
Component-based Simulation Model Development using BOMs and Web Services
(Invited paper)

Farshad Moradi

Division of Command and Control Systems

Swedish Defence research Agency, FOI
S-164 90 Stockholm, Sweden

Email: farshad.moradi@foi.se

Abstract

 Modelling and Simulation (M&S) is a valuable tool and
provides means for reducing, amongst others,
manufacturing and training costs. However, development
of simulation models is a multi-disciplinary and
time/resource consuming process. Building simulation
models through composition and reuse of predefined and
already existing validated simulation components is an
approach to reduce the associated costs and improving the
usability of the models.
 The Base Object Model, BOM, is a new standard for
defining reusable and composable simulation components.
However, BOMs lack the necessary expressive power to
ensure semantic matching of simulation components.
 In Web Service Composition (WSC), composite services
are built by assembling existing services in order to
address functionalities required by users. In WSC much
emphasis has been on including the semantic aspects of the
composition, through among others utilization of the
Semantic Web concept.
 In this paper we describe a process that has been
developed at the Swedish Defence Research Agency (FOI)
with the aim to speed up and improve the development of
simulation models. This process utilizes the BOM concept
and extends it by taking advantage of the techniques used
in WSC. We will present our approach and findings based
on our implementation of the proposed process.

1. Introduction

 Modelling and Simulation is a powerful tool that can be
used to support development of concepts, decision support
as well as training, studies and analysis. Simulations can
help us understand the dynamics of the systems and give
us a tool to study them before they are even being
developed. Employing simulations early in the design

phase of a product life cycle can detect and avoid costly
errors in later stages of the development process.
 However, development of simulation models can be a
time and resource consuming process and involves some
initial costs. Although, the benefits are many the initial
costs may be discouraging to decision makers and project
managers. Beside the initial cost there is also the issue of
quality and usability of the simulation models. A
simulation model development process involves different
phases including, requirement specification, conceptual
modelling, design, development, test, verification and
validation. The process requires involvement of different
actors such as modellers, subject matter experts, validation
and verifications experts and end users. Handling the issue
of quality and usability gets more difficult as simulation
models get larger and more complex.
 An approach to reduce the costs associated with the
process and improve the usability of the developed model
is to reuse predefined and already existing validated
simulation components [18]. Using this method the
simulation model is built in a component-based fashion
instead of developing it from scratch. Through reusing
these validated simulation components we will be able to
reduce the costs of development and validation of
simulation models. The component-based concept has been
successfully deployed in manufacturing, hardware and
software industry. Today cars are built in one company
using parts and pieces developed by other companies.
These parts are probably used in building other types of
cars as well. The companies which develop these parts can
minimise the development cost through mass production.
This in turn helps car manufacturers to reduce the
production costs significantly.
 Similar methods are being used in software
development process through employment of object-
oriented methodology and techniques. Some examples are
programming languages such as Java and C++,
programming environments such as, JBuilder, Visual
Studio and NetBeans, and distributed programming
architectures, such as Enterprise Java Beans (EJB) and

Proceedings of the First Asia International Conference on Modelling & Simulation (AMS'07)
0-7695-2845-7/07 $20.00 © 2007

CORBA (Common Object Resource Broker Architecture)
[19].
 Although component-based model development is a
desired method for improving the model development
process and reducing the development costs, it is not trivial
and there is no system today which manages to fully
employ and make use of this method.

2. Composability

 Composing sub-models in order to build new models
raise the non-trivial issue of composability. Composability
is the capability to select and assemble reusable simulation
components in various combinations into simulation
systems to meet user requirements [8], [17].
 A composable simulation component is a software
element of a simulation model with well-defined
functionalities and behaviours that conforms to a
component model and can be independently deployed, and
is subject to third-party composition with or without
modification and conforms to a composition model. There
are two main types of composability, syntactic and
semantic. Syntactic composability is concerned with the
compatibility of implementation details, such as parameter
passing mechanisms, external data accesses, and timing
mechanisms. It is the question of whether a set of
components can be combined [27], [6]. Semantic
composability, on the other hand, is concerned with the
validity of the composition [8].
 Within a single organisation, application-oriented and
domain-specific model components are already
implemented, and syntax specifications for model
components for composition are available [25]. Hence,
There have been some significant achievements in
syntactic composability both within software engineering
and simulation communities, but semantic composability is
a much harder problem [18], [19] and has inspired many
researchers to conduct both theoretical and experimental
research.
 PACC is an initiative at the software Engineering
Institute at CMU to predict runtime behaviour of a
composed component [4]. DEVS (Discrete Event System
Specification) is a formalism, introduced by Bernard
Zeigler et al [2] and [3], for component based model
development. Petty et al [17] have developed a
mathematical theory for composability, where a model is
defined as a function, a simulation is viewed as execution
of a function, and model composition is seen as a
composition of functions. Some researchers have tried
experimental approaches to simulation composability. For
instance, OneSAF (One Semi-Automated Forces) is a High
Level Architecture (HLA) compliant simulation
framework targeted at military simulations, allowing
composition of entity level (e.g., soldier, platoon, tanks,
etc) models, as described in [20]. HLA is the most widely

used architecture for distributed simulations today [31].
HLA provides a simulation environment and standards for
specifying simulation parts via Simulation Object Models
(SOMs) and interactions between simulation parts via
Federation Object Models (FOMs). An HLA simulation is
named Federation, which is composed out of Federates, or
simulation parts. These parts are all specified by the SOM
and FOM documents, and are executed by a Runtime
Infrastructure called RTI. The problem with HLAs current
standards for formalizing how a federate functions (by the
use of a SOM) and how interaction between federates take
place within a federation (by the use of a FOM) is that they
contain only enough information for an underlying runtime
implementation to assure each federate is behaving
properly. Although a well-versed federate developer might
be able to read a FOM or SOM and deduce how it works,
neither of the formats were created to contain semantic
information about what they intend to simulate. Hence,
HLA provides interface specifications and rules which
only ensure syntactic composability [31], and there is little
support for semantic composability. The simulation
community has recently formulated a standard, the Base
Object Model (BOM), to ease reusability and
composability [35].
 In this paper, we investigate how BOMs can be
efficiently used to develop simulation models in a
component-based fashion. This work is a continuation of
our previous work on a process for component-based
simulation development using BOMs [9]. Here we have
explored utilization of Semantic Web and Web Service
(WS) technologies for further refinement of the process by
improving the semantic composition of BOMs

3. BOM

 A BOM is fundamentally an XML document that
encapsulates the information needed to describe a
simulation component. BOMs are structured into four
major parts [11], [28], [35]. The first part is the Model
Identification, where metadata about the component is
stored. This part includes Point of Contact (POC)
information, as well as general information about the
component itself – what it simulates, how it can and has
been used as well as descriptions aimed towards helping
developers find and reuse it. The second part is the
Conceptual Model. The Conceptual Model contains
information that describes the patterns of interplay of the
component. This part includes what types of actions and
events that take place in the component, and is described
by a pattern description, a state-machine, a listing of
conceptual entities and events (Conceptual entities and
events correspond to how real-world objects and
phenomena are modelled in the simulation. For more
information see the details on the Conceptual Model part
of BOMs.) - together describing the flow and dependencies

Proceedings of the First Asia International Conference on Modelling & Simulation (AMS'07)
0-7695-2845-7/07 $20.00 © 2007

of events and their exceptions. The third part is the Model
Mapping where conceptual entities and events are mapped
to their HLA Object Model representations. This part
essentially bridges the Conceptual Model with the HLA
Object Model that is described in the fourth part of the
BOM, the HLA Object Model. The fourth part, the HLA
Object Model, contains the information that is found in a
normal FOM/SOM – objects, attributes, interactions and
parameters - and should conform to the HLA OMT. There
are two additional parts in the BOMs that are not
mentioned in-depth in this paper, namely Notes and
Definitions. These two parts contain semantic information
about events and entities as well as actions that are
specified in the Conceptual Model, and are used to provide
a human readable understanding of the patterns described
in the BOM, figure 1.
 BOMs were created based on ideas from HLA,
meaning they are formed to include HLA Object Model
information. However, BOMs may be used without this
information to describe any type of simulation component,
a feature which makes BOMS even more versatile.

Fig. 1. BOM Structure.

4. Semantic Web and Ontology

 In order to compose a simulation out of components,
the components need to contain information about their
internal structure and how they can be used. This
information is called meta-data and contributes to
simplified use of a component by others [16]. Generally,
the concepts and terminologies used in various components
may vary substantially and thus can lead to
misunderstanding.
 Ontology is used to help creating a common
understanding among components and to improve
communication among them. In a computer science

context, ontology is a description of terminologies and
frames of references between entities that interact with
each other. Thus, ontology creates a shared understanding
of entities and events and contributes to reaching an
agreement on meanings of what is communicated between
the components. In the Semantic Web initiative, Ontology
can be described by the Resource Description Framework
(RDF) and Web Ontology Language (OWL), as explained
in [38] and [39]. In [13], the authors have investigated the
use of ontologies for discrete event simulation and
modelling, and have proposed a prototype OWL-based
ontology.

5. Web Services

 The current Web is a distributed source of information.
Introduction of Web Services (WS) extends the Web to a
distributed source of services. According to IBM [32], Web
Services are self-contained, modular applications,
accessible via the Web through open standard languages,
which provide a set of functionalities to businesses or
individuals. This definition is somewhat unclear and a
better definition is provided by the World Wide Web
consortium (W3C):
 A Web service is a software system identified by a
URI, whose public interfaces and bindings are defined and
described using XML. Its definition can be discovered by
other software systems. These systems may then interact
with the Web service in a manner prescribed by its
definition, using XML-based messages conveyed by
Internet protocols. [37]
 WSs are designed to provide interoperability between
diverse applications, i.e. the platform and language
independent interfaces of WSs allow the easy integration
of heterogeneous applications.

Fig. 2. Web Service roles and operations.

 A service description is a standard, formal XML
notation that is used in order to describe a WS. It provides
all the necessary information to interact with the WS,

Proceedings of the First Asia International Conference on Modelling & Simulation (AMS'07)
0-7695-2845-7/07 $20.00 © 2007

including message formats, location and transport
protocols. The descriptions are expressed in Web Service
Description Language (WSDL). A WS and its definition is
created by a service provider and then published with a
service registry based on a standard called the Universal
Description, Discovery, and Integration (UDDI)
specification. A service requester may find a published
service via the UDDI interface. The UDDI registry
provides the service requester with a WSDL service
description and a URL (Uniform Resource Locator)
pointing to the service itself. The service requester may
then use this information to directly bind to the service and
invoke it, as illustrated in figure 2.

5.1. OWL-S

 OWL-S is based on Web Ontology Language and aims
at establishing a framework for describing Web Services in
the context of the Semantic Web. OWL-S is an extension
of the DARPA Agent Meta Language for Services
(DAML-S). It has been developed to provide support for
discovery, composition, invocation and interoperation of
Services. OWL-S consists of three parts: the service
profile: “for advertising and discovering a service”, the
service process model: “for detailed description of a
service operation”, and finally grounding: “for describing
how to interoperate with a service”, fig. 3.
 There are two constraints, a service can be described by
at most one service model and a grounding must be
associated with exactly one service. There is no restriction
for service profile and service grounding; in fact it is very
useful sometimes to have multiple service profile and/or
service grounding [33].

Fig. 3. OWL-S structure.

5.2. Web Service Composition

 One of the biggest challenges regarding WS is
developing automatic or semi-automatic techniques for
discovery and composition of those services [12]. It is
essential to find a way to utilize these key features together
to convert the Web into a distributed source of
computation. Various techniques and approaches have
been presented by different researchers such as: template-

based techniques [10], interface-based techniques [12],
logic-based techniques [23], ontology-driven techniques
[41], quality-driven techniques [15], automata-based
techniques [24] and Petri net-based techniques [22], [26].
 The main goal of these techniques is to provide
automatic ways to discover and reason about combination
of services. They often apply software synthesis and
composition methods to WS composition, which first of all
requires a compiler that is able to translate the web service
description language, e.g. WSDL, into formal logic or
other formal component description language, a synthesis
mechanism which automatically selects, adapts and
composes WSs, and a manager that invokes the WSs and
transfer data between them

5.3. Web Services and Simulations

 Simulation components can be seen as a special case of
WSs. As described earlier a simulation component (SC) is
a software element of a simulation model with well-
defined functionalities and behaviours as is the case with
WSs. A SC conforms to a component model and can be
independently deployed. A WS has public interfaces and
bindings are defined and described using XML and can
deliver a service. A SC is subject to third-party
composition with or without modification and conforms to
a composition model. WSs can be composed together and
aggregated to deliver functionalities according to user
requirements. There are well-adapted standards for
publication, registration and discovery of WSs, while in
the case of SC the M&S-community has just started to set
up standards. These standards are not generally adapted.
Here, there is a potential and the M&S-community has the
opportunity to take advantage of the progress and
experiences gained by the WS-community. This potential
has been pointed out by among others [21]. However, the
emphasis there was mainly on simulating WS processes for
the purpose of correcting/improving the design.

6. Component-based model development using
boms

 Network-based Modelling and Simulation (NetSim) is
an ongoing project at the Swedish Defence Research
Agency (FOI), which aims to provide simulation modellers
and developers with a set of services to improve the
simulation development and execution process [7].
Component-based simulation model development (CBMD)
is one of these services which the NetSim project focuses
on. The objective here is to identify and develop methods
and techniques for implementing a framework for CBMD.
For this purpose we studied the BOMs standard [35],
focusing on the following BOM capabilities, BOM
composability and BOM-based model development.

Proceedings of the First Asia International Conference on Modelling & Simulation (AMS'07)
0-7695-2845-7/07 $20.00 © 2007

6.1. A general framework

 Since BOMs contain higher-level information and have
been designed to support reuse, via the Metadata contained
in them [1], it was found interesting to investigate how
BOMs compatibility and comparison can be automated.
The ideal procedure would be that first a model developer
formulates the intent of a simulation in a high-level
language such as the Simulation Reference Markup
Language (SRML), [36]. In the next step all matching
BOMS within a repository are identified and a subset of
the matching BOMs are combined into a new BOM (so
called BOM assembly). Finally, the new BOM assembly is
checked for validity.
 Given a BOM assembly one could automatically create
code-skeletons for federates and a whole federation. As
BOMs contain high-level information as well as HLA
OMT information it might be possible to reduce the time
needed to develop code that is not included in the actual
simulation logic by developing tools that use BOM
information to automate the generation of such code.
Another approach would be to include executable
programs associated with each BOM in the repository,
called BOM-implementations. In this way, the BOM-
implementations could also be assembled in the same
manner as the BOMs within a BOM assembly and create
an executable simulation model of the composition.

6.2. Model composition

 A process model for CBMD, was developed based on
the BOM concept. The idea was that a simulation
developer has a vision of a simulation. This developer
condenses the simulation idea down into simulation parts
and components, and specifies these in a SRML document.
After this, the process of finalizing the simulation is made
up out of three parts: Discovery, Matching and
Composition (abbreviated as DMC).
 The first activity is BOM Discovery, which is broken
down into two sub-activities. The first phase is to process
the provided SRML document and identify the components
(BOMs) that are needed in the simulation. It is done by
parsing out all the components mentioned in the SRML
document, along with an Ontology that accompanies the
SRML document and states its frame of reference. The
second activity is to utilize Ontology-information to fetch
the identified BOMs from a repository. The BOMs fetched
should be relevant to the simulation in some way, either as
explicit components or components related to the
simulation in some other way (loggers, rendering
components etc). How this fetching is done depends on
how the BOM Repository is constructed and how the
interface to it is implemented. The search should be done
based on Ontology information to ensure that the
components and keywords describe what they intend to

describe. The listed BOMs are then fetched and used as
input to the BOM Matching activity. This activity
identifies BOMs only on a very high level. BOMs, that
roughly fit the intent of the simulation or matches the
components specified in the simulation document, are
simply fetched from the repository.
 A finer selection of BOMs actually used will be done in
the BOM Matching phase. The second activity, BOM
Matching, compares the fetched set of BOMs and decides
which BOMs might be suitable for the simulation. This is a
more complex activity that needs to take into account the
simulation intent (as described in the SRML document).
One has to handle issues such as, what components fit
together semantically and practically and how it is done. In
order to compare BOMs, additional information such as
ontologies and reference documents will also be used in
this activity.
 The activity’s goal is to, given a set of BOMs and a
SRML document describing a simulation intent, map up
the entire simulation and fit in components so that the
simulation can be composed. This is similar to how a
puzzle is solved; the SRML document describes the
finished puzzle, and BOMs provide pieces of the puzzle
that can be used to complete it. The BOM Matching
activity is the placement of pieces so that the puzzle is
solved. The BOM Matching activity idea is to use the
SRML document as a mapping of components and
interaction between them. This mapping could then be
analyzed for matching compatibility using the metadata
that is available inside the BOMs, coupled with Ontology
information. A further breakdown of this activity can be
seen in figure 4. In this figure, the first step is to make a
simulation mapping of the components described in the
SRML document. The next step is then to create a number
of permutated mappings using the BOMs that were found
in the BOM Discovery step, and then analyze each BOM
mapping to check for compatibility.
 In the first version of our implementation the actual
compatibility check used all the available meta-data inside
the BOMs and reference documents such as Ontologies to
create a Compatibility Score between a pair of BOMs [9].
This score indicates if the two BOMs refer to the same
types of events and entities, and if they publish or
subscribe to events that have been specified in the SRML
document. The score is also affected by previous use
history, overlapping application domain and other general
metadata, which has been used to reinforce compatibility
scores between BOMs.
 In our second approach we instead of only including
ontology descriptions as reference documents, describe
entire BOMs in OWL-S. That means using OWL-S as an
infrastructure for describing BOMs. This way a BOM is
seen as a service.

Proceedings of the First Asia International Conference on Modelling & Simulation (AMS'07)
0-7695-2845-7/07 $20.00 © 2007

 It seems only logical to look at BOMs as simulation
services. This way, we are able to include ontology in a
more natural way and also reason about semantic aspects
of BOM compositions by taking advantage of experiences
and techniques developed in WSC. We can also utilize
inference engines to reason about syntactic and semantic
composability of BOMs. Describing simulation
components as WSs also increases the availability of those
components through Web interfaces and improves the
discovery phase of our process. A challenge here has been
to map BOM descriptions into OWL-S documents.
 Lastly the selected components are assembled into a
composite BOM, a BOM Assembly, in the BOM
Composition activity. The BOM Composition step would
take a number of BOMs as input, as well as the SRML
document and mapping data to determine how to merge the
BOMs together (as parsed out from the Mapping
Suitability step). This information is used to create a BOM
Assembly. This BOM Assembly is later intended to be
used to either produce code for the execution of the
simulation, or serve as a blue-print for composing BOM-
implementations associated with the identified BOMs.
 The DMC procedure is visualized in Figure 4, where
each of the three phases is shown in square boxes, and is
further discussed in the subsequent sections.

6.3. Mapping between BOMs and OWL-S

 The purpose of mapping BOM descriptions into OWL-
S is to first of all use OWL (Web Ontology Language) as
the underlying language for describing BOMs and also
utilize language features of OWL-S to improve the
semantic expressiveness of BOMs and hence facilitate
semantic discovery and compositions of BOMs.

 As mentioned earlier BOM consists of three main parts,
model identification, conceptual model and model
mapping. The model identification part can be mapped into
the service profile part of the OWL-S without any major
adjustments. These two parts contain more or less identical
information. The main difference is that the service profile
contains information about the functionality of services,
such as input, output, parameters, preconditions and
results. This information can be obtained from the
conceptual model part of BOMs.
Mapping between the conceptual model and the service
profile is not straight forward and requires a deeper
understanding of how simulation models and services
work.
 The main part of BOM conceptual model is “Pattern of
Interplay” which includes sequence of “Pattern Actions”.
Each Pattern Action is a reference to state behaviour of a
conceptual entity. In the figure 5, the top-level of OWL-S
Service Model is constructed based on the concept of
“Process”, the aim is to make it easier to understand and
interact with different services. In order to map BOMs on
OWL-S we assume that the BOM Pattern of Interplay to be
replaced by a single Service Model, and hence each BOM
Pattern of Action to be replaced by a Process. In order to
construct a Process-tree for representing sequence of
Pattern Actions, we use composite processes, to better
define the state behaviour of each conceptual entity if the
action is done in a multi-step manner; or we use several
atomic processes defined by OWL-S flow, if the actions
are done independent of each other. Finally, the state
behaviour of each conceptual entity which is defined in
BOM Conceptual Model as several State-Machines could
be defined as several Control Constructs, Figure 5.
 The grounding part contains information about the
implementation of a WS. It is left out at this stage, since it

Fig. 4. BOM Discovery, Matching and Composition process

Proceedings of the First Asia International Conference on Modelling & Simulation (AMS'07)
0-7695-2845-7/07 $20.00 © 2007

does not have any impact on the matching phase of the
BOMs.

7. Conclusions and future work

 In this paper we have presented our approach to model
composition using BOMs and Web Services. The
conclusion is that BOMs contain a great deal of
information that significantly support a component based
simulation development process. This is due to the fact that
BOMs contain numerous useful metadata and definitions
of events and entities. We have also pointed out that
inclusion of semantic definitions and frame of reference
(via ontologies) is essential. However, BOMs do not
specify that this type of information should be included in
any predefined way, which is something that would be
interesting to review in upcoming versions of the BOM
standard. Our proposed approach for inclusion of semantic
definitions is to utilize OWL as the language for describing
BOMs. And in order to improve the semantic
expressiveness and provide semantic discovery and
composition of BOMs we have utilized OWL-S as the
framework for describing BOMs. Our preliminary results
show that it is possible and feasible to map BOM
descriptions into OWL-S. However, more experiments are
required in order to draw general conclusions. Thus, future
work includes further examining to what extend Web
Services can improve the BOM standard in order to
automate semantic discovery and the composition of
simulation models.

8. References

[1] Bachman, J., Gustavson, P., Lutz, R., Scrudder, R.,
Understanding the BOM Metadata and Making It Work For You,
in Proceedings of 2005 Simulation Interoperability Workshop,
2005.
[2] Bernard P. Zeigler, Herbert Praehofer, and Tag Gon
Kim. Theory of Modeling and Simulation, Academic Press, 2nd
edition, 2000.
[3] Bernard P. Zeigler and Hessam S. Sarjoughian.
Introduction to DEVS Modeling and Simulation with JAVA:
Developing Component-Based Simulation Models, Arizona
Center for Integrative Modeling and Simulation, University of
Arizona and Arizona State University, Tucson, Arizona, USA,
January 2005.
[4] Carnegie Mellon Software Engineering Institute,
Predictable Assembly from Certifiable Components (PACC),
http://www.sei.cmu.edu/pacc/.
[5] S. Chandrasekaran, G. Silver, J.A. Miller, J. Cardoso
and A.P. Sheth, “Web Service Technologies and their Synergy
with Simulation,” Proceedings of the 2002 Winter Simulation
Conference, San Diego, CA, December 2002.
[6] C. Szabo, Y.M. Teo, An Approach to Syntactic
Composability and Model Reuse in Composable Simulation,
Department of Computer Science, National University of
Singapore, Technical Report, September 2006.
[7] Eklöf M, Ulriksson J, Moradi F, NetSim – A Network
Based Environment for Modelling and Simulation, NATO

Fig. 5. Mapping between BOM conceptual model and OWL-S service model.

Proceedings of the First Asia International Conference on Modelling & Simulation (AMS'07)
0-7695-2845-7/07 $20.00 © 2007

Modeling and Simulation Group, Symposium on C3I and M&S
Interoperability, Antalya, Turkey, (2003).

[8] E. W. Weisel, M. D. Petty, and R. R. Mielke, “Validity
of Models and Classes of Models in Semantic Composability”, in
Proceedings of the Fall 2003 SIW, Orlando FL, Sept 14-19 2003.
[9] Farshad Moradi, Rassul Ayani, Peder Nordvaller,
”Simulation Model Composition using BOMs”,in Proceedings of
The 10-th International Symposium on Distributed Simulation
and Real Time Applications, DS-RT ’06, October 2006.
[10] F. Casati, S. Ilnicki, L.-J. Jin, V. Krishnamoorthy, and
M.-C. Shan, “Adaptive and Dynamic Service Composition in
eFlow”, Proc. of the Intl. Conf. on Adv. Info. Systems
Engineering, Sweden, 2000.
[11] Gustavson, P., Hancock, J., McAuliffe, M., Base Object
Models (BOMs): Reusable Component Objects for Federation
Development, in Proceedings of 1998 Fall Simulation
Interoperability Workshop, 1998.
[12] I. B. Arpinar, R. Zhang, B. Aleman-Meza, and A.
Maduko., “Ontology-driven Web Services Composition
Platform”, IEEE Intl. Conf. on e-Commerce Technology, San
Diego, California, July 6-9, 2004.
[13] J. A. Miller, P. A. Fishwick, Investigating Ontologies
for Simulation Modeling, Proceedings of the 37th Annual
Simulation Symposium, pp. 55-63, 2004.
[14] J. A. Miller and Gregory Baramidze, Simulation and
the semantic web, University of Georgia, US, 2005.

[15] J. Cardoso, Quality of Service and Semantic
Composition of Workflows, Ph.D. Dissertation, Dept. of
Computer Science, Univ. of Georgia, Athens, GA, 2002.

[16] K. Morse, M. Petty, P. Reynolds, W. Waite, P.
Zimmerman, Findings and Recommendations from the 2003
Composable Mission Space Environments Workshop, 2004.
[17] M. D. Petty, E. W. Weisel, R. R. Mielke, Overview of a
Theory of Composability, Virginia Modeling Analysis &
Simulation Center, Old Dominion University, 2004.
[18] Paul K. Davis and Robert H. Anderson, “Improving the
Composability of DoD Models and Simulations”, JDMS: The
Journal of Defense M&S: Applications, Methodology,
Technology, Vol1, Nr 1, January 2004.
[19] Robert G. Bartholet, David C. Brogan, Paul F.
Reynolds, Jr., Joseph C. Carnahan, “In Search of the
Philosopher’s Stone: Simulation Composability Versus
Component-Based Software Design”, in Proceedings of the 2004
Fall SIW, Orlando, FL, September 2004.

[20] Robert L. Wittman Jr. and Cynthia T. Harrison. Onesaf:
A product line approach to simulation development, Technical
report, MITRE Corporation and US Army Simulation, Training
and Instrumentation Command, 2001.

[21] S. Chandrasekaran, G. Silver, J.A. Miller, J. Cardoso,
A.P. Sheth, “Web Service Technologies and their Synergy with

Simulation,” Proceedings of the 2002 Winter Simulation
Conference, San Diego, CA, December 2002, pp. 606- 615.

[22] S. Narayanan and S. Mcllraith. Simulation,
“Verification and Automated Composition of Web Services”,
Proc. of the 11th Intl Conf. on WWW, Hawaii, 2002.
[23] S. R. Ponnekanti, and A. Fox, “SWORD: A Developer
Toolkit for Web Service Composition”, Proc. of the 11th Intl
Conf. on WWW, Hawaii, 2002.
[24] T. Bultan, X. Fu, R. Hull, and J. Su, “Conversation
Specification: A New Approach to Design and Analysis of E-
Service Composition”, Proc. of WWW Conference, 2003.
[25] Weisel, E. W., M. D. Petty, and R. R. Mielke. “A
Survey of Engineering Approaches to Composability”, in
Proceedings of the Spring 2004 SIW, Arlington VA , April 18-23,
2004.
[26] X. Yi and K. Kochut, “Process Composition of Web
Services with Complex Conversation Protocols: a Colored Petri
Nets Based Approach”, Proc. of Design, Analysis, and Simulation
of Dist. Sys. Symposium, 2004.
[27] Y. Hu, G. Tan, F. Moradi, "Automatic SOM
Compatibility Check and FOM Development", in Proceedings of
7th IEEE Distributed Simulation and Real-time Applications,
Delft, The Netherlands, October 2003.
[28] BOM, http://www.boms.info.

[29] BOMworks, http://www.simventions.com/bomworks/.
[30] DEVS standardization group,
http://www.sce.carleton.ca/faculty/wainer/standard/.

[31] HLA at DMSO, https://www.dmso.mil.
[32] IBM Web services tutorial. Online : http://www-
106.ibm.com/developerworks/webservices/.

[33] OWL-S: Semantic Markup for Web Services,
http://www.w3.org/Submission/OWL-S/.

[34] Semantic Web, http://www.w3.org/2001/sw/.
[35] Simulation Interoperability Standards Organization
(SISO), Guide for Base Object Model (BOM) Use and
Implementation, SISO-STD-003.0-DRAFT-V0.11, SISO, 2005.

[36] SRML, http://www.w3.org/TR/2002/NOTE-SRML-
20021218/.

[37] W3C. Web services architecture requirements.
http://www.w3.org/TR/wsa-reqs.
[38] World Wide Web Consortium, Resource Description
framework, http://www.w3.org/RDF/.

[39] World Wide Web Consortium, Web Ontology
Language, http://www.w3.org/2004/OWL/.

[40] World Wide Web Consortium, Simulation Reference
Markup Language, http://www.w3.org/TR/2002/NOTE-SRML-
2002121.
[41] WSDL-S, W3C Member Submission on Web Service
Semantics, http://www.w3.org/Submission/WSDL-S/.

Proceedings of the First Asia International Conference on Modelling & Simulation (AMS'07)
0-7695-2845-7/07 $20.00 © 2007

