
A Middleware Based Standard for DEVS Simulator Interoperability

James Nutaro
Arizona Center for Integrative Modeling and Simulation

Electrical & Computer Engr. Dept.
1230 E. Speedway Blvd.

University of Arizona
Tucson, AZ 85721-0104

(520)626-4846
nutaro@ece.arizona.edu

Keywords:
DEVS, simulation interoperability, simulation middleware

ABSTRACT: The growing number of DEVS-based simulation tools has resulted in a need for standards to promote
tool interoperability. This paper presents the skeleton of an interoperability standard for DEVS-based simulations.
The aim of the standard is to provide services for coordinating the execution of simulation components, where
simulation components encapsulate particular implementations of the DEVS abstract simulators. The standard allows
individual components to be realized using event stepped and risk-free optimistic algorithms. In addition to time
managed coordination of DEVS simulators, the proposed services can be implemented on top of existing real-time
distributed simulation protocols.

1. Introduction
This paper proposes a middleware based approach to
interoperability between DEVS-based simulation tools
(see [Zeigler 2000] for an extensive introduction to DEVS
and its abstract simulator concepts). A small collection of
services, implemented as middleware, can allow DEVS
models that have been implemented with different
simulation tools to be composed into a coherent whole.
This can benefit large scale modeling efforts, where
different model components are more easily realized in
different simulation environments. It also removes one
barrier to reuse when candidate components have been
implemented in diverse environments.

The proposed approach is similar to the High Level
Architecture (HLA) [IEEE 2000]. However, the aim of
the proposed standard is to allow DEVS simulation
engines to interoperate across operating system,
programming language, and design boundaries. This
distinguishes it from the HLA, which does not directly
support interoperability between constructive, DEVS-
based simulations (see, e.g., [Sarjoughian 2000], [Lake
2000], and [Zeigler 1999]). The services discussed in this
paper could be implemented as part of a standalone
middleware system, or they could be attached to an
existing standard (e.g., the HLA) in order to provide a
more feature rich simulation interoperability tool.

The need for a capability to interconnect various DEVS-
based simulation tools is indicated by current industry
trends in simulation software development, and the
proliferation of DEVS-based simulation tools (see, e.g.,
the list of tools at
www.sce.carleton.ca/faculty/wainer/standard/tools.htm).
Consider, for instance, two of the largest users of
component-based simulation technology; the Department
of Defense (DoD) and the computer game industry.
Within the DoD modeling and simulation community, the
use of component-based simulation technology is driven
by a desire to reuse existing simulations in new
applications. One of the technical barriers to effective
model reuse in the DoD domain is not addressed by this,
or any other, standard. Namely, that models described
using different world views do not always interact as
intended. However, even when modeling paradigms are
compatible, it is not uncommon for components to be
developed using different languages and on different
computing platforms. In the absence of component-based
simulation tools, integration requires that the code be re-
implemented in an appropriate language, ported to a new
environment, or both. This results in duplicated
functionality (i.e., there are now two copies of essentially
the same model) with an associated rise in maintenance
costs, introduction of new errors in the ported code, and a
corresponding loss of confidence in the model.

In the computer gaming industry, reuse of legacy software
is not the primary cause of multi-language and multi-

platform simulation development. Instead, proliferation is
the result of the diverse teams and short deadlines that are
intrinsic to commercial game development (see, e.g., the
discussion in [Phelps 2004]). For instance, it is not
unusually for a computer game to have a “physics engine”
implemented in C or C++, while its “AI engine” is
implemented in Lisp, Prolog, or some other symbol
processing language. This is done because integrating
two different programming languages is less demanding
than developing, for instance, complex artificial
intelligence functions in C.

Large scale modeling and simulation efforts encounter
both of these issues, even when the modeling and
simulation problem is formulated entirely within the
DEVS framework. For example, suppose that we want to
model a bat that is hunting for insects. The model has
three primary pieces. These are the bat, the insects, and
the acoustic phenomena that allows the bat to find the
insects. The bat is likely to be modeled as an intelligent
agent that can generate and react to sounds. It is natural
to implement the bat and insect models as intelligent
agents. This could be done using, for instance, the
IDEVS simulation environment which was designed
expressly for this purpose [El-Osery 2000]. The acoustic
effects could be simulated as propagating waves in a large
3D cell space. This model might be implemented in
adevs, which has been used to represent continuous
processes as discrete event systems [Nutaro 2003]. It is
also possible that one or both of the models already exist
in their respective simulation environments.

In the absence of a component-based simulation
framework, it would be necessary to select a single
simulation environment in which to develop the entire
model. However, since the modeling concepts that
underlay both environments are identical, it is only
implementation specific items that prevent (technical)
interoperability. If the proposed standard were in place, it
would allow the development of each model component
(i.e., bat, insect, and acoustics) using a suitable simulation
engine. The disparate simulators could then be integrated
into a coherent whole that operates as expected.

2. The Simulation Protocol
The protocol is described as a set of middleware services.
It is assumed that these services are implemented as a
middleware system with support for several popular
programming languages (e.g., Java, C, C++, Python) and
operating systems (e.g., Windows, Linux, Macintosh).
The middleware implementation might support distributed
simulation in order to fulfill the objective of cross
platform interoperability. However, distributed
simulation is not the primary goal of the standard.

It also assumed that the target simulation engine exports
an interface that allows it to be driven externally. The

essential requirements are that the simulation can be asked
for its time of next event and output events, and that it can
be told when to compute the model's state transition
function. An example of such an interface specification is
described in [Park 2001]. Table 1 describes the simulator
interface that is exported by the adevs and DEVSJAVA
simulation engines (these simulators are available from
www.ece.arizona.edu/~nutaro and
www.acims.arizona.edu/software/SOFTWARE.shtml
respectively). Both of these examples are based on [Park
2001]. Note that the proposed standard does not dictate
the form of the exported interface. It only assumes some
such interface exists, and that it can be used as the basis
for integrating the simulation engine with the middleware.

Adevs methods Method description

inject(const PortValue& x)
inject(const
adevs_bag<PortValue>& x)

Inject a single event, or a bag
of events, that will be applied
at the next call to deltFunc().

ADEVS_TIME_TYPE
nextTN()

Returns the time of next
event.

const
adevs_bag<PortValue>&
computeInputOutput()

Returns the output that will be
produced by the simulator at
timeNext(), assuming there
are no inputs in the interim.

void deltFunc
(ADEVS_TIME_TYPE t)

Compute that state of the
model at time t. The
argument must be less than or
equal timeNext().

DEVSJAVA methods

simInject(double e,
MessageInterface m)
simInject(double e, String
portName, entity value)

Inject a single event or a bag
of events and compute the
next system state after an
elapsed time e.

Double nextTNDouble()
double nextTN()
double getTN()

Returns the time of next
event.

wrapDeltfunc(double t)
wrapDeltfunc(double t,
MessageInterface x)

Compute the system state at
time t using an optional bag of
events that should be applied
at that time.

Table 1. Description of the interfaces exported by the
adevs and DEVSJAVA simulation engines.

Similar to the HLA, the protocol is described as a set of
services that can be used by simulation integrators to
create working simulation systems. While this suggests a
need for services that cover component management,
interest management, and other aspects of large scale and
distributed software development, these issues are beyond
the scope of this proposal. The proposed standard could,
however, be attached to a standard, such as the HLA, to
provide a more feature rich DEVS simulation
interoperability tool.

The standard contains only four fundamental services.
These services are

startSimCycle(lvt: time): time
endSimCycle()
generateEvents(events: bag)
receiveEvents(): bag

The startSimCycle() service begins a simulation cycle by
computing the global virtual time using the local virtual
time provided as the lvt argument. The startSimCycle()
service returns the global virtual time after all components
have made the startSimCycle() call. In effect,
startSimCycle() acts as a reduction operation that
computes the global time of next event (see, e.g.,
[Fujimoto 2000]).

The generateEvents() service is used to distribute output
events that are valid at the global virtual time. All of the
output produced by the component at the current global
virtual time are provided to the generateEvents() service.
The generateEvents() service is invoked once per
simulation cycle. An empty bag is used to indicate that
the component has no output at the current time.

The receiveEvents() service is used to gather all of the
input events that are to be applied to the component in the
current simulation cycle. The resulting bag of events is
comprised of events provided by components via the
generateEvents() service. An empty bag is used to
indicate that no input is available for the component in the
current simulation cycle.

The endSimCycle() service is used to indicate that a
component is ready to proceed to the next simulation
cycle. This service allows to middleware to do any
special processing that is required to advance the
simulation to the next cycle.

This set of services is sufficient to allow any kind of
DEVS simulation engine that does not require the release
of optimistically produced output or that relies on a the
existence of a positive lookahead value (see [Nutaro
2003a] for examples of these and other types of DEVS
simulation algorithms). For a typical, event stepped
implementation of the DEVS abstract simulator, the
integration of the simulation engine with the above
standard might be realized as shown below. The psuedo-
code assumes that there is a simulator object, denoted sim,
that exports an interface similar to those shown in Table 1.

do
 gvt := startSimCycle(sim.nextTN())
 if (gvt = sim.nextTN() and gvt < )
 generateEvents(sim.getOutput())
 end
 inputs := receiveEvents()
 if (inputs is not empty or (gvt = sim.nextTN() and
 gvt < )
 sim.computeNextState(gvt,inputs)
 end
 endSimCycle()
while(gvt < )

The standard can also support risk-free optimistic
simulation. One possible implementation of a risk-free
optimistic simulation protocol is shown below. The state
saving and rollback functions of the simulator are
assumed to be built into the computeNextState() method.
The simulator is further assumed to have a collectGarbage
(gvt) method that cleans up all save states with time tags
less than the gvt argument.

do
 while (sim.getOutput() is empty and
 sim.nextTN() < )
 sim.computeNextState(sim.nextTN())
 end
 gvt := startSimCycle(sim.nextTN())
 if (gvt = sim.nextTN())
 generateEvents(sim.getOutput())
 else
 generateEvents(empty event bag)
 end
 inputs := receiveEvents()
 if (inputs is not empty)
 sim.computeNextState(gvt,inputs)
 end
 sim.collectGarbage(gvt)
 endSimCycle()
while (gvt < )

This algorithm could be pushed down into the simulator's
exported interface, thereby allowing the
simulator/middleware interface code to appear as in the
event stepped case. Doing so would require that the
computeNextState() method move forward until the next
output is found, and that the timeNext() method return the
event time of this next output. The computeNextState()
method would continue to be responsible for state staving
and rollbacks. Garbage collection could be performed at
the beginning of each call to computeNextState(), using
the supplied time argument as the global virtual time.

The protocol excludes the use of optimistic algorithms
and conservative (i.e., lookahead-based) algorithms.
Optimistic algorithms are excluded because the standard
does not include a service for canceling events provided

to the generateEvents() service. Conservative algorithms
are not supported because there is no provision for
providing a lookahead value to the global virtual time
procedure (i.e., the startSimCycle() service).

The exclusion of optimistic algorithms can be justified by
their complexity and relative rarity. The goal of the
standard is to promote interoperability of existing DEVS
simulation engines, and not to enable high performance
computing. The vast majority of these existing simulation
tools are event-stepped implementations. A handful of
risk-free optimistic simulators have been presented in the
literature. Fully optimistic DEVS simulators, while they
have been constructed, do not see significant use in
practice.

The exclusion of lookahead based-algorithms can be
justified by the fact that large DEVS models do not, in
general, have non-zero lookahead. Primarily, this is
because the time advance function is allowed to take a
value of zero. Even when individual components of a
coupled model have strictly non-zero time advance
functions, the corresponding time advance of the coupled
model can be arbitrarily close to zero. A zero time
advance implies that an input can result in an immediate
output and so the model has a zero lookahead.

Support for risk-free optimistic simulation can be justified
by two arguments. First, components with large
computational demands will require the use of parallel
algorithms and computers. The use of conservative
algorithms is, in general, prohibited by the absence of
lookahead in DEVS models. Event stepped parallel
algorithms, which compute only simultaneous events in
parallel, can be readily accommodated. However, risk-
free optimistic simulation algorithms often scale more
effectively with machine size (see, e.g., [Nutaro 2001]),
thereby making them more useful for very large scale
problems.

Secondly, risk-free optimistic algorithms can be readily
accommodated within the proposed framework. The only
outstanding issue how to handle instantaneous and
simultaneous events. Since the simulation problem is
restricted to DEVS models, this problem has a relatively
simple solution which is expounded upon in the next
section.

3. Managing Zero Time and Simultaneous
Events
If risk-free algorithms are going to be accommodated by
the standard, it is necessary to have a means by which
simultaneous events and sequences of zero time events
can be properly ordered. What constitutes a proper
ordering, in the context of DEVS simulations, is described
in detail in [Nutaro 2003a]. Less formally, it is required
that inputs always precede outputs. This is not a problem
of time ordering, since it is possible to have (finite)

sequences of zero time events occur within a simulation
cycle. Rather, the issue is how to embed information
about causal sequences of events into the simulation time
stamping scheme.

A simple solution to this problem is to include a second
field field in the simulation time stamp for an event.
When a sequence of zero time events occurs, the second
field is used to order events according to the simulation
cycle in which they took place. Simultaneous events are
those events which have equal simulation times (i.e., their
first fields match) and equal values in the second field.
An algorithm that implements a suitable, two field,
simulation clock is described in [Nutaro 2003a] and
[Rönngren 1999]. The time stamps generated by this
algorithm are used as the definition of time within the
context of the standard. In this way, the standard is able
to accommodate risk-free optimistic simulations of DEVS
models.

The algorithm assigns time stamps to events in the
following way. A time stamp is a pair (t,c) where t is a
model derived time-stamp (i.e., the time associated with
an event) and c is an integer counter. The simulator
maintains a time of last event (tL,cL) whose initial value
is (0,0). When a model executes an event at model time t,
the simulator compares that t to tL. If t = tL, then the
simulation time of next event becomes (t,cL+1). Note that
the model event time is still t. If tL < t, then the
simulation time of next event becomes (t,0). The time of
last event is then set to be the new time. There are two
rules for comparing time stamps. These are

(t1,c1) < (t2,c2) if t1 < t2 or t1 = t2 and c1 < c2, and
(t1,c1) = (t2,c2) if t1 = t2 and c1 = c2.

Where the standard requires that time be strictly
increasing, the corresponding time order of events is is
given by the < relation defined above.

4. Real-time Simulation
The preceding discussion assumes that final simulation
system is mean to be used constructively. It is frequently
the case that a DEVS simulator will be called on to form a
component in a real-time system (e.g., for training or test
and evaluation purposes). The proposed services can be
readily adapted for this type of use by linking the global
virtual time to a real-time clock. A real-time
implementation of the standard might appear as follows.

when an event is received from the network
 place the events on the input queue
 signal that inputs are available

when startSimCycle(time) called
 wait until the real time clock reaches time or input
 becomes available
 return the current time

when generateEvents(events) called
 send all of the events to the network

when receiveEvents() called
 return all the events in the input queue and
 empty the input queue

when endSimCycle() called
 do any necessary cleanup

The basic standard could be extended to include a timing
mode switch that could be set to indicate real time or
logical time (constructive) execution, as needed. The real
time mode could be implemented as layer above some
other underlying network simulation protocol (e.g., the
HLA). This would enable DEVS simulation engines that
adhere to the proposed standard to be used in existing
real-time, distributed simulations.

5. Conclusions
The proposed standard is small, but sufficient to achieve
its primary goal. A small standard has two benefits. First,
it permits the rapid development of middleware to support
the standard. Second, it requires less effort to integrate
the standard into existing systems. While the idea of
attaching the proposed standard to a larger, more feature
rich middleware standard is attractive, this should be done
in such a way that it does not prevent the core services
from standing on their own.

The proposed standard is deficient in at least three areas.
First, it does not specify basic services for describing
connections between components (e.g., as is done with the
HLA publish/subscribe services). The specification of
component connectivity services needs to be compatible
with any existing standards that the proposed standard will
be attached to. The extent to which this can be done while
maintaining a complete set of core services remains to be
seen.

A second deficiency is that the standard does specify how
failures (e.g., in the network for distributed
implementations, or via violations of the service interface
specification by components) are to be handled. A
carefully considered and standardized failure detection
and response mechanism is essential if systems employing
the standard are going to be robust.

Lastly, there are pragmatic issues that need to be
addressed. These include API specifications (i.e.,
“language bindings”) for programming languages,
message format standards for cross platform
interoperability, and run-time interoperability between
different middleware implementations.

These issues can be best resolved in the context of
prototype middleware implementations and small scale,
but practical, applications. The standard can evolve as

prototypes are built, used, and revised. This evolutionary
standards development process should be facilitated by
regular discussion between prototype developers,
simulation engine designers, and simulation users.

6. References
[IEEE 2000] IEEE Std. 1516-2000. “Standard for

modeling and simulation (M&S) high level
architecture (HLA) – framework and rules”. IEEE,
2000.

[El-Osery 2002] A. El-Osery, J. Burge, M. Jamshidi, A.
Saha, M. Fathi, M. Akbarzadeh. “V-Lab – A
Distributed Simulation and Modeling Environment
for Robotic Agents – SLA-Based Learning
Controllers.” IEEE Transactions on Systems, Man,
and Cybernetics – Part B, Vol. 32, No. 6, pp. 791-
803, 2002.

[Fujimoto 2000] Fujimoto, R.M. Parallel and Distributed
Simulation Systems. John Wiley and Sons, Inc. 2000.

[Lake 2000] T. Lake, B.P. Zeigler, H.S. Sarjoughian, J.
Nutaro. “DEVS Simulation and HLA Lookahead”.
Spring Simulation Interoperability Workshop, 2000.

[Nutaro 2001] J. Nutaro, H. Sarjoughian. “Speedup of a
Sparse System Simulation”. 15th Workshop on
Parallel and Ditributed Simulation, 2001.

[Nutaro 2003] J. Nutaro, B.P. Zeigler, R.
Jammalamadaka, S. Akerkar. “Discrete Event
Solution of Gas Dynamics within the DEVS
Framework”. International Conference on
Computational Science, pp. 319-328, 2003.

[Nutaro 2003a] Nutaro, .J.J., “Parallel Discrete Event
Simulation with Application to Continuous Systems”,
Dissertation, University of Arizona, Department of
Electrical and Computer Engineering, 2003.

[Park 2001] S. Park, B.P. Zeigler, H.S. Sarjoughian.
“Interface for Scalable DEVS and distributed
container object specifications”. IEEE Conference on
Systems, Man, and Cybernetics, pp. 3075-3080, Vol.
5, 2001.

[Phelps 2004] A.M. Phelps. “Fun and Games with Multi-
Languaged Development”. ACM Queue, Vol. 1, No.
10, 2004.

[Rönngren 1999] Rönngren, R., M. Liljenstam. "On Event
Ordering in Parallel Discrete Event Simulation".
Thirteenth Workshop on Parallel and Distributed
Simulation, pp 38-45, 1999.

[Sarjoughian 2000] H.S. Sarjoughian, B.P. Zeigler.
“DEVS and HLA: Complimentary Paragimgs for
M&S?”. Transactions of the Society for Computer
Simulation, Vol. 17, No. 4, pp. 187-197, 2000.

[Zeigler 1999] B.P. Zeigler. “Implementation of the
DEVS Formalism over the HLA/RTI: Problems and
Solutions”. Spring Simulation Interoperability
Workshop, 1999.

[Zeigler 2000] Zeigler, Bernard P., Herbert Praehofer,
Tag Gon Kim. Theory of Modeling and Simulation:
Second Edition. San Diego: Academic Press, 2000.

