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Abstract

Efficiently simulating discrete-event models in a paral-
lel and distributed manner is a challenging endeavour. On
one hand, various factors, such as hardware infrastructure
or model characteristics, have to be considered. On the
other hand, there is a wide variety of algorithms which
address subproblems of parallel and distributed simulation
and whose performance depends on the application at hand.
We illustrate the resulting difficulties with respect to the de-
velopment of parallel and distributed simulation systems
and argue that the simulation of distributed simulation sys-
tems is a feasible approach to alleviate them. To underpin
this, we introduce SIMSIM, a sequential simulator for par-
allel and distributed simulation systems. SIMSIM’s perti-
nency is illustrated by the development of a load balanc-
ing algorithm for PDEVS. The algorithm’s performance is
analysed using SIMSIM and the predicted performance is
compared to the performance of its implementation in the
simulation system JAMES II.

1. Introduction

Developers of distributed simulation systems face vari-

ous problems: Besides specific algorithms to address prob-

lems of distributed simulation systems (e.g., synchronisa-

tion, partitioning, or load balancing) [9], other fundamental

problems of distributed systems – like error recovery, inter-

faces to external software systems, or side-effects of net-

work protocols – may have to be considered as well.

On top of this, research on parallel and distributed

discrete-event simulation (PDES) is often focused on a cer-

tain application at hand, e.g. computer networks [20] or par-

ticle movement [21]. While this allows to increase the effi-

ciency of PDES for the addressed subset of problems, it also

hampers the comparability and repeatability of PDES ap-

proaches in general. Moreover, the PDES algorithms to be

compared are implemented in different programming lan-

guages and usually tailored to a specific infrastructure, i.e.

to a specific type of processor (see [4]), a specific commu-

nication layer (e.g., MPI or RMI), or other characteristics of

the environment.

These circumstances make it very challenging to select

efficient algorithms for a general-purpose PDES system, or

to develop new ones. For example, the performance of a

newly developed load balancing algorithm could depend on

the initial partitioning algorithm, the algorithm to route the

information between different logical processes (LPs), or

even the way the simulation is synchronised. Any perfor-

mance observation of such an algorithm is therefore biased.

Of course, it is possible to analyse an algorithm’s perfor-

mance by testing it in various setups, so that the influence of

other mechanisms, as well as its sensitivity to certain para-

meters (e.g., network latency) can be estimated. However,

two aspects prohibit this approach for most cases: Firstly, it

is tedious and expensive to test an algorithm within a run-

ning PDES system. Due to the large number of possibly in-

terfering aspects (e.g., parameter settings), a large number

of tests has to be conducted for sensitivity investigations.

The influence of external factors like background processes

has to be minimised as well. Furthermore, the unbiased ob-

servation of the execution is hard to achieve [15]. Secondly,

the generalisation of test results is complicated. The imple-

mentation quality of the algorithm and the PDES system it

is running in is often unclear, and effects of programming

language, operating system, or model properties are hard to

quantify. This makes the comparison of different algorithms

very hard, or even impossible [17].

To circumvent the second problem, one could implement

all algorithms in a common environment. This was in fact

one motivation for the development of the simulation sys-

tem JAMES II [13]. To avoid time-consuming testing,

however, one would have to predict the performance of a
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PDES system under given circumstances. This paper de-

scribes the simulation of a PDES system execution – so to

say, a meta-simulation – as a performance prediction ap-

proach that addresses the aforementioned problems.

2. Background and Related Work

In recent years, various approaches to predict and

analyse the performance of PDES algorithms have been de-

veloped. These approaches can be roughly categorised into

analytical approaches that employ mathematical methods,

empirical approaches that use empirical data from experi-

ments, and mixed approaches.

Mathematical models are very useful to obtain general

knowledge of PDES algorithms, since they abstract most of

the influencing parameters away. This allows the identifi-

cation of theoretical upper and lower performance bounds

[19]. On the other hand, mathematical models are hardly

tractable unless several very strong assumptions are made,

e.g. negligible roll-back cost, zero-delay communication,

or a homogeneous set of processors [12]. Besides that, the

formal description of an algorithm’s behaviour might be a

very challenging task in itself. Nicol concluded that “[...]
synchronization behaviour is frequently complicated, which
makes it very difficult to analytically prove anything about
performance executing large models on large machines.”
[19, p. 4].

Mixed approaches integrate empirical data with mathe-

matical models, so that aspects which are difficult to model

mathematically can be replaced by real-world measure-

ments (e.g., communication delay, etc.). Liu et al. used

benchmark results as parameters for a simple mathematical

model [15]. Although their predictions were quite precise,

they reported that it was very difficult to obtain accurate em-

pirical data, and that the whole process has to be repeated

manually when the performance of another PDES system

ought to be predicted. Juhasz et al. developed a trace-based

approach to predict simulation performance [14]. They

analysed a trace of a sequential simulation by transforming

it into a dependency graph of the processed events. A crit-

ical path analysis was used to calculate the possible speed-

up for using PDES instead. By altering the graph, specific

hardware setups could be taken into account and the im-

pact of different algorithms could be estimated (see [22]).

Although this approach is very promising, the underlying

graph manipulation algorithms are often rather costly, so

that the scalability of this approach is unclear [15]. Another

problem of trace-based analysis is the validation of (pos-

sibly complex) algorithms for re-labelling or re-structuring

the dependency graph, since errors will only lead to wrong

results instead of program errors, and are therefore hard to

identify.

Empirical approaches observe real PDES executions to

predict performance. Perumalla et al. virtualised an ex-

isting PDES system by simulating its distributed execution

on a smaller set of processors [21]. Their approach aimed

at saving debugging and testing time on costly supercom-

puter infrastructure. In contrast, the simulation approach

presented here focuses on facilitating the development of

PDES algorithms and systems. While this also includes

support for testing and debugging, these activities take place

on a more abstract level, and for different purposes. Our

approach aims at assisting the developer in finding design

problems of an algorithm prior to its actual implementa-

tion, and to test it by predicting its performance under a

large number of circumstances. There are other empirical

approaches for the simulation of distributed systems in gen-

eral (e. g., [2]), but these do not address the specific needs

of PDES system development (see 3.1).

3. SIMSIM

The terminology used in the domain of PDES systems

may lead to confusion when describing a simulation of the

very same. At first, we distinguish between system model
and application model. The system model is the model of

the PDES system, thus it is simulated by SIMSIM. Since the

system model in turn represents a simulation system, this

system simulates a model as well, which is called the appli-

cation model. In [21], additional timelines for PDES system

simulation have been identified. To avoid misunderstand-

ing, we will explicitly name the timelines that correspond

to system and application model: The simulated wall-clock
time (SWT) is the simulation time of SIMSIM, i.e. the sys-

tem model’s notion of time. The time with respect to the

application model is called application model time (AMT).

3.1. Requirements

To support different PDES systems, a simulation tool

has to be extensible and flexible, especially with respect to

observable measurements and the nature of algorithms un-

der investigation (e.g., granularity control, load balancing,

etc.). At the same time, such a simulation tool should sup-

port the developer by providing as much predefined func-

tionality as possible. An expedient combination of both re-

quirements would be to predefine the underlying structure

of PDES systems in general, while providing a clear inter-

face to extend it. In [18], Misra introduced the notion of

logical processes, which are assigned to physical processors
and exchange messages. This concept is widely accepted

and general enough to include all kinds of PDES systems,

so it was chosen as a generic PDES system model for SIM-

SIM. The developer of a PDES system simulation can rely

on this generic model, and only has to account for the char-

acteristics of the specific PDES system at hand, i.e., for the
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specific PDES system model.
Another requirement arises when considering different

usage scenarios. Besides the performance prediction for

various setups, which allows the identification of an algo-

rithm’s flaws and its sensitivity regarding certain parame-

ters, it might also be important to scrutinise a single sim-

ulation run. This allows to investigate the algorithm’s be-

haviour in special cases and to find the causes of incorrect

behaviour. Since debugging of real PDES systems is often

difficult and possibly expensive [21], a PDES system sim-

ulator should provide means to help the developer in the

aforementioned cases, albeit on an abstract level (i.e., only

flaws in SIMSIM’s model of the PDES system can be de-

tected, not flaws in the PDES system itself). The distinction

between executing a batch of simulation experiments and a

single experiment leads to additional needs. While the sim-

ulator should run as fast as possible when in batch mode, de-

bugging requires adjustment of the simulation speed. More-

over, visualisation of the PDES system model is helpful to

conceive the current status of the simulated PDES system

immediately.

3.2. Features

A sequential PDES system simulator, SIMSIM, was de-

veloped to illustrate the benefits of meta-simulation during

PDES system development. SIMSIM was designed to ful-

fil the requirements outlined in the last section. Firstly, a

plug-in interface was realised, which allows the developer

to define specific PDES system models. Until now, SIMSIM

does not support any modelling formalism to facilitate the

definition of PDES system models. This is partly because

any software modelling formalism could be used (e.g., state

charts, flow charts, etc.), so that a selection is difficult and

requires further research. Additionally, there are some ad-

vantages in allowing the extension of the software by pro-

gram code. The developer does not have to learn a new

modelling formalism, but is able to use the common con-

structs of imperative programming languages. This makes

the model of the PDES system a working prototype that

lacks the communication layer (emulated by SIMSIM) and

anything else the modeller is not interested in. Such a proto-

type is a good starting point for a real implementation. Nev-

ertheless, a concise modelling formalism to describe PDES

systems could facilitate the use of SIMSIM and should be

subject to future research.

Secondly, SIMSIM distinguishes between the two simu-

lation modes outlined in section 3.1, namely the batch mode
(i.e., batch job execution as fast as possible) and the interac-
tive mode (i.e., a single, paced simulation the user can inter-

act with). A graphical user interface allows the visualisation

of interactive simulation runs and facilitates the definition of

experimental setups, which can be stored in XML files. To

support the setting of PDES system specific parameters, the

user interface is also extensible via the plug-in mechanism.

Finally, SIMSIM allows to integrate external simulators for

special purposes. For example, an external network simula-

tor might be useful to investigate specific network protocols

or topologies and how they influence the performance of a

PDES system.

3.3. Realisation

3.3.1 Architecture

SIMSIM is implemented in Java and can be seen as a gen-

eralized, revised, and enhanced version of the PDES-MAS

simulator [7], which was tailored to predict the performance

of routing algorithms in the PDES system PDES-MAS

[16]. The old simulator was transformed into a PDES-

MAS plug-in for SIMSIM. In addition, a JAMES II plug-

in was developed, which models the abstract PDEVS sim-

ulator of JAMES II. Since both PDES system models are

quite different – e.g., regarding modelling entities (different

types of LPs vs. DEVS coordinator and simulator), syn-

chronisation protocol (optimistic vs. conservative), and pur-

pose (multi-agent systems vs. DEVS models)–, SIMSIM is

shown to be generic enough to subsume various kinds of

PDES systems.

However, the price for this generality is a rather abstract

model of physical processors and logical processes. There-

fore, it might be desirable to not only allow different spe-

cific PDES system models, which are encapsulated by plug-

ins, but also different generic PDES system models. This

was realised by employing the strategy pattern [10, p. 315

- 323] for most of the core classes. If more sophisticated

models of hardware or LPs are needed, one can simply ex-

change the corresponding components.

3.3.2 Execution

The basic simulation approach of SIMSIM is quite simple:

A set of LPs is executed on a set of modelled processors,

which in turn are connected via a modelled network. Each

message that is sent from one LP to the other is handled as

an event in SIMSIM, and therefore added to a central event

queue. All events are timestamped with the time at which

their corresponding message will reach its destination.

After the simulation started and initial messages have

been added to the event queue, a single simulation loop

is executed: The event with the smallest time stamp is re-

moved and handed over to the physical processor on which

the destination LP is situated. The physical processor reg-

isters the event execution of the LP and passes the message

on. The LP itself serves as a wrapper for the specific PDES

system model, which was provided by the plug-in devel-

oper. Now, this code can react to the message by generating
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Figure 1. Send time calculation

new messages and ’send’ them to other LPs, which means

that the arrival of each generated message is scheduled as

a new event. After the code to handle the message is exe-

cuted, the next event with the smallest time stamp is chosen,

and the whole procedure continues. The loop stops when

the event queue is empty or the user interrupts it.

While the general scheme is straightforward, the actual

calculation of message arrival times is not trivial. For each

received or sent message, the plug-in code has to define

corresponding processing times1. Since processing times

depend on the speed of the host processor, given times

can only relate to a (possibly hypothetical) baseline sys-

tem. To simulate the execution in a heterogeneous envi-

ronment, each processor is initialised with a computation

power factor cp, which defines its performance with respect

to the baseline system. This factor is then multiplied by the

processing times, e.g. cp = 0.5 defines a processor to be

twice as fast as the baseline system. It is also important to

notice that the definition of processing time does not need to

have any relation to its wall clock processing time in SIM-

SIM. In fact, these times can be chosen at will, so that they

are useful for the plug-in developer to precisely control the

granularity of the application model (i.e., the ratio of com-

putational effort per event to communication overhead).

The size of a message has to be specified by the plug-in

code as well, because this may have an impact on its trans-

fer time in the network. To compute the transfer time of a

message between two processors, the model of Juhasz et al.

[14] was modified2: Ttransfer = Ts + k · Tw.

Ts is the time to initialise a message of k bytes, and

Tw is the transfer time overhead per byte. In SIMSIM, the

parameters Ts and Tw can be set for each connection be-

tween two processors. Therefore, it is possible to simulate

a PDES system’s performance under very different circum-

stances, from efficiently connected clusters to sparsely con-

nected high-latency networks. Putting these things together,

a processor can now determine an LP’s processing time un-

til it sends a message, whose arrival time can then be calcu-

lated by simply adding the transfer time. However, it has to

be made clear that this approach implies a single-threaded

1These times must not be confused with the time the network needs to

transfer a message.
2Sending messages between unconnected processors has to be imple-

mented manually, Juhasz et al. used an additional parameter to account for

this.

execution, i.e. each physical processor executes the LPs one

after another, corresponding to the order of messages it re-

ceived (see figure 1). Besides resulting in slightly different

event time stamps, this also means that no multi-threading

overhead is considered.

4. PDEVS

To show the feasibility of using SIMSIM in the develop-

ment process of a PDES algorithm, we used it to develop a

load balancing algorithm for the abstract PDEVS simulator

of JAMES II. PDEVS is a DEVS [23] based modelling for-

malism with inherent support for parallelism. As for stan-

dard DEVS, the execution semantics of PDEVS is specified

by an abstract simulator. PDEVS models are either atomic

models, which are computed using so-called simulators, or

coupled models, which are computed by so-called coordi-
nators and consist of other atomic or coupled PDEVS mod-

els. So, coupled models are used for nesting, which results

in a hierarchy of atomic and coupled PDEVS models that is

called model tree. The corresponding hierarchy of coordi-

nators and simulators is called abstract simulator tree. Of-

ten, both terms are used synonymously, since each model

entity is handled by exactly one simulation component.

The simulation is controlled by the so-called root coor-

dinator, which is the parent of the topmost coordinator. To

initiate a simulation step, the root coordinator creates a *-

message which is then propagated to all atomic models that

ought to execute an internal state transition at the current

point in simulation time. The receipt of a *-message by an

atomic model leads to the generation of output, which is

then forwarded to other atomic models. Finally, all models

that received output or a *-message execute a state transition

and notify their parent via a done-message upon comple-

tion. When the root coordinator receives a done-message,

it can proceed with the next simulation step.

All in all, there are quite many messages to be processed

for a single simulation step. All simulators of models which

have to compute an internal state transition (i.e., they re-

ceived a *-message) need to exchange four messages with

their parent. Those who only have to execute an external
state transition (i.e., they did not receive a *-message, but

output generated by other atomic models) still need to ex-

change two messages. The same holds for all coordinators

of coupled models that are involved.

5. A Load Balancing Algorithm for PDEVS

In this context, load balancing means the re-partitioning

and re-distribution of the simulated model at runtime. Load

balancing makes sure that no processor is overly slowed

down by too much load, so that the collapse of single
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processors can be avoided and parallel execution may be

optimised. The question is now, under which circumstances

the application of a certain load balancing algorithm is ben-

eficial (and to what extent). This is where SIMSIM comes

into play, besides its aforementioned use for debugging and

prototyping. In addition to hardware, network, and PDES

system parameters, a load balancing algorithm may also

rely heavily on model characteristics, e.g. the degree of

dynamism it exhibits, so that a simulation-supported devel-

opment of this kind of algorithm seems favourable. Since

load balancing is a fundamental problem of many distrib-

uted systems, various approaches have been developed, in-

vestigated, and compared (e.g., in [24]).

Load balancing algorithms for PDES systems strive to

enhance their performance by taking simulation-specific in-

formation into account, so that there are many different ap-

proaches which are tailored to a certain protocol or appli-

cation (e.g., [3]). Likewise, the algorithm presented here

is built around the specific requirements of the abstract

PDEVS simulator in JAMES II. To test its sensitivity to cer-

tain model parameters, the next section will outline a bench-

mark model. Afterwards, different crucial parts of the algo-

rithm are detailed.

5.1. A Benchmark Model

To test the load balancing algorithm, the JAMES II plug-

in was extended by a benchmark application model. Differ-

ent benchmark solutions for PDES systems in general [1]

and specifically for DEVS models [11] have been proposed,

but these solutions do not account for model dynamism, i.e.

model entities that change their behaviour over time.

The benchmark model we implemented resembles the

PHOLD model [8] in that the atomic PDEVS models are

exchanging messages among each other. To have control

over model-inherent clusters, all atomic models are organ-

ised in groups. For each model, a preference factor pref de-

termines to which extent it exclusively exchanges messages

with group members. If pref = 1 for all models, they only

communicate within their groups, while pref = 0 makes

grouping irrelevant. A model creates a new message after

an amount of simulation time , which follows a random dis-

tribution, has gone by. Similarly, a received message will

be delayed for a certain simulation time, before it will be

returned to the sender, which will then destroy it. When

a model receives or sends a message, random distributions

determine how much processing time (i.e., simulated wall-

clock time) it needs to do so.

All parameters for the aforementioned random variables

define a single state phase of a model. A state phase has a

certain duration in application model time. When a state

phase expires, the corresponding model may change its

group with a certain probability, Pchange. Then, the next

state phase of the model is selected to define the model’s

behaviour. Each model can have an arbitrarily long list of

state phases. Therefore, it is possible to not only define

active and passive model entities, but also entities which

change their behaviour more or less rapidly and often.

5.2. Basic Algorithm

The abstract PDEVS simulator uses parallel execution

only for events that occur simultaneously. To record parallel

executions of its sub-components, each coordinator main-

tains a parallelism matrix P , which stores the number of

pairwise parallel executions of its sub-components i and j
at Pi,j . The overall number of a sub-component i’s execu-

tions (i.e., how many times it performed a state transition)

is recorded in Pi,i. If a larger number of sub-components is

executed in parallel, this is broken down to pairwise execu-

tion records as well. For example, if the sub-components 1,

2, and 3 are executed in parallel, the parallel executions of

(1, 2), (2, 3), and (1, 3) are recorded. These parallelism ma-

trices suffice to reconstruct basic information about inher-

ent parallelism between different parts of a PDEVS model.

When load balancing starts, each coordinator passes its par-

allelism matrix to the load balancer object at the root coor-

dinator and re-sets its parallelism matrix entries to zero.

The load balancer has now to determine which parts of

the PDEVS model should be placed on different processors,

i.e. which have been executed in parallel. To do so, each

parallelism matrix is interpreted as the adjacency matrix of

a simple, undirected parallelism graph. If there is an edge

between two nodes in a parallelism graph, this means that

they have been executed in parallel at least once since load

balancing was invoked the last time. Each sub-component

should be placed on an LP where none of its parallelism

graph neighbours are situated, and the number of used LPs

should be minimised at the same time. This corresponds to

the graph colouring problem, which is known to be NP-hard

and whose exact algorithmic solutions are still too costly

to work on large graphs [5]. Instead of determining an

optimal solution, we implemented a depth-first search to

colourise the graph. Sub-components whose nodes have

been colourised with the same colour form (independent)

parallelism sets. Each of these sets should be placed on a

single LP.

Although it is now clear how the sub-components of each

coordinator should be separated from each other, this does

not allow a concrete assignment to the p processors that are

available. To do so, the p − 1 parallelism sets whose sepa-

ration would result in the highest performance gain need to

be identified. This is done by analysing the parallelism sets

of all parallelism matrices and calculating a migration gain
for each set. The p − 1 sets with the highest gain should be

moved to remote processors, given that the gain is positive.
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We calculate the gain of separating a component i from

a component j as follows: Considering the migration of j
from the processor on which i is situated, let d be the av-

erage additional time that is needed to reach processor of

j from processor of i (i.e., the network delay). Further-

more, let ci and cj be the average computing time that is

needed to calculate the state transition functions of i and

j respectively (including their sub-components). Now, it is

possible to calculate the difference of a sequential execution

(i.e., both components are hosted on one processor) and a

parallel execution (i.e. component j is hosted on a remote

processor). This leads to the following gain function g:

g(i, j) =
{
Pi,j ·cj − 4d(Pj,j−Pi,j), iff ci ≥ cj +4d

Pi,j ·ci − 4dPj,j , iff ci < cj +4d
(1)

Equation (1) is the result of some basic mathematical

derivations that specifically account for the characteristics

of the abstract PDEVS simulator, and the fact that the com-

munication delay is hidden if ci ≥ cj + 4 · d. This simple

gain function is now calculated twice3 for each edge in the

parallelism graphs. To approximate the benefits of migrat-

ing a parallelism set, all edges of its elements are considered

and their migration gains are summed up. When the most

beneficial parameter sets have been found, the model tree is

split up accordingly. The affected components are moved to

the remote processors and the simulation proceeds.

5.3. Improvements

A major drawback of the basic algorithm is that it consid-

ers neither migration costs nor the current position of each

component at runtime. To overcome these problems, the

gain estimation as described in equation (1) was extended

to consider the number of sub-components of each compo-

nent, which can be regarded as a rough approximation of

migration cost.

Furthermore, a voting scheme to minimise the actual

number of migrations was introduced. After splitting up

the model tree, the current positions of all components are

considered to decide which part of the tree should be hosted

on which processor. This is realised by creating a migra-

tion matrix M of size u × (p − 1), where u ≤ (p − 1)
is the number of the component sets in which the model

tree was split up4. Each mi,j ∈ M denotes how much ele-

ments of set i are already situated on processor j. The ac-

tual mapping from model sets to processors is done by con-

tinuously choosing a maximal element mx,y ∈ M , which

makes processor y the host processor of all models in set

x. After removing row and column of M which contained

3once for migration of i, once for migration of j
4It is possible that there are less beneficial model sets than available

processors, e.g. for models with a low granularity.

mx,y , this procedure is repeated until the matrix is empty.

This mechanism ought to reduce the number of migrations,

and its effectiveness was evaluated using SIMSIM.

Finally, it would be desirable to relate the load balancing

frequency to the dynamism of the simulated model. This

requires an adaptive behaviour of the algorithm: When a

model’s computing requirements vary strongly over time,

load balancing should be invoked more often, to enable in-

stant reaction to changes. On the other hand, static models

do not need load balancing as often, so that a too frequent

load balancing could hamper the execution performance. To

realise a variable load balancing frequency, the frequency

was adjusted by a formula that took the results of the last

load balancing invocation into account. However, as could

be predicted by SIMSIM and was verified later, some con-

ceptual problems led to oscillations (see [6] for details).

6. Results

This section presents some of the interesting results that

were obtained by SIMSIM, and also illustrates how these

results comply with the real performance of the algorithm.

To compare predicted and real performance, the benchmark

model and the algorithm have been implemented in JAMES

II as well. The basic experimental setup makes several sim-

plifications, which reduces the number of different scenar-

ios to be observed and therefore leads to more general re-

sults.

In the following, tuamt and tuswt denote the time unit

of application model time and simulated wall-clock time

respectively. Only the relations among the time values of

one dimension (tuswt or tuamt) are relevant. The basic ex-

periment predicts the PDES system performance on a set of

8 fully connected, homogeneous processors (e.g., cp = 1
for each processor), with each connection having the same

quality (Ts = 1 tuswt, Tw = 0 tuswt, i.e. message size does

not matter). The randomly generated model tree consisted

of 100 nodes, the average number of children per node was

set to 4. Load balancing was repeated after 10 simulation

steps. Only one state phase with a duration of 30 tuamt

was defined for all atomic DEVS models. The atomic mod-

els formed four exclusive communication groups (i.e., pref
was set to 1). Each model sent a message after a duration

of 0.1, 0.55, or 1 tuamt, which was randomly chosen. The

response delay was 1 tuamt. Finally, internal and external

state transition were defined to last 10 tuswt each.

6.1. Gain Borders

SIMSIM was used to investigate under which circum-

stances a parallel execution using the load balancing algo-

rithm is beneficial at all. The results are depicted in figure

2. Each point in the result matrix represents two simulation
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runs, one in a sequential manner (i.e., on one host, with-

out load balancing) and one in parallel. The difference of

both execution times was calculated, so that positive val-

ues denote situations in which parallel simulation is faster

than sequential simulation, and negative values denote the

opposite.

Figure 2. Gain regions for different setups

As expected, PDES is beneficial in high-granularity and

low-latency scenarios. Interestingly, the gain border, i.e.

the point from which on parallel simulation is faster than

sequential simulation, is very sensitive to model character-

istics. These experiments could now be used to assess the

algorithm’s suitability for a variety of problem subsets. Fur-

ther experiments addressed scalability, performance in re-

lation to the dynamics of model entities, and influence of

model parameters on the overall number of migrations (see

[6]). One could also exchange the abstract PDEVS simu-

lator by a more optimistic version and investigate how the

synchronisation (e.g., the number of anti-messages) is influ-

enced by the load balancing scheme. To do so, one would

simply have to model the optimistic simulator and count the

corresponding messages.

6.2. Quality of Predictions

Figure 3 shows the difference between predicted and ac-

tual performance, measured on a two-processor system. To

obtain these results, shorter simulation runs (state phase

time span set to 3 tuswt) were conducted using a smaller

Figure 3. Performance prediction precision

model tree (40 nodes). In low-granularity scenarios, the pre-

dictions do not necessarily correlate with the experimental

outcome. This comes at no surprise, since in these cases

the factors that were not considered for prediction – like

the performance overhead induced by the abstract PDEVS

simulator itself – prevail. However, as long as the model

imposes any computational effort, the performance predic-

tion is rather accurate. It can also be seen that the preci-

sion slowly decreases in high-granularity scenarios. This

can be explained by the threading overhead caused by the

operating system (each processor had to maintain ≈ 20 con-

current Java threads), which was also abstracted away (see

section 3.3.2). Hence, SIMSIM’s predictions using the pre-

sented generic PDES model have to be considered as under-

approximations. Nevertheless, a refined generic PDES sys-

tem model that accounts for this overhead, even by simply

multiplying an appropriate factor, can eliminate this predic-

tion error.

7. Conclusions

This paper investigated the applicability of an estab-

lished technique – the simulation of software systems – to

overcome problems in PDES system development. To show

that this approach is feasible, we introduced a sequential

simulator for simulation systems, SIMSIM, that was used to

develop a load balancing algorithm for the abstract PDEVS

simulator of JAMES II. We motivated and exemplified the

use of different simulation modes in development, namely

interactive simulation to find the causes of unintended be-

haviour (e.g., oscillations, see section 5.3) and batch simu-

lation to find general performance characteristics (e.g., gain

borders for PDES, see section 6.1). Finally, we evaluated

the quality of the obtained predictions.

The investigation of the presented algorithm used many

abstractions, which was regarded as a drawback of math-

ematical models in section 2. But our point is that these

abstractions are not necessary to get results on the algo-

rithm’s performance, as it is the case for mathematical mod-

els, but we used them to get more general results. With

our approach, the developer can decide freely which aspects

should be abstracted away, and which should not. Further

research should address a more thorough analysis of the pre-

sented algorithm and ways to automate the analysis of algo-

rithms in general. Additionally, questions about appropriate
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modelling formalisms for PDES systems need some consid-

eration, as well as the refinement of the generic PDES sys-

tem model to avoid prediction errors as described in section

6.2.

All in all, it can be concluded that meta-simulation is
a feasible approach to support PDES system development.

With its ability to get qualitative and quantitative data on

an algorithm’s performance before or during development,

it can be seamlessly integrated with software development

processes (e.g., extreme programming) and seems to be par-

ticularly useful for developing PDES systems that consist of

many interacting mechanisms. Future applications of this

approach might be an automatic selection of suitable PDES

algorithms at runtime or the training of students in univer-

sity courses.

Acknowledgement

This research is supported by the German Research

Foundation (DFG). Prior work has been undertaken in the

PDES-MAS project5, which is supported by EPSRC re-

search grant No. GR/R45338/01.

References

[1] V. Balakrishnan, P. Frey, N. B. Abu-Ghazaleh, and P. A.

Wilsey. A Framework for Performance Analysis of Parallel

Discrete Event Simulators. In Winter Simulation Conference,

pages 429–436, 1997.

[2] R. Buyya and M. Murshed. GridSim: A Toolkit for the Mod-

eling and Simulation of Distributed Resource Management and

Scheduling for Grid Computing. Concurrency and Computa-
tion: Practice and Experience, 14(13–15):1175–1220, 2002.

[3] C. D. Carothers and R. M. Fujimoto. Background Execution

of Time Warp Programs. In Proceedings of the Tenth Work-
shop on Parallel and Distributed Simulation, pages 12–19,

Washinton, May 22–24 1996. IEEE Computer Society Press.

[4] S. R. Das, R. M. Fujimoto, K. Panesar, D. Allison, and M. Hy-

binette. GTW: A Time Warp System for Shared Memory Mul-

tiprocessors. In Winter Simulation Conference, Proc. of the

1994 Winter Simulation Conference, pages 1332 – 1339, 1994.

[5] D. Eppstein. Small Maximal Independent Sets and Faster Ex-

act Graph Coloring. J. Graph Algorithms Appl., 7(2):131–140,

2003.

[6] R. Ewald. Simulation of load balancing algorithms for dis-

crete event simulations. Master’s thesis, University of Rostock,

2006.

[7] R. Ewald, D. Chen, G. K. Theodoropoulos, M. Lees, B. Lo-

gan, T. Oguara, and A. M. Uhrmacher. Performance Analysis

of Shared Data Access Algorithms for Distributed Simulation

of Multi-Agent Systems. In Proc. of the 20th Workshop on
Principles of Advanced and Distributed Simulation, 2006.

5http://www.cs.bham.ac.uk/research/pdesmas

[8] R. M. Fujimoto. Performance of Time Warp under synthetic

workloads. In Proceedings of the SCS Multiconference on Dis-
tributed Simulation, pages 23–28, 1990.

[9] R. M. Fujimoto. Parallel and Distributed Simulation Systems.

Wiley, 2000.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison Wesley, 1995.

[11] E. Glinsky and G. Wainer. Performance Analysis of DEVS

Environments. In Proc. of AI Simulation and Planning, 2002.

[12] A. Gupta, I. F. Akyldiz, and R. M. Fujimoto. Performance

Analysis of Time Warp With Multiple Homogeneous Proces-

sors. IEEE Trans. on Softw. Eng., Special Section on Parallel
Systems Performance, 17(10):1013, Oct. 1991.

[13] J. Himmelspach and A. M. Uhrmacher. A component-based

simulation layer for JAMES. In PADS ’04: Proceedings of the
eighteenth workshop on Parallel and distributed simulation,

pages 115–122, New York, NY, USA, 2004. ACM Press.

[14] Z. Juhasz, S. Turner, K. Kuntner, and M. Gerzson. A Per-

formance Analyser And Prediction Tool For Parallel Discrete

Event Simulation. In UKSIM 2001: Conference On Computer
Simulation, 2001.

[15] J. Liu, D. M. Nicol, B. J. Premore, and A. L. Poplawski.

Performance Prediction of a Parallel Simulator. In Workshop
on Parallel and Distributed Simulation, pages 156–164, 1999.

[16] B. Logan and G. K. Theodoropoulos. The Distributed Sim-

ulation of Multi-Agent Systems. In Special Issue on Agent-
Oriented Software Approaches in Distributed Modelling and
Simulation, IEEE Proceedings Journal, 2001.

[17] D. E. Martin, P. A. Wilsey, R. J. Hoekstra, E. R. Keiter, S. A.

Hutchinson, T. V. Russo, and L. J. Waters. Redesigning the

WARPED Simulation Kernel for Analysis and Application De-

velopment. In Annual Simulation Symposium, pages 216–223,

2003.

[18] J. Misra. Distributed distcrete-event simulation. ACM Com-
puting Surveys, 18(1):39–65, Mar. 1986.

[19] D. M. Nicol. Scalability, locality, partitioning and synchro-

nization PDES. In Proc. of the 12th workshop on Parallel and
distributed simulation, pages 5–11. IEEE Computer Society,

1998.

[20] D. M. Nicol, J. Liu, M. Liljenstam, and G. Yan. simulation

of large-scale networks using SSF. In Winter Sim. Conference,

pages 650–657, 2003.

[21] K. S. Perumalla, R. M. Fujimoto, P. J. Thakare, S. Pande,

H. Karimabadi, Y. Omelchenko, and J. Driscoll. Performance

Prediction of Large-Scale Parallel Discrete Event Models of

Physical Systems. In Winter Sim. Conference 2005, 2005.

[22] P. Teo, S. J. Turner, and Z. Juhasz. Optimistic Protocol

Analysis in a Performance Analyzer and Prediction Tool. In

PADS, pages 49–58, 2005.

[23] B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of Mod-
eling and Simulation. Academic Press, London, 2000.

[24] S. Zhou. A Trace-Driven Simulation Study of Dynamic

Load Balancing. IEEE Transactions on Software Engineering,

14(9):1327–1341, Sept. 1988.

Proceedings of the Tenth IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT'06)
0-7695-2697-7/06 $20.00  © 2006



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


