2006 International Conference on Power System Technology

Modeling and Simulation for Relay Protection
with the CD++ Toolkit

Hong-Shan Zhao, Ji-Ping Zhang and Zeng-Qiang Mi

Abstract--This paper presents a new method of modeling and
simulation for relay protection by using a DEVS-based toolkit
named CD++. With this toolkit, the modeling of relay will be
more easy and straightforward. We takes the digital three zones
distances protection as the example, studies the approach of ideal
protection relay modeling, and also validate the validity and
feasibility of the model through analysis.

Keywords--CD++, DEVS, modeling, relay protection.

I. INTRODUCTION

Research of modeling and simulation for relay protection is
in favor of not only understanding relay’s dynamic
behavior as disturbance and faults happens in power system,
but also reducing the development times and costs of new
products of system[1]. Through modeling and simulation, we
can aware the mechanism and process of continuous faults led
by behavior of relay during power blackout in power system
[2]. In electrical power system, the tools used for studying on
modeling and simulation to the digital relay protection, such
as EMTP, ATP or MATLAB and so on, are mostly all not
very convenient, comprehensible, and especially more
complex regarding the complex logical relation modeling
approach. So, it is necessary to study a new method to
improve the modeling of relay protection.

The protection relay appear as the discrete event dynamic
behavior, that is, logic dynamic relation, while the CD++
toolkit is adaptable to Discrete-Event modeling and
simulation[3]. So we present a thought and steps of modeling
and simulation for relay protection in CD++.

II. BASIC KNOWLEDGE OF MODELING FOR RELAY

In power system, relay protection plays important role. Its
behavior will affect the reliability and safety of the whole
system. Therefore, it is necessary to construct a relatively
accurate and real model for relays. Through analysis, the ideal
distance relay dynamic behavior may be abstracted as three
operational modes, namely, normal state (Norm), state after
startup component action (StartPost) and state after operation
(OperPost). There are strict and fixed relations between each

H. S. Zhao is with Dept. of Electrical Engincering, North China Electric
Power University, China (zhaohshen@]126.com)

J. P. Zhang is with Dept. of Electrical Engineering, North China
Electric Power University, China (aendey@163.com)

Z. Q. Mi is with Dept. of Electrical Engincering, North China Electric
Power University, China (mizq@ncepu.edu.cn)

1-4244-0111-9/06/$20.00©2006 IEEE.

two modes. Fig. 1 shows their relations: under the Norm, there
are no any faults in system. Relay will do nothing at this mode;
If fault appears, relay’s three zone (I, II and III) protection
will go to the mode StartPost. According to every zone’s
optional mechanism, they will decide which mode to enter.

A. The Relation of Three Modes of Relay

L1

-

L= StartPost

OperFost

Fig. 1 The relation of three modes of relay behavior

For every zone of relay protection, the arcs L1, 1.2, L3 and
L4 have their own meaning respectively. For example, for
zone I, .1 means that fault happens somewhere in itself line
(the line equipped with the relay). And now, zone I must
startup and enter into mode StartPost. If the fault is located in
the precinct of zone L, then it will enter into OperPost through
L1; If the fault appears at the end of this line, that is, out of the
domain of zone I, the relay of zone I will be back to Norm.
While for zone II, L1 means that fault happens in its line or
part of neighbor line. If this condition happens, zone IT will
enter into StartPost. Then, it will go to OperPost though L3 if
the fault happened at the end of this line. Therefore, every
zone’s arcs described in Fig. 1 have different meaning.

B. DEVS Model of Relay in CD++

To achieve these logic relations, as mentioned advance, we
will model the behavior of relay protection with CD++ toolkit.
CD++ is a tool for Discrete-Event modeling and simulation,
based on the DEVS (Discrete EVents Systems specifications)
formalism. It runs either in standalone (single CPU) or parallel
mode (over a network of machines). CD++ also provides a
graph-based definition of DEVS models for more
straightforward way to define models. Graph-based notations
have the advantage of allowing the modeler to think about the
problem in a more abstract way. Therefore, we use the
extended graphical notation to define the models of relay.

As a DEVS-based tool, models must be defined through
DEVS theory system. In DEVS, models are divided into basic
model (Atomic Model) and more complex model (Coupled
Model). A Coupled model usually includes atomic models or
other coupled models. That is, DEVS allows modular
description of models that can be integrated using a
hierarchical approach [4].

A DEVS atomic model is formally described by:

M=<X_8Y0_.0,..A,D>

>Yint> Yext >
Here, X is the input events set, S is the state set, and ¥
is the output events set. There are also several functions:

o

., Mmanages internal transitions, 5gxt external transitions,

Ais the outputs, and [the elapsed time.
A DEVS coupled model is defined as:

CM =<I1,X,Y,D,{M},{I},{Z,} >

Here, X is the set of input events, and Y is the set of
output events.) is an index of components, and for each
i €D, M,is abasic DEVS model, where

M,=<1,X,8.Y.,6. .0,

i»4i>Oint. > tai >

Xt; 2
I, is the set of influences of model 1. For each j € [, , Z,;is

the translation function from i to j.

CD++ implements the DEVS theory. Each DEVS graph
defines the state changes according to internal and external
transition functions, and each is translated into an analytical

definition. In CD++, DEVS graphs can be formally defined as:

GGAD =< X,,,8.Y,,,5..,5

>t M Yint> Vext >

AD >
Xy ={(p,v)| pe [Ports,v e X } set of input ports;
Y, ={(p,v)| pe OPorts,veY,} setof output ports;

S =BxP(V) states of the model,
B =1{b|b € Bubbles} set of model states.

V ={(v,n)|veVariables,n € R,} intermediate state

varlables of the model and their values.

o.. .0,

int > “ext >
traditional DEVS models [5].

Therefore, we can define a relay models from the following
way: First, define atomic models for every zone of distance
relay protection. In atomic model, we use a state (Bubble) to
represent a mode. So, the relay has three states (Norm,
StartPost and OperPost). The time interval of every state and
input/output port will be defined. Second, according to strict
logic relation showed in Fig.l, we can define all the

A, and D have the same meaning as in

internal/external transition functions to connect the three states.

And then, the fourth atomic model named Break could be
defined for more clear observation of relay’s behavior. Break
model’s output information will tell us which zone sent the
“open” signal to breaker. Finally, we will integrate four
atomic models into a coupled model through logical
connections.

III. CD++ MEDELS OF DISTANCE RELAY
PROTECTION

We will use a graphic interface named GGAD of CD++ to
define the models of relay. In atomic model of GGAD, when
certain event is received form an input port, the model will
enter into another state by calling internal or external
transition function. Every state has its default interval to
remain the current state. If the received information satisfies
the condition of external transition function, the model will
enter into corresponding state immediately before the interval
of current state using up. However, if conditions of all
external transition function are not satisfied, the model will
first send a value to an output port, and then go to other state
after the default interval exhausted. The following is the steps
of modeling for three zone distance relay protection.

A. Atomic Models of Zone I/Il /III and Break

Equallind_1,1]™1

s,
open!l

OperPaost

Fig.2 Atomic model of zone I

We define that the initial state of zone I is Norm. In Fig.2,
there is one input port named in/ [and two output port: out!
and openl. The fault type can be identified form the event
information received from in/ 1. The possible value of the
input port could be 0, 1 and 2. The value O is defined as no
fault happens; 1 and 2 are defined as fault happens within the
domain of zone I, and out of zone 1, that is, a fault appeared
at the end of the line. We can get the fact from Fig. 2 that
zone I will startup and enter into StartPost if the value from
inl 11s 1 or 2 (the condition of external transition function
Between (l,inl _1,1)?1 is satisfied), the function Fqual (inl I,
1)?1 is used so that the model to enter into state of OperPost.
After a short interval, zone I will send 1 (defined as a
command of line release) to output port openl, and then will
be back to state of Norm.

Fig.3~5 shows the models of zone II, III and Break in
GGAD.

OperPogt

Fig.3 Atomic model of zone II

The meaning of functions in zone II is similar to zone L
There are two input ports (jnl 2, in) and two output ports
(out2, open?2) in this model. Port in/ 2 still describes the type
of fault. Its value is O, 1, 2 and 3. Here, the meaning of 0~2 is
as same as inl [of zone I. While 3 indicates that fault
happened at the neighbor line, and the location of the fault is
still in the precinct of zone IL. Port in is used for identification
of sate of zone L It will connect with the output port of zone I
(that will be discussed later). If the value of in is | and inl 2
is 2 (And (Equal(inl 2, 2),Equal(in, 1))?1), that means zone I
hasn’t entered into OperPost through StartPost, there is a fault
at the end of the line. So zone II operates and enters into
OperPost. And after a short interval, it will send value 1 (the
same meaning as openl) to output port open2 and then go
back to Norm.

And(Equallin?_3.3).E quallin3. 1]

OperPost

Fig. 4 Atomic model of zone III

Form Fig. 4, we notice that two input port is defined in
zone III. The values of port in/ 3 are 0~3. The meaning of
0~2 1s as same as zone II, while 3 1s different. When 3 is
received form in/ 3, which means a fault out of domain of
zone II. The port in3 will connect with out2. So when the
condition of the external transition function (And
(Equal(inl_3, 3),Equal(in3, 1))?1) is satisfied, zone IIT will
operate and enter into OperPost. There should be a short delay
before it enters into OperPost from StartPost when fault
appeared. The delay will be expressed through the interval of
StartPost in zone II (that will be discussed later). The output
port open3 has the same meaning of openi/open?.

The last atomic model is show in Fig. 5

Readyl

‘H\‘\\.
autl
E qualiind, 11?1 e
Equalinz 1771 Pead2 | — o
Equaliin3,1]71 gy -
ot

FReadp3

Fig. 5 Atomic model of Break

In order to analysis the behavior of relay, we have designed
three basic states for Break: close, ready, open. Their
respective meanings are state of close of switch, state of ready
to break the switch, state of open of switch. Here, readyi~
ready3 used to represent receiving signals form zone I, IT and
T respectively. Three input port (inl, in2 and in3) receive
signals from three zone’s output port. The model Break has
an output port out. Its value could be 1, 2 and 3 (represent
respectively that switch opened by receiving open signal form
zone I, II and IOII). The three states of the atomic model
Break is presented to illuminate the relation of three zone and
switch.

B. Coupled Models of Relay

Fig. 5 Coupled model of relay protection

When fault happens, the three zone of relay will receive
corresponding information at the same time. So there should
be three input port in coupled model. The three input port of
coupled model are: portl, port2 and port3. They will connect
with the input port in/ 1, inl 2 and inl 3 respectively. An
output port out will connect with the output port of Break. To
connect all atomic models, we need to use the following rule:
an output port of source model must connect with one of the
inputs port destination model; an input/output port of coupled
model must connect with one of the input/output ports of an
atomic model. For example, the connection Zonel.outl-
Zone2.in and MODEL.portl-Zonel.inl 1 follow this rule. All
the connections of coupled model of relay protection are
shown in Fig. 6.

= EE; Connections
Zonel.outl-Zonez.in
ZoneZ out2-Zonedind
Zonel . openl-Break.ind
ZoneZ openZ-Break. inZ
Zoned.open3-Break. in3
MODEL. port1-Zonel.ind_1
FMODEL. port2-Zone.inl _2
FMODEL. port3-Zoneiinl _3
Break. out-t0ODE L. out

AASAALAR]

Fig. 6 connections of couple model
From this way, we get the whole module of relay
protection. As mentioned above, the three input ports will
inform every zone with the type of faults, the output port can
give us two kind of information: 1) whether the switch has
open or not; and 2) which zone sent the open signal to switch.

IV. VALIDATING OF RELAY MODEL

Rationality of the model of relay is analyzed through the
following two types of faults (which occurred in the line
equipped with the relay, other line’s fault will not be
considered):

(1). Fault occurred in the domain of zone 1

Under normal condition, the values of input port and output
port in protection module are zero. When fault (1) occurring,
protection module will receive fault information from three
input ports and output ports. This time, the values of three
ports is: portl (inl 1) =port2 (inl 2) =port3 (inl 3) =l
When satisfying condition of external transition function
Between () in every zone, the zone I, II and III will operate
and enter into StarPost state. For zone I satisfying the
condition Equal (inl 1, 1), zone 1 will operate and enter into
OperPost state. After Sms time delay, it returns to Norm by
internal transition function opteni!l. Now, for openl
connecting port in/ of Break module, Break enters into
Ready! state and enters into open with 30ms time delay after
receiving the port’s value 1 before sending our=1 to output
port, that indicates the open signal to switch was received
from zone I Therefore, it will need 35ms time from finding
fault to remove fault regarding zone L It needs to judge the
value of port in (outl) when zone I and zone II enter into
StartPost simultaneously. At that time, zone II does not sent 1
to port out! and does not operate because zone I has entered
OperPost already. At the same time, zone Il sent 1 to out2 and
return. After zone III starting, it will not operate for
dissatistying the condition in/ 3=3.

(2). Fault occurred at the end of the line.

Every zone will startup at the same time and enters into
StartPost when this fault occurred. Zone I will not operate
and return to Norm with a delay (500ms) for dissatisfying its
operation condition. During the delay, zone II will not enter
into any other states and keep waiting in the state StartPost for
a longer interval (>500ms) until receive the value 1 from outl
of zone I after 500ms. Now, zone I is returning to Norm,
while zone II will enter into OperPost for the function And
(Equal(inl_2, 2),Equal(in, 1))?1 is satisfied. As same as zone
I, an open signal to switch will be sent out to port in2 of

Break. The time is 535ms from the fault was detected to
removing it. Zone III will not operate for not receiving any
information from ouz2.
Similar analysis can be done for other types of faults.
CD++ provides a platform for simulation. Each simulation of
models of relay protection was executed. We can validate the
reasonability of all models we built from the results of execution.

V. CONCLUSION

This paper presents a new method for modeling and
simulation for ideal relay protection in power system. The
detailed process of modeling is provided with a
straightforward way. With the CD++ toolkit, we also can
define more strict and precise models for relay. There are still
some shortages in modeling. For example, we did not take
into account the instance when oscillation of power system
happens, but we are working at it now.

VI. REFERENCES

[1] MI Zeng-qgiang, ZHAO Hong-shan, and WANG Hai-ping, "Abstract
Modeling Method of Digital Protection Relay," Proceedings of the
CSEE, vol. 25, pp. 51-56, Nov. 2005.

[2] Zhao Hongshan, Mi zengqiang, Niu Dongxiao et al. "Power system
Modeling Using Hybrid system theory" Proceedings of the CSEE, vol.
23, pp. 20-25. 2003.

[3] WAINER, G."CD++: atoolkit to define disrete-event model”. G. Wainer.
Software, Practice and Experience. Wiley. Vol. 32, No.3. pp. 1261-1306.
November 2002.

[4] Hong, G P, T. G Kim. "A framework for verifying discrete event
models within a DEVS-based system development methodology."
Tramsactions of the Society for Computer Simulation, Vol. 13(1) pp. 19-
34.199%6.

[5S] Gaston Christen, Alejandro Dobniewski, Gabriel Wainer. "Modeling
State-Based DEVS Models in CD++," Military Government and
Acrospace Simulation Symposium. ISBN: 1-56555-279-2. pp. 105-110.

