
On Demand Network and Application Provisioning Through Web Services

Sandy Liu, Yong Liang, Bo Xu, Libo Zhang, Bruce Spencer, Martin Brooks

Institute for Information Technology, National Research Council Canada

{FirstName.LastName}@nrc.gc.ca

Abstract

While most service-oriented solutions are developed for

system integration or data integration, we propose a Web

Services-based solution, Eucalyptus, for provisioning ap-

plications and networks on demand. Eucalyptus is built

on the power of the User-Controlled Lightpath Provision-

ing (UCLP) tool, which pioneers a user-centric and service-

oriented approach for creating and managing a private end-

to-end optical network. As a first user of UCLP, Eucalyp-

tus aims to construct an participatory environment for ge-

ographically distributed teams of architects and industrial

designers with the with the support of configurable broad-

band switched networks, as well as the traditional routed IP

networks.

The contribution of Eucalyptus is to provide a proof-of-

concept example on how Web Service and Service-oriented

Architecture (SoA) can effectively provide on-demand pro-

visioning for heterogenous resources in hybrid networks.

These resources can be provisioned, launched, monitored,

terminated, and reserved through Web Services. Eucalyptus

is network and platform neutral. It offers a single point of

entry for users to access resources ranging from video con-

ference applications, rendering clusters, to the underlying

networks. Each resource is configured through a resource-

specific Web Service. Eucalyptus also includes a set of

generic management Web Services to coordinate sessions,

to manage resources and users, and to compose workflows,

such that the network and the application are properly con-

figured for the users engaging in a participatory design ses-

sion.

1 Introduction

“Imagine a large scale urban redevelopment project in-

volving a number of collaborative stakeholders such as ar-

chitects, urban designers and planners, landscape architects,

artists, lighting designers, engineers, heritage conservation-

ists, stone masons, developers, financiers, city officials, and

the general public. Due to the scale of the project these

diverse parties are located around the world”. They have

to acquire digital content on and off site, create, manip-

ulate, and deploy across networks in immersive environ-

ments, output to print, or visualize to displays”... It is a huge

challenge to bring these geographically distributed expertise

into effective participatory design sessions, in which a wide

variety high-end resources, such as visualization clusters,

rendering farms, and media repositories, are easily acces-

sible. This scenario pinpoints the most sought- after ele-

ments in new media industry today: real-time, interactive

3D visualization, collaborative tools, and broadband tech-

nologies [6].

Eucalyptus moves a step forward in this direction by as-

sembling a set a of heterogenous resources into a simple-

to-use dashboard, allowing architects and industrial design-

ers to access these resources without knowing the logistic

complexities and the configuration details. For example, a

user can launch an Isabel (a multipoint videoconference for

PCs, http://www.agora-2000.com/) video-conference ses-

sion from the Eucalyptus dashboard to talk to another team

member, in the meantime, s/he can also engage in a co-

design session using a variety of tools with a few clicks in

the Eucalyptus dashboard. The provisioning of this set of

devices, tools, and networks, which we collectively refer to

as resources, is transparent to the end user.

Eucalyptus builds on the power of User-Controlled

Lightpath Provisioning (UCLP) [11], a service-oriented so-

lution allowing users to create and manage application-

specific private end-to-end optical networks. Although net-

work elements are typically considered as fixed physical en-

tities, UCLP makes network resources as application-level

Web Services, effectively releases the control of these net-

work resources to the hands of the application users, making

real time on demand network provisioning possible. There-

fore, reconfiguring the network to accommodate a high-

definition video-conference session is no longer impossible.

While UCLP offers a solution for network provisioning,

resources connecting to the network also need to be coordi-

nated and configured. As most architects are not IT experts,

the motivation of Eucalyptus is to offer an end-to-end so-

lution with a single point of entry for provisioning all the

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

resources required in a participatory design session. Euca-

lyptus, therefore, is a UCLP-enabled Participatory Design

Studio (UCLP-PDS, a.k.a. Eucalyptus).

In the subsequent section, we briefly introduce some un-

derlying concepts and technologies we based on. We then

provide an overview of the system design, our demonstra-

tion experiments and follow this by the results, conclusion,

on-going and future work.

2 Background

With the exponential growth of the Internet and the in-

creased cost of routing, the layer 3 (IP network) some-

times cannot provide the required bandwidth and stability

required by certain applications. Many e-science projects

involve the usage of remote sensors and instruments gener-

ating very large volumes of data that need to be delivered

and processed in far away facilities. Similar situation for

architects and industrial designers, who need to share high

quality multimedia files in real-time. This calls for high

transport capacity networks.

A hybrid network provides a practical solution. It con-

sists of both the traditional routed IP access (layer 3) to

the Internet and circuit switched point-to-point connections

(layer 2). These connections are often referred to as light-

paths. More specifically, a lightpath is an abstraction of a

connection between two or more switches in an optical net-

work, and typically connects two points on the network at

speeds up to 10 gigabits per second. These lightpath con-

nections offer a guaranteed Quality of Service (QoS) re-

garding bandwidth and latency.

To fulfill the demand for network bandwidth and

QoS, advanced network organizations such as CANARIE

(a non-profit organization who provides a national opti-

cal Internet research and education network in Canada.

http://www.canarie.ca/canet4/index.html) have been inves-

tigating ways to provide application-oriented and user-

controlled networks services. A resulting product is called

the User-Controlled Lightpath Provisioning (UCLP) [5]

tool. UCLP is a Web Services based solution for provi-

sioning lightpaths. UCLP can be thought of as a configura-

tion and partition manager that exposes each lightpath in a

physical network and each network element associated with

a lightpath as an “object” or “service” that can be put under

the control of different network users to create their own

logical IP network topologies [8]. The network users can

then reconfigure and partition the lightpaths. This privately

articulated end-to-end network is therefore called Articu-

lated Private Network (APN). Within each APN, a number

of network scenarios (i.e. logical topologies) can be spec-

ified to support different applications and usage scenarios.

The APN Web Service can then be generated as a BPEL

(Business Process Excution Language) [3] workflow link-

ing together various network elements across multi-domain

networks. When an APN BPEL workflow is deployed and

published, the applications can set up the suitable network

topology by invoking the APN Web Service.

However, these high-speed connections are not perva-

sive, often only a limited set of end-points are connected

through lightpaths. To leverage the benefit of a hybrid net-

work, we configure gateway computers that have access

to both routed IP networks and the switched lightpath net-

works. We then deploy the set of management Web Services

on these gateway computers. As all available resources are

published and maintained through these management ser-

vices, consequently users of Eucalyptus can conveniently

look up resources via either a layer 2 or layer 3 connection,

and provision the resources (including the underlying net-

works) through corresponding Web Services.

3 Overall System Design

All the core functions in Eucalyptus are provided by Web

Services, either as a single service or a combination of ser-

vices.

We divide the services into two groups: task-oriented

services and management services. As the name implies,

task-oriented services offer the capability to conduct a task,

such as launching a video conference session. We use a

set of generic management services to provide support and

management for the task-oriented services. For instance,

the Resource Management Web Service (WS) is responsi-

ble for managing all the resources that are made available

through Eucalyptus.

Figure 1 illustrates the overall system design in Eucalyp-

tus.

In Eucalyptus, we regard the network as a type of re-

sources. As illustrated in Figure 1, we consider the APN

setup Web Service as a task-oriented service. This service

allows the Eucalyptus administrative user to set up different

APNs, each with different configuration scenarios through

the Web Services provided by UCLP. The Eucalyptus end-

user can later invoke an APN setup service or switching

from one scenario to another within the same APN.

We group the computers that make up our solution into

three categories according to each role:

PDSF refers to PDS Framework computers. These com-

puters have the Web Services platform installed and

are generally used for exposing resources in Eucalyp-

tus. A Web Services platform typically includes an

HTTP server (e.g. Apache), a SOAP engine (e.g. Axis),

and a Servlet container (e.g. Tomcat) that hosts the

Web Services.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

HTTP Server

Resource Pool

Deep Computing

Visulization (DCV)

Rendering Farm
Network

Attached Storageprojector plotter CameraPrinter High-Def
VideoConference audio

Application

Application Server

SOAP Engine

End User Workstations

Application Client
 PDS Dashboard

PDS Services

Management Services

User Mgmt

WS

Resource Mgmt

WS

Session Mgmt

WS

Task-oriented Services

Isabel Video

Conf WS

High Def

Video Conf

WS

APN Setup

WS

File Mgmt

WS

Visualization

WS

Workflow Mgmt

WS

Rendering

 WS

Simulation

WS

Chat Room

WS

Servlet Container

Figure 1. Eucalyptus System Overview

PDSC refers to PDS Client computers. These comput-

ers have the PDS Dashboard installed and are typi-

cally used by end users. The PDS Dashboard will be

explained in the following section. In some cases, a

PDSC computer can make certain local resources (e.g.

VNC) available to the people in the session, but these

resources are not exposed as Web Services on the lo-

cal machines; instead, the access parameters are posted

via the resource management service. For example, a

PDSC can host a VNC server, and publish its access in-

formation (e.g. IP address) through the resource man-

agement service. Generally there is one person using

each PDSC computer.

PDSB refers to PDS Backend computers or devices such

as the Deep Computing Visualization Server (an IBM

BladeServer) and the Rendering Farm, which is a net-

work of high performance computers devoted to ren-

dering. They are accessed via the PDSF computers and

do not communicate directly with PDSC computers.

Note that one computer can play multiple roles. For

example, a computer can run the Eucalyptus dashboard

(PDSC) while hosting some Web Services (PDSF) for a few

resources.

3.1 Resource Wrapping and Task-oriented
Services

As stated, we consider resources to be any software

applications, devices that can be controlled through com-

puter programs, network elements, and the network itself.

To make all resources accessible through Web Services,

Figure 2. Resource Schema

we developed a generic approach for resource wrapping.

Note that we are only concerned about provisioning of

the resource, not the actual data communication among re-

sources. The basic tasks include launching, shutting down,

or checking status of resources. For example, to launch a

multi-point video-conference application, we start the con-

ference application with the proper parameters and config-

ure the underlying network to make sure it can support the

bandwidth requirement. The actual communication among

different conference machines is handled by the native ap-

plication. In order to generate the Web Service wrappers

efficiently, we define each non-network resource with an

XML description file. Figure 2 shows the schema for defin-

ing resources.

Each resource is assigned by a Resource ID and is de-

scribed by a set of non-functional descriptions, including

name, category (e.g. communication tools, visualization

tools, etc.), physical location, URL, port, the admin user,

the access restrictions (which user group has access to this

resource), what platform is this resource is running on (i.e.

Windows, Linux), the login information for accessing the

machine, which router or switch it is connected to, the band-

width requirement, and any resources it depends upon. In

addition, the XML file also specifies the operations sup-

ported by this resource; each operation is described by a

command and the corresponding parameters. With this

information, we can use the resource wrapping utility to

quickly generate the corresponding Web Service for each

resource.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

As a result, for adding a new instance of an existing type

of resource, all we need is to deploy the Web Service of the

same type to the machine that hosts that resource.

We categorize task-oriented services into different types

according the functionalities of the associated resources:

communication tools, visualizing tools, management tools

and others, as shown in Figure 3. For example, the Isabel

video-conference application is a kind of communication

tool. This categorization allows us to retrieve available re-

sources by type.

Figure 3. Resource Category Definition

The resources in each category have similar functions,

which means every resource in the same category has sim-

ilar operations to be exposed to the user. For example, in

communication tools, all resources should have following

functions: startResource(), stopResource(),

getStatus(). Different resources have different input

and output parameters in their functions. To make the

generic Web Service interface extensible to all of the more

specific resource type, we declare all the input parameters

and the return type as String. We will use parameter

information described in XML resource description file to

parse the input and output strings properly.

3.2 Management Services

By wrapping the resources with our Resource Wrapper,

we have the resources accessible for provisioning through

Web Services. However, we also need a set of management

Web Services to manage and coordinate the usage of the re-

source, such that we can use the Web Services as a control

panel to all the available resources. This section will intro-

duce the set of generic management Web Services. These

management services form the basic building blocks of our

infrastructure.

3.2.1 Resource Management Web Service

The Resource Management WS provides services to add

new resources and modify the properties of existing re-

sources such as changing the IP address of a resource. The

Resource Management WS also acts as a registry, where

one can look up available resources by its properties, and

get the current status of different resources.

3.2.2 User Management Web Service

The User Management Web Service provides services to de-

fine user profiles, add new users, modify and delete existing

users. It also keeps track of the contact information, login

status, as well as the user groups.

Typically each resource specifies the access restriction.

When a resource is being required, the Resource Manage-

ment WS will contact the User Management Web Service

to verify if the user has the proper permission to use that

resource.

3.2.3 Session Management Web Service

A session is a collection of users and resources. A session

starts when a user engages in using some resources. A user

can potentially be involved in multiple sessions. For ex-

ample, a user can participate in a session using a video-

conference application with another two users while using

a visualization resource for displaying some designs.

To reserve a session, a thread-safe check is made that

each included resource is available to all included people.

Then the session can be reserved. In more detail, a resource

is available to a person if at least the following conditions

and perhaps others are met:

1. The resource can be provided to that person via their

own computer, or via another computer in the same

room (location check is required);

2. The resource is permitted to be used by this user;

3. The resource is not otherwise allocated to that user

through some other session, unless that resource can

be part of two different sessions. Text messaging sys-

tems can be part of multiple sessions, as one can text

messaging in more than one conversation at the same

time, but two different video-conference sessions may

not be hosted by one computer.

Note that the sessions themselves are not delivered

through Web Services, but they are controlled through Web

Services. Thus, our system does not deliver the collabora-

tive application data such as video or audio streams. A user,

however, can specify, invoke and manage these sessions.

3.2.4 Workflow Management Web Service

A workflow clearly defines the sequence of activities that

must be performed in order to accomplish a certain task,

and for each activity, it defines the preconditions required.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Eucalyptus Dashboard

Figure 4. The Eucalyptus Dashboard

In the context of Eucalyptus, activities are performed by

Web Services. The Web Service workflow can be defined by

a workflow language such as WS-BPEL (previously called

BPEL4WS [3]). Users can orchestrate a set of Web Services

together to perform certain tasks. The workflow defined has

to comply with the dependency relations associated with ev-

ery resource participating in the workflow. We employ Ac-

tiveBPEL [1] as the runtime engine for workflows.

3.3 Customizable Integrated Service
Client

To provide a single entry point to provision the re-

sources, we present a dashboard to provide a graphical user

interface for users to effectively use resources and provision

participatory design sessions. One of the goals of Euca-

lyptus is to provide easy access remotely to some complex

high-end resources that are typically not available in most

labs. Thus the dashboard hides the complexities of con-

figuring the resources required, providing access to those

resources through a few clicks of buttons.

In Eucalyptus, we decided to develop the integrated

client as a desktop application as opposed to a web appli-

cation for several reasons: 1) Web applications have lim-

ited functionality on the client computer. There is no easy

way to access the local file systems. 2) The implementa-

tions of the HTML, CSS, DOM and some other tools are

browser specific and they often act inconsistently in differ-

ent browsers. 3) It is less convenient to maintain an accurate

reflection of status of all the resources with a web applica-

tion since it does not have its own thread.

To maintain a desktop application over many comput-

ers is normally not an easy task. However, with the help

of Java Web Start [10], the deployment and maintenance of

Java desktop applications become easier. The advantages of

Java Web Start include automatic application update, desk-

top integration, platform independence, Java runtime envi-

ronment management, and security.

The dashboard interface is carefully designed to be unob-

trusive and user-friendly. Inspired by DragThing [13], it is

implemented as a floating dock, similar to the Mac OS X

system dock. The dashboard (sometimes also referred to as

the FloatingDock) only appears at the bottom of the desk-

top, and it can be anchored to any other edge of the desktop.

Each resource has its own button on the dashboard as

shown in Figure 4. The user can also define his/her own

often-used resources on the dashboard and can add them

as new buttons. Existing executable application can be

dragged and snapped into the dashboard, as a shortcut to

launch that application.

3.4 Steps to Provision a Session

There are a few steps involved in setting up a session.

The Web Service for each specific resource can only be in-

voked by the Resource Management WS. If someone re-

quests an Isabel session, the request will be first handled

by the Session Management WS. The Session Manage-

ment WS will contact the Resource Management WS and

the User Management WS prior to the invocation of the

Isabel video-conference WS to ensure that only authenti-

cated and authorized user have access to it. The exam-

ple shown in Figure 5 demonstrates how to start an Isabel

video-conference session consisting of several resources.

This is a four-site video-conference where computer A is

the conference host, while computers B, C and D work as

clients to join the conference.

Figure 5. Steps to Launch an Isabel Session

(1) The user selects the participants’ sites and provide the

input parameters through the Dashboard GUI.

(2)(3) The Session Management WS asks User Manage-

ment WS to get the user’s access permission informa-

tion.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

(4)(5) The Session Management WS then makes the re-

quest to the Resource Management WS with the access

permission just obtained from the User Management

WS. If the user has the proper permission to access

the resources, i.e. the Isabel computers, and they are

available, then the corresponding Isabel Web Services

will be invoked in parallel. We use multiple threads to

perform the invocation to enhance the overall perfor-

mance.

(6) Each Isabel computer returns its status indicating

whether the resource is successfully reserved.

(7)(8) The session status is returned to the user.

3.5 Resource Status Monitoring

In order to correctly provision a resource, we need to

properly detect its status. However, Web Services are typ-

ically stateless and passive. They only respond to service

request initiated from the requestor, but not vice versa. One

way to get the status of a particular resource is by creating

Web Service that can return the status and having the client

to poll such a service periodically. This approach introduces

traffic to the service host and depending on the polling in-

terval, it may not reflect the latest status of that resource.

This is a common problem for Web Service projects.

In the current prototype, we introduce a lightweight

TCP daemon, namely PDSDaemon, to detect changes and

relate the changes back to clients who are interested in

such changes. PDSDaemon is a TCP listener based on

the MVC (Model-View-Controller) architecture. It listens

to the client’s request, forwards the request to manage-

ment service and then sends the result back to all registered

clients.

When a user logs in to Eucalyptus, the Floatingdock will

send a connection request to the PDSDaemon. The PDS-

Daemon then creates a thread for the client who is request-

ing a connection. The resulting connection between the

Floatingdock and the PDSDaemon will stay alive until the

user logs out of the system. For each connected Floating-

dock client, there is a separate thread that connects back to

the daemon.
When the client (Floatingdock) established a connection

with the PDSDaemon, at any time, it can make a request
for using a resource. Figure 6 shows the interactions among
the client, the daemon, the resource service, and the man-
agement services in a sequential diagram:

1. A Floatingdock client sends a message to the daemon, where

the message includes the following information: the resour-

ceID, the actionID (which operation is intended? e.g. start,

stop, checkstatus...), and the content (a MessageObject).

2. The Daemon thread parses the message according to the re-

sourceID and the actionID.

Figure 6. Status Monitoring in Eucalyptus

3. The Daemon thread forwards the message to the PDSDae-

mon.

4. The PDSDaemon then calls the Management WS.

5. The Management WS calls the WS for that specific resource

(a PDSF service).

6. The PDSF service returns the result to the Management ser-

vice.

7. The Management service then forwards the result to the

PDSDaemon.

8. The PDSDaemon then notifies all the active service threads

with the new updates.

9. Each service thread then notifies its corresponding client.

4 Experiments and Evaluations

We emphasize a spiral approach for developing Euca-

lyptus. Many design, development, testing, deployment (in

actual labs) and feedback (from authentic users) cycles has

carried out. Each cycle we revisit the previous prototype

and revise it according to the user feedback. This proved to

be an efficient approach. Now the school of architecture in

Pennsylvania State University, and the Carleton University

(Canada) are using Eucalyptus in their collaborative project.

This involves about 30 students from both schools forming

teams of four in co-designing an aviation museum.

We also introduce the system to audience from different

backgrounds through various demonstration sessions. Fig-

ure 7 shows the set up of one of our demos.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Figure 7. Detailed Network Configuration

Eucalyptus runs on the mixed layer 3 and 4Gb lightpath

environment connecting Carleton Immersive Media Studio

(depicted as CIMS1 in Figure 7), Society for Arts and Tech-

nology (SAT) in Montreal, and Communication Research

Centre Canada (CRC). We deployed the management Web

Services on a server (called Service Manager) at CRC,

which is configured to be on both layer 2 and layer 3 net-

works. The first demo scenario shows the architects located

at CIMS and SAT use the Eucalyptus interface to control

visual communication and 3D modeling tools in their par-

ticipatory design session. They use the IBM’s Deep Visual-

ization Computing (DCV) [4] cluster technology to provide

hands-on direct collaboration using Maya. With DCV, high-

end graphical images can be created in a visualization mode

called Remote Visualization Networking(RVN), which dis-

tributes graphical images to remote (collaborative) clients

called endstations. In our experiment, both architects were

connected to the RVN server (running on Linux) at CIMS,

while one architect works at CIMS and the other one sits

at SAT. By clicking the corresponding buttons in Eucalyp-

tus, it starts the RVN server with the proper configuration

and launches the RVN client and the DCV enabled VNC in

the meantime. With Eucalyptus, the architects do not need

to know each single configuration parameters and deal with

the Linux server or the system administrator before using

this kind of tools.

While working on the design by sharing the desktop, the

designers may want to see and hear each other for more

discussions. Eucalyptus provides the access to some video-

conference tools and they can be configured and launched

automatically by Eucalyptus according to user’s preference.

For instance, one can choose the uncompressed Standard

Definition (SD) video (480i) - DVD-quality streaming at

300Mb using Pleora technology. When graphically precise

work details at a designer’s desk need to be shared, Ple-

ora HDV (720p) close-up view gives startling clarity. When

larger-scale views must be shared at full resolution, for ex-

ample when viewing street-level activity, UltraGrid [12]

uncompressed HD (1080i) provides the highest resolution

video. Eucalyptus not only do provide easy access to these

conference tools, but also provide the corresponding net-

work setup as a workflow for the underlying network con-

nections.

In the second scenario, we created a 6000 mile loop from

CIMS (back to CIMS2) to evaluate the system’s latency in

long haul connections and its capability in a global scale.

This is ideal to test any system latency that may have caused

by application, network, or layers of Web Services calls. In

this scenario, users were able to manipulating a fully ren-

dered massive 3D model of a Montreal neighborhood using

a joystick in an open source immersive environment called

OpenSceneGraph [2], over the RVN connection. Again Eu-

calyptus activates the APN connection scenario, as well

as launching the set applications (e.g. OpenSceneGraph,

RVN, VNC) accordingly.

Notably, Eucalyptus was able to dynamically switch be-

tween network scenarios defined by the Articulated Private

Networks (APN) based on the application needs.

Collaborating designers also utilize the Eucalyptus in-

terface to move data between tools. For example, a camera

path through the Maya 3D model of Montreal’s Blvd. St.

Laurent district may be transformed to input to a render-

ing farm, for conversion to an HD-quality synthetic video.

Moreover, the CD++ discrete event simulator [14] can re-

ceive Maya 3D model data in order to analyze emergency

management plans in urban environments. All of these tools

can be properly set up and run from the Eucalyptus dash-

board.

5 Results and Conclusion

In conclusion, Web Service’s component-based, web-

oriented, standard-based, language, platform, and domain

independent nature makes it an appropriate solution for

many system and data integration projects. We consider a

Service-oriented Architecture (SoA) implemented by Web

Services are also a desired approach for provisioning re-

sources spanning from networks to devices.

This approach allows Eucalyptus to quickly build a tool-

box that consists of tools developed by different vendors

with different execution environments with a uniform in-

terface. It is flexible and extensible: new resources can be

simply added by creating and publishing new services or

they can be removed by removing them from the resource

registry.

Although Web Services can be used in both data integra-

tion and provisioning, there are a few differences. Provi-

sioning Web Services mostly interact with the control flow

of the applications, while Web Services for data integration

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

mostly interact with the data flow, where data is wrapped

in XML. Wrapping application data in XML is not appro-

priate in the broadband context, where the data streams are

typically in the 1-1000 Mb range. In addition, the overhead

of marking up data into XML-based SOAP message often

hinders the number of Web Services in a service composi-

tion. On the other hand, provisioning parameters normally

are very light-weight comparing to application data. Thus

a provisioning Web Service workflow can comprise a num-

ber of nesting Web Services without affecting the efficiency

of the system. Monitoring the status of applications and

their underlying network is important to provide intelligent

provisioning services such as comparing actual and desired

states of an application, while this is not as critical in the

data integration.

The Eucalyptus prototype is useful in assisting architects

to do collaborative design in distributed labs [6] [7]. Al-

though the current prototype is applied for architectural de-

sign, using Web Services in provisioning is indeed appli-

cable to many industries. The value of Eucalyptus is also

being recognized by users, tool vendors, system integrators

and venture capitalists. CANARIE has already acted to es-

tablish Canadian leadership in the new application space

of which Eucalyptus is the first example. St. Arnaud [9]

believes that the agile infrastructure we created will have

real potential and significant impact in many other fields

and disciplines. As a result of our demonstrations, the De-

partment of Public Safety in Province of New Brunswick

(Canada) is interested in having us to apply our approach

for responding to critical events; a few big companies are

also interested in adopting the Eucalyptus platform for their

industrial environments. In summary, this service-oriented

approach can serve as a basic building block for agile low-

cost enterprize system without investing in expensive en-

terprise solutions. The service-oriented approach adopted

by Eucalyptus makes provisioning, running, and monitor-

ing heterogeneous networks and network-enabled resources

relatively easy and intuitive.

References

[1] ActiveBPEL, LLC. ActiveBPEL, the Open Source BPEL

Engine. http://www.activebpel.org.
[2] O. Community. Openscenegraph.
[3] T. A. et al. Business Process Execution

Language for Web Services version 1.1.

“ftp://www6.software.ibm.com/software/developer/library/ws-

bpel11.pdf”, 2003.
[4] IBM. Deep computing visulization network-

ing. http://www-03.ibm.com/servers/

deepcomputing/visualization/.
[5] J. Wu et al. User-managed End-to-end Lightpath Provision-

ing over CA*Net4. In Proceeding of the National Fiber

Optic Engineers Conference (NFOEC), Orlando, FL, USA,

pages 275–282, September 2003.

[6] M. Jemtrud, M. Brooks, B. Ho, S. Liu, P. Nguyen,

J. Spence, and B. Spencer. Eucalyptus: User controlled

lightpath enabled participatory design studio. In ACA-

DIA(The Association for Computer-Aided Design in Archi-

tecture)International Conference 2006, 10 2006.

[7] M. Jemtrud, P. Nguyen, B. Spencer, M. Brooks, S. Liu,

Y. Liang, B. Xu, and L. Zhang. Eucalyptus: Intelligent In-

frastructure Enabled Participatory Design Studio. In WSC

’06: Proceedings of the 37th conference on Winter sim-

ulation, pages 2047–2054. Winter Simulation Conference,

2006.

[8] B. St.Arnaud. CA*net4 research program update - UCLP

roadmap: Web Services workflow for connecting research

instruments and sensors to networks. http://www.

canarie.ca, December 2004.

[9] B. St.Arnaud. Cyber-infrastructure and grids for Architec-

ture Collaborative Design. http://lists.canarie.

ca/pipermail/news/2006/000362.html, 12

2006.

[10] Sun MicroSystems, Inc. Java Web Start Overview,

White Paper. http://java.sun.com/developer/

technicalArticles/WebServices/JWS_2/

JWS_White_Paper.pdf, May 2005.

[11] The UCLP Development Team. User Controlled Lightpaths.

http://www.uclp.ca, 2006.

[12] the UltraGrid Project team. UltraGrid: A High Defini-

tion Collaboratory. http://ultragrid.east.isi.

edu/.

[13] J. Thomson. DragThing. http://www.dragthing.

com.

[14] G. A. Wainer. CD++, A tool for and DEVS and

Cell-DEVS Modelling and Simulation. http:

//www.sce.carleton.ca/faculty/wainer/

wbgraf/manuals/CD++.pdf.

Acknowledgement

This project is funded by CANARIE’s Intelligent Infras-

tructure Program. Our partners include The Carleton Im-

mersive Media Studio (CIMS) at Carleton University, Com-

munication Research Centre Canada (CRC), IBM, Pleora

Technologies Inc., and AutoDesk.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

