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Image Mining for Modeling of Forest Fires
From Meteosat Images

Rajasekar Umamaheshwaran, Wietske Bijker, and Alfred Stein

Abstract—Meteosat satellites with the Spinning Enhanced Vis-
ible and Infrared Imagery (SEVIRI) sensor onboard provide
remote-sensing images nowadays every 15 min. This paper inves-
tigates and applies image-mining methods to make an optimal
use of images. It develops a simple, time-efficient, and generic
model to facilitate pattern discovery and analysis. The focus of this
paper is to develop a model for monitoring and analyzing forest
fires in space and time. As an illustration, a diurnal cycle of fire
in Portugal on July 28, 2004 was analyzed. Kernel convolution
characterized the hearth of the fire as an object in space. Objects
were extracted and tracked over time automatically. The results
thus obtained were used to make a linear model for fire behavior
with respect to vegetation and wind characteristics as explanatory
variables. This model may be useful for predicting hazards at an
almost real-time basis. The research illustrates how image min-
ing improves information extraction from the Meteosat SEVIRI
images.

Index Terms—Forest fires, image mining, Meteosat, Spinning
Enhanced Visible and Infrared Imagery (SEVIRI) Portugal,
space–time modeling.

I. INTRODUCTION

R EMOTE-SENSING images, which are routinely being
collected every day, offer an unprecedented opportunity

for predicting and understanding the behavior of the Earth’s
ecosystem. This is particularly the case if images are combined
with ecosystem models [1]. Although repositories of images
can be used for a variety of different purposes, it may be hard
to analyze each image individually and to explore relations with
preceding and succeeding images at varying time steps [2], [3].
Therefore, a need exists to address an automated analysis of
accumulated remotely sensed images.

A recent development in spatial inventarization methods
concerns spatial data mining [4]. This can be defined as “The
analysis of (often large) observational data sets to find unsus-
pected relationships and to summarize the data in novel ways
that are both understandable and useful to the data owners” [5].
Spatial image mining, based on data mining, is a promising new
field, focusing on large amounts of different images collected
at various moments in time. It differs from automated image
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processing, which deals with a single or a few images [6], as
many more images need to be processed in order to retrieve
hidden knowledge. Spatial and multiband characteristics make
remote-sensing imageries different from the general category
of data [7].

Environmental concern has led to increasing monitoring
efforts and predicting of ecosystem changes [8]. A typical
example concerns forest fires that impair biodiversity, influence
climate on regional and global scales, and promote soil erosion.
Several remote-sensing satellites are currently used for fire
prediction, detection, monitoring, and assessment. A major
constraint in monitoring the forest fires of Europe and the
savanna fires of Africa is the lack of observation time. Satellites
such as BIRD, which are specifically designed for this purpose,
are polar orbiting, thus prohibiting continuous observation.

Fire detection is one of the potentials of the Meteosat Second
Generation satellites MSG-1 and MSG-2. These satellites are
primarily designed to continuously observe the Earth’s full
disk by applying the Spinning Enhanced Visible and Infrared
Imagery (SEVIRI) sensor [9]. It observes regions of Europe
and Africa every 15 min. SEVIRI has 12 channels: three in
the visible and eight in the infrared part of the spectrum, plus
one High Resolution Visible (HRV) channel. Spatial resolution
(> 3 × 3 km in Europe) is coarse. An advantage of these
satellites is that fire dynamics can be studied along with weather
data that are available as well on MSG-1 and MSG-2.

This paper explores the potential of spatial image mining
for SEVIRI applied to high temporal fire monitoring. A forest
fire occurring in Portugal on July 28, 2004 is taken as an illus-
tration. Images along with additional data from the satellite and
CORINE land-cover data are combined to better understand
the fire and predict its behavior.

II. IMAGE MINING AND FIRE

A. Image Mining

In this paper, forest-fire objects are analyzed with image
mining. Image mining is a relatively new development focusing
on extracting relevant information from large sets of remote-
sensing images [10]–[13]. It is well illustrated in Fig. 1. On
a series of images, an object of interest is identified, using a
segmentation and classification procedure. Although in prin-
ciple, unsupervised objects could be identified, we focus for
the moment on well-known and identifiable objects. Such an
object essentially occurs at multiple images, requiring a linking
in the space–time domain. Next, modeling describes the object
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Fig. 1. Scheme of mining a series of images, from observation, through
modeling, and tracking toward prediction.

with a function that relies on a limited set of parameters.
Environmental and other external factors may be included. The
object is then tracked in the space–time domain, and predictions
are being made. Such a prediction may occur for a future time,
for an intermediate time, or for the time before observation,
e.g., to identify the start of a process. Predictions are then
communicated to stakeholders.

In all steps, the issue of data quality is important. During
identification, a precise description of the attributes and of the
spatial coordinates and extent is to be done. During modeling,
the appropriate scale and level of complexity are to be con-
sidered. Tracking and predicting both require care about the
coordinates and their precision.

B. Remote Sensing and Fire

Several studies have been carried out in the past on remote
sensing and fire. Lambin et al. [14] analyzed remotely sensed
indicators of burning efficiency of savanna and forest fires.
Giglio and Justice [15] in a study on wavelength, fire size, and
temperature demonstrated that the location of 4- and 11-µm
channels can cause large differences in fire temperatures for
wildfires composed of both flaming and smoldering compo-
nents. Mbow et al. [16] used spectral indexes and simulation
of savanna burning to assess risk of intensive fire propagation
within a national park.

Most satellites that are used for detection of fires and iden-
tification of their characteristics are not designed for hot-spot
(fire) investigation. They are mainly polar-orbiting satellites
and do not provide high temporal resolution images needed
for active fire monitoring. Currently, only MSG-1 and MSG-2
can be used for continuous monitoring of fire in Europe and
Africa. Their high time frequency of observation could help in
characterizing the dynamic nature of forest fires.

Predicting the possible movement of a fire is important as
a warning system for possible danger zones and in assisting
fire fighters. Several models for studying the spread of fire have
been proposed. Ameghino et al. [17] have developed a model
based on cellular automata, including complex parameters.
Muzy et al. [8] compared this with a comparable method across
a fuel bed, concluding that it is more reliable and cost effective.
Koutsias and Karteris [18] studied fuel complexes that favor

Fig. 2. Image acquired by Meteosat in visible bands (3, 2, 1) at 15:30 h.
Square boxes show the area of active fires.

fire occurrences and spread in the Mediterranean-type climate.
They used Landsat Thematic Mapper and GIS layers to arrive
at a relation between forest types and fire behavior.

C. Study Area

The study area is located in the southern Algarve province
in Portugal [9], [19], [20]. The area is regularly hit by fires
[21]. A forest fire occurred in a central mountain area near the
city of Loule (Fig. 2). It consisted of two large fires starting at
night time, which merged into one large fire in the afternoon.
In addition, four smaller fires were reported in the same region.
The fires were detected with a fire-detection algorithm based
on images from TERRA’s and AQUA’s MODIS sensors. The
two large fires could be detected on SEVIRI images as well;
the smaller fires could not be detected. Images were obtained
on July 28, 2004. Preprocessing consisted of the conversion of
images by means of geometric correction and corresponding
radiometric corrections (to radiance in mW/m2/sr/(cm−1)−1

for bands 1, 2, and 3 and to temperature in Kelvin for
bands 4 to 11).

We applied SEVIRI for monitoring and analyzing the behav-
ior of fire in space and time. Temporal resolution of SEVIRI
is high, as in every 15 min, an image is recorded for all
12 channels simultaneously, resulting into 96 images per day.
Owing to this high frequency, it is virtually impossible to
analyze SEVIRI images manually, and mining methods are
required. Spatial resolution is, however, low.

Data quality for remote-sensing imagery focuses on scale,
the spectral resolution, and the radiometric resolution. Three
issues are important when modeling forest fires from SEVIRI
images.

1) Selection of the most suitable band. Studies by
Cihlar et al. [9] and Giglio and Justice [15] show that fire
can be detected by long wavelength bands, i.e., 3.9-µm
band 4 of the SEVIRI sensor. Little work, however, has
been done on identifying the relation between the type of
fire and its thermal reflectance on this sensor.
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Fig. 3. Image (at 12:15 h) and spectral profile of band 4 for fire and nonfire areas (top) and spectral profile of band 9 (bottom).

2) The spatial resolution of the image, being equal to
3 × 3 km in the study area. If a fire is detected within
a pixel, it is barely possible to identify its exact location,
and spectral mixing likely occurs.

3) Validation of results. Detailed ground truth is commonly
absent.

This paper focuses on the first two points—a proper valida-
tion was not possible.

III. MINING FIRE FROM METEOSAT IMAGERIES

A. Band Selection

A subset of 18 × 18 pixels from SEVIRI images covering a
region of approximately 54 km2 was selected. Care was taken
that the fire was well contained within this subset for its entire
diurnal period. From the 12 bands, band 4 was selected in this
paper. This band shows a bright white region in the middle
denoting pixels with high temperature [Fig. 3(a)]. Band 4
also shows a profile during the 24 h of study that was clearly
different from those observed without fire in the same area
five days before [Fig. 3(b)]. A sudden drop in temperature
during the early evening (around 18:00 h) is mainly due to
the movement of fire from that pixel after burning. As the
other bands are concerned: the visible bands (bands 1, 2, 3,
and 12 = pan) are not suitable for fire monitoring, as no
detectable signal could be observed during the night. This is
a major drawback, as many fires start in the late afternoon [16],
requiring a tracking during the night. Also, absorption bands
5 and 6 (water-vapor absorption bands), 8 (ozone absorption
band), and 11 (carbon-dioxide absorption band) are not suitable
for fire detection. This leaves bands 4, 7, 9, and 10 potential
for fire monitoring. Spectral profiles of bands were analyzed
to identify patterns. Saturation limits of band 4 (IR window of

3.9 µm), band 7 (IR window of 8.7 µm), and band 9 (IR window
of 10.8 µm) were higher than those of the other bands. Band 4
showed better contrast between fire and background than for
example band 9 (Fig. 3). Bands 7 and 10 were under the limit
of saturation and would not give much information (not shown).

We focused on a single band, as addition of nonsuitable
bands would add more noise than information. Further, an
algorithm based on a single band is faster than one based on a
combination of several bands. Speed is important in this type of
fire monitoring. The algorithm is under development, however,
and it can possibly be developed to work on a combination
of bands.

B. Extraction of Fire Objects

Pattern analysis identifies or detects patterns from a given set
of data using statistical or nonstatistical models by detecting
and characterizing relations in the data [22]. To analyze the
behavior of fire over a diurnal period, pixels with a thermal ra-
diance higher than pixels in their neighborhood were identified
as objects.

Fig. 4 shows the image subsets at three moments in time. The
change in location of thermal activity represents fire movement.
Regions under thermal activity are not clearly defined because
of the low image resolution. No detection method is imple-
mented for SEVIRI to separate fire pixels from nonfire pixels.
To overcome this, we characterized fire pixels on the basis of
a functional definition. First, we selected a suitable function to
describe the characteristics of fire. Second, we described the
patterns of variation over space using that function.

As thermal reflectance of one pixel is related to its neigh-
boring pixels, a Gaussian bivariate function was selected for
modeling. Two main considerations apply for this choice. First,
heat dissemination by fire is continuous in nature. Therefore,
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Fig. 4. Fire recognition during the diurnal cycle. (a) t = 1 (00:00 h). (b) t = 49 (12:15 h). (c) t = 96 (23:45 h). Bright white areas denote fire objects.

Fig. 5. Images (a) before and (b) after convolution.

the thermal reflectance of one pixel has influence on its neigh-
boring pixels and vice versa. Second, this influence is Gaussian
in nature, i.e., temperature is assumed to be transferred from
one point to another gradually, and characteristics of this dis-
semination would be Gaussian with its peak at the center of the
pixel. In addition, the rationale was to use a simple function
for an effective and efficient characterization of the fire. For all
these reasons, the Gaussian function is an appropriate choice.
It is well adapted to represent both location and spread of fire
in space and, hence, allows to both model track the fire objects.
To each image I(x, y), with x being the pixel location in the
x direction and y the pixel location in the y direction, a
Gaussian bivariate function was fitted, with its center as the
center of pixels with maximum thermal radiance.

Splines, kernels [23], loess, and kernel convolutions [24]
were explored to represent the data. We found that splines,
kernels, and the kernel convolutions with the Gaussian function
were best in this respect [22]. Further, kernel convolution was
more efficient than the other methods [25]. Fig. 5 shows the
subset image before and after convolution, using kernels to
a lattice grid of 144 × 144. After some experimentation, we
chose the smoothing parameters equal to h = 0.20−0.25 for
the kernel convolutions based on [24], h equal to 8–10 times
the image size for smoothing based on [23], and h equal to the
image size for smoothing based on [25].

Kernel convolution was applied to all 96 images.
An algorithm was developed to automate this process using

an ordinary least square fitting.
Once fitted, the function is subtracted from the main image

leading to a residual image Isub(x, y) and a function f(x, y).
This process is summarized in the form of (1)

Isub(x, y) = I(x, y) − hf(x, y) − c (1)

where h is a scaling parameter, c is the global minimum of
I(x, y), and f(x, y) is the Gaussian bivariate function, i.e.,

f(x, y) =
1√

2πσxσy

e
− 1

2

(
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)2
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(2)

Here, µx and µy are the locations of the fire center, and σx

and σy measure the extent of the fire into the x and y directions.
This process is repeated n times, until no further maximum is
identified that could signify a fire.

The final result equals

I
(n)
sub =I(x, y)−h(1)f (1)(x, y)− · · · −h(n)f (n)(x, y)−c (3)

where h(n) are the n scaling parameters, f (n)(x, y) equal the
nth fitted functions with parameters σ

(n)
x , σ

(n)
y , µ

(n)
x , and µ

(n)
y ,

and c = c(1) + · · · + c(n) equals the sum of the minimum val-
ues after each iteration. Each function f (i)(x, y) represents an
object that can be considered as a fire. The choice for the value
of n is set heuristically equal to ten, as an image of the size of
54 km2 unlikely covers more than ten fires, as identifiable from
SEVIRI and as being relevant to fire fighting.

Fig. 6 shows the image before and after extraction of n = 2
fire objects. Fig. 6(d) shows the residuals after validating the
left-hand side of the equation image: decomposition1 to its
right-hand side. The root mean square of the error values were
of the order of e−14.

C. Tracking of Fire Objects

Extracted objects were tracked through time. Changes in
intensity and splitting and merging of fire objects may occur
rapidly (Fig. 7). Tracking of a fire object was based upon its
location and the uncertainties σx and σy into the x and y
directions. To relate an object at time ti to an object at time ti+1,
we identified objects with the lowest distance in adjacent time
frames, leading to connectivity of objects in time. An algorithm
was developed for extracting n fires over each image, where n
is the number of possible fires within any image. Fire behavior
was analyzed for merging, corresponding to a reduction of the
number of fire objects, splitting, i.e., an increase in the number
of fire objects, and anomalies. An example of such an anomaly
is an identified object of a sufficiently high temperature but
with a too large distance to fires at the previous or the suc-
ceeding times to be realistic as a fire objects. Further, merging
of fire objects could simply be handled. Splitting, however,
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Fig. 6. Actual image (left) and its decomposition into (a) background, (b) and (c) two fire objects, and (d) residuals.

Fig. 7. Fire objects showing changes in intensity [from (a) to (b)] and merging
of objects [from (b) through (c) to (d)].

complicated tracking, as it requires an initial starting point of
the fire. We applied interactivity for this purpose using visual
methods. To visualize and interpret fire behavior, we plotted the
tracked objects in a space–time cube framework.

D. Space–Time Modeling

Patterns from the extracted and tracked objects represent em-
pirical knowledge of location and characteristics of fire objects
over time. These results were then used for further modeling
the behavior of fire. To do so, we considered the following:

1) the direction of movement;
2) the effect of vegetation;
3) the weather conditions.

Vegetation patterns prior to fire were compared with the
movement of fire. This was done using the normalized differ-
ence vegetation index (NDVI) data and land-cover data. NDVI
data for time 12:30 h were generated from the SEVIRI im-
ages using the relation NDVI = (band 2 − band 1)/(band 2 +
band 1). Average NDVI values for July 23, 24, and 25 were
taken to have reliable data. In addition, we used the 2000 Corine

TABLE I
ERROR OBTAINED FROM VARIOUS KERNEL-CONVOLUTION METHODS

Land-Cover Data of the Iberian peninsula. Movement of the fire
center was superimposed over these two vegetation sets.

Weather conditions were included by considering wind direc-
tion and wind speed. Wind data were acquired from atmosphere
motion vectors (AMV), a product of Meteosat (both first- and
second-generation satellites). The AMV data, distributed in
binary universal form for the representation of meteorological
data (BUFR) format, were converted to text format. Then, based
on time, location, spread, intensity, NDVI, wind direction, and
wind speed at each time t, we developed a linear-regression
model to predict the possible location of fire at time t + 4,
1 h after observation as follows:

x̂t+4 ∼α0 + α1xt + α2σx,t + α3It

+ α4WDt + α5WSt + α6NDVI (4)

ŷt+4 ∼β0 + β1xt + β2σx,t + β3It + β4WDt

+ β5WSt + β6NDVI. (5)

Here, xt and yt are the locations of the highest intensity in
x and y directions, σx and σy are the spread in those directions,
It is the intensity of the fire, WDt is the wind direction in true
degrees, and WSt are the wind speed in Pascal all at time t,
and NDVI is the vegetation index. Coefficients αi and βj are
estimated from the data. The weighted sum was calculated
using simple regression, with R2 showing the importance of
the model and its ability to use it for prediction.

IV. RESULTS

A. Characterizing Patterns Over Space

We first identified the best way of kernel fitting, com-
paring the Nadaraya–Watson smoother [24], [26], smoothing
from [23] and from [25] (Table I). Methods using kernel
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Fig. 8. Kernel convolution applied to a series of images. From top to bottom and left to right at times 00:00, 00:15, 02:30, 05:00, 07:30, 10:00, 12:30, 15:00,
17:30, 20:00, 22:30, and 23:45 h, respectively.

convolution perform relatively well. On the basis of the root-
mean-square error (rmse) values, the smooth 2-D available from
the fields library in R, which offers increased efficiency in
processing by implementing the FFT was selected for charac-
terizing the entire set of images.

Fig. 8 shows three-dimensional views of the kernel con-
volution applied to the series of images. Clearly, fire objects
are characterized as Gaussian functions seen as peaks with
respect to the background. From these images, we observe the
following.

1) Background temperature slowly increases, reaching a
maximum around noon (10:00–12:30) and then gradually
decreases.

2) Fire objects change in intensity and in location with
respect to time.

3) Two objects of fire are visible during the beginning of
the day (00:00 h). These fires later merge into one fire
(15:00 h).

The extraction algorithm characterizes fire objects on the
basis of location centers and spread. Out of 960 originally
extracted objects (ten objects at each time), 185 objects were
tracked. From those, 103 objects were single objects, 61 ob-
jects were merging objects, and 21 were artifacts, respectively.
Next, location centers were tracked over time based on their
continuity and spatial correlation.

B. Space–Time Analysis

Fig. 9 illustrates the movement of fire in space and time. We
observe that continuity is stronger for objects 1 and 2 than for
object 3. Also, the swirling pattern of the fire objects in time is
evident, which is caused by a combination of vegetation, wind,
and topography.

Fig. 10 illustrates the movement of fire objects 1 and 2.
Clustering of fire objects was observed during the early hours in
the morning (around 08:00 h). This may be due to the building
up of the fire, i.e., the attainment of a threshold before the
fire starts moving. The figure also shows that objects 1 and 2

Fig. 9. Space–time cube showing the movement of fire in space and time. Size
of an object is used as a visual variable for representing fire intensity.

Fig. 10. Movement of fire objects in a 2-D plane. The ellipse delineates
clustered fire objects.

are merging, as is represented by the dotted lines. Movement
of the objects was stronger in the y direction than in the
x direction.

Most of the area under fire had a relatively high NDVI
value with a mean of 0.290 (see Table II). According to the
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TABLE II
SUMMARY OF NDVI VALUES FOR THE LOCATION OF FIRE PIXELS

TABLE III
RESULTS OBTAINED FOR THE PREDICTION MODEL

classification by Williams [27], the fires were in the areas
between medium and dense vegetation. Table II shows that 95%
of the fire objects were in areas with relatively dense vegetation
(NDVI ≥ 0.281 with the maximum of 0.314).

Out of 185 identified fire objects, 168 were within forest
areas and 17 were in agricultural areas. Fire objects in agricul-
tural areas were all artifacts.

C. Predicting the Motion of the Fire

Predictions were made for the possible movement of the fire
within the next 1 h from the given instance n. The results ob-
tained from the model are listed in Table III. Estimated α1 and
β1 coefficients indicate that within the next hour, the fire likely
moves some 700 m into the x direction and a similar distance
into the negative y direction. A significant contribution of the
uncertainty occurs as well, as is indicated by the α2 and β2

coefficients. Intensity contributes also to the spread, speeding it
up into the x direction and slowing it down into the y direction.
Wind size and speed did not have a significant influence on the
spread of the fire, but vegetation as measured by the NDVI,
was significantly influencing, with an emphasizing contribution
into the x direction and a tempering contribution into the
y direction.

R2 values are high, showing the high predicting ability of
the model.

V. DISCUSSION

We used band 4 for characterization of thermal activity over
space. The key “active fire signal” is an increase of the observed
radiance in the 3–5-µm region relative to the surrounding areas.
The fire studied in this paper was well identifiable throughout
its diurnal cycle. Other bands (7 and 9) were compared but did
not show better performance. Description of the fire was done
with the Gaussian bivariate function based on the nature of fire,

the simplicity in description, and the behavior of heat in a vast
area of land.

An exploratory analysis of various methods was done to
find the best class of methods to describe the characteristics
of the patterns within a single image. The kernel-convolution
method was selected. It supports extension and reduction of
dimensions. This can be helpful in extending this approach
to define the patterns of variations for other phenomena that
require more than one band to classify it over space.

Kernel convolution was applied to the actual image and
image with normalized background. Normalization was done
by subtracting the thermal radiance of the image acquired on
July 28 with the mean thermal radiance of images acquired
on July 23, 24, and 25 at corresponding times of the day.
Results thus obtained were similar to those of the actual image,
except that the background was exaggerated at early and late
hours of the day and smoother during late morning and midday.
Since these differences in radiance did not improve the model,
the results from the actual image were considered for further
modeling.

Extraction of fire objects was done by defining fire objects
as being composed of a Gaussian bivariate distribution. It
decomposed the image into a series of functions that separate
fire objects from the background. It did result into some over-
and underfitting of the fire objects but to a considerably less
amount than for example characterizing rectangular regions of
high thermal intensity (results not shown).

Tracking of fire objects might improve by including other at-
tributes, such as volume, shape, and angle of objects at succeed-
ing times. In addition, the simple differencing as we applied it
might be improved, for example, by using the Kullback–Leibler
distance or a probabilistic tracking approach. We did not expand
upon this further in this paper in order to keep the model as
parsimonious as possible and as tracking was already done
sufficiently well. Further thought is to be given to make this
algorithm more efficient.

The space–time analysis highlighted some aspects of utiliza-
tion of the extracted knowledge. We focused on understanding
the influence of wind, NDVI, and land cover. In the future,
this can be used as well to study the influence of factors like
topography, wetness index, and fuel index. Not surprisingly, we
found that fire moved over the regions having high NDVI. Such
modeling may be beneficial to predict the movement of fires as
detected from SEVIRI images. Based upon the results of the
model (R2 > 0.94), we conclude that further research along
this direction could lead to a further development of models to
make even better predictions.

VI. CONCLUSION

This research aimed at developing a model from SEVIRI
imagery for monitoring and analyzing the behavior of fire in
space and time. To do so, we developed and applied methods
from image mining. The developed mining model is promising
in a case study from Portugal. We conclude that SEVIRI has
a clear potential for giving rapid responses to track fires in a
rapid way. It also provides meteorological data that were useful
to better understand the behavior of forest fire.
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