, and the position
information is determined by 3-D movement equations in the
case of takeoff, flying, and landing. Most of the equations are
complex, and they are too detailed to be suitable for DEM. In
the simple case, the structured and high-level state transition
model is the DEM, and the detailed model for the generation of
information is the BM.

In order to explain DEM and BM in detail, we use the con-
cept of a multimodel [35], [36]. A multimodel is a model that
is composed of other models. The purpose of a multimodel is
to have a unifying system representation that contains many
different levels of abstraction and perspective views within the
system [37]. In our methodology, each level of a multimodel
can be represented by either DEM or BM models. The concept
of the multimodel allows us to create a more flexible model-
ing environment wherein each level is represented by its most
appropriate form.

In a multimodel, a phase means a set of contiguous states
that are equivalent to each other in the sense of λ and ta, and
qualitative changes in behavior are phase transitions. A state
means a low-level state, and the state transition occurs within
a phase; a phase is a high-level state. The relation between the
phase and the state is shown in Fig. 7. An aircraft waits for
the command move_order. When the event occurs, the phase
changes from WAIT to MOVE, and the aircraft starts to move to
a designated point. The phase transition is defined as the DEVS

formalism of DEM. During the movement of the aircraft, the
move operation is executed periodically in the MOVE phase.
The operation is defined as a communication interface between
DEM and BM. The operation of the BM generates an event to
change the phase of the DEM. The event includes the current
position value P that is coordinated with the x-, y-, and z-axes;
and P is also a state value of the BM. The operation is defined as
a mathematical motion equation, such as uniform velocity and
uniform acceleration motion. When the coordinates are located
in the designated point, i.e., when the aircraft arrives at the point,
the phase changes from MOVE to WAIT.

We extend the classic DEVS formalism in order to explain
the activities within the phases. The extended form is similar
to real time DEVS (RTDEVS) [38]. An atomic model of the
extended DEVS formalism has I and ψI in addition to the sets
and functions of classical formalism as follows:

AMDEM = 〈X,Y, S, I, δext , δint , ψI , λ, ta〉

where
X set of input events;
Y set of output events;
S set of phases;
I set of communication interfaces;
δext Q × X → S, an external transition function, where

Q = {(s, e)|s ∈ S and 0 ≤ e ≤ ta(s)}, total phase set
of M;

δint S → S, an internal transition function;
ψI S → I , an interface mapping function;
λ S → Y , an output function;
ta S → R+

0,∞ (nonnegative real number), time advance
function.

I is a set of communication interfaces, and the set is specified
in the BM. The interface specification is in the form of algo-
rithms and equations. ψI is an interface-mapping function, and
it connects the phases to the proper communication interfaces.
When the external and internal transition functions are executed,
the mapping function is activated and refers to the interface that
is fully described in the BM. Therefore, specifying the DEVS
model of the DEM means defining four sets (X,Y, S, and I) and
five functions (δext , δint , ψI , λ, and ta). Through the extended
DEVS formalism, we can formally specify the discrete event
simulation systems that communicate with other computing
operations.

C. Model Implementation

In the collaborative modeling process, M&S engineers spec-
ify DEVS models that represent system behaviors at the phase-
transition level, as shown in the bottom diagram of Fig. 7. Do-
main engineers are responsible for the development of specific
algorithms as individual functions. These algorithms typically
require domain-specific knowledge. After that, each engineer
implements a simulation model of his own specification with
platform engineers. Similarly, the model implementation is sep-
arated into the DEM and the BM implementations. Each model
is coupled with a communication interface, which is the so-
called function prototype in C++ language. Platform engineers

SUNG AND KIM: COLLABORATIVE MODELING PROCESS 539

implement the high-level DEVS models of the DEM by us-
ing C++ language with DEVSim++ library, and they also use
C++ language to implement the detailed algorithms and ques-
tions of the BM.

Separation of implementation eases the testing and mainte-
nance of simulation models. In general, a modification of sim-
ulation requirements brings more frequent changes in detailed
algorithms than changes in abstract behavior. When a variation
of rules or scenarios alters a specific algorithm, M&S engineers
do not have to perform the modification, if the change only
affects the behavioral operations of the modeled objects. Tech-
nically, this switch of model algorithms at the run-time or the
load-time of a simulation run becomes possible because of the
dynamically linked library (DLL) technology [39].

Using the DLL in the implementation step improves the
reusability of the algorithms of the BM. It is one of the most ef-
ficient methods to develop combined simulation model because
of its flexibility and simplicity. When the algorithms are imple-
mented as the DLL, we can only know the inputs, the output,
and the name of the function prototype because of the modu-
larity of the library. This means that we can employ the BM in
simulation with another DEM, if the DEM is implemented by
using the same function prototype with the same I/O. There-
fore, separating implementation in the collaborative modeling
process allows us to develop the models efficiently because of
the reusability of the models from the programming viewpoint.

D. Model Integration/Simulation

The majority of collaborative work between M&S engineers
and domain engineers in this modeling process happens in
the specification of communication interfaces. The interfaces
should be designed independent of other functions and should
be as self-contained as possible. The function prototype is
a C++ format of the communication interface, as shown in
Section V-C. The DEVS models call associated functions within
the phase-transition functions in the extended formalism. The
contents of the function do not affect the model behavior as long
as the I/O types of the function are consistent. Therefore, the
simulation model is a combined form of the DEVS models and
the implemented interface functions.

Platform engineers are able to supply a set of behavior func-
tions, which is specified by domain engineers, in the DLL for-
mat. The library may be made implicit at the compile-time,
or explicit by the application run-time. Traditional static link-
ing binds a program and libraries together at the compile-time.
Therefore, the static linking produces one executable file, in-
cluding all data and codes. In this technology, the program
should be recompiled in order to replace a function. However, a
dynamically-linked library that contains functions to be replaced
can be loaded after the application starts. If we implement each
function in a separate DLL, the simulator will be able to execute
user-supplied functions in the library without recompiling the
simulator program.

In combination with the implemented DEVS models, a com-
plete simulator is synthesized by selecting supplied DLLs. This
selection can be done at run-time. Therefore, domain engineers

Fig. 8. Flexible simulator synthesis.

can easily compare different combinations of algorithms without
changing the DEM. These procedures are described in Fig. 8.
DEM is a DEVS-coupled model as a composition of DEVS
atomic models, and the models are developed by the M&S en-
gineers and implemented by platform engineers, thus using the
DEVSim++ library. The BM is a set of object classes that define
numerous operations and detailed algorithms of the modeled ob-
jects. Platform engineers implement the BM by using C++ in
the form of a DLL. The DEM and BM are synthesized at the
run-time, and after that, a DEVS atomic model is linked to a
corresponding object class. Although the modification of simu-
lator requirements affects the change in the contents of object
operations, the modified object class is easily linked to a DEVS
atomic model. In addition, different simulation results can be
achieved under varying operations of objects without recompil-
ing a simulator through flexible simulator synthesis. After the
data is collected through the simulation, M&S engineers analyze
the data and evaluate the simulation model.

VI. CASE STUDY: AMPHIBIOUS OPERATION

OF THE MARINE CORPS

The proposed process is applied to develop a war game model
of an amphibious operation of the Marine Corps. A general
war game model is a representation of the domain-specific,
discrete event simulation system, and it has many objects and
complex strategies. The number of objects for the training war
game model is about 12 000 in practice [40], and the model
has many decisions and operations. Domain knowledge about
the war game model consists of tactics, strategy, and informa-
tion of equipment, such as weapons, warships, and aircraft. The
knowledge is very professional and specialized; therefore, do-
main engineers are definitely necessary. The objective of this
case study application is to simulate and analyze a simplified
training exercise scenario. The simulator is useful to evaluate
the efficiency of a plan of military operations.

An amphibious operation of the Marine Corps consists of
four parts: movement to the amphibious objective area (AOA),
reconnaissance, fire support, and ship-to-shore movement. Gen-
erally, a troop moves from a port of our forces to an AOA of
the enemy force in order to conduct an amphibious operation.

540 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 4, JULY 2012

Fig. 9. Exercise scenario: ship-to-shore movement of amphibious operation.

An advance force searches for enemies, and the fire support
group attacks them for easier amphibious operation. After that,
the main scheduled wave starts to move to shore. The ship-
to-shore movement is the most important task of the amphibi-
ous operation. The entities of the scenario include 10 ships,
three advance forces, eight fire support groups, 20 landing
groups, and 10 enemy forces. All operations are activated by
events, and the events are generated by external inputs or
mathematical equations and algorithms in each entity. In or-
der to simplify the scenario, we only explain the ship-to-shore
movement.

Fig. 9 depicts a simple exercise scenario for the ship-to-shore
movement of an amphibious operation. A landing ship dock
(LSD), which is a form of amphibious warship designed to sup-
port amphibious operations, moves to an amphibious vehicle-
launching area, a zone with the form of a square. The square is
1 000–1 500 m wide and 1 000–1 500 m long. An LSD has many
amphibious assault vehicles (AAVs), and it transports AAVs on
the square. After that, it starts to launch AAVs in the launching
area, and the launching interval is set at a distance of 50 m. The
AAVs orbits make a circle of 200 m in diameter until the LSD
finishes launching them. When the LSD completes the launch,
the AAVs move to the end of the launching area, which is called
the line of departure, and they start to move in a line that head to-
ward the beach landing site. After landing, a company of AAVs
assembles in an appointed area and conducts its mission. We
generated this scenario from a field manual.

A. Conceptual Modeling

During the conceptual modeling step for the development
of the amphibious operation simulator, all engineers make do-
main models in cooperation with each other. A requirements
diagram is shown in Fig. 10. An amphibious operation consists
of four operations, and the requirements of a landing ship and an
AAV are necessary to satisfy the requirement of a ship-to-shore
movement. Likewise, other requirements are related to each
other.

Fig. 10. Requirements diagram for amphibious operation system.

Fig. 11. Use case diagram for ship-to-shore movement.

The use case diagram for the ship-to-shore movement func-
tion is described in Fig. 11. The actor is a gamer, and the gamer
controls the ship-to-shore movement use case. The use case is
also related to other use cases. We can understand the function-
ality of the simulator from the following use case diagram.

The dynamic behavior of the ship-to-shore movement use case
is represented by a sequence diagram, as depicted in Fig. 12.
Three objects are necessary to satisfy the requirement. The op-
eration is started with the message start movement. After that,
an object LandingShip conducts the Move operation and cre-
ates the object AAV in the amphibious vehicle-launching area.
Launched AAVs circle around in front of the ship. When the
AAVs arrive at the shore, the object LandingForce is created,
and the object AAV is destroyed. Through the sequence diagram,
we can discern the dynamic relationship between objects in the
ship-to-shore movement use case. The sequence diagram will be
the basis of modeling discrete event simulation systems in the
next section.

In addition to these diagrams, an extra diagram is optional
for structuring the overall simulator architecture. The diagram

SUNG AND KIM: COLLABORATIVE MODELING PROCESS 541

Fig. 12. Sequence diagram for ship-to-shore movement.

Fig. 13. Component diagram for amphibious operation system.

is a component diagram, as illustrated in Fig. 13. A compo-
nent is a replaceable, executable piece of a larger system whose
implementation details are hidden [41]. The component dia-
gram shows the relationships among components, and plat-
form engineers have to support drawing the diagram. Fig. 13
depicts the simulation model (MarineEngined.exe), libraries,
and simulation environments (Managerd.exe and MarineGUId.
exe).

B. Model Partition

The domain models of the amphibious operation simulator
are partitioned into the DEM and the BM. Since a model is built
for an object from an OO viewpoint, an AAV object is developed

Fig. 14. Partition of AAV model.

as a model, and the model is partitioned into the DEM and the
BM, as shown in Fig. 14. There are five types of objects, as
shown in the class diagram in Fig. 14. Among them, the CAAV
object is specified as a DEM and a BM. The DEM of the object is
stipulated as the extended DEVS atomic model, as described in
Section V-B. There are two communication interfaces: If and Ig ,
and each interface is linked to MOVE and ORBIT, respectively.
In BM, the interfaces are described in detail as equations, such
as a uniform motion equation and orbit equation. The detailed
descriptions of the DEM and the BM are shown in following
sections.

1) Discrete Event-Level Model: At the DEM level, a landing
ship and an AAV are specified in the form of a phase transition by
using arbitrary events with a high-level viewpoint, and the mod-
els are built by M&S engineers. Fig. 15(a) and (b) shows the
phase-transition diagrams of the DEVS formalism. The land-
ing ship has three phases: INIT, MOVE, and LAUNCH. The
AAV has four phases: INIT, ORBIT, MOVE, and LAND. The
start event is initiated by the gamer, and the event changes the
phase of the landing ship to MOVE. The phase changes of the
AAV happens when the launch event occurs at the landing ship
model.

2) Behavioral-Level Model: The detailed behavior of the ob-
ject is modeled as the BM. An AAV moves from the landing
ship to the shore to achieve the mission. The next position of
the AAV is calculated periodically, and the equations of the

542 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 4, JULY 2012

Fig. 15. DEVS diagram for landing ship and AAV. (a) Landing ship. (b) AAV.

operation are as follows.

If : CALCULATE NEXT POSITION

If

⎧
⎪⎪⎨

⎪⎪⎩

dx

dt
= υx, x(0) = xc

dy

dt
= υy , y(0) = yc

(1)

υx = spd × sin(hdg)

υy = spd × cos(hdg)

xn = xc +
∫ tc +Δt

tc

υxdt

yn = yc +
∫ tc +Δt

tc

υy dt

where
spd speed of AAV (in knots);
hdg heading of AAV (in degrees, range: 0◦–360◦);
tc current time (in seconds).
The name of the operation is CALCULATE_NEXT_

POSITION, and the arguments comprise the current position
(xc , yc), next position after calculation (xn , yn), heading of the
AAV (hdg), speed of the AAV (spd), and time step for the up-
dation of the position (Δt). The equation includes the uniform
motion equation, and the next position is calculated in (1). The
equation changes the low-level states that indicate the AAV po-
sition information. The BMs of the AAV are built by domain
engineers who have expertise in marine or mechanical engi-
neering because the equations of the BMs are representations of
detailed physical operations of the real system.

3) Communication Between Discrete Event-Level Model and
Behavioral-level Model: The operation of the BM is connected
to the proper phase of the DEM. The operation is called the
communication interface between the DEM and the BM. As
depicted in Fig. 16, the CALCULATE_NEXT_POSITION op-
eration is linked with the MOVE phase. Thus, M&S engineers
use the communication interface to design DEVS models, and
the detailed description of the operation is a function of domain
engineers.

Fig. 16. Communication between DEM and BM.

Fig. 17. Implementation of AAV in DEM and BM.

C. Model Implementation

Platform engineers implement the DEM and BM by using
DEVSim++ [17] and C++, respectively. Fig. 17 presents the
implementation of the DEM and the BM for an AAV. The
DEM describes the abstract maneuver behavior of the AAV,
as shown in Fig. 15(b). When the AAV phase is MOVE, the
CalculateNextPosition function is called periodically, per 20 s
in this example. The communication interface should be de-
fined by the collaborative work of M&S and domain engineers

SUNG AND KIM: COLLABORATIVE MODELING PROCESS 543

Fig. 18. Simulation of amphibious operation. The operations occur in sequence from (a) to (d). (a) AOA movement. (b) Reconnaissance. (c) Fire support.
(d) Ship-to-shore movement.

when the model is partitioned or under development. The Cal-
culateNextPosition function may use various algorithms and
strategies, such as uniformly accelerated motion and uniform
motion along a line. Each function is developed as a separate
DLL .

D. Model Integration/Simulation

The simulation model is an integrated form of DEVS models
and object algorithms, as shown in Fig. 17. The algorithms are
implemented by using a shared library, such as a DLL, and the
library is linked in the DEVS models automatically. The simula-
tion result is represented in a GUI that is developed by platform
engineers. According to the predefined exercise scenario, the
amphibious operation is simulated, and the result is shown in
Fig. 18. Fig. 18(a) depicts the movement from the home port to
the AOA. Fig. 18(b) shows the reconnaissance mission, whereby
the advance forces cross the sea and find the position of their
enemies. The advance forces search for ten enemy forces, then
the fire support groups attack the enemy forces until their com-

bat power is reduced to half. The fire support is illustrated in
Fig. 18(c). Fig. 18(d) represents the ship-to-shore movement of
the AAVs, which is the most important mission of the amphibi-
ous operation of the Marine Corps. Through this simulation, an
officer of the Marine Corps can evaluate the efficiency of a plan
for exercise operations.

VII. DISCUSSIONS

Within the collaborative modeling process, the M&S engi-
neers and domain engineers design simulation models in close
cooperation. They analyze the system requirements together in
the conceptual modeling step, and they define the communi-
cation interface between the DEM and the BM in the model
partition step. Platform engineers also cooperate with the other
two types of engineers in designing a simulation environment
in the conceptual modeling step and in implementing the spec-
ified models. The main advantage of this modeling process is
that collaborative work is related to the whole series of steps.
This collaboration maximizes the capabilities of the professional

544 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 4, JULY 2012

TABLE I
APPLICATION: WAR GAME MODEL DEVELOPMENT

TABLE II
DEVELOPMENT EFFORT OF APPLICATION USING COCOMO

engineers by separating their work, especially in the large and
complex simulation system. This specialization makes a con-
current development process possible.

In addition to collaborative work, the engineers apply ex-
tended DEVS formalism to explicitly specify the discrete event
systems within the communication interfaces. Formalization
eases the model verification, validation, and testing phases. Fi-
nally, the separation of design and implementation by using a
DLL improves the reusability of the models.

We applied the proposed process to several war game model
developments, and the result is shown in Table I. The appli-
cations are long-term projects that develop simulation models
to train and analyze various military scenarios. All of them
were developed by using the proposed process, and all the three
engineer groups participated in the development of all applica-
tions. The real efforts are represented as the multiplication of
the number of engineers and development months. In order to
compare the real effort of the applications with the general soft-
ware development process, we used the constructive cost model
(COCOMO) [42] to estimate software development effort.
Equation 2 is a software development cost-estimation model
of the COCOMO.

E = 2.45 × EAF × (KLOC)P (2)

where
E effort (Person-Months);
KLOC thousand lines of code (SLOC/1000);
EAF effort adjustment factor (range: 0.6–1.4);
P project complexity (range: 1.04–1.24).
We calculated the effort by using (2) with the values of SLOC,

which is depicted in Table I, and the estimated values are shown
in Table II. The arguments EAF and P of (2) have a wide range
of values. Emin is the minimum effort when applying the lowest
values of EAF and P . The lowest EAF means that most of the
cost drivers are very high or extra high, i.e., the team’s skills are
exceptional. The lowest P means that the project complexity
is very low. It denotes that the estimated minimum effort is the
value of the ideal case. In contrast, Emax is the maximum effort,
and the value is in the worst case.

Fig. 19. Comparison between real development effort and estimated effort by
COCOMO.

The comparison between real development effort and the es-
timated effort by the COCOMO is described in Fig. 19. All of
the applications have real effort values between minimum and
maximum cost. The COCOMO is used to estimate the costs of
general software development, and the model has no factor for
system M&S, including our collaborative modeling methodol-
ogy. For a more accurate comparison, further analysis with the
proposed collaborative modeling process is worthwhile.

VIII. CONCLUSION

This paper proposed a collaborative modeling process to de-
velop a domain-specific discrete event simulation system. The
modeling process covers everything from the conceptual mod-
eling step to the simulation execution step by formally defining
the roles and responsibilities of domain engineers, M&S engi-
neers, and platform engineers. This collaborative work between
engineers has been required to complete these types of complex
domain-specific systems, yet past works have not been sup-
ported by any formal collaborative work process or modeling
framework in particular. This paper introduces the combina-
tion of work process and M&S logic formalism to enable fast,
verifiable, and cost-efficient M&S system developments. We
achieved quickness and cost-efficiency through parallel system
building, and we prevented its possible miscommunications by
employing a formal specification method (DEVS in our case)
and a common representation method, UML. This idea appears

SUNG AND KIM: COLLABORATIVE MODELING PROCESS 545

to be sound when we perform a case study to develop war game
models, with which we compare our parallel work process to a
possible sequential work practice. There are, however, a number
of problems that remain to be explored, and we enumerated the
problems with the following questions.

1) Would the collaborative work cover the whole simulation
software development and application process?

2) Would the collaborative work be sound in other types of
domain-specific systems, i.e., expert systems?

The proposed process only focuses on the development of
M&S software. Generally, the software development process
consists of various activities, from requirements analysis to
simulation analysis, including simulation verification and val-
idation. In addition, there are many kinds of domain-specific
systems in various fields, and there are also difficulties in de-
veloping the systems because of the expert domain knowledge
that they require of the engineer. We hope that the proposed
collaborative work may be expanded to cover the whole devel-
opment process and be applied to the development of general
domain-specific systems in addition to simulation systems. We
expect that this work process will provide better development
practices and collaboration protocols in future M&S software
development and applications.

REFERENCES

[1] C. A. Roberts and Y. M. Dessouky, “An overview of object-oriented
simulation,” Simulation, vol. 70, no. 6, pp. 359–368, 1998.

[2] B. P. Zeigler, T. G. Kim, and H. Praehofer, Theory of Modeling and
Simulation. Orlando, FL: Academic, 2000.

[3] J. K. Adams and D. E. Thomas, “The design of mixed hardware/software
systems,” in Proc. 33rd Annu. Des. Autom. Conf., Las Vegas, NV, Jun.
1996, pp. 515–520.

[4] C. Chittister and Y. Haimes, “Systems integration via software risk man-
agement,” IEEE Trans. Syst., Man, Cybern. A, Syst. Humans, vol. 26,
no. 5, pp. 521–532, Sep. 1996.

[5] W. Shen, Q. Hao, H. Mak, J. Neelamkavil, H. Xie, and J. Dickinson,
“Systems integration and collaboration in construction: A review,” in Proc.
12th Int. Conf. Comput. Support. Cooperat. Work Des., Xi’an, China, Apr.
2008, pp. 11–22.

[6] H. Wada, J. Suzuki, and K. Oba, “Modeling turnpike: A model-driven
framework for domain-specific software development,” in Proc. Compan-
ion 20th Annu. ACM SIGPLAN Conf. Object-Oriented Programm., Syst.,
Lang., Appl., San Diego, CA, Oct. 2005, pp. 128–129.

[7] W. Tracz, L. Coglianese, and P. Young, “A domain-specific software archi-
tecture engineering process outline,” SIGSOFT Softw. Eng. Notes, vol. 18,
no. 2, pp. 40–49, 1993.

[8] P. Vitharana, H. Jain, and F. Zahedi, “Strategy-based design of reusable
business components,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev.,
vol. 34, no. 4, pp. 460–474, Nov. 2004.

[9] C. Lange, M. Chaudron, and J. Muskens, “In practice: UML software
architecture and design description,” IEEE Softw., vol. 23, no. 2, pp. 40–
46, Mar. 2006.

[10] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Architecture:
Foundations, Theory, and Practice. New York: Wiley, 2009.

[11] S.-Y. Hong and T. G. Kim, “Embedding UML subset into object-oriented
DEVS modeling process,” in Proc. SCSC, San Jose, CA, Jul. 2004,
pp. 161–166.

[12] J. L. Risco-Martn, J. M. de la Cruz, S. Mittal, and B. P. Zeigler, “eUDEVS:
Executable UML with DEVS theory of modeling and simulation,” Sim-
ulation, vol. 85, no. 11–12, pp. 750–777, 2009.

[13] C. H. Sung, S.-Y. Hong, and T. G. Kim, “Layered structure to develop-
ment of OO war game models using DEVS framework,” in Proc. SCSC,
Philadelphia, PA, Jul. 2005, pp. 65–70.

[14] H. Zhu, M. Zhou, and P. Seguin, “Supporting software development with
roles,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 36, no. 6,
pp. 1110–1123, Nov. 2006.

[15] J. Barjis, “Collaborative, participative, and interactive modeling and simu-
lation in systems engineering,” in Proc. Spring Simul. Multiconf., Orlando,
FL, Apr. 2010, pp. 68:1–68:6.

[16] C. H. Sung, I.-C. Moon, and T. G. Kim, “Collaborative work in domain-
specific discrete event simulation software development: Fleet anti-air
defense simulation software,” in Proc. IEEE Int. Workshop Collaborat.
Model. Simul., Larissa, Greece, Jun. 2010, pp. 160–165.

[17] T. G. Kim and S. B. Park, “The DEVS formalism: Hierarchical modular
systems specification in C++,” in Proc. Eur. Simul. Multiconf., New York,
U.K., Jun. 1992, pp. 152–156.

[18] G. Booch, J. Rumbaugh, and I. Jacobson, Unified Modeling Language
User Guide, 2nd ed. (Addison-Wesley Object Technology Series). Read-
ing, MA: Addison-Wesley, 2005.

[19] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language
Reference Manual, 2nd ed. Boston, MA: Pearson, 2004.

[20] P. Kruchten, “Architectural blueprints: The “4+1” view model of software
architecture,” IEEE Softw., vol. 12, no. 6, pp. 42–50, Nov. 1995.

[21] W. Han and M. Jafari, “Component and agent-based fms modeling and
controller synthesis,” IEEE Trans. Syst., Man, Cybern. C, vol. 33, no. 2,
Appl. Rev., pp. 193–206, May 2003.

[22] S. Friedenthal, A. Moore, and R. Steiner, A Practical Guide to SysML: The
Systems Modeling Language. San Francisco, CA: Morgan Kaufmann,
2008.

[23] X. Hu and B. Zeigler, “Model continuity in the design of dynamic dis-
tributed real-time systems,” IEEE Trans. Syst., Man, Cybern. A, Syst.,
Humans, vol. 35, no. 6, pp. 867–878, Nov. 2005.

[24] B. P. Zeigler, Multifacetted Modelling and Discrete Event Simulation.
San Diego, CA: Academic, 1984.

[25] DEVS Standardization Group. [Online]. Available: http://cell-devs.sce.
carleton.ca/devsgroup/

[26] M. E. Stropky and D. Laforme, “An automated mechanism for effectively
applying domain engineering in reuse activities,” in Proc. Conf. TRI-Ada,
Anaheim, CA, Nov. 1995, pp. 332–340.

[27] W. Tracz, L. Coglianese, and P. Young, “Domain-specific software archi-
tecture engineering process guidelines,” in Domain-Specific Software Ar-
chitecture Engineering Process Guidelines. Owego, NY: IBM, ADAGE-
IBM-92-02, 1993.

[28] E. H. Page and R. Smith, “Introduction to military training simulation: A
guide for discrete event simulationists,” in Proc. 30th Conf. Winter Simul.,
Washington, DC, Dec. 1998, pp. 53–60.

[29] B. S. Blanchard and W. J. Fabrycky, Systems Engineering and Analysis,
4th ed. (Prentice-Hall International Series in Industrial and Systems
Engineering). Upper Saddle River, NJ: Pearson Prentice-Hall, 2006.

[30] J. L. de la Vara, M. H. Fortuna, J. Sánchez, C. M. L. Werner, and
M. R. S. Borges, “A requirements engineering approach for data mod-
elling of process-aware information systems,” in Proc. 12th Int. Conf.
Bus. Inf. Syst., Poznan, Poland, Apr. 2009, pp. 133–144.

[31] B. A. Berenbach, “Comparison of uml and text based requirements engi-
neering,” in Proc. Companion 19th Annu. ACM SIGPLAN Conf. Object-
Oriented Programm. Syst., Lang., Appl., Vancouver, BC, Canada, Oct.
2004, pp. 247–252.

[32] I. Reinhartz-berger, “Conceptual modeling of structure and behavior with
uml the top level object-oriented framework (tloof) approach,” in Proc.
ER, Klagenfurt, Austria, Oct. 2005, pp. 1–15.

[33] M. dos Santos Soares and J. Vrancken, “Requirements specification and
modeling through SysML,” in Proc. IEEE Int. Conf. Syst., Man Cybern.,
Montreal, QC, Canada, Oct. 2007, pp. 1735–1740.

[34] M. dos Santos Soares and J. L. M. Vrancken, “Model-driven user require-
ments specification using SysML,” J. Softw., vol. 3, no. 6, pp. 57–68,
2008.

[35] P. A. Fishwick and B. P. Zeigler, “A multimodel methodology for qual-
itative model engineering,” ACM Trans. Model. Comput. Simul., vol. 2,
no. 1, pp. 52–81, 1992.

[36] J.-S. Lee, M. C. Zhou, and P.-L. Hsu, “Multiparadigm modeling for hybrid
dynamic systems using a petri net framework,” IEEE Trans. Syst., Man,
Cybern. A, Syst. Humans, vol. 38, no. 2, pp. 493–498, Mar. 2008.

[37] P. A. Fishwick, “An integrated approach to system modeling using a
synthesis of artificial intelligence, software engineering and simulation
methodologies,” ACM Trans. Model. Comput. Simul., vol. 2, no. 4,
pp. 307–330, 1992.

[38] J. S. Hong, H.-S. Song, T. G. Kim, and K. H. Park, “A real-time dis-
crete event system specification formalismfor seamless real-time software
development,” Discrete Event Dyn. Syst., vol. 7, no. 4, pp. 355–375, 1997.

[39] D. Beazley, B. Ward, and I. Cooke, “The inside story on shared libraries
and dynamic loading,” Comput. Sci. Eng., vol. 3, no. 5, pp. 90–97,
Sep./Oct. 2001.

546 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 4, JULY 2012

[40] S.-Y. Hong, J.-H. Kim, and T. G. Kim, “Measurement of RTI performance
for tuning parameters to improve federation performance in real-time war
game simulation,” in Proc. SCSC, Philadelphia, PA, Jul. 2005, pp. 71–76.

[41] D. Pilone and N. Pitman, UML 2.0 in a Nutshell. Sebastopol, CA:
O’Reilly, 2005.

[42] B. W. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K. Clark, E. Horowitz,
R. Madachy, D. Reifer, and B. Steece, Software Cost Estimation with
COCOMO II. Upper Saddle River, NJ: Prentice-Hall PTR, 2000.

Changho Sung received the B.S. degree in electrical
engineering from Pusan National University, Busan,
Korea, in 2003. He is currently working toward the
Ph.D. degree with the Department of Electrical En-
gineering, Korea Advanced Institute of Science and
Technology, Daejeon, Korea.

He has experience in defense modeling and sim-
ulation (M&S). From 2005 to 2009, he partici-
pated in the U.S.–Republic of Korea combined ex-
ercises, such as Ulchi Focus Lens, as an M&S En-
gineer. His research interests include discrete event

systems modeling, collaborative M&S, distributed simulation, and hybrid
simulation.

Tag Gon Kim (SM’95) received the Ph.D. degree
in computer engineering with specialization in sys-
tems modeling and simulation from the University of
Arizona, Tucson, in 1988.

From 1989 to 1991, he was an Assistant Professor
with the Department of Electrical and Computer En-
gineering, University of Kansas, Lawrence. In 1991,
he joined the Department of Electrical Engineering,
Korea Advanced Institute of Science and Technology,
Daejeon, Korea as an Assistant Professor, where he
has been a Full Professor since 1998. He is a coauthor

of the book Theory of Modeling and Simulation (Burlington, MA: Academic,
2000). He has published more than 200 papers about modeling and simulation
(M&S) theory and practice in international journals and conference proceed-
ings. He is very active in research and education of defense modeling and
simulation in Korea. He has been a Technical Advisor in the defense M&S
area at various Korean Government organizations, including the Ministry of
Defense, the Defense Agency for Technology and Quality, the Korea Institute
for Defense Analysis, and the Agency for Defense Development. He developed
DEVSimHLA, which is a tools set for the development of high-level architec-
ture compliant war game simulators, which has been used in the development of
three war game simulators for the Navy, Air Force, and Marines in Korea. Since
2004, the three simulators have interoperated with the U.S. war game simulators
at the U.S.–Republic of Korea combined exercises, such as Ulchi Focus Lens.

Dr. Kim was the President of The Korea Society for Simulation and the
Editor-In-Chief for Simulation: Transactions for Society for Computer Model-
ing and Simulation International (SCS). He is a Fellow of SCS and a Senior
Member of Eta Kappa Nu.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

