1-4244-0232-8/06/320.00 ©2006 IELE

Specification languages as front-ends towards the DEVS formalism

Stéphane Garredu, Evelyne Vittori, Jean-Frangois Santucci, Alexandre Muzy

SPE UMR CNRS 6134 University of Corsica20250 CORTE
{garredu, vittori, santucci, a.muzy}(@univ-corse.fr

Abstract - This paper constitutes a state-of-the
art of specification languages relevant to be used
as front-ends towards the DEVS (Discrete EVent
System Specification) formalism. Comparison
criteria are defined to evaluate specification
languages for the description of DEVS
structures. Finally, the need for building an
original front-end, accounting for the whole
criteria, is discussed.

Index Terms - Modeling, Discrete event
simulation, Specification languages.

I. INTRODUCTION

In simulation, once a model is simulated, usually
two people at least worked on it: the domain
specialist and the computer science one. On the
other hand, in spite of the increasing number of
specialists creating and simulating specific models,
few are able to create and translate automatically a
given model into a simulation one.

To achieve this goal, DEVS can be used. This
powerful framework proved to be relevant for
helping people in the definition of many kinds of
simulation systems. However, this framework can be
tricky to manipulate for non-computer science
specialists. It takes time to the domain-specialist to
learn both DEVS and Object-Oriented
Programming.

The idea here is to enable a domain specialist to
design a model using specifications at a higher
level, with its own notations. After, a modelling tool
can be used for the automatic mapping to DEVS for
simulation.

In this paper a study is achieved of relevant well-
known formalisms for which DEVS mappings have
already been defined. Marks are given according to
a criteria list. Using this simple method helps to find
the best language to do so.

The rest of the paper is organised as follows.
Section two presents the background attached to the
DEVS formalism. A set of comparison and analysis
criteria is introduced in section three. Section four

104

presents the four specification languages selected
here. A comparison of these languages is presented
in section five according to the criteria defined in
section three. Finally the conclusions and
perspectives are given in the last section.

II. BACKGROUND ON THE DEV'S FORMALISM

The Discrete EVent System Specification
(DEVY) is a mathematical formalism for describing
discrete event systems. DEVS is grounded in
general systems theory. Within DEVS, discrete
event systems are described by two kinds of
structures. Atomic models describe the behaviour of
non-decomposable units via event-driven state
transition functions. More complex models can be
constructed hierarchically by coupling atomic
models into coupled models.

An Atomic Model (AM) DEVS is a structure:
AM =< X,Y,S8,9,.,0,.,0,, -, A.t, >

ext> “int > Y conf >

Where,
X is the set of input values, ! is the set of output

values, S is the

N b
Opr 1 OX X" =8 is the external transition function

(where O={(s,e)/se8,0es1,(s)} is the total
set of states, ¢ is the elapsed time since the last

set of sequential states,

state change, and X* € X is a bag of input values),

Oy 18— 8 is the

O . SxX’'>S8

conf

internal transition function,

is the confluent transition

: : b .
function, 45 =Y is the output function, " €Y

t, S >R

is a bag of output values, and is the

time advance function.

The external transition function describes how the
system changes state in response to an input. When
an input is applied to the system, it is said that an
external event X€ X has occurred. The next state s’
is then calculated according to the current state s,
the elapsed time e and the value of the external

5@){:[(S7 e7 x)

s'=
event X :

The internal transition function describes the
autonomous (or internal) behavior of the system.
When the system changes state autonomously, an
internal event is said to have occurred. The next
state s’ is calculated only according to the current
state s: 5 = O ().

The confluent transition function determines the
next state of the system when an external event and
an internal event coincide. The default definition of
the confluent transition function is:
5conf (S: x) = 5iexl (5int (S),O, x). This is the same

approach as the classic DEVS. But here the internal
transition is allowed to occur first and to be
followed by the effect of the external transition
function on the resulting state:

5conf (SJ x) = é‘int (5exl (Sa fCl(S)j x))]

behavior can be defined.
The output function generates the outputs of the
system when an internal transition occurs.

Finally, another

The time advance function '@ (5) determines the
amount of time that must elapse before the next
internal event will occur, assuming that no input
arrives in the interim.

An atomic model is in a passive state when

ta(s):oo. An atomic model is in a active state

when OSZQ(S)<°°.

An atomic model allows to specify the behavior
of a system. Connections between different atomic
models can be performed by a coupled model (CM):

CM =< XY, DAM }{I}{Z } >
Where,
X is the set of input values, ! is the set of output
values, D is the set of model references, For each
ieD ; M

. . I . .
i is an atomic model, ~¢ is the influencer

“/ is a function: the 7 to j output translation
me,; Xe 2> X

set

2

with (e, Figure 1) ~
Zi,MC K — YMC

7 is the input

coupling function, is the output

coupling function, and Ligide 4,

coupling function.

J 1is the internal

105

IIT. CRITERIA FOR SPECIFICATION LANGUAGE
ANALYSIS

This section defines the basic goals of a DEVS

front-end. Several specification languages and
formalisms are compared. Most have already been
related to the DEVS formalism.
Criteria are splitted into two parts: the mandatory
ones, related to the basic requirements for the
language to be mapped to DEVS from a high level
of specification, and the extension ones, related to
ability of the language to deal with complexity.

A. Mandatory Criteria

1) Temporal aspects

We mean by "temporal aspects" the way time
goes by, concerning the relationships between state
and time. If state durations can be described, the
language should be able to account for temporal
aspects. Of course this is to be related to the ta
(Time Advance) function of DEVS atomic models.
In discrete event simulation, one of the most
important principles is the strong link between an
event and its occurrence date.

2) Transition and output Functions

This criterion considers the capability of the
language to map specifications to transition and
output functions of DEVS atomic models. These
functions allow managing between external and
internal events. Indeed, when an event occurs, it is
necessary to specify if this event comes from
outside the model (in case of an external event,
activating an external transition function), or if this
event was internally triggered (in case of an internal
event, linked to an internal transition function).

On the other hand, we need to know when output
external events are sent on output ports, through the
output function.

3) Composition hierarchy
In DEVS, coupled models are a description of the

hierarchy used to describe a model. Atomic models
have a clearly defined set of inputs and outputs, and

its state space is completely encapsulated.

For example, let's take the following coupled
model : CM1 =[AM1 + CM2 [AM2 + AM3]].

A language, which could interpret this kind of
description, would have the ability to work using a
composition hierarchy.

4) Understandability

This criterion means that a language should be
easy to understand and to use for non-computer
scientists.

Some modeling languages are easier to
understand than others. This depends on the ability
of a modeling language to abstract, merge and
organize operations and information managements.
For instance, the closer to the “natural language” a
programming language is, (i.e., close to the way we
represent ideas with words), the easier it is to
understand. On the other hand, formal languages
appear to be not easy to understand, as they require
expertness in mathematics. Finally, modifiable
visual and domain-specific notations enhance
understandability. Hence, for easy understanding, a
language must provide high level visual (or textual)
notations. This language can include graphical
notations (arrows, lines, circles and basic pictures)
as well as textual structures to specify details or
constraints.

B. Extension Criteria

In computer science, a complicate system
contains much information, exchanged and
computed by many components. Then, the

complexity of a real system corresponds to the
degree of interactions of the sub-systems. Having
tools for adaptive-based and distributive-based
descriptions of particular sub-problems, allows
tackling this complexity. Then, if structure changes
can be depicted, a complex system can be even
more easily described.

1) Adaptability
As the specification language aims to be
dedicated to generic DEVS models, it does not have

to be attached to a specific domain. However, it
must be adaptable to fit different kinds of

106

3

application areas. Adaptability is closely related to
extensibility but it does not only means ability to be
extended but also ability to be specialized or
restricted.

This feature may be evaluated in two directions.
On the first hand, experimentally, if some
extensions have already been defined for a
language, this can show a good level of
extensibility. We have to appreciate the complexity
of the existing extension processes and their
potentiality to be reused and adapted to define new
ones. On the other hand, the structure of the
language it self may allow it to get specialized or
extended more or less easily. For instance, if its
abstract syntax is specified through a meta-model,
this will increase its power of adaptability
especially if the design of its basic structures is
based on object oriented patterns. New features may
then be introduced without corrupting its basic
elements. Mechanisms allowing such incremental
extensions may also be provided.

If adaptability is good, the language will have
many abilities to fit several different domains.

2) Dynamic structures

This criterion denotes the ability of a language to
describe dynamic changes in structure during a
simulation. Using dynamic structures allows to
more faithfully and truly describe a system.
Complexity is more easily depicted. Changes in
structure can be the addition and deletion of
components, as well as couplings between them and
changes in their internal structure. An extension of
DEVS, called Dynamic Structure DEVS (DSDEVS)
[3] has been designed.

3) Cellular models

In the real world, complex systems necessitate the
spatial description of interacting sub-systems. In
simulation, the description of sub-systems through
interacting components can be achieved trough
cellular models. A cellular model contains many
sub-components (called cells), whose states timely
depend on other influencing components.

IV. SPECIFICATION LANGUAGES FOR DEV'S MODELS

In this section, we present a brief overview of
four formalisms for which DEVS mappings have
already been defined. We chose to focus on general-
purpose formalisms rather than on domain-specific
languages.

A. Statecharts

Statecharts are a high-level graphical-oriented
formalism used to describe complex reactive
systems. They have been developed by David Harel
[4] and are an extension of state-transition diagrams
(the diagrams representing a Finite State Machine
or Automaton) [5]. They were added three concepts:
orthogonality (the way parallel activities are
achieved), composition hierarchy (depth nesting of
states), and broadcast communication (events sent
from one to many elements).

Statecharts are composed of eight basic elements:
Labels, Transitions, States, Actions, Conditions,
Events, Expressions and Variables.

The statechart formalism has been evolving for
years now. The most popular derived formalisms
are the Classical UML, and those implemented by
Rhapsody [6], [7]. Moreover, several other
semantics provide them a pretty good evolutivity.

Recently, an extension able to include
probabilities has been proposed [8]. With this
extension, it would be possible to specify some very
simple fuzzy functions if the future.

A mapping from Statecharts to DEVS has been
proposed [9].

B. Petri nets

Petri Nets are a low-level graphical modeling
formalism, developed by Carl Adam Petri in the
sixties [10]. The basic elements are Places,
Transitions, Arcs, Arc Weights and Tokens. A set of
rules defines the semantics for model dynamics.

A variant of Petri Nets named Grafcet is often
used in the industry [11]. Even a non-computer
scientist can use Petri Nets for modeling simple
systems.

In a basic Petri net, conditional transitions are
fulfilled without timing constraints.

Extensions have enabled them to be hierarchical
(Hierarchical Petri Nets), and to take into account
temporal aspects with synchronised Petri Nets for

107

4

instance [12]. There are many other extensions,
such Time Petri Nets, Timed Petri Nets, Colored
Petri Nets, etc.

An implementation where Petri Nets are mapped
into DEVS formalism has been proposed [13].

C. Timed Input/Output Automata

Timed Input Output Automata provide a
mathematical framework to describe and analyse
mathematical systems [14].

Timed I/O Automata are eventually non-
deterministic machines that can represent systems
and components.

A Timed I/O Automata is composed of states
described by state variables (each state variable has
both a static type and a dynamic type). A state can
change when actions occur (by instantaneous
discrete transitions). It can also change following a
trajectory (a function of time which describes how
the state changes between discrete transitions)

Actions are classified as external or internal.

The TIOA (Timed Input/Output Automata) is a
programming language used to specify Timed 1/O
Automata [15]. It is a variant of the IOA language
used with untimed input/output automata. A
tranformation method from Timed I/O Automata to
DEVS models has been proposed [16].

D. DEVSpecL

DEVS SPECification Language is a modeling
language for DEVS models which supports
development of design tools [17]. Its built-in types
include float, integer, string, void and time.

This modular language is able to specify the
structure of atomic models and coupled models.

A DEVSpecL function can support random
number generation functions and also links to other
object-oriented programming languages.

DEVSpecL syntax is similar to those of classical
object-oriented programming languages.

V. ANALYSIS AND COMPARISON

Each criterion, applied to a specification
language is given a mark. There are 3 different
marks: BAD = X, MEDIUM = ~, GOOD = V.

Moreover, each criterion has a weight. This

weight can be “***’ for the basic criteria, “**’ for
the intermediate criteria, and “*’ for the optional
one. Of course, this weight always remains the same
for each criterion applied to each language.

The marks were given taking into account the
possible extensions of a language or a formalism,
for example the classical Petri Nets do not have the
ability to take into account temporal aspects,
whereas the synchronized ones do.

Figure 1 is an array giving us an overview of the
main advantages and drawbacks of each language
studied according to our criteria.

When a mark is given, a language and all its
extensions have been considered. That is why Petri
Nets are said to be able to take into account
temporal aspects even if time was not supported by
the basic formalism.

All the studied languages and formalisms can deal
with time. All got the best mark.

Due to its closure to DEVS, DEVSpecL is the

only one able to perfectly differentiate functions,
while the other studied modelling languages offer
some similar properties, more difficult to use.
Two languages, among those studied, have a bad
understandability: DEVSpecL and TIOA. Due to its
closure to DEVS, DEVSpecL is hard to understand
for a non-computer scientist, and the TIOA because
of the strong mathematical basis required to use
them got a bad mark too.

On the contrary, Petri Nets (and their variant
Grafcet) and Statecharts, due to their clear graphical
formalism, are easier to use and to understand.

Statecharts and DEVSpecl. are able to make
models with complex composition hierarchies. This
ability is one of the most important properties of
Statecharts, and its closure to DEVS explains once
again the good mark given to DEVSpecL for this
criterion.

108

Criteria W | St.|P.N.|TIOA | DSpec
Understandability | ***| ~ | ~ X | X
Temporal aspects | ***|[v | R
Difterentiate
functions I ~ | N
Composition
hierarchy ¥k | 4|~ ~ |
Adaptability #* N~ | ~ |~
Dynamic
structures XX X V
Cellular models * X | X X X

Fig. 1. : Criteria applied to the studied languages

V1. CONCLUSIONS

A set of criteria, identifying the basic
requirements of a front-end specification language,
for DEVS models, and dedicated to non-computer
scientists, has been proposed.

As shown in Figure 1, as far as we know there are
no any existing formalisms fitting correctly our
needs. The main limit consists in their
understandability. Nevertheless, Statecharts would
be the one, which seems to have the best
advantages. Many of these advantages are due to its
great adaptability.

A perspective of this work is to investigate in
more details the features of the standard modelling
language UML 2.0 [18], [19]. It includes a special
version of Statecharts called “state machines”.
Furthermore, UML defines other new interesting
formalisms as timing diagrams, dedicated to the
support of temporal aspects. Extension mechanisms
are also provided to customize these formalisms and
even extend them to specific domains.

A choice will have to made now between: (1)
designing a completely new language, or (i)
defining an extension/restriction of an existing
adaptable formalism such as UML.

Anyway, this will leads us to a Model Driven
Engineering approach (MDE) [20], [21]. Meta-
modelling will be the key for specifying the
language and then its automatic transformation
process into DEVS formalism.

VII. REFERENCES

[l B.P. Zeigler, "DEVS Representation of
Dynamical System”, in Proceedings of the
IEEFE, Vol.77, pp. 72-80, 1989

[2] B.P. Zeigler, Theory of Modeling and
Simulation | John Wiley, New York, 1976.

[3] Barros F.J. The Dynamic Structure Fvent System
Specification formalism, Transactions of the
Society for Computer Simulation International,
Vol. 13, No 1, 1996.

[4] D. Harel, “Statecharts : A visual formalism for

complex systems”, Science of Computer

Programming, 8(3):231-274, 1987.

JE. Hopcroft, R.Motwani, J.D. Ullman.
Introduction to Automata Theory, Languages,
and Computation, 2nd edition. Addison Wesley.
2001
[6] M.L. Crane and J. Dingel, “UML vs. Classical

vs. Rhapsody Statecharts: Not All Models are

Created Equal”, ACM/IEEE S8th International

Conference on Model Driven FEngineering

Languages and Systems (MoDELS/UML'03).

Montego Bay, Jamaica. October 2005.

[7] D. Harel and H. Kugler, “The Rhapsody
Semantics of Statecharts”, Preliminary Version.,
SoftSpez Final Report, 2004 ,325-354

[8] N.L. Vijaykumara, S.V. Carvalhoa, V.M.B.
Andradeb, V. Abdurahimanc, “Introducing
probabilities in Statecharts to specify reactive
systems for performance analysis”, Computers
& Operations Research 33, (2006) 2369-2386

[9] S. Borland and H. Vangheluwe, “Transforming
Statecharts to DEVS”, In Proceedings of the
2003 SCS Summer Computer Simulation
Conference, Montreal, QC. Canada. 2003.

[10] C.A. Petri, “Introduction to general net
theory”, in: W. Brauer (Ed.), Net Theory and
Applications, Proc. Advanced Course in
General Net Theory, Processes and Systems,
Springer-Verlag, New York, 1980.

[11] R. David and H. Alla, Petri nets and Grafcet:
Tools for modeling discrete event systems, 1992,
Prentice Hall.

[12] M. Moalla and J. Pulou and J. Sifakis —
“Synchronized Petri nets: A Model for the
Description of Non-autonomous Systems”, 7th
MFCS, LNCS 64, Springer Verlag, 1978, pp.
374-383

[13] C. Jacques, G. Wainer, “Using the CD++
DEVS Toolkit to Develop Petri Nets”, In

[5]

109

6

Proceedings of the 2002 Summer Computer
Simulation Conference, San Diego, U.S.A.
2002.

[14] R. Alur and DL. Dill, “A theory of time
automata”, Theorical computer science, Vol.
126, No 2, pp 183-235

[15] D. Kaynar, N. Lynch, S. Mitra, and S. Garland.
“The TIOA language”, MIT CSAIL, Cambridge,
MA, USA, February 2005.

[16] N. Giambiasi, J.L Paillet, F. Chane, « From
Timed Automata to DEVS Models», in
proceedings of the 2003 Winter Simulation
Conference, New Orleans, LA 2003.

[17] K.J. Hong and T.G. Kim, “DEVSpecL : DEVS
specification language for modeling, simulation
and analysis of discrete event systems”,
Information and Software Technology, Vol. 48,
No. 4. (April 2006), pp. 221-234.

[18] J. Rumbaugh, I. Jacobson, G. Booch, 7he
Unified Modeling Language Reference Manual,
(2nd ed.), Addison-Wesley, Boston (2004)

[19] “Unified Modeling Language:
Superstructure”, V2.0 OMG document
Jormal/05-07-04, april 2005.

[20] J. Bézivin, “On the Unification Power of
Models”, Software and System Modeling. —
2005, Vol. 4, No. 2, p. 171-188

[21] J. Miller and J. Mukerji, “Model Driven
Architecture guide version 1.0.17, OMG
document number /03-06-01, january 2003.

