
A REQUIREMENT MODELLING FRAMEWORK FOR REAL-TIME

MULTI-AGENT SYSTEMS

A thesis submitted in fulfilment of the

requirement for the award of the degree

DOCTOR OF PHILOSOPHY

From

University of Technology Sydney

By

AMIR ASHAMALLA

B.Sc., M.Sc.

Supervisor: Ghassan Beydoun

Co-Supervisor: Asif Gill

Faculty of Engineering and Information Science

2017

ii

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree nor

has it been submitted as part of requirements for a degree except as fully acknowledged

within the text.

I also certify that the thesis has been written by me. Any help that I have received in my

research work and the preparation of the thesis itself has been acknowledged. In

addition, I certify that all information sources and literature used are indicated in the

thesis.

This research was supported by a Australian Government Research Training Program

Scholarship.

Signature of Student:

Date:

iii

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to my supervisor, Professor Ghassan

Beydoun, for his endless support and guidance throughout this study. I would also like to

thank Dr. Asif Guill from University of Technology Sydney, Professor Graham Low and

Dr. Paramesh Nandan, from the University of New South Wales, for their support.

I would also like to thank my wife Marianne Abdelmesih for her support and

encouragement which enabled me to accomplish this important milestone in my life and

complete this dissertation, even when I almost gave up after 8 years of hard work.

To my daughter Rebecca Ashamalla, son Jonathan Ashamalla and mother Dr Aida Sami,

thanks for all your support and encouragement.

Finally, I would like to thank all my teachers, tutors, work colleagues and managers. You

have taught me everything I have learned, and your support and guidance have paved the

way for me to earn such a prestigious degree and achieve my dream.

Copyediting and related services were provided by Jera Editing Services.

iv

PUBLICATIONS BASED ON WORK PERFORMED IN THIS THESIS

1. Ashamalla, A., G. Beydoun and G. Low (2011). Towards agent-oriented

approach to a call management system. Information Systems Development,

Springer New York: 345-356.

2. Ashamalla, A., G. Beydoun, G. Low and J. Yan (2012). "Towards Modelling

Real Time Constraints." ICSOFT 2012 7th International Conference on Software

Paradigm Trends. SciTePress Digital Library: 158-164.

3. Ashamalla, A., G. Beydoun and N. Paramesh (2014). "Real-Time Task

Attributes and Temporal Constraints.". AMCIS 2014 American Conference on

Information Systems. Savannah, Georgia, August 2014.

4. Ashamalla, A., G. Beydoun and G. Low (2017). Model driven approach for real-

time requirements analysis of multi-Agent systems. Computer Languages,

Systems and Structures Journal (COMLAN), Elsevier. [To appear]

v

TABLE OF CONTENTS

CERTIFICATE OF ORIGINAL AUTHORSHIP ... ii

ACKNOWLEDGEMENT ... iii

PUBLICATIONS BASED ON WORK PERFORMED IN THIS THESIS ... iv

List of Figures .. viii

List of Tables .. x

ABSTRACT ... xii

Chapter 1 INTRODUCTION ...1

1.1 Background and Motivation ..1

1.2 Multi-Agent Systems and Real-Time Requirements ..2

1.3 Thesis Goals and Significance...4

1.4 Thesis Structure ...7

1.5 Chapter Summary ..8

Chapter 2 Background and Literature Review ...9

2.1 Introduction ...9

2.2 Real-Time Multi-Agent Systems (RTMAS) ... 11

2.2.1 Benefits of RTMAS Technology .. 13

2.3 RTMAS Applications and Implementations .. 15

2.4 RTMAS Requirements Engineering ... 18

2.5 AOSE Methodologies and Modelling Languages .. 20

2.5.1 AOSE Methodologies ... 21

2.5.2 Modelling Languages ... 25

2.6 Discussion .. 27

2.7 Summary ... 28

Chapter 3 ... 30

RESEARCH DESIGN .. 30

3.1 Overview of Design Science Research .. 30

3.2 Phase 1: Problem Identification .. 33

3.3 Phase 2: Identifying Initial Set of Modelling units .. 34

3.4 Phase 3: Synthesis of the Modelling Units Deployment Process 35

3.5 Phase 4: Validation of Modelling units and Concomitant Process 35

3.6 Summary ... 36

Chapter 4 Identifing the modelling Units ... 38

4.1 Synthesis of the Modelling Units .. 38

vi

4.2 Call Centre Management Domain ... 48

4.2.1 Call Centre Management Background ... 48

4.2.2 Confirming the Suitability of a MAS Architecture for CMC Requirements 53

4.3 Validating the Modelling units in the Requirements Analysis of the CMC MAS 55

4.3.1 Call Management Centre Requirements Analysis ... 55

4.3.2 Step 1: Identifying Actors in CMC .. 56

4.3.3 Step 2: Identifying Tasks for Each Actor in CMC .. 57

4.3.4 Step 3: Identifying RT Constraints for Role Tasks in CMC 61

4.3.5 Step 4: Identify Agents and Ensuring Tasks Do Not Overload Any Single Agent . 62

4.3.6 Step 5: Applying the Modelling units .. 64

4.4 Conclusion ... 72

CHAPTER 5 SYNTHESIS OF THE RT MODELLING PROCESS ... 74

5.1 Introduction ... 75

5.2 Meeting Scenarios ... 77

5.3 Modelling units’ Integration .. 82

5.4 Modelling units’ Dependencies ... 87

5.5 Proposed Process .. 89

5.5.1 Identifying the Modelling units Set for the Process: ... 90

5.5.2 Identifying Candidate Sequences .. 90

5.6 Simulating The Candidate Processes ... 114

5.6.1 Individual Modelling units’ Simulation .. 116

5.6.2 Sequential Modelling units’ Simulation ... 119

5.6.3 Random Modelling units’ Simulation .. 120

5.6.3.1 Random Simulation Tests .. 123

5.6.3.2 Random Simulation Results ... 125

5.7 Conclusion ... 127

Chapter 6 RT Modelling framework in an iPhone Application .. 129

6.1 Introduction ... 129

6.2 Application Requirements and System Goals ... 131

6.3 Integrating RT Requirements within the iPhone Calendar .. 135

6.4 The Pcal Application .. 136

6.5 Application Testing and Validation .. 139

6.6 Results ... 141

6.7 Threats ... 146

vii

6.8 Summary ... Error! Bookmark not defined.

Chapter 7 CONCLUSION .. 149

7.1 Thesis Summary .. 149

7.2 Thesis Contributions ... 151

7.3 Thesis Limitations and Future Work ... 152

7.4 Concluding Remarks .. 153

Appendix A .. 155

Call Management System SR Diagrams .. 155

Appendix B .. 162

Table 4.2 Sources of Modelling Units ... 162

Bibliography .. 177

viii

LIST OF FIGURES

Figure 2-1 Real-time approaches .. 13

Figure 2-2 No of publications, identifing how to represent constraints, per year 27

Figure 3-1 Research phases ... 33

Figure 4-1 SD diagram illustrating CMC actors dependencies 57

Figure 4-2 SR for the outbound calling system agent ... 60

Figure 4-3 SR for the performance monitor agent .. 60

Figure 4-4 SR for the RM, RM after call and RM pre call agents 63

Figure 4-5 Outbound calling system agent with the modelling units 69

Figure 4-6 Performance monitor agent with the modelling units 70

Figure 4-7 RM, RM pre-call and RM after call agents with their modelling units 71

Figure 5-1 Meeting attendees travel and arrival times to a scheduled meeting 79

Figure 5-2 Attendee “A”, “B”, “I” Travel options .. 81

Figure 5-3 Relationships between real-time constraints ... 89

Figure 5-4 Set 1 representing the first set of 5 modelling units 92

Figure 5-5 Set 2 representing the 2nd set of 5 modelling units 93

Figure 5-6 Set 3 representing the 3rd set of 5 modelling units .. 94

Figure 5-7 FC1 The 18 real-time modelling units’ process .. 96

Figure 5-8 FC2 The 23 real-time modelling units’ process .. 99

Figure 5-9 FC3 The 12 real-time modelling units’ process .. 103

Figure 5-10 Logic1 The 23 real-time modelling units’ process 106

Figure 5-11 Logic2 The 23 real-time modelling units’ process 110

Figure 5.12-16 Individual success rate test results for T1-T4 and all test comparison 126

Figure 6-1 Pcal application diagram ... 133

Figure 6-2 Pcal application home screen listing a month’s meetings 136

Figure 6-3 Deleting a meeting .. 136

Figure 6-4 Edit meeting screen ... 137

Figure 6-5 Location search screen .. 138

Figure 6-6 Location map display .. 138

Figure 6-7 The framework showing the process and the used 18 modelling units 140

Figure 6-8 Pcal application users density per country, as per Google Analytics e.g. 1000

users from USA, i.e. the darker the blue colour the more users per country 141

Figure 6-9 The total number of events and their categories, actions and labels 142

ix

Figure 6-10 Detailed Google Analytics per Pcal application event 145

Figure 6-11 Summarised Google Analytics per Pcal application event 146

Figure 6-12 Apple’s IOS 8.1 Travel Time Alert settings option 147

Figure 6-13 Apple’s IOS 8.1 Travel Time option ... 147

A-1 Outbound calling system SR diagram ... 155

A-2 SR with modelling units... 156

A-3 Performance monitor SR diagram ... 157

A-4 Performance monitor SR modelling units diagram ... 158

A-5 Relationship manager SR diagram... 159

A-6 Relationship manager after split SR diagram .. 160

A-7 Relationship manager after split SR modelling units diagram 161

x

LIST OF TABLES

Table 4.1: Systematic review results showing number of papers from each source 39

Table 4.2: The modelling units and their references *References as per appendix B ... 42

Table 4.3: Feature ratings on the call centre domain .. 53

Table 4.4: Potential agent roles, tasks importance and appropriateness 54

Table 4.5: Relationship manager, performance monitor and outbound system tasks 59

Table 4.6: Relationship manager real time tasks before subdividing 61

Table 4.7: Identifying tasks with time requirements for PM Role.................................. 61

Table 4.8: Identifying tasks with time requirements for the OCS Role 61

Table 4.9: Identifying tasks with time requirements for the RM Role after subdividing62

Table 4.10: Identifying tasks with time requirements for the RM agent 63

Table 4.11: RM time requirements template .. 65

Table 4.12: Performance monitor time requirements template 66

Table 4.13: Outbound calling system time requirements template 67

Table 4.14: The proposed 23 modelling units’ icons .. 68

Table 5.1: Meeting attendee, transport method and meeting agents identified tasks 82

Table 5.2: The agents and tasks .. 82

Table 5.3: The 4 modelling units’ sets .. 90

Table 5.4: The proposed modelling units’ processes .. 91

Table 5.5: Attendee “1” meetings ... 115

Table 5.6: General lecture non-attendees .. 117

Table 5.7: Results when each agent had 1 meeting only .. 118

Table 5.8: Adding more meetings to each agent results ... 118

Table 5.9: IVF and TS effect on the meetings success rate. ... 118

Table 5.10: Results of 99 events on meetings 2-100 .. 119

Table 5.11: Success rate for 223 events .. 119

Table 5.12: The 3 randomly chosen agents... 120

Table 5.13: Meetings held by the 3 randomly chosen agents 120

Table 5.14: The randomly chosen events .. 121

Table 5.15: Total successful and unreachable meetings ... 121

Table 5.16: The 10 random not attending agents .. 121

Table 5.17: The 100 random not attending agents .. 122

Table 5.18: Summarised simulation results .. 125

xi

Table 5.19: The Meeting success rate in resolving calendar conflicts 126

Table 6.1: Database fields mapped to existing iPhone calendar fields 134

Table 6.2: Pcal application versions.. 139

Table 6.3: Google events modelling units’ events hits and percentage 143

Table 6.4: Detailed Google Analytics per Pcal application events 144

Table 6.5: Summarized Google Analytics per Pcal application event 145

xii

ABSTRACT

Real-time constraints are a subset of abstract temporal constraints, which are a class of

constraints that are often placed on real world tasks during a problem-solving activity.

Violating temporal constraints can produce consequences of unknown severity. Real-time

constraints research is extremely useful in environments that require a high degree of

availability and reliability, which are the main characteristics of real-time multi-agent

systems (RTMAS). Domains currently using RTMAS include, but are not limited to,

rescue systems, scheduling applications, electricity, infrastructure systems, flight control

systems, marine systems, automotive systems.

This thesis synthesises a framework to support RTMAS requirements analysis to enhance

system design identifying real-time and fault tolerance requirements in the early phase of

the software development life cycle. The framework consists of a sufficient set of

constraints and an associated process to identify and apply the modelling units. The

analysts identify the applicable modelling units during the system analysis phase of the

sought RTMAS. A design science approach was applied to construct the framework

systematically. The framework was validated incrementally as it was constructed using a

call centre case study, a meeting scheduling application and an iPhone scheduling

application. These case studies have illustrated that the early identification of the real-

time constraints and their even distribution among different agent, significantly reduce

the chance of an agent failing. These also enhance the system stability and redundancy

by providing an extra level of fault tolerance at the agent and task level, as well as at the

overall system level.

1

CHAPTER 1

INTRODUCTION

Software systems can fail when requirements constraints are overlooked or violated. This

thesis advocates a model-driven approach to ensure real-time requirements constraints

are accounted for in the design of distributed intelligent systems (aka multi-agent

systems). This chapter introduces the goals of the thesis and sets the research background.

The chapter is organised as follows: Section 1.1 presents the thesis background and

motivation. Section 1.2 presents multi-agent systems and real-time requirements. Section

1.3 presents the thesis’ goals and significance. Section 1.4 provides an overview of the

thesis structure. The chapter is summarised in Section 1.5.

1.1 Background and Motivation

With the increased complexity of software systems, software development has become

more reliant on model-driven development. Instead of requiring software developers to

detail how a system is implemented, in a model-driven approach software models specify

the functionality and architecture of the system to be used (Colin, Thomas et al. 2003).

Modelling describes or specifies a system and its environment for a specific purpose

(Alhir 2003). Software modelling processes typically involve a number of phases, e.g.

analysis, specification, design, implementation and testing . Each phase would create its

own model (system representation) and bring the software system closer to realisation.

Each phase represents the software system from a different abstraction point of view, and

collectively represents the system more effectively. For example, the analysis phase in

developing multi-agent systems captures system goals, then refines these into agent goals

and respective role descriptions. Later in the design phase, goals and roles are further

analysed to identify agent tasks and agent classes that are closer to the system

implementation (DeLoach et al. 2001). In Object Oriented systems development, where

objects are at the centre of the modelling activities rather than actions and logic, layering

the abstractions of various phases is done according to three views: Computation

Independent Model (CIM), Platform Independent Model (PIM) and Platform Specific

Model (PSM) (Estefan 2007).

The class of systems of interest in this thesis is agent-oriented systems or multi-

agent systems (MAS). These are systems where “agents” are at the centre of the modelling

processes, and these are again typically supported by their own methodologies, e.g.

2

BEAST (Carrera et al 2014), ICTAM (Elsawah et al 2015), SAVS (Nakashima et al

2014), SODA (Cossentino et al. 2014), PASSI (Cossentino and Seidita 2014), MOBMAS

(Tran et al. 2008), AUML (Červenka et al. 2005), secure Tropos (Mouratidis and Giorgini

2007), Tropos (Bresciani et al. 2004), GAIA (Wooldridge et al. 2000) and others. Various

methodologies focus on different technologies or phases, e.g. Gaia methodology focusses

on the analysis and design of agent-based systems (Wooldrige et al. 2000) while TROPOS

introduces techniques for validating early requirements via a model checking approach

(Giunchiglia et al. 2003). Moreover, methodologies are typically tightly coupled with one

or more modelling language(s) to describe the types of intermediate products generated

during the various phases of development. For instance, UML is typically tied to RUP

and its variants; i* (i-star) is typically tied to the requirements analysis of agent-oriented

systems. As the use of Object Oriented (OO) languages is an established technology with

a quite sophisticated Integrated Development Environment (IDE), there is some debate

whether OO languages can actually be used for the implementation phase of agent-

oriented systems (Riemsdijk, Mehdi et al. 2006). In other words, the requirements

analysis phase is more tied to the abstractions and the modelling paradigm employed than

to the implementation phase. This thesis focusses on supporting the requirements analysis

phase for the relatively new technology of agent-oriented systems. More specifically, the

focus is on supporting the analysis of real-time requirements for agent-oriented systems.

This research also focusses on multi-agent systems, as these systems heavily rely

on negotiation, cooperation and coordination between tasks that are distributed among

different computer systems. In what follows, the significance of this research is

highlighted. The significance of agent-oriented systems is first described. The chapter

then highlights the increasing importance of identifying the real-time requirements of

agents as early as possible in the development process of agent-oriented systems.

1.2 Multi-Agent Systems and Real-Time Requirements

Multi-agent systems (MAS) are composed of multiple agents. A single agent is a software

component that is situated in the system’s environment and is capable of autonomous

action in that environment. Agents autonomously sense their environment and respond

accordingly. Other than the definitional properties of autonomy and situatedness, agents

typically interact and cooperate to meet their goals, which need to be aligned with the

system’s overall requirements (Beydoun et al. 2009). That is, agents are typically

designed to meet local objectives as part of the overall design objectives of the distributed

3

system (this is the MAS that they inhabit). Proper coordination and cooperation between

agents that possess diverse knowledge and capabilities underpin the successful

achievement of global system goals that cannot be otherwise achieved by a single agent

working in isolation (Vincent Conitzer 2007). MAS are often employed when a

centralised system solution is not feasible such as coordinating manufacturing (Koji

Iwamura et al. 2009), network management (Moon Hae et al. 2003), and electrical load

balancing (Broster et al. 2005). Time awareness is part of situatedness and is designed

into agents. That is, agents observe time in their interactions and decision-making. Their

reasoning processes take time into account and thus, the final outcome of the reasoning

process is partially dependent on time (Soh et al. 2005).

Modelling agent real-time interactions has gained focus in the last ten years. Such

focus highlights the link between modelling agent interaction and modelling how agents

can meet their deadlines, and how to overcome any ensuing agent faults by creating

redundancy in the MAS. Agents (and tasks) in these systems might not always be aware

of other agent’s (and tasks) availability and response times, e.g. task A waiting for task B

result, where task B has failed; hence, task A would wait indefinitely unless there is a

timeout or notification process in place. Such issues are currently resolved by timeouts.

In most cases, the timeouts are fixed times independent of the actual process duration or

system load. They are designed to force the application code to return data within this

time limit (Zahariev 2009). Notable recent examples of modelling real-time agent

interaction in MAS are seen in: The London Underground project (Basra et al. 2007),

search and rescue application (Micacchi and Cohen 2008), target tracking (N.A. Sabour

et al. 2008), construction management (Zhang et al. 2009), power management (Colson

and Nehrir 2013) and online learning (Agudo-Peregrina et al 2014).

Real-time attributes of plans, actions, events and messages are required to model

real-time constraints of MAS tasks, e.g. the London underground project (Basra et al.

2007) uses real-time attributes of messages and actions taken by other trains to avoid

collision. Other applications include cases such as search and rescue tasks (Micacchi and

Cohen 2008), where real-time aspects of actions are used to avoid obstacles in rescuing

victims in real-time target tracking (N.A. Sabour et al. 2008). These and other related

efforts illustrate that agents can indeed efficiently interact in real-time to re-

plan/reschedule required tasks in a way that fits unexpected events or changes in the

environment. A principal aim for modelling requirements for real-time systems is thus

fulfilling time constraints (Attoui 2000, Garousi et al. 2009). When developing a model

4

for Real-Time Multi-Agent Systems (RTMAS), the relative priority and deadline of a task

are equally important. From this perspective, a real-time agent is “an agent which

achieves a maximal set of high priority goals by their deadlines” (Vikhorev et al. 2009).

As such, modelling real-time agents requires analysing delay tolerances and assessing

alternative courses of action, e.g. an elevator door modelled as an agent has a minimum

and maximum time to open or close doors i.e. when a floor button is pressed, the elevator

doors do not immediately close as there is a minimal delay required. There is also a

maximum time for the doors to close. When this maximal delay is exceeded, an

“alternative course of action” is to raise some sort of alarm. This is typically in the form

of producing beeping sounds and the doors are then forced to close. After the doors close,

the elevator has a minimum and maximum time to start moving i.e., the elevator doesn’t

move up/down straight after the doors are closed; as it must wait until the minimum time

elapses, and then starts moving. If the elevator cannot move and the maximum time

elapses, “an alternative course of action” is again taken, such as opening the doors once

again and stopping the elevator to let people out, declaring the elevator is stuck or out of

action. This simple example illustrates how certain real-time constraints would help

identify problematic tasks, while other constraints would set “an alternative course of

action”, thus creating a more robust system. Currently, agent methods do not easily

enable analysts to make these distinctions, let alone identify real-time tasks in the midst

of requirements analysis and elicitation. This thesis was aimed at filling this gap.

Specifically, it provides a list of constructs to assist analysts in identifying real-time tasks

and specifying their relevant and critical attributes. It also provides a process that

interleaves the use of the constructs in a typical agent oriented system analysis phase.

1.3 Thesis Goals and Significance

The research presented takes the view that the earlier we model real-time requirements in

the software development life cycle, the more reliable and robust the resultant system will

be. Furthermore, the more likely it is that an appropriate balance between competing time

requirements will be achieved.

Surprisingly for systems that are supposed to be decentralised and distributed, a

common modelling approach to deal with real-time constraints has been to create a

monitoring agent (master agent) (Neto et al. 2009; Attoui 2000). This requires agents to

report their status to the monitoring agent, which ensures they are completed within their

allocated time. The monitoring agent initiates a redundant task if an agent charged with a

5

task does not report completing it within the required timeframe (Neto et al. 2009). This

clearly presents a single point of failure and is contrary to the decentralisation key feature

of MAS and its engendered appeal. This thesis seeks to maintain decentralisation in

fulfilling real-time constraints by ensuring that this responsibility is appropriately

allocated to individual agents, and this begins with the requirements analysis phase of

MAS development.

The thesis aims at providing a modelling framework to facilitate the identification

of a sufficient set of activities to be carried out by software modellers determining when

a task is said to have failed to meet its real-time constraints. The framework ensures that

the tasks that have failed can be distinguished from those that are likely to succeed, even

if they are a bit late, e.g. ensuring that the latter ones are provided with more resources,

or delaying the dependent task to prevent a cascade of failed tasks. The framework is

application domain independent. It depends on two sets of criteria: the first set provides

the knowledge to identify the success or failure of the task to meet its real-time

constraints; the second set provides the possible set of available behavioural actions. A

task taking too long to complete should be regarded as a failed task when a real-time

constraint applies. Receiving the right answer too late becomes the wrong answer

(Gokhale et al. 2004). Runtime errors and exception handling in the development phase

typically require a different set of tasks to be initiated when an error occurs (Westley and

George 2004). If a mission-critical task is taking too long to complete, it can lead to

unwanted consequences, e.g. dialling an emergency number then having to wait for an

hour for it to ring cannot be regarded as successful. The fact that the response time was

too long (one hour) means the task has failed, as it did not meet its real-time constraint.

This is different from fault tolerance: “the application service must continue even if parts

of the control system have failed” (Kopetz 2000), where the latter focusses on the

behaviour of the task after reporting a failure in order to start an alternative task to fulfil

the application goals. This research focusses on modelling the real-time constraint

redundancy during the analysis phase. The goal is not to address fault tolerance issues;

rather, this thesis is more concerned with synthesising a reliable and a precise analysis

process to ensure that the system modeller captures real-time constraints and the

concomitant required agents’ behaviour. This thesis relies on using modelling criteria to

identify a set of alternative actions to be taken once a task has been identified as having

failed to meet its real-time constraints. This set of behaviour actions can range from

logging an error to starting an alternative task. There has been some focus in recent years

6

on message exchange, negotiation and MAS fault tolerance, while not much has been

done on modelling the real-time MAS in the analysis phase.

A more detailed view of the environment is required to specify real-time aspects of

the agent activities that need to be taken into account while performing the task. For

example, a plan may include real-time constraints on the sequence of actions, and on the

duration, the deadlines and the resource states. A real-time constraint on a set of entities

is defined by a condition that must be satisfied by the entities over time. Real-time

constraints are fundamental to the descriptions of real-time tasks such as: dial a number,

wait for the ringtone, or speak. Tasks both individually and collectively must satisfy the

implied real-time constraints. For example, dialling a number must finish in a few

seconds, and within a reasonable period of time the ring tone must be heard. In addition,

each task must finish within a pre-calculated time (Estimated Duration). Violation of

these constraints is often not accepted, so it is necessary to specify them explicitly.

Accurate identification of the violation of a real-time constraint requires taking into

account task dependencies. For instance, task A may be simply waiting for its required

input from another task (task B), which is the problematic task (not task A). In the context

of agents within MAS, this dependency may be compounded and takes the form of a chain

of dependencies of tasks and agent goals (Neto et al. 2009) i.e. all agent features must be

considered and modelled with their time-related features (Cabri et al. 2003). This research

in essence promotes further context awareness of agents as advocated in (Barbosa et al

2012). To represent the salient features of the environment and the required agent

interactions that are relevant to identifying real-time constraints on agent’s actions, this

thesis emphasises the need to include further support for modelling languages to support

RT requirements.

As identifying the problem is the first step towards fixing or avoiding it, the

modelling framework developed in this thesis will help developers better understand the

problem and give them more insights as to the different aspects and effects of the problem

(Selic 2003). This will avoid future problems that might arise as a result of not meeting

real-time constraints. This can also assist in identifying bottlenecks, and better

distributing workload between agents.

This research not only creates more reliable MASs but also more redundant and

more self-healing software. By self-healing software, this means that the MAS, in general,

can overcome failures of certain tasks by identifying and rectifying the failed tasks

whenever possible. Not all failed tasks can always be rectified, neither do tasks always

7

fail. Currently, error detection mainly happens in run time using “try and catch”

commands (Dalessandro et al. 2007), with no standardised analysis or planning for error

identification and correction. This thesis proposes a modelling framework for real-time

constraints identification and error correction for MAS. Applying the framework to

multiple domains and applications will validate that the framework is not domain or

application-specific.

1.4 Thesis Structure

This thesis comprises the following seven chapters:

Chapter 1 Introduction: This chapter introduces the thesis, starting with the

background and motivation. It then outlines the contributions of the thesis, and their

significance.

Chapter 2 Background and literature review: This chapter reviews the relevant

literature and research in modelling real-time constraints and MAS domains. This also

highlights the missing gaps that the thesis fills.

Chapter 3 Research design: This chapter discusses the research design and

methodology followed in this thesis.

Chapter 4 Identifying the modelling units: This chapter presents the steps followed

in conducting a synthesis process to identify the real-time modelling units to be modelled.

It then discusses the review findings and the need for a process to apply these modelling

units within the software development life cycle, which is developed in Chapter 5.

This chapter also validates the identified modelling units using a call management

case study. The validation begins by applying the identified constraints set. It then

discusses why the constraints are sufficient, demonstrating the case study models and

findings. This thesis validation is spread across three chapters, as it was too long to be

included in one chapter and part of the validation was used to develop a synthesis process

to deploy the modelling units.

Chapter 5 Synthesis of the RT modelling process: This chapter presents the process

proposed to implement the modelling units. It then validates each modelling unit and the

process using a calendar scheduling simulation case study. This simulates user delay for

scheduled meetings and how the proposed framework attempts to enable them to attend

the meetings, either by taking alternate routes or transport methods to attend a meeting,

or by rescheduling the meeting if possible.

8

Chapter 6 RT modelling framework in an iPhone application: This chapter

presents the analysis of a calendar scheduling iPhone application case study, its outcomes

and findings. This is a rich domain that highlights key features of any MAS. Highlighting

how real-time constraints have been applied for a mobile phone (iPhone) scheduling

application and the benefits of applying the constraints in the analysis phase. This will

further validate that the set of constraints is domain-independent.

Chapter 7 Conclusion and future work: This chapter summarises the research

findings and limitations, then proposes future work to extend this research.

1.5 Chapter Summary

This chapter has outlined the research goal of this thesis, providing a brief background to

the research problem addressed. The chapter also presented the thesis structure,

contribution and significance to the MAS modelling community in general, and

specifically to the RTMAS and the RTMAS modelling community.

9

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

This chapter reviews the current work related to this thesis, then highlights an

existing research gap in RTMAS requirements analysis, which this thesis aims to fill. The

chapter starts by looking at related work in the areas of RTMAS, requirements

engineering, agent-oriented software engineering, and examines more closely work

dealing with the real-time dimension in these areas. It is organised as follows: Section 2.1

introduces the chapter focuses on agents, multi-agent systems and real-time multi-agent

systems; these are elaborated in Section 2.2 together with the benefits of real-time multi-

agent systems (RTMAS) technology. Section 2.3 describes some of RTMAS applications

and implementations. Section 2.4 presents current RTMAS requirements engineering

practices. Section 2.5 summarizes and compares several existing agent-oriented software

engineering (AOSE) methodologies and their modelling languages. Finally, the chapter

is summarized in Section 2.6.

2.1 Introduction
The Oxford dictionary defines an agent as “a person or thing that takes an active role or

produces a specified effect”. A software agent similarly takes an active role in producing

interactions within the environment of the system. This thesis aims at early identifying

time constraints for such software agent roles, e.g. how long does it take to complete an

active role? which facilities later transform into task time constraints? Currently, time

constraints are implemented on tasks, where a “Task usually refers to a clearly defined

piece of work, sometimes of short or limited duration” (Kellogg, M. 2016); that is, tasks

are required to complete within a certain time period. However, this research proposes

identifying these time limits in the early analysis phase, so as to identify constraints for

the agents’ overall roles as well as individual task time constraints. To better understand

agent role time constraints and the aim of this research, let’s start by stating the agents’

definitions from Botti et al. (1999, 2004, and 2008):

 An agent is a system situated within and part of an environment that senses that

environment and acts on it, over time, in pursuit of its own agenda and so as to

affect what it senses in the future.

 An agent is an encapsulated computer system that is situated in some environment

and is capable of flexible, autonomous action in that environment in order to meet

its design objectives.

10

 Agents are active, persistent components that perceive, reason, act, and

communicate.

Now that this thesis defined agents, what differentiates them from other software

systems and objects? The main difference can be summarised in the following slogan

“Objects do it for free; agents do it because they want to.” (Wooldridge and Ciancarini

2001). This is not the only agent characteristic, as the list below allows agents to work

individually and independent of each other, yet communicate to achieve certain global

goals that cannot be otherwise achieved by a single agent working in isolation (Beydoun

et al 2009).

 Agents are situated: they can sense their environment, through sensors, and have

a set of possible reactions to be performed through their effectors.

 Agents are designed for a specific purpose or goal, which is a part of the bigger

system plan.

 Agents are autonomous: they operate independently to achieve their goals. That

is, they control both their own behaviour and their internal state. An agent is not

limited to react to external stimuli, it is also able to start new communicative acts

of its own.

 Agents are proactive: they do not wait for orders to achieve their goals.

 Agents are reactive: agents follow predefined plans to achieve their goals; if things

do not go as planned then agents perform alternative plans and actions.

 Agents are cooperative: they coordinate and cooperate together, by

communicating their goals and plans, to achieve their goals.

 Agents are non-deterministic: they do not control their environment; however,

many agents can affect their environment by executing certain actions and plans.

 Agents are social: they can interact with other agents to achieve their goals.

Agents are also reflective, which includes being time aware “When an agent is time

aware, it observes time in its decision making and actions. Its reasoning takes time into

account, and thus, the outcome of a reasoning process is partially on time” (Soh et al.

2005). In this thesis, a Real-Time Agent (RTA) is an agent with real-time constraints in

some of its responsibilities; by extension, a Real-Time Multi-Agent System (RTMAS) is

a MAS with at least one RTA. Systems of this type require the inclusion of real-time

representation in the communication process, management of a unique global time, and

the use of real-time communication. This definition is adopted in this thesis, as it extends

11

the agent meaning to include real-time constraints. As such, the next section introduces

RTMAS, which is the main focus of this research thesis.

2.2 Real-Time Multi-Agent Systems (RTMAS)
RTMAS are MAS with time constraints. Hence, when agents consider time in achieving

their goals (that is, are time aware), then they are considered real-time agents. Within

RTMAS, an agent typically is tasked with its own goal derived from the overall systems

requirements. Each agent is expected to pursue this goal which is allocated by the system

analyst at design time in a manner that would ensure that system goals are satisfied. Agent

local actions maximise expected utility in leading closer to achieving their local goals.

Agents embody a stronger notion of autonomy than objects, and in particular they decide

for themselves whether or not to perform an action or a request from another agent,

according to their local goals and likelihood of achieving them. This agent autonomy

property suits the decentralised architectural requirements of modern distributed systems,

which makes them more suited in tackling the emerging complexities of modern software

scenarios (Zambonelli et al. 2005).

Software systems generally, and particularly RTMAS, can have both real and non-

real-time data input/output requirements. Hsin-wen et al. (2005) proposed scheduling

only the real-time data in any system. Since scheduling both will affect the overall system

performance, some real-time data items may miss their deadlines, while Saehwa et al.

(2000) grouped all real-time transactions together in one thread and set priorities for them.

This facilitated meeting the entire thread real-time deadline, rather than individual task

real-time deadlines, thus allowing the system to focus on the goal’s deadline rather than

sub-task deadlines.

The main obstacle for real-time systems is the response time of the active units and

their reaction speed, which is vital for many applications, such as multimedia and

distributed systems. Real-time systems are explicitly required to guarantee a response

time. In some systems there are physical processes with slow dynamics compared with

the execution speed of the command part. On the other hand, there are physical processes

with fast dynamics; this means that the process part must have much more stringent

temporal constraints for the execution of tasks. This may lead to the temporal suspension

of a task in favour of the execution of another higher-priority task. This is called task pre-

emption (Attoui 2000). That is, high priority and critical tasks are given more time to

complete within their real-time deadlines. Prioritising tasks allocated to agents underpins

12

successful real-time agents’ modelling. If an agent is unlikely to meet its deadline for one

of its tasks, for example, 50% of work is completed in 90% of the task’s estimated

duration, then such a task should be allocated more resources (such as CPU and memory).

to enhance its chances of meeting its deadline.

When developing a model for RTMAS, the relative priority of the task should be

taken into account, as well as the task deadline. From this perspective, Vikhorev et al.

(2009) defined a real-time agent as “an agent which achieves a maximal set of goals i.e.,

the largest number of high priority goals by their deadlines”. Task priority is a prominent

aspect of real-time modelling, where tasks are given priority based on their real-time

requirements (Lisa Cingiser et al. 2001). A priority can be assigned based on earliest

deadline first (EDF). If, during processing, another higher priority task with a closer

deadline arrives, the system will process the higher priority task first while notifying the

lower priority task initiator that the task execution has been postponed, as earlier

discussed in task pre-emption. Another technique is time-boxing (Roger Pressman 2010)

where, if projects can’t meet their deadline, each task in the project schedule is time-

boxed by creating a schedule per task from its delivery date (deadline) then stopping any

work done on this task once it hits the deadline. Any uncompleted work would be

completed later if required, time permitting.

For modelling real-time systems, identifying the real-time interactions between the

agents is critical. This requires specifying agents that need to interact in real-time and

illustrating how they would interact, which criteria should be met, and how the agents

should communicate to re-plan in case of any change in the environment. Only critical

real-time tasks need alternatives; if non-critical real-time tasks fail then the system will

continue working without them, while if critical real-time tasks fail, then the system could

stop or fail as a whole. Creating alternative routes for the critical real-time tasks

introduces redundancy in the system, which is another prominent requirements in a

RTMAS. In summary, most RTMAS research has followed the following two

approaches:

1. Meeting deadlines and finding alternative solutions/plans to implement, when the

system cannot meet the deadline; that is, identifying the real-time requirements

and constraints, and creating a redundant subsystem that would effectively

prevent the whole system from failing in case one agent or task failed to meet its

real-time requirements.

13

2. Modelling real-time agent interaction and communication, which in some cases

reflects stationing, while in others reflects the messaging protocols and algorithms

needed to maintain balance between the time taken to negotiate and coordinate

among agents, and the time taken to actually complete a task. The time taken to

negotiate and decide on the best way to complete a certain task or alternative task,

plus the time taken to actually complete the task, should in total be less than the

real-time requirements for that task (Villaplana 2005). Adding to the above any

network delay in message exchange, and the agent response time, it becomes

critical to identify which part of the task is required to meet the real-time

requirements, and also the number of tasks with real-time constraints per agent as

illustrated in figure 2-1.

Figure 2-1 Real-time approaches

The two approaches are not mutually exclusive, as responding to a certain stimulus

should be done within a certain timeframe. Hence, this thesis focuses on both modelling

the interaction between real-time agents and modelling real-time agent redundancy; that

is, how the system identifies a failure (real-time deadline not met) and how it will resume

working (redundancy).

To put into focus the significance of this thesis, we need to ask what are the benefits

of RTMAS and why does this research focus on RTMAS? To answer these questions,

this thesis first examines the benefits of the RTMAS technology. Hence, the next section

highlights notable features of RTMAS implementations, which together emphasise the

importance of such technology and why it came to be the main focus of this research.

2.2.1 Benefits of RTMAS Technology
System response time is the primary complaint in many applications. Generally, response

time is the time between users performing an input action such as clicking a mouse or

hitting a key, and the time the software responds with the desired output or action. System

response has two characteristics: response time and variability. A long response time

Redundant System

Meeting
Deadlines

Real-time

Design real-
time agent
Interaction

14

makes users frustrated and stressed. Variability refers to the deviation from average

response times. Low variability allows users to establish a rhythm even if the response

time is relatively long, which allows users not to be always wondering if something went

wrong (Roger Pressman 2010).

Timing analysis significantly reduces development and maintenance costs, as

timing related errors are identified and corrected early in the software development life

cycle (Bohlin et al. 2009). Denaro et al. (2004) noted that “researchers and practitioners

agree that the most critical performance problems depend on decisions made in the very

early stages of the development life cycle, such as architectural choices.” Hence, to avoid

future performance problems it’s better to tackle them in the early stages of the

development life cycle, such as in the analysis phase, using use-cases for example to

validate the model. This thesis aims to enhance RTMAS design by identifying the real-

time and fault tolerance requirements during the requirements analysis phase enabling the

following improvements:

1. Redundancy: The proposed analysis and modelling approach provide system

redundancy by creating a highly available system that is capable of self-healing.

2. Reliability: A redundant system is itself a reliable system. This is underpinned

typically by the system’s reliability in identifying a failed task. The proposed

analysis and modelling approach ensures system tasks would always complete,

acknowledging task success or taking an action to overcome any potential failure

when possible. This further strengthens system reliability.

3. Avoiding time locks is an important consequence of identifying tasks failing to

meet their real-time constraints (deadlines). Time locks are the state when the

system cannot execute anything beyond a certain bound. With time locks

conditions, verification of correctness properties becomes unreliable (Gómez

2009). The proposed analysis and modelling approach would always pre-check

deadlines, allowing enough time to ensure all critical deadlines are met, and

avoiding any potential time locks.

4. Monetary savings: Designing RTMAS for qualitative characteristics is more

important than for quantitative characteristics, as the cost of hardware (e.g. CPU,

memory, motherboards...etc.) is negligible when compared to the cost of lost

production, software development, human resources time. However, many real-

time systems implementations require more hardware to make the system faster

and capable of meeting its real-time requirements (Wolfgang et al. 2004). The

15

thesis’ proposed approach (modelling units set and concomitant analysis process)

reduces the lost productivity of real-time systems by reducing their downtime,

which translates into monetary saving and increased revenue.

This section introduced RTMAS, highlighting their important features and the

benefits of using the RTMAS technology. The next section further focuses on RT systems

benefits by discussing prominent and current RTMAS applications and implementations.

This is to further highlight their benefits and importance in resolving problems and

building such systems.

2.3 RTMAS Applications and Implementations
RTMAS typical applications span different organisational settings: monitoring and

analysis (Cheng 2012), e-commerce trading environments (Rodriguez 2003 , DiPipp et

al. 2001), evacuation planning (Wang et al. 2012), network robustness and network load

balancing, air flight control, mobile robot control (Navarroa et al. 2006; Badano 2008),

radar target signatures (Goldman 2000), rescue and systems (Micacchi and Cohen 2008),

personal digital assistance (Bresciani et al. 2004), intrusion detection (Shamshirband et

al. 2013). RTMAS have often been implemented in the following domains:

1) Agents for air traffic control: This is one of the most-used RTMAS fields today,

where agents guide planes to land on specific runways, while other agents

coordinate the work needed once a plane lands e.g. stairs, luggage carriers, security

officers. (Chen and Cheng 2010; Bicchi and Pallottino 2000).

2) In scheduling applications, e.g. the London underground “Tube”, RTMAS were

used to reschedule train timetables based on delays, train breakups, scheduled track

maintenance, and other. (Basra et al. 2007).

3) Intrusion detection (Shamshirband et al. 2013): This is used as a network security

system against hackers and various cyber-attacks, which requires distinguishing

misuse and abnormal behaviour.

4) Search and rescue: Here, robots can identify objects as fire, victim and obstacle,

then create a plan based on their identification. For example, if they identify fire,

they would try putting it out; if it’s an obstacle, they would go around it; at the same

time victims would be rescued. (Micacchi and Cohen 2008). For new tasks, the

agent would create its own execution plan and perform the task.

16

To illustrate the modelling activities in formulating an RTMAS solution and its

limitation of not having any real-time modelling units, this thesis examines the search

and rescue domain in further details here. The model includes the victim’s health where

the victim agent identifies the victim’s state which could be (rescued, dead or alive),and

used three main agents (worker, coordinator and victim):

I. The worker agent is in charge of the following tasks:

a) Worker messages, all communications should be channelled through the

coordinator agent. Here, three types of messages are sent to the coordinator

(heartbeat, notification and panic).

b) Planning by model worker agents is divided into three parts:

i. Simple reactive planner; this is to respond to simple actions that do not

require much planning.

ii. Plan library, consisting of six existing plans that are further broken into

three parts (initialisation and generation, execution, consistency

checking).

iii. Sending the new approved plan to the plan executor.

c) Sensors: agents receive periodic updates from their sensors, where update

frequency is controlled by the “sensor update cost” option.

d) Motors: agents move to the next cell on the desired map cell after confirming

they are within range and safe.

II. The coordinator agent is in charge of the following tasks:

a) Models workers, and helps them select other workers, to perform tasks through

exchanging the following messages:

i. Coordinator messages: does not prioritise messages or tasks, as it

assumes they are all important.

ii. New mission: messages sent to assign or reassign workers’ top level goal.

iii. Revoke autonomy: message to take control of the worker to apply a new

plan or goal.

iv. Restore autonomy: message to release the worker.

b) New task: reassigns an already controlled worker to a new task.

c) Resume task: stops a worker from working on the current task and resumes

working on a previously suspended task.

d) Planning: identifies which worker to perform the new task, based on evaluating

the candidate workers and selecting one or more to perform the task.

17

e) Global state representation: information is divided into worker specific or

global, including updated map information and new object discovered.

III. The victim agent models the health of a victim to be rescued. The victim agent

also identifies the victim state, which could be rescued, dead, alive.

Since the current implementation does not provide any awareness to the agents of

their real-time constraints, this creates some limitations to the system, e.g. the priority to

save the victim based on the victim’s status is not taken into consideration. This is clearly

time dependent, as victims who are in a critical condition should be saved first. This can

be done by creating deadlines to rescue those victims first. The use of modelling units to

identify deadlines in requirements modelling could produce such a system. “hard/soft

deadlines are defined by Gasouri et al (2009) as “A hard RT constraint on an operation

enforces that the operation must complete within the specified time frame or the operation

is, by definition, incorrect, unacceptable, and usually has no value. On the other hand, in

the case of a soft RT constraint for an operation, the value of the operation declines

steadily after the deadline expires. Tasks completed after their respective soft RT

deadlines are less important than those whose deadlines have not yet expired”. Another

modelling unit that could be used during requirements modelling is checkpoints. As

proposed by Sasikumar (2004) and Roger Pressman (2010), this can be used to save the

current search state when the rescue has to stop searching. This allows agents to resume

the search from where they had previously stopped. While the task status, as described

by Brazier et al. (2000) means that agents have a lifecycle, which changes from migrating,

to suspended, then activated state; it is only able to perform actions, when it is in the

activated state: the agent is unable to perform actions in the suspended state, as it is

waiting and inactive. This raises the question of agent survival, which is how long the

agent will keep working; this can be identified by one of two options:

1. The agent has a specific task; once completed it should stop functioning, e.g. once

all victims are rescued then the agents should stop searching.

2. The agent keeps monitoring and working in the background to accomplish a set

of tasks, when these have been accomplished it stays working, looking or waiting

for more tasks to accomplish, e.g. the agent would keep awaiting for further

victims to rescue.

As any software development process, a multi-agent system development process

starts with requirements gathering and analysis. This thesis focuses on modelling units

18

such as priority, critical task, deadline, checkpoint and task status. that can be identified

in the requirements analysis during the development of such time dependent multi-agent

systems. It focuses on supporting the requirements analysis phase to ensure that real-time

requirements are well identified in advance and well ahead of system design and

implementation. As such, it is instructive to examine the current practices in requirements

analysis of RTMAS to highlight the research gap on which this research focuses. This is

done in the next section.

2.4 RTMAS Requirements Engineering
The first phase of developing RTMAS is articulating its requirements in order to

undertake an appropriate agent-oriented analysis, where a requirements “is a description

of a system property or properties which need to be fulfilled” (Goknil et al 2011).

Requirements analysis leads to understanding the business impact of the software, what

customers want, and how end users will interact with the software. Its main objectives

are: 1) to describe customer requirements, 2) to create a basis for software design creation,

and 3) to define a requirements set to be validated once the software is built (Roger

Pressman 2010). The analysis outcome evolves to give a better understanding of the

business problem that can be transferred to features and attributes of a software system.

This requires developing a common vocabulary and assigning specific meanings to

various business concepts (Ghaisas and Ajmeri 2013). Requirements generally consist of

functional and non-functional requirements. Functional requirements represent

requirements that add value to the system users, while non-functional requirements

represent limits, constraints or impositions on the system to be built (Chung and Nixon et

al. 2012). In other words, functional requirements describe what the system will do, while

non-functional requirements will describe how it will do it. Non-functional requirements

include, but are not limited to, system usability, security, simplicity, customisability and

adaptability (Chung and Nixon et al. 2012).

The underlying synthesis processes of requirements gathering is encapsulated in the

practice of requirements engineering (RE), which is defined as the part of software

engineering that is concerned with the identification, expression, validation and analysis

of goals and constraints for a software system. RE offers the required tools, methods and

techniques to link customers’ desires to systems specifications that can be used to design

and build a software system satisfying the stated requirements (Ambriola and Gervasi

1999; Sadraei et al 2007). RE uses a number of approaches for requirements gathering,

19

like goal-oriented approaches that are used to improve the outcome of RE activities by

bridging communication gaps between different stakeholders and developers, and for

validating and verifying RE activities (Xu et al 2011; Shen et al 2014; Beydoun et al.

2014; Lopez-Lorca et al. 2011; Lopez-Lorca et al. 2016). RTMAS requirements gathering

starts by listing the potential stakeholders (actors), their goals and social dependencies. A

goal analysis is then performed to break down the goals to finer goals. A means-end

analysis is performed for dependencies relating goals to actors. The outcome of this

activity is an artefact that contributes to the requirements documents and design

documents.

Requirements evolve during the software development life cycle, hence they might

change from the initial specification; changes include additions, omissions and

modifications of some initial requirements. Each phase of requirements gathering

provides essential feedback to the next phase in terms of the design quality and the design

artefact under development. The final artefact is considered complete and effective when

it satisfies the system requirements and constraints (Pires et al. 2011). Challenges to RE

include dealing with inconsistencies or incompleteness of the requirements specified,

which results from information being gathered from multiple sources. Incorrect

requirements specification risks the project is cost and quality, usually leading to faulty,

expensive software. RE does not, and cannot, lead to a complete requirements gathering

if the system is in service and must evolve (Siegemund et al. 2011).

RE research aims at improving and validating requirements gathering; however, it

fails in providing sufficient support for requirements metadata, which currently is up to

the requirements engineer to define (Siegemund et al. 2011). Examples include

differentiating between “requirements conflict” and “requirements inconsistency”.

Requirements conflict refers to contradicting requirements where, for example, the

fulfilment of one requirements requires excluding another requirements, while

requirements inconsistency refers to situations where the co-existence of certain

requirements relations causes a conflict, competition, obstruction or clashing with another

requirements (Goknil et al. 2011). Current RE deficiencies include the need for higher

level abstractions, verification of requirements consistency, undetected conflicting

requirements, inadequate identification of requirements relationships, and insufficient

requirements knowledge coverage of risks or obstacles. (Siegemund et al. 2011). To

overcome some of these deficiencies, researchers proposed a number of enhancements,

such as (Miller et al. 2011) proposed withholding design commitments, delaying system

20

boundary definition and delaying requirements “sign-off”. (Lopez-Lorca et al. 2016)

propose using additional knowledge sources (ontologies) to interleave consistency and

completeness checks with analysis.

This thesis emphasises the widely-recognised need that non-functional

requirements, e.g. time related requirements, should be considered at the earliest stages

of the system development life cycle. This facilitates moving towards real-time system

design and early timing requirements error detection (Hassine and Rilling et al. 2010).

In the context of MAS, once systems’ requirements are collected, developers

require a methodology to develop and implement the gathered requirements into a MAS

software system. The next section examines the current practices in agent-oriented

software engineering to discuss some methodological advantages and limitations and

highlight the significance of this research to the agent oriented software oriented

community.

2.5 AOSE Methodologies and Modelling Languages
Developers use one or more methodologies to develop agents, MAS and RTMAS.

Methodologies define various modelling languages, steps, techniques and models to

produce MAS (Argente et al. 2011). However, there is no single universal methodology,

as each methodology has limited applicability, for example, to a specific domain or

application (Beydoun et al. 2006; Tran and Low 2008) making them deficient in at least

one area e.g. agent internal design or agent interaction design.

Methodologies typically define their abstractions and their work products through

a meta-model, which frequently presents a different meaning to each phase (Cossentino

et al. 2014; Tran, Low and Beydoun 2006). With an appropriate notation, a meta-model

can be used to create a modelling language that can be used to create various agent work

products. A methodology also prescribes the processes that developers need to follow to

generate the various work products. There have also been efforts to create modelling

languages and meta-models without their processes. These modelling languages are also

used by developers to support their analysis. In what follows, I describe notable

methodological efforts in AOSE and then present several notable modelling languages

that have been created without concomitant processes (i.e. those modelling languages do

not belong to any specific methodology).

21

2.5.1 AOSE Methodologies
There are few dozen AOSE methodologies in use. Notable methodologies include, but

are not limited to, GAIA (Wooldridge et al. 2000), Cassiopeia (Collinot et al. 1996),

TROPOS (Giunchiglia et al. 2003) , MOBMAS (Tran and Low 2008), O-MaSE (Deloach

and Garcia-Ojeda 2014; Garcia-Ojeda et al. 2008), MESSAGE (Garijo et al. 2005),

PASSI (Cossentino and Seidita 2014), MOBMAS (Tran , Beydoun and Low 2007),

MAS-CommonKADS (Iglesias et al. 1996), Adelfe, Prometheus and INGENIAS

(Beydoun and Low et al. 2009), ADELFE, ASPECS ,ELDAMEth, GORMAS,

INGENIAS-Agile, O-MaSE, OpenUP, ROMAS, SODA (Cossentino et al. 2014), and

Radical Agent Oriented Process/Agent Object Relationship RAP/AOR (Wagner and

Taveter 2004). This section further summarises and compares some of the notable

methodologies highlighting their key characteristics and differences.

GAIA methodology focuses on organisational abstractions, modelling the macro

(social) and micro (agent internals) aspects of MAS (Wooldridge et al. 2000). GAIA

methodology is best described in Zambonelli et al. (2003) and has been extended to allow

implementing the designed models using the Java Agent Development “JADE”

framework (Bellifemine et al. 2001) and GAIA2JADE (Moraitis and Spanoudakis 2006),

in which the requirements are gathered first, then the analysis is conducted, and where

the roles and interaction models are fully elaborated. It is in the design phase that the

agent services and acquaintance models are developed; then comes the architectural

phase, aimed at defining the system organisational structure. The final design phase

specifies the MAS in detail (Zambonelli et al. 2005).

Weyns et al. (2007) recommended including the environment in the GAIA

methodology, giving five perspectives to it as an explicit part of the MAS “(1) the

environment as a container and a means for communication, (2) the environment as an

organizational layer, (3) the environment as a coordination infrastructure for cognitive

agents, (4) Markovian environments, and finally (5) task environments”, where the

environment is a first-class abstraction with the following dual roles:

A. The environment provides the surrounding conditions for agents to exist, which

implies that the environment is an essential part of every multi-agent system.

B. The environment provides an exploitable design abstraction for building multi-

agent system applications.

22

Another widely used methodology is Tropos (Giunchiglia et al. 2003), which is a

comprehensive agent-oriented methodology that recognises the interaction between

software systems and humans or organisations (Cossentino et al. 2014). Tropos adopts i*

requirements modelling in five phases (Morandini et al 2014; Beydoun et al 2006):

1) Early requirements analysis (identifying stakeholders and their intentions).

2) Late requirements analysis (identify interactions and dependencies between the

system and environment expressed in functional and non-functional

requirements).

3) Architectural design (detailing the system agents).

4) Detailed design.

5) Implementation and testing.

 While the Cassiopeia methodology, developed by Collinot et al (1996), defines

agents in 3 steps:

1) Identify the elementary behaviours that are implied by the overall system task.

2) Identify the relationships between elementary behaviours.

3) Identify the organisational behaviours of the system, for example, the way in

which agents form themselves into groups.

Modelling and Analysis of Real-time and Embedded Systems (MARTE),

developed by IBM and approved by the Object Management Group (OMG) (Chise et al.

2009), extends the UML by explicitly referencing clocks, for example, the Idle clock

(idealClk) (Demathieu et al. 2008), where clocks are classified into three families:

coincident-based, precedence-based and mixed constraints (Mallet 2008). The frequently

used constraints in these three families are: “isPeriodicOn”, “alternatesWith” and

“sampledOn”. MARTE consists of three packages, each of which targets the general,

schedulable and performance analysis. MARTE also uses constructs to express non-

functional properties, time-related constraints and platforms, which are gathered as part

of system requirements yet expressed in a limited natural language. MARTE overcome

this limitation by formalising the requirements design models using UML, enabling

relating model-driven engineering to real-time and embedded domains (Demathieu et al.

2008). MARTE offers the following four fundamental pillars and notations:

Pillar 1: QoS-aware Modelling

 High-level application model “HLAM”: for modelling high-level RT QoS,

including qualitative and quantitative concerns.

23

 Non-Functional Properties “NFP”: for declaring, qualifying, and applying

semantically well-formed non-functional concerns.

 Time: for defining time and manipulating its representations.

 Value specification language “VSL”: The Value Specification Language is a

textual language for specifying algebraic expressions.

Pillar 2: Architecture Modelling

 Generic component model “GCM”: for architecture modelling based on

components interacting by either messages or data.

 Allocation model “Alloc”: for specifying allocation of functionalities to entities

realising them.

Pillar 3: Platform-based Modelling

 Generic resource Model “GRM”: for modelling of common platform resources at

system-level and for specifying their usage.

 Software resource model “SRM”: for modelling multitask-based design.

 Hardware resource model “HRM”: for modelling hardware platforms.

Pillar 4: Model-based QoS Analysis

 Generic Quantitative analysis model “GQAM”: for annotating models subject to

quantitative analysis.

 Schedulable analysis model SAM: for annotating models subject to scheduling

analysis.

 Performance analysis model PAM: for annotating models subject to performance

analysis.

Other modelling methodologies propose creating an agent manager “master agent”

that ensures that tasks are completed on time (Ephrati and Rosenschein 1992). Although

the master agent is considered a single point of failure, which is against one of the main

characteristics of MAS, it has gained publicity in recent years and started to be accepted

in RTMAS. Another model was presented by Zambonelli et al. (2001), which depends on

initially broadcasting the agent’s set of tasks and relying on other agents to participate

and negotiate this set of tasks. The MAS design is represented as an organisation structure

where each agent is identified by its role. The role is what the agent is expected to do in

an organisation where each agent can either initiate a change flow or participate in a stage.

This gives agents the flexibility to initiate an alternative stage, if it could not complete the

one it is participating in, after notifying all other participating stage agents. By having the

24

initial protocol, there will be no need for a global controller (master agent) as all agents

will be notified and will be able to participate in the newly initiated protocol. The

aforementioned methodologies might be considered general in their view; however, other

than MARTE there are a number of methodologies related to this thesis and targeting

real-time systems, such as:

A. PEARL methodology which has the ability to use software specifications as

program prototypes and extend them to fully functional programs (Gumzej et

al. 2001).

B. Real-Time Structured Analysis (RTSA) which is an extension of the

traditional Structured Analysis (SA) method. RTSA allows capturing and

portioning complex real-time systems into three elements:

1) External top level behaviour.

2) Real-time functional design options, that is, control, timing, and

synchronisation aspects of the system functions.

3) Real-time implementation behaviour, that is, response time, delays,

queue lengths, and other aspects of the system behaviour as

embodied in the hardware, software and human resources and

resource architectures (Karangelen et al. 1994).

C. Rong-he et al. (2009) intelligent system architecture, where in the uncertain

and dynamic circumstances a systematic modelling method can be used in

the analysis and design of real-time multi-agent systems in particular.

There are also some frameworks which are worth noting, as they are related to this

thesis; for example, RADE (Role-based Agent Development framework), which is used

when agent goals cannot be directly related to constructs, as a one-to-one relation; hence,

there is a need for a theoretical framework to help resolve such complex relationships

(Cossentino et al. 2014). Complex relationships are developed due to agents operating

autonomously in MAS where each agent has a role in the system’s requirements

fulfilment. A single agent may take one or many roles, and many individuals may also

occupy the same role (Zhang and Xu 2006). RADE applies role-mapping where an agent

is considered a part of a system tasked with the overall requirements, while role is defined

by the following four attributes:

1) Responsibilities: These determine functionality which is divided into two types;

liveness properties that represent something good happening and safety

25

properties that represent nothing bad happening. Maintaining and ensuring an

acceptable state of affairs, where a request is always followed by a response

(Wooldridge and Jennings et al. 2000; Georgeff and Lansky 1986).

2) Permissions: These are the rights associated with a role as resources available

for the role to utilise and realise responsibility.

3) Activities: These are computations associated with the role that may be carried

out by the agent, without interacting with other agents, thus they are private

actions.

4) Protocols: These define the way agents interact with other agents in their roles.

Another approach similar to RADE is DARX (Marin et al. 2001), where each task

can be replicated unlimited times and with different replication strategies. DARX

includes group membership management to dynamically add or remove replicas. It also

provides atomic and ordered multi-cast for the replication groups’ internal

communication (Zahia et al. 2001). furthermore, the PABRE (Franch et al. 2013)

framework is designed to reuse requirements patterns by using meta-models that describe

the main concepts around each requirements.

Regardless which methodology they use, developers will always require a

modelling language to describe and represent the generated work products. As earlier

discussed, such modelling languages can also be used independently of the processes

prescribed in a methodology. The next section examines some MAS modelling

languages, also highlighting the modelling language preferred in the validation

component of this research.

2.5.2 Modelling Languages
Modelling is a description of the system and its environment for a specific purpose; hence,

a model is the abstract representation of a domain with concepts and relationships

between these descriptions and the real world (Othman and Beydoun 2013). Modelling

requires a number of skills that span the range from knowing the aspects described in a

model to the ability of encoding such knowledge into formal statements (Ghidini et al.

2009). Modelling requires a language to express and represent it, hence this section

presents several such existing languages.

There are many languages to model MAS and RTMAS, for example the Agent

Unified Modelling Language (AUML), Agent Modelling Language (AML) and i*

(pronounced as i-star). AUML and AML are extensions of the widely used Unified

26

Modelling Language (UML) (Červenka et al 2005). Agent Modelling Language (AML)

defines three modelling concepts to model MASs: agent type, resource type and

environment type. The agent type is used to specify the type of agents. The resource type

is used to model the type of resources within the system, that is, physical or informational

entities. The environment type is used to model the type of the system’s inner

environment. Zhang (2006) proposed modelling the real-time feature, of multi-agent real-

time systems using the Unified Modelling Language, “UML”, by extending stereotypes,

tagged values, and constraints. This is based on Papasimeon and Heinze (2001) using

stereotypes to extend UML for the Jack language (Picard 2003) Stereotypes Definition

and AUML Notations for ADELFE Methodology with Open Tool. Hull et al. (2004)

modelled real-time embedded systems with UML, by representing DORIS (a method

extensively used in the aerospace industry) using UML, where they represented the

interaction between different parts of the system by a path end, which represented the

path that data would flow in. AUML is not preferred as an Agent Oriented (AO)

modelling language, as semantic problems appear when the agent is being a subtype of a

UML component or classifier (Beydoun, Low et al. 2009), for example, where UML

forces programmers to translate goals into other software notations such as classes,

attributes and methods (Bresciani et al. 2004). This research does not have such problems

as it uses the agent modelling language i* which does represent goals, hence there is no

need to translate them into any other software notations. This research also contributes

by defining a process for applying the modelling units in the software development life

cycle. The modelling units and the process identified constitute a MAS real-time

requirements framework. The framework thus consists of an identified set of modelling

units and a process representing their checking sequence and their interdependencies.

The i* model was designed specifically for modelling agents and MAS by Eric Yu

(1995), and has gained acceptance by the modellers. The i* model consists of two

components: The Strategic Dependency (SD) model which models the different agents

and the relationships between them, and the Strategic Rationale (SR) model which models

the different tasks each agent has and the different proposed alternatives to accomplish

these tasks. In this thesis, the i* model is used to represent MAS agents and the

relationships between them. Our early requirements phase generates a high-level

description of system goals and roles expressed in the i* model. The choice of i* as a

modelling language is based on previous experience (Bresciani et al. 2004) which has

shown that i* is a good language in which to express MAS requirements. In particular,

27

the i* “actor” lends itself to readily modelling the actors and agents in the proposed

systems, which comprises a number of Actors (Agents and Roles) (Beydoun et al. 2009).

It is instructive to highlight the novelty of the work presented in this thesis from other

RT-UML work. When using RT-UML, the authors were limited by the UML tags,

guidelines and industry standards, which constrained the ability to extend it with the

proposed modelling units, as will be further discussed later in this thesis.

2.6 Summary
The literature review has illustrated an important research gap regarding modelling real-

time constraints and standardising their identification and rectification process in

RTMAS. In particular, despite the fact that a number of researchers have identified how

to represent constraints, as summarised in Figure 2-2 and will be detailed in Chapter 4,

there has never been, to the author’s knowledge, any work that produces a domain

agnostic modelling framework to identify the full set of constraints that would help

diagnose or rectify failed real-time agents. There have been notable attempts on this, but

they were restricted to a specific domain, in the automotive industry (Konrad et al 2005),

or to specific notations (Hassine et al 2010). This is important to ensure quality distributed

agent based systems. Ensuring a domain agnostic approach is critical for multi-agent

systems, as real-time constraints assist analysts in identifying bottlenecks, and enhance

system redundancy and reliability. Modelling real-time constraints can further highlight

an agent’s workload: which is beneficial because identifying overloaded agents and

redistributing the workload to other agents reduces the agents’ risks of failure.

2Figure 2-2 No of publications, identifing how to represent constraints, per year

From the above, the importance and usability of real-time constraints is clear; what

is also clear is: the non-existence of a comprehensive real-time constraint research and

the lack of focus on usability in modelling. This is the gap that this research aims to fulfil

through this thesis and is discussed in further details throughout the remaining chapters.

0

5

10

15

19
83

19
85

19
90

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

No of Publications per Year

28

 The use of real-time constraints has mostly revolved around creating a redundant

system, and not around identifying late or failed tasks. For example, most approaches

focus on distinguishing whether deadlines are hard or soft, and how to start an alternative

task once a deadline has lapsed. The majority of approaches focus on a single type of

constraints or a small group of constraints, as illustrated in Chapter 4. Konrad et al. (2005)

and Hassine et al. (2010) were the only researchers noted in the literature who attempted

to identify and group the real-time constraints. This thesis is different from their work as

they did not model the constraints, and their identified constraints were not meant to

identify task failures or recovery actions. Konrad’s research was also not related to multi-

agent systems, while this thesis focuses on developing a framework of a recommended

constraint set and an implementation process to identify task failure and facilitate task

recovery for MAS.

The main contribution of this thesis is a framework to support developers in

identifying real-time constraints for RTMAS during the requirements analysis phase of

development. The framework is model driven and consists of a set of modelling units and

an accompanying process to deploy them systematically. The modelling units enhance

the analysis tasks of RTMAS requirements engineering. The process improves the

completeness of the requirements of the system and its subsequent reliability. This work

is critical, as the first step in resolving a failed task is to identify when the task fails. The

details of the framework and how it is developed and described in later chapters.

However, it is relevant to outline how this thesis fits within the existing research by

discussing the following three research aims:

1. To identify a sufficient set of criteria that would help developers, analysts and

researchers clearly diagnose and rectify when the task, goal or agent has failed.

2. To develop a process that implements the sufficient set of criteria within the

software development life cycle.

3. To validate the research findings.

2.7 Summary
This chapter highlighted the research gap that the thesis aims to fill. First, it

presented a background on various RTMAS and their benefits, outlining some RTMAS

implementations. Then it discussed RTMAS requirements engineering, AOSE

methodologies and modelling languages, highlighting the research gap that this thesis

aims to fill in terms of early real-time constraints identification for RTMAS. The chapter

29

also discussed constraint analysis to ensure avoidance of bottlenecks and agent

overloading leading to stable, reliable and redundant systems. This is important for

RTMAS as they are very prone to time errors due to their complexity agent dependency,

and time sensitivity.

30

CHAPTER 3

RESEARCH DESIGN

This chapter details the design of the research and justifies the structure of the

thesis. The research methodology followed is design science research. Section 3.1

overviews design science, focussing on design science in information systems research

as applied in this thesis. Employing design science yields four phases: problem

identification, modelling units’ identification, synthesis of a deployment process, and

validation of both the modelling units and their deployment process. Each of these phases

is discussed in further details in Sections 3.2 to 3.5. Finally, Section 3.6 summarises and

concludes the chapter.

3.1 Overview of Design Science Research
Design Science (DS) solves real–world problems by creating innovative artefacts and

supporting pragmatic research (Simon 1996 and Cross 2007). DS differs from natural and

social science. The latter tries to understand reality, while DS tries to create things that

serve humanity (Peffers, Tuunanen et al. 2007). Business managers may also view DS as

a way to increase the organisation’s profitability, asking questions like “What can IT

artefacts do?”. To answer such a question, artefacts and events that lead to a more

desirable IT system are created, which is the main focus of DS research in information

systems. This also supports the challenge facing IT professionals: how to describe, design

and develop an artefact that would shape a firm’s future and increase its profitability

(March and Storey 2008).

The research presented in this thesis can be classified as an Information Systems

(IS) design science research, as it aims to identify new IS artefacts to facilitate the creation

of distributed agent-based systems. The research uses IS artefacts to improve the creation

process of real-time multi-agent systems. In this sense, this thesis applies DS as advocated

in Hevner et al. (2004). In this IS context of DS, artefacts can be generally defined as

constructs, models, methods, and their instantiations enabling representation, analysis and

development of new systems. The DS artefacts as used and appearing in this research are:

1. DS constructs: These are words generally formed from the use of natural language

to describe and communicate the IS problems and describe their solutions. In this

research, they are a standardised set of modelling units that enhance the

description of requirements analysis and communication, leading ultimately to

developing better real-time MAS.

31

2. DS models: These are generally a representation, using the constructs, to describe

and resolve IS design problems. Models are formed from a coherent collection of

the constructs. They facilitate understanding the problem domain and connect the

solution to the problem. In this research, models complement existing

requirements models. For any given IS development, they are formed from a

subset of suitably selected constructs and relations identified in this research.

Various representations will be used to express these models, including i* (Yu

1995), flowcharts and formal notations.

3. DS methods: These are generally a collection of prescriptive artefacts that

together outline some guidelines to resolve problems, creating appropriate

models. In this thesis, this will be a process to guide software analysts to select

the appropriate modelling units to support their analysis.

4. DS instantiations: These are artefacts created to validate any of the three above

artefacts. In this research, the realizability of the modelling units in the

requirements analysis of an actual MAS application is confirmed in a call

management analysis study. This is the first instantiation of the modelling units.

Later, the process to use them is instantiated in a number of applications. Both

types of instantiations are used to support the validation and to further refine the

DS artefacts created in this thesis (the modelling units and their deployment

process).

Building and evaluating artefacts are actually two complementary IS design science

activities. Once the DS for IS artefacts are built they should be evaluated as to their

effectiveness in how they resolve the identified problem. This is a bi-direction process,

as the validation enhances the refinement processes and provides feedback that enhances

developing processes to create the artefact. As earlier described, this research aims at

standardising a set of modelling units that can be used to identify and represent the MAS

real-time requirements. This set will assist in real-time requirements analysis of such

systems to enable more effective implementations of them. For instance, if successfully

discovered and implemented, such requirements will lead to systems able to identify long

running tasks, declare them as failed when necessary, and initiate self-healing and

recovery mechanisms. The usage of the modelling unit set naturally requires a supporting

process that can be used during the MAS software development life cycle. Both the

32

modelling units and the associated process to support their deployment need to be

sufficiently general to be usable in a multitude of AOSE methodologies.

The research in this thesis follows design science as practiced in IS. The research

is organised into the following four phases (as shown in Figure 3-1):

- Phase 1 defines the research problem and its relevance. This was completed in

Chapters 1 and 2. The problem is to create a framework to support the

requirements analysis of RT-MAS. This can be stated in the following two

research questions:

o What is a sufficient set of real-time constraints (modelling units) that can

be used to support and enhance the representation of extant requirements

models?

o How to effectively deploy and use the above modelling units in an actual

MAS requirements analysis process?

- Phase 2 will identify the initial set of modelling units to answer the first research

question above. This phase will be carried out in Chapter 4 of this thesis in the

form of a synthesis process. This initial set will then be validated and refined in

an actual MAS application (a call management system).

- Phase 3 will develop the process required to systematise the use of the modelling

units and enable a software developer to generate an enhanced set of requirements

models. This phase will be undertaken in Chapter 5. Multiple processes will be

created and simulated. A best-of-breed process will be chosen and refined. This

will address the second research question above. In choosing and validating the

process, the set of constraints (modelling units) will also be further validated and

refined. The threat against domain dependence will also be mitigated, as different

domains will be used.

- Phase 4 will further validate and refine both the set of modelling units and the

process to apply them. In this phase, two validity threats will be further mitigated

against: the first will be against the dependence on the application domain, and

the second will be the usability by different software developers. Finally, the

33

usability and enhanced effectiveness of the RT MAS developed will be illustrated.

The remainder of this chapter details each of the above research phases.

Figure 3-1 Research phases

3.2 Phase 1: Problem Identification

The first phase of design science research is generally to define the research problem,

which can be elaborated as one or more research questions. This process identifies how

relevant the research is to the science body, by highlighting the research benefits/merits

and the value added to the science body. In these terms, this thesis research aims to create

a framework fulfilling two goals, which correspond to the two research questions

described above:

1) Identify a sufficient set of modelling units that enhances requirements

analysis for real-time multi-agent systems.

2) Create a process to enable a software developer to deploy the identified set of

modelling units to develop software constructs to manage RT-MAS failed

tasks and recover from their failures.

To understand the framed research problem, it is important to highlight the

difference between ‘an acceptable delay’ and a ‘failure’ of a given task. If a person

double-clicks an icon, and nothing happens for 5 minutes, then the person expects that

something is faulty and considers their double-click to have failed. Most of the time,

Problem

Modelling units Initial Set

Validation and refinement

of the process and the

modelling units

Process

Synthesis process

Individual Modelling Unit
Validation

Modelling units Set Validation

Call Centre MAS
Scheduler
Simulation

Using Flowchart
i* Model
extension

34

double-clicking succeeds on the 2nd or 3rd attempt. However, in some cases it does not

work at all. The obvious indicator of a failure is that it takes longer than expected (rather

than some estimated response time). Such an expectation is built on a task-estimated

duration, which is based on experience of average time of previous executions. This

research aims at including this, and other measures to identify a long running task (failed

task), beyond the estimated duration, based on task priority and criticality. For instance,

dialling an emergency number is a lot more critical than dialling a friend’s number for a

social call. Another modelling unit would be, for example, “how many times can we retry

dialling the number”; if this is the only call an agent can make (e.g. a prisoner making

his one and only allowed call), then the agent would generally wait longer for someone

to answer the phone.

3.3 Phase 2: Identifying Initial Set of Modelling units

To answer the first research question, described in Phase 1 above, a synthesis process was

undertaken to identify a set of modelling units that can enhance the requirements analysis

gathering process; these modelling units are marked as the initial set. The synthesis

process is based on a rigorous literature review as advocated in Kitchenham et al. (2009)

and also used by other agent modelling researchers, e.g. Kardas (2013).

The synthesis process aims to create an initial set, as presented in Chapter 4. The

modelling units set needs a solid basis. In DS terms, these units are constructs used to

develop “DS models”. The thesis does not arbitrarily recommend or develop its own

modelling units. The modelling units are integrated into MAS requirements models to

represent RT requirements constraints. The use of the synthesis process partly addresses

these research challenges: 1) finding enough modelling units; 2) whether the modelling

units be considered a sufficient set; 3) how to validate the units in terms of the reliability

of their source and their usability.

The synthesis process presented in Chapter 4 identifies 23 modelling units from

verified sources. This initial set addresses the first research question. This set undergoes

an initial validation using a call centre MAS domain. In this application, the MAS assists

end-customers (EC) by routing calls and allocating calling duties to the most appropriate

relationship manager (RM) – call centre workers receiving and making calls. The system

accounts for the knowledge/skills and availability of RMs to maximise effectiveness (i.e.

improved customer service). This set undergoes further validation at the same time as the

deployment process is synthesised and validated. These further validations include

35

additional applications (a calendar simulation and an iPhone application). The synthesis

of the process is first undertaken in Phase 3 of the research, as detailed in the next section.

3.4 Phase 3: Synthesis of the Modelling Units Deployment Process

This phase aims to create a process to deploy and use each modelling unit of the identified

set. By definition, a process is a sequence of actions that has inputs and outputs. Each

action checks values of the inputs and processes them to produce the designated outputs.

The process developed in this thesis guides the developer to identify RT requirements

that represent the inputs and express them in terms of modelling units. Ultimately, the

output requirements developed will differentiate between late and failed tasks, depending

on engendered properties of the tasks. This thesis’ aim is to guide the developers to

identify and represent the range of constraints for various agent tasks.

The process needs to facilitate the integration of the modelling units into the

software development life cycle, especially during the analysis phase, enabling system

analysts’ better understanding of delays and task status, such as soft constraints cannot

be violated forever; however, there is a maximum number of times that a constraint can

be violated (e.g. a student cannot always be late for a lecture as there would be a maximum

number of times that they would be allowed late or absent from that lecture after which

an action would be taken against them).

The process needs to be represented to enable easy use, and at the same time the

representation needs to be precise without being open to multiple interpretations. For

example, a flowchart with formal notations can be used. The process will undergo further

refinement in the subsequent research phases as determined by the experimental results.

3.5 Phase 4: Validation of Modelling units and Concomitant Process

This research, as typical for design science research, uses the validation phase to refine

and improve the artefacts created, i.e. the modelling units and the associated deployment

process. In the validation, different application domains are used to mitigate against any

domain dependency. The first preliminary validation focusses on the semantic adequacy

of the modelling units. In other words, the validation aims to ensure that RT requirements

can indeed be expressed using the modelling units identified in the synthesis process. This

validation is undertaken in the context of requirements analysis of a multi-agent system

in a call centre to profile and match customers with employees based on specific criteria.

End-Customers (EC) receive and make calls to the call centre to receive the service or

36

product the call centre is offering. The proposed MAS will mix and match the skills and

available Relationship Managers (RM) to increase call centre sales, customer satisfaction

and profits (Ashamalla et al. 2011). The system routes the calls to the appropriate RMs

based on the EC and RM skills, background, demographics and performance.

The second round of validation is simulation-based and exploratory meant, to

identify a deployment process. This includes testing subsets of the modelling units set

with different sequences. To ensure the exploration is bias-free, random combinations of

the modelling units were generated. The random set of combinations represent the usage

of the modelling units in different sequence, and of course in different combinations. In

this validation stage, the application domain is a MAS to schedule a large group of people

attending meetings without scheduling conflicts. Each person has one or more meetings

to attend, then the system proceeds with simulating meetings and attendee’s events, such

as being late, cancelling meetings. This emphasis that as the number of dependencies

increases, capturing the constraints using the modelling units becomes critical to the

system. This simulation platform is used to evaluate the most effective process that

sequences the use of the modelling units to best outcome. The number of meeting clashes

is used to determine the outcome of various processes. It should be noted that the meeting

scheduling problem can be easily mapped to other problems. This mapping will be

discussed in Chapter 5. In other words, using the scheduling problem as a domain to

investigate the process of applying the modelling units supports the generality of the

outcome.

The third phase of the validation evaluates an actual MAS developed from

requirements expressed using the modelling units and the associated process. It is an

actual iPhone mobile scheduling application that extends the meetings and events

calendar and alerts users when they are running late for their meetings. It has been

provided to a number of users, and publicly available on the App Store, to validate the

modelling units in day-to-day meetings and events. The application imports all meetings

and events from the user’s iPhone calendar then extends it by adding the modelling units

set.

3.6 Summary

This chapter has reviewed the research methodology, highlighting the design science

approach and how it is applied in this thesis. The research is organised into 4 phases:

37

problem identification and solution proposal, synthesis process, processes development,

and finally application and simulation validation.

These phases are sequenced in a way where the output of each phase is further

developed and refined in the subsequent phases. The first IS artefact, the first version of

the set of modelling units, is developed and refined in Phase 2. However, Phase 3 further

refines and validates this while at the same time creates the second IS artefact. The process

to deploy the modelling units. In phase 4, The process and the modelling units are

validated in three different validations across two different domains. During each

validation, the modelling units and the associated process are enhanced. The validation

concludes with a successful development of an iPhone application available for public

download from the App Store.

38

CHAPTER 4

IDENTIFING THE MODELLING UNITS

This chapter targets Goal 1 (defined in chapter 1) by identifying a set of 23 modelling

units using an appropriate synthesis process based on a rigorous review of the literature.

The work shown in this chapter constitutes Phase 2 of the research described in

Chapter 3. It creates the initial version of the first component of the design science artefact

that this research aims to produce. The synthesis of this first component is rooted in an

evidence-based synthesis process review. The identified modelling units are used to help

MAS developers identify when a task is prone to failing to meet its real-time requirements

and determine the necessary actions to recover from such a failure. This chapter also

provides an initial validation of the modelling units in the requirements analysis of a call

centre application. This constitutes a first validation of the semantic efficacy of the set of

modelling units. This brings a level of confidence in the modelling units to proceed to

synthesising the second component of IS artefact emanating from this research. This will

be the analysis process used in grounding the modelling units for a given MAS

application. Its synthesis will be undertaken in Chapter 5.

The chapter is organised as follows: Section 4.1 presents the synthesis of the

modelling units. Section 4.2 The chapter presents the call centre management domain as

a suitable domain for using MAS. Section 4.3 validates the modelling units in the

requirements analysis of the call management centre MAS. Finally, the chapter is

concluded in Section 4.4.

4.1 Synthesis of the Modelling units
The synthesis process is based on a rigorous literature review as advocated in Kitchenham

et al. (2009). As recommended in Budgen and Brereton (2006), the survey of the literature

considers the nominated domain in an objective manner, including all relevant arguments,

not only the ones supporting the thesis argument. The synthesis process was undertaken

using Scopus, Web of science, ProQuest, ScienceDirect and Informit databases covering

the last 20 years. The synthesis process was completed between 2010 and 2015. New

publications were constantly added as they became available. Research papers which

describe real-time modelling units were referenced. Table 4.1 below lists the sources of

the papers and a count of how many papers were identified in the source.

39

Table 4.1: Systematic review results showing number of papers from each source

 Journal Name ISBN / ISSN # of
Papers

A1 ACM SIGPLAN Notices 1581135270 1
A2 Active and Real-Time Database Systems 9783540199830 1
A3 Artificial Intelligence 43702 1
A4 Automata, languages and programming 3029743 2
A5 Collective Robotics 3540647686 1
A6 Computer 189162 2
A7 International conference on Software engineering 1581139632 1
A8 Embedded and Real-Time Computing Systems and Applications 23251271 23
A9 Embedded Systems for Real-Time Multimedia 9781479912858 3

A10 Euromicro Conference on Real-Time Systems 9780769526195 2
A11 Autonomous Decentralized Systems 769510655 2
A12 Genetic and evolutionary computation conference 1595930108 1
A13 Hardware/Software Codesign and System Synthesis 1450307159 2
A14 Computer Communications 1403664 1
A15 Information and Software Technology 9505849 1
A16 Integration, the VLSI Journal 1679260 1
A17 International Journal of Cooperative Information Systems 2188430 1
A18 Object-Oriented Real-Time Distributed Computing 9781467377096 10
A19 International Workshop on Object-Oriented Real-Time Dependable Systems 769523471 11
A20 Journal of Parallel and Distributed Real-Time Systems 7437315 4
A21 Journal of Database Management 10638016 2
A22 Multiagent System Technologies 3642161774 1
A23 Real-Time Technology and Applications Symposium 818685697 1
A24 IEEE Transactions on Computers 189340 1
A25 Symposium on Principles of database systems 897913523 1
A26 NPSS Real-Time Conference 9781467310826 1
A27 Languages, Methodologies and Development Tools for Multi-agent Systems 3642133371 1
A28 Real-Time and Embedded Technology and Applications Symposium 9781467386395 3
A29 Real-Time and Multi-Agent Systems 1852332522 1
A30 Real-Time Applications 818641304 1
A31 Real-Time Systems Symposium 10528725 10
A32 Real-Time Systems 9226443 32
A33 International Journal of Distributed Sensor Networks 15501329 1
A34 Automatica 51098 1
A35 IEEE Transactions on Software Engineering 985589 2

A36 Technical Report. Massachusetts Institute of Technology, Cambridge, MA,
USA 7437315 1

A37 The Computer Journal 104620 1
A38 Autonomous agents and multi-agent systems 13872532 3
A39 International Journal of Agent-Oriented Software Engineering 17461375 7
A40 Journal of parallel and distributed computing 7437315 1
A41 Joint Modular Languages Conference 978354045213 1
A42 IEEE Transactions on Industrial Informatics 15513203 1
A43 Information Processing Letters 200190 1
A44 Massively Parallel Computing Systems 818663227 1
A45 ACM Transactions on Embedded Computing Systems 15399087 1
A46 Hard Real-Time Computing Systems 1461406757 1
A47 Principles and Practice of Constraint Programming 3029743 1
A48 Journal of Scheduling 10946136 1
A49 Timing analysis of industrial real-time systems 818670053 1

40

The synthesis process is 6 steps:

Step 1 – Collecting references and initial inclusion criteria: The process starts by

searching on the keyword: “real-time constrain”. This keyword also covers “real-time

constraint”.

Step 2 -- Filtering The abstract and the title of each search result are used as an initial

rough indicator to identify relevant papers. Those are papers that specifically deal with

real-time constraints in multi-agent systems.

Step 3 – Identifying candidate constraints: If a real-time constraint is identified, then it

is extracted from the paper. These set of candidate constraints will be detailed and

analysed into an operational set of modelling units to be used during the requirements

analysis. For each of the candidate constraints discovered in this step, their operational

definition along with its reference are noted. Generally, a paper reference can either state

a constraint directly by its exact name, or indirectly by a similar name or definition

identified from a paper previously encountered. For indirectly stated constraint, a note

about the synonymous name and/or the new definition/explanation is also added (the

output of this step is shown in Table 4.2). The output of this step is the input for Step 5.

Step 4 – Revisiting popular sources Literature sources that provided a large number of

candidate constraints are highlighted in this step. For these sources, Step 2 and Step 3 are

executed again; that is, all publications of the highlighted journal/conference that

provided a large number of candidate constraints are visited to identify candidate

constraints as per Steps 2 and 3 above. This step identified an extra 33 references. This

step is essentially a quality check to ensure that any missed important papers out of these

sources which do not fit the original inclusion criteria (i.e. without the keywords “real-

time constrain”) are revisited. The output of this step complements the output of Step 3.

Both outputs of Steps 3 and 4 are now the inputs for Step 5. The output is a set of 88

candidate constraints. These are listed in Table 2, with their references and various

definitions and/or explanations. The remainder of the process will reconcile these various

definitions for constraints of related concerns and will merge them as appropriate into a

single modelling unit. This is done in Steps 5 and 6.

41

Step 5 – Grouping units. As noted in Step 3, in some cases similar constraints were used

under different names. The first step towards this is to categorise the 88 constraints into

groups of similar concerns, based on their names and definition. Each one of these groups

is named as a modelling-unit to be included in the final set. In all, 23 groups (modelling

units) are identified as shown in the first column of Table 2.

Step 6 – Reconciling definitions. This step reconciles the various definitions within each

of the 23 identified groups (the output of Step 5). The unification of all definitions within

each group becomes the unified definition of the final modelling unit to be used in the

requirements analysis. The unified definition in some cases is based a dominant

definition. In others, it is based on a number of merged definitions. The influence of an

existing definition on the final definition depends on how commonly used the definition

is (as per number of references). For example, the estimated definition “merged

definition” included the “execution time” keyword, as it was cited 9 times.

The 23 modelling units, together with the 88 identified constraints and their source

references and definitions are presented in Table 4.2 below. While the full references are

provided in appendix B.

42

2Table 4.2: The modelling units and their references *References as per appendix B

Modelling Unit ID- Constraint Common Definition and Description Explanatory Text Source/Reference*

Alternate Task
1 Common Definition: Represents the task to start in case the initial task fails (1-17)

2- Execution path Des. 2: “It extracts the set of possible future execution paths” (19)
3- Neighbouring paths Des.3: “The earliness of the stimulus also determines the conduction velocity of its neighboring paths” (20)

Criticality

4 Common Definition: Is an indication of the effect a task’s failure on the whole system (5, 12, 13, 21-39)
 Merged Definition: Is an indication of the importance and effect a task’s failure has on the whole system

5- Importance Des.1: Importance (9, 40)
6- Weight Des.2: “We use W(Sk(t)) to represent the weight of Sk(t), which is the sum of the weights of non-critical tasks in the

schedule”
(41)

Deadline

7 Common Definition: Is to identify when a task has failed to meet its real-time constraint (1-3, 5, 8-11, 13, 18,
21-25, 27-33, 35, 40-

107)
8- Maximum time Des.1: “A maximum time is allowed between the occurrence of a stimulus and the system's response” (108)
9- Transduction Des.2: “A transduction is a mapping from a tuple of input traces to an output trace which is causal, viz. the output

value at any timer is determined by the input values prior to or at that time.”
(109)

10- Discrete time Des.3: “Absolute discrete time domain” (110)

Estimated
Duration

11 Common Definition: Is the estimated time that a task is expected to complete within. (4, 8, 9, 12, 13, 16, 18,
20, 25, 26, 31, 35, 36,
40-42, 47-52, 55-57,
60, 64, 70, 76, 84-86,
88, 95, 97, 98, 101,

108, 111-121)
 Merged Definition: Is the estimated execution time that a task is expected to complete within.

12- Waiting time Des.1: “The request to go to the second floor will be served waiting time units" (109)
13- Execution time Des.2: Execution times (59, 61, 74, 106, 110,

122-125)
14- Execution period Des.3: “The periodic Parameters subclass has attributes like the start and end time and also the execution period” (68)
15- Execution Model Des.5: “The timing behaviour is often formalised by a two-phase execution model based on action urgency. The

phases of execution are: the state of the system changes either by asynchronously executing simultaneous atomic
actions, without passage of time, or by letting time pass synchronously for all the components of the system when no
action can be performed.”

(66)

16- TExec Des.6: “Therefore, we define TExec: Act → R+ as a function that associates to each action a positive real number
representing the time it takes to execute that action on a target platform.”

(126)

43

17- Periods Des.7: “The algorithm has a pseudo polynomial complexity and handles arbitrary relative deadlines, which can be
less than, equal to, or greater than periods.”

(71)

Maximum Miss
ratio

18 Common Definition: Is the maximum number of times a soft deadline can be missed (74, 79)
19- Upper bound Des.1: “A weakly hard constraint specifies a guaranteed upper bound on the maximum number of missed deadlines

(late messages) during a window of time”
(25)

Maximum
output jitter

20 Common Definition: Is the difference between the best execution time and the worst execution time (25, 48, 74, 79, 119)
21- Maximum inter-arrival

time
Des.1: “The genes of the chromosome are subject to constraints as two consecutive arrival times for a particular
event must have a difference of at least the minimum inter-arrival time, and at most the maximum inter-arrival
time (if it exists). If no maximum inter arrival time is defined for an aperiodic task, it is set to T.”

(124)

Minimum time

22 Common Definition: Is the minimum time for a task to complete (2, 8, 10, 13, 20, 35,
43, 47, 51, 80, 85-89,

91, 108, 110, 120)
23- Ready time Des.1: “A task cannot be started before its ready time” (41)

24- Minimum delay Des.2 “There is a minimum delay of T Min between the last event executed in the RB and the first event executed in
the CB”

(86)

25- Predicate Des.3: “A predicate in a conjunct represents either a delay or a deadline constraint on a pair of events” (90)

Priority

26 Common Definition: Is the importance of the task (2, 3, 9, 10, 13, 23-28,
30-32, 40, 44-46, 48,
51, 52, 57, 60, 63, 66,
68, 74-76, 80-82, 88-
93, 95, 107, 108, 111-

113, 119, 123-125,
127-134)

27- Influence Des.1: “The influence of the transaction type. A transaction reads one object and consecutively writes to 1, 3 or 5
objects”

(100)

28- Weight Des.2: “We consider the problem of scheduling a set of tasks without pre-emption in which each task is assigned
criticality and weight.”

(41)

Periodic
Occurrence

29 Common Definition: Is the schedule that the task happens on (10, 12, 13, 20, 22-24,
27, 30, 31, 40, 47, 48,
51, 55-58, 60, 63, 68,
71, 72, 74-76, 83, 84,
88-90, 92, 93, 97-100,

103, 106, 112-114,
119, 121, 122, 124,

135-138)

44

30- Schedulable Period
deadline

Des.1: “We also proposed a heuristic to identify a schedulable period-deadline combination.” (2)

31- Schedule Des.2: “Assuming that actions with higher satisfaction values require more execution time, this algorithm ensures
that a schedule (if it exists) for meeting the deadline with a minimal satisfaction is made. The actions start executing
according to the schedule.”

(9)

32- Scheduling attributes Des.3: “A task may have multiple scheduling attributes including periods, execution times, and the blocking times.” (125)
33- Timer Des.4: “Timer t x (y). P; Q is a timer process that waits through channel x for t time units, where t is a natural

number. If a name z is received within t time units, it continues to act as P (z/y); if nothing is received within t Time
units, it changes to be Q”

(1)

34- Interval Des.5: “By definition, event (E1; E2) occurs when E2 occurs provided E1 has already occurred within some
interval.”

(11)

35- Transmission delay Des.6: “Transmission delay between two stations” (111)
36- Timing behaviour Des.7: “Avoid language constructs that have unpredictable timing behaviour (e.g. unbounded loops).” (104)

37- Timed state sequence Des.8: “Sequence is called compatible with the timed state sequence r. Instantaneous events correspond to singular
intervals.”

(35)

38- Time between two
stimuli

“A maximum time is allowed between the occurrence of two stimuli” (108)

39- Timed state sequence Des.9: "Each timed state sequence r E 7" represents a system behaviour by identifying a unique system state T(t) E •
with every time instant t E R. Formally, a timed state sequence r is a function from R to S that satisfies the finite-
variability condition”

(118)

Retry Attempts

40 Common Definition: Represents the number of times a task is retried/restarted (24, 36, 50)
41- On Request Des.1: “Rescheduling is done when a task is activated due to a scheduled event or on request.” (80)

42- Loops Des.2: “However, since TG may contain loops and/or OR-subgraphs, the release times and the latest completion
times of modules needed in Step 3 of MS may not be readily determined.”

(84)

43- Access the same object Des.3: “Transaction A attempts to access the same object in a conflicting mode” (82)

Real-time order

44 Common Definition: Represents time between two tasks (10, 12, 23, 36, 41, 42,
50, 51, 55, 63, 68, 73,
87, 88, 90, 106, 111,
116-119, 135, 139-141)

45- Sequences Des.1: “The set of all sequences of transitions that can be taken. These sequences are called timed action sequences.” (126)
46- Scheduler Des.2: “Scheduler: scheduler itself (scheduling algorithm). It contains the subclasses PriorityScheduler,

RateMonotonicScheduler, and EDFScheduler.”
(68)

47- Idle/Slack time Des.3: “These techniques exploit idle and slack time of a schedule. Idle time can be consumed by lowering the
processor frequency of selected tasks while slack time allows later tasks to execute at lower frequencies with reduced
voltage demands”

(117)

48- Sequenced Des.4: “The scheduler has to compute the appropriate values for the deadlines of the sequenced inner TasWairs” (99)

45

49- Timed Transition Des.5: “t k is a timed transition: a delay used to determine the time the transition must be enabled uninterrupted
before firing occurs.”

(111)

50- Temporal tell Des.6: “Temporal tell consist of telling the start and finish time constraints of the currently executing agent to the
temporal buffer followed by an ask of the start constraint from the store”.

(88)

Soft / Hard

51 Common Definition: A hard RT constraint on an operation enforces that the operation must complete within the
specified timeframe or the operation is, by definition, incorrect, unacceptable, and usually has no value. On the other
hand, in the case of a soft RT constraint for an operation, the value of the operation declines steadily after the deadline
expires. Tasks completed after their respective soft RT deadlines are less important than those whose deadlines have
not yet expired”.

(2, 3, 5, 12-14, 16, 21,
22, 24, 25, 27-31, 33,
37, 39, 43, 47, 48, 50,
53, 56, 59, 60, 62, 63,
71, 73, 74, 78, 79, 88,

91, 93, 95, 96, 98, 106,
113, 115, 117, 119,
120, 131, 134, 137-

139, 142-147)
 Merged Definition: Tasks with hard deadline enforces that the task must complete within the specified timeframe,

while a task with soft deadline value declines once their deadline expires.

52- HRT transaction Des.1: “Therefore, two object categories are discerned: HRT-transactions and SRT-transactions. The deadlines of the
HRT-transactions must be strictly met. The failure to meet a deadline of a HRT-transaction leads to unacceptable
transactions. Their executions are periodic. The deadlines of SRT-transactions have a certain probability to be met.
When deadlines are not met, only tolerable system degradation is suffered.”

(100)

53- Criticalness Des.2: “For example, in a system to initiate trades in a stock market, the timing constraint of a transaction is
combined with its criticalness to take the form of the priority of the transaction. In such a system, the criticalness of
a transaction represents the benefit that might be obtained in case of being committed without violating its timing
constraints. In other real-time systems which are used to respond to external stimuli (e.g. in autopilot systems)
reducing the deadline miss ratio is much more important than criticalness, since an out of date result is useless.”

(32)

Slack time

54 Common Definition: The time in which the execution duration can be increased without failing the deadline (25, 27, 44, 59, 60, 76,
80)

55- Timing delays Des.1: “Timed Buchi automata (TBA). TBAs are Buchi automata coupled with a mechanism to express constant
bounds on the timing delays between system events”

(116)

56- Blocking time Des.2: “The worst-case blocking time, this is the maximum time a message may need to wait due to a lower priority
message on the bus;”

(25)

57- time elapse before
vertex can be triggered

Des.3: “Each edge (u; v) is labelled by an integer parameter p (u; v) denoting the minimum amount of time that
must elapse after vertex u is triggered, before vertex v can be triggered.”

(101)

58- Timed temporal
constraints

Des.4: The timed temporal constraints define the permissible sequences of state transitions. The time bound, denoted
(low, high), specifies that when the rule is ready to be executed, say at time t, then it must/will be executed in the
time interval defined by (t + low, t + high).”

(148)

46

Real-time
Dependency

59 Common Definition: Identifies the affected agent if the task fails (12, 35, 113, 135, 141,
147, 149)

60- References Des.1: “An object relation graph that defines the references between the objects involved in the computation” (106)
61- Division Des.2: “Once the division points are identified in the parents, two new children are created by inheriting fragments

from parents with a 50% probability”
(124)

62- Associated Des.3: “Relevant states (represented by action states) to which timing requirements will be associated, external event
sources”

(79)

63- Mapping messages Des.4: “By adopting different strategies for mapping messages (events) to threads, we can come up with as many
implementation architectures.”

(125)

64- Flexible Des.5: “Secondly, because the schedules are built up dynamically through flexible interactions, they can readily be
altered in the event of delays or unexpected contingencies. For example, if one of the constituent parts of a composite
item is delayed en route to a synchronisation point, it can inform the remaining team members. Together they can
then re-arrange the meeting time and adapt their individual behaviour accordingly.”

(6)

65- Inconsistency problem Des.6: “The inconsistency problem is highly likely to be there even if the failed program component tries to either
cleanse itself of any remaining effects of the failed service execution or complete the service execution after the
guaranteed completion time. There are some special cases where the inconsistency can be removed, but such case
occurrences are a small fraction of all occurrences of guaranteed service time violations.”

(5)

66- Logical threads Des.7: “Identification of logical threads is a three-step process: for each logical thread, our approach identifies (1) its
members, (2) priority, and (3) pre-emption threshold.”

(75)

67- Notify Des.8: “The application notifies the scheduling service after all schedulable operations have registered. The
application can also use the destroy operation to notify the scheduling service when the program is about to exit so
that it can release any resources it holds.”

(40)

68- External Events Des.9: “We use the event abstraction to specify pre-/post-conditions which allow for recognition of individual events.
Further, since events are inter-related, each object's interface description allows for separation of those events which
are recognised internally from those ones which are external to it”

(150)

69- Error propagation Des.10: “If an error inside a component is activated and propagates outside the confines of the component that has
been affected by the fault then we speak of error propagation”

(102)

70- Relate objects Des.11: “Object identification procedure, which consists of 5 steps to identify, group and relate objects.” (151)
71- Client Des.12: “A server that missed its deadline during method execution triggers off a timeout and notifies it to a client.

The client then can cause a timeout.”
(94)

72- Related Des.13: “Objects can, be related in two ways: (1) syntactically: they have a common object from which they are
invoked, and (2) time-wise: the actions on the objects always occur at the same moments.”

(100)

73- Origin Des.14: “Explicitly specie the origin of each timing Constraint” (104)
74- Propagate Des.15: “Propagate the occurrence of an event on a processor to others.” (90)

75- Relate Des.16: “The functions and relate inputs and outputs on the real-time axis to inputs and outputs on the logical axis. (152)
76- More than one Des.1: “For one activity more than one agent may be approached” (18)

47

77- VM-Shadow Des.17: “One type of system support that may be necessary is a VM-Shadow type of region so that the system can
retain the previous state of the shared data to be used if the transaction is aborted.”

(112)

Task Status

78 Common Definition: Representing the current state of the task (17, 64, 120, 141)
79- Current state Des.1: “With OCL, it is already possible to check the current state of an object, using the pre-defined type OclState

and the operation oclInState”
(19)

80- State Transition Des.2: “The state transition diagram depicts the states the control process can be in,” (34)
Warning 81 Common Definition: Represents the time to sample the task performance (18)

Composite 82 Common Definition: Contain is a list of simple timing requirements that are imposed at the same time (74)
Validity
Duration

83 Common Definition: Is the maximum time the data can be held for before expiring or being considered invalid (45, 114)

Remaining time 84 Common Definition: Identifies the remaining time till the deadline is reached (98)
Real or not 85 Common Definition: Identifies if the task is time dependent or not (67)
Execution

Accrued Value
86 Common Definition: Measures the amount of time gained to the system (62)

Instant Value
Function

87 Common Definition: The total accrued value of a job which is equal to the area corresponding to the instants
allocated to executing the job

(62)

Check Point 88 Common Definition: Represents a point where task results can be saved (5, 24, 76, 107, 133)

48

4.2 Call Centre Management Domain
Using a call centre case study, the usability and semantic adequacy of the identified

modelling units are validated in the remainder of this chapter. The modelling units will

be further validated in Chapters 5 and 6, during the validation of the deployment process

which will be developed in Chapter 5.

For the purpose of the validation in this chapter, this section first overviews the Call

Management Centre (CMC) domain. The description was sourced through interviewing

domain experts. This was done while the researcher worked in a call centre. The analysis

results are then evaluated to confirm that the domain is suitable for a MAS architecture.

4.2.1 Call Centre Management Background

Telephony remains an essential and efficient way of business communications. Beyond a

one-to-one communication tool, it has become a tool for marketing, gathering

information, purchasing, selling and recently advertising. Generally, business telephony

needs are either outbound calls to customers (e.g. telemarketing products) or inbound

calls (e.g. for customer support, sales handling or enquiries). Companies favour

outsourcing their call management to dedicated Call Management Centres (CMC) since

they tend to have the latest telephone technology and equipment, together with additional

value-adding software. The CMC’s specialised personnel and training saves the client’s

company time and money. A typical CMC may have a number of corporate clients (e.g.

banks, insurance companies) and a few thousand relationship managers (RM) attending

to phone calls to end-customers of its corporate clients. The operating cost of a CMC

includes the relationship manager salaries and the call costs. The shorter the

inbound/outbound calls, and the less outbound calls a relationship manager makes to

achieve a sale, the more profitable a CMC.

CMCs can be hosted anywhere in the world with calls often transferred and routed

across countries and continents. The call centre industry is one of the fastest growing

industries (Golpelwar 2015), with the demand for call centre personnel expected to

continually grow. Salary and training cost represents 60-80 % of an overall call centre’s

operations budget (Jayashankar 1998; NoahGans et al. 2003). Hence, it is imperative that

the effort made by these personnel is targeted and effective. In other words, the employee

(RM) with the most knowledge about a given product, with most suited communication

skills, and with most appropriate availability is the one who should make or receive a

49

service call to/from an end-customer (EC). Matching an RM to a customer can be

complicated by the dispersed geographic location of the call centre. An RM and a

customer are often in different countries and across different time zones. An RM often

requires additional communication skills tempered by cultural and geographic

sensitivities in addition to product knowledge (Ashamalla et al. 2011, 2012, 2014, 2017).

Using Multi-Agent Systems is proposed to assist in customer relationship management

by routing calls and allocating calling duties to the most appropriate relationship manager

(in terms of knowledge/skills and availability) to maximise effectiveness.

This thesis envisages a call management MAS consisting of distributed intelligent

agents supporting the relationship managers and knowledge-based agents monitoring the

call centre operation, ensuring balanced workload allocation to the agent. These agents

would ensure the best match between a customer and a relationship manager, and monitor

of the whole system in terms of customer satisfaction and call throughput per relationship

manager. The MAS will thus help the CMC make better use of its personnel and

equipment while providing a high value service to its clients and end-customers.

This thesis proposes a system to perform real-time monitoring of the CMC while

relationship managers are performing their sales and to adjust the call flow rate to each

relationship manager according to specific criteria to be described in this section. These

specific criteria include time constraints, priority (the potential of the call), criticality (in

performance level), sampling, alternative action(s), deadline. Our proposed system aims

to provide dynamic call flow control for both inbound and outbound calls. It will be a

distributed intelligent system: which will monitor the performance of relationship

managers in real-time. Their performance is sampled every 10 minutes and if any critical

or high priority issues are detected an error is logged and the relevant supervisor is

notified. The system will provide assistance to relationship managers in serving their end-

customers (or potential customers) and if a customer is not served within 3 minutes then

calls are prioritised to resolve critical situations where too many calls are left unanswered

if there are insufficient relationship managers to answer the calls. The system should

result in a higher rate of sales per call made/answered. This section describes recent CMC-

related research which deals simultaneously with both monitoring the performance of the

relationship managers and matching them with end-customers. It is this kind of overlap

that this thesis wants the call management system to achieve. The research aims to provide

a dynamic matching capability of the system that changes as products and end-customers

change.

50

A CMC operation is complicated by the varying number and nature of products

offered by its corporate clients. Much work has been done on customer relationship

management and appropriate matching with customers, based on relationship manager

performance and product knowledge. For example, in selling travel packages on behalf

of a travel agency, a CMC would do well in matching end-customers to well informed

relationship managers with appropriate knowledge about the destination and its traditions.

A typical relationship manager matching technique is segmenting customers into social

and cultural segments according to their postcodes and surnames (Webber 2007).

Supporting tools to create customer profiles exist, for example, see Larue et al. (1999). A

corresponding relationship manager profile may depend on the age, sex, culture, language

proficiency, experience and product knowledge. The proposed intelligent system will be

used as a skill matcher between end-customers and relationship managers based on their

profiles. This makes relationship managers more convincing to the customer and

increases the chance to achieve a sale. In targeting potential buyers with outbound calls,

the system dials numbers automatically every 3 minutes and allocates to a relationship

manager, according to a customer target list previously loaded. The system allows for 2

minutes wait for potential customer to respond to non-critical calls, and 5 minutes for

critical calls to high priority customers. If no answer is detected for an outbound call, the

call is re-routed for a call back scheduled at a later date/time. Once a call answer is

detected, the call is routed to the matched relationship manager. The relationship manager

is expected to answer the call within 1 minute, otherwise the call is marked as

unanswered, and the relationship manager performance is degraded reducing the amount

of calls rerouted to them in the future. Marking an outbound call as unanswered and

degrading a relationship manager performance is not enough, as the end-customer

receiving a call from the call centre without anyone to speak to remains problematic.

Hence such unanswered calls are further re-routed for a last time to another available

relationship manager, whom if he/she doesn’t answer within 30 seconds, then the call is

dropped and an apology is played to the end-customer apologizing for the inconvenience

the call might have caused. Once the relationship manager answers the call, the system

retrieves the end-customer’s details from the database, displays the details and provides

the relationship manager with a script to use and guidelines to help in providing an

adequate service to the end-customer, within 30 seconds otherwise the relationship

manager will have to ask the end-customer for his/her details and search for them

manually. Once the relationship manager answers a call, voice recording must also be

51

started and only end when the call ends. As all calls must be recorded for legal and

security purposes, this is a very critical task which takes priority over any other tasks and

must be completed within a hard 10 second deadline. Once the call ends and voice

recording stops, the call outcome is detected within 10 seconds and logged towards the

relationship manager performance matrix. At the end of every day all calls and sales are

counted and voice recordings are analysed. The results are all added to the relevant

relationship manager performance matrix. Each relationship manager performance matrix

is then used to rank him/her in determining the amount of calls to be received in the future,

where critical end-customers take priority to be routed to the best performing relationship

managers and vice versa. Similarly, for outbound calls, the proposed solution will create

a specific calling target list for each relationship manager and product based on his/her

performance matrix skills and profile.

Many companies profile relationship managers before they are hired or during the

staffing process to locate them according to their skill/profile to different areas of the call

centre. Psychometric tests are carried out for new employees during the hiring process to

enable matching with customers (Doe 2007). In the most basic versions of such tests, an

interviewee has to tick the relevant answers on a questionnaire, a process that takes about

ten minutes. Based on their answers, a profile and skill matrix is generated. For example,

outbound relationship managers need to be extroverts with an ability to generate

excitement and handle rejection, while inbound relationship managers need the ability to

listen and solve problems.

Tools to profile employees during the initial staffing phase (e.g. Call Centre

Simulation (Doe 2007)) which is commonly used to reduce the turnover rate of

relationship managers. It is assumed that these provide initial relationship manager

profiles for the system. The solution will dynamically adjust according to a relationship

manager’s performance. It will assess human interactions in real-time to dynamically

adjust its criteria. It will continually evaluate the relationship manager’s skills and the

match with an end-customer as the sale/call progresses. It will recreate the relationship

manager’s calling target lists and routes calls to him/her based on the latest skill/profile

evaluation.

For Inbound calls, customers dial a number reaching the CMC which has its own

private automatic branch exchange (PABX or PBX). A call routing and distribution

routine that minimizes inbound call costs by reducing per-call handling time is illustrated

in Beydoun et al (2014). A skill score is calculated based on the relationship manager’s

52

previous call duration and profile. A process named scoring, where each end-customer is

given a score from 1-10 based on the likelihood to purchase the product is performed by

classifying customers according to some preloaded criteria. The more likely the customer

is to engage in a sale, the higher the score. Customers with the highest scores are served

first, moving to lower scores till the end of the calling list. Skills-based routing (Thomas

Robbins 2006) calls are routed to a relationship managers based on skill level or profile

matching. In addition, the schedule of dialing end-customers and the estimates the call

duration of each call vary according to the relationship manager’s skill level and previous

calling history. There is a variance between the different skill levels in one company or

even within a team. For a call centre, this would make a difference when predicting calls.

The work in (Thomas Fisher 2003) and (Zeynep Aksin et al. 2007) attempts to predict the

calls in a multi-skill environment. In another work (Gary et al. 2000), the schedule of calls

is based on a skill matrix for the relationship manager’s skill-based routing, based on

multiple priority skill levels. The Genesys system (the system that receives and dials the

numbers for both inbound and outbound systems) (Genesys 2009) has a skill level for

each relationship manager according to which the calls are routed, the higher the skills

level the more calls that relationship manager receives. In the proposed system, this skill

level will be automatically calculated by the agent system and matched to the skill level

of the end-customer. Using a MAS this variance in skill level can be equalized to a certain

degree using collaboration.

Inbound customers can be directed to an Interactive Voice Response unit

(NoahGans et al. 2003) prompting them for options. The more advanced units may even

ask for call reasons in a few words and then redirect the call to an Automatic Call

Distributor routing the call to the first available appropriate relationship manager.

Customers may hang up when they suffer from a long wait time (NoahGans et al. 2003).

Call centres that use toll-free services pay out-of-pocket for the time their customers

spend waiting. CMC cost can be reduced by reducing this time. This can happen by

providing customers with more automated services that serves them without the need to

talk to a human relationship manager thus saving the company a lot of expense and

wasting the customer’s time, and in some cases wasting a sales opportunity by customers

hanging up and dropping their calls (NoahGans et al. 2003). Call recording and automatic

analysis for various cues on effectiveness of relationship manager will be incorporated in

the proposed system.

53

4.2.2 Confirming the Suitability of a MAS Architecture for CMC Requirements

To ensure the suitability of a MAS as an architecture for the call management system,

developed suitability framework was recently developed (Beydoun, Low and Bogg 2008;

Beydoun, Low and Bogg 2013). The framework evaluates the applicability of a MAS

solution to the particular problem. The framework has two steps. The first step identifies

key features (or requirements), highlighting how appropriate a MAS solution might be in

satisfying each of these features. The prominence of the features is also rated. If features

rated as important (rating 4 or 5) are matched with a high level of appropriateness of a

MAS solution (4 or 5), then a MAS solution is deemed highly suitable. For example, if

the environment is dynamic and unpredictable, this is a strong indicator of MAS

suitability, as MASs are suitable for such environments. Applying the first step of the

framework to the proposed call management domain, the solution is found to be operating

a dynamic, distributed, open environment with software components operating remotely

(see Table 3). These are characteristics (according to the framework) that suggest the

suitability of a MAS. This is especially true given that there will be a lot of negotiation

between the solution components, and moreover these components need to work

independently and remotely which makes autonomous agents particularly appealing.

3Table 4.3: Feature ratings on the call centre domain

Feature Appropriate
 (1-5)

Prevalence of the requirements in CMC Importance (1-
5)

Environment –
Open

2-3 The environment is open, there is no limitation on the
number of end-customers or usage profiles that can be
created for both Relationship managers RMs and end-
customers.

5

Environment –
Uncertain

3-4 There is no guarantee that RMs will match the end-
customer, some end-customers might not have a
matching profile so the closest match should be
provided.

5

Environment –
Dynamic

5 RMs change rapidly as the company has a high turnover
rate. New end-customer lists are provided by the main
Customer for the call centre to call on their behalf.

4

Distributed –
Data

5 Data is distributed between a database and a calling on
the Dialler (e.g. Genesys system) which dials the
numbers then connects to the platform providing a key
to retrieve all End-customer information from the
database, this is for outbound. For inbound the End-
customer calls in and then the data is retrieved from the
database, if present, and the call is transferred to the RM.

5

Distributed –
Resources

5 Resources are distributed and include client computers
with application, client Telephone, client application,
client operating system.

5

Distributed –
Tasks

5 Distributed tasks include sending emails, faxes and files
to the main customers, Receiving and making calls
from/to the end-customers. For the proposed solution,

5

54

Feature Appropriate
 (1-5)

Prevalence of the requirements in CMC Importance (1-
5)

there are distributed tasks like profile matching, profile
analyser.

Interactions –
Negotiation

5 There should be negotiation between the components to
negotiate the best matching profile to route the call to.

5

Reliability 5 In assumption, the agent profile matcher should be
reliable to accurately match profiles to facilitate sales
and increase the conversion rate (number of sales made
to number of calls).

4

Concurrency 4 Predicting RM call ending, profile matching, profile
analyser and performance monitor agents will be
working concurrently for more than one RM and end-
customer.

4

The second step in the framework focuses on the nature of the tasks required within

the system and examines the potential suitability of agents for these tasks, Table 4.4. It

examines the main tasks, performance measures, type of interaction between entities, task

resources, and entities that execute the tasks. A rating is assigned according to the

appropriateness of using agents (1-5) and importance of the task (1-5) based on this

measure. Table 4.4 shows that all tasks with importance rating of 5 have potential agent

attributes (agency measure) of 3 or more. This indicates that key system tasks can be

decomposed in a way suitable for allocation to autonomous agents.

4Table 4.4: Potential agent roles, tasks importance and appropriateness

Tasks Task Inputs

Task

Resources

Agency

(1-5)

Importance

(1-5)

Potential

Agent Roles

Monitors the RMs
and keeps track of
their service time
patterns.

Call outcome and
duration

Call duration
and outcomes

5 5 Performance
Monitor

Estimates call
duration and the
number of
incoming calls

Average incoming
calls per hour of
day, Number of
RMs available

Call duration
and available
RMs

3 5 Load Balancer

Transfers calls to
appropriate RM
according to the
client’s
preferences and
RM availability.

Call start and end Call routing to
RMs

2 5 Router

Receive voice
responses from
end-customers
and routes calls
based on their
selection

end-customer
response

Workflow, end-
customer voice,
played
messages.

2 3 IVR unit

Creates profiles
for RM, end-
Customers and
products

end-customer,
product and RM
details.

RM details
from HR, end-
customer and
product details
from main
customer

5 5 Profiler

55

Tasks Task Inputs

Task

Resources

Agency

(1-5)

Importance

(1-5)

Potential

Agent Roles

This is the agent
responsible for
matching between
product, end-
customer and RM

end-customer
request and profile;
RM’s availability
and profile;
available products.

RM, product
and end-
customer
profiles.

5 5 Matcher

As indicated by the first step of the framework (Table 3), many requirements of the

system point to the suitability of MAS for a call management system. This was confirmed

with the second step of the framework which showed that many of the system tasks can

be allocated to suitable agents requiring a degree of autonomy. In the next section, an

undertaken requirements analysis is explored, using stakeholder analysis technique with

i* which has been extensively used for MAS design (Bresciani et al. 2004).

4.3 Validating the Modelling units in the Requirements Analysis of the CMC
MAS

The validation presented in this section constitutes a preliminary validation and a stepping

stone prior to the development of the concomitant process in Chapter 5. The process will

enable the analyst to decide which modelling unit(s) to be used for a given agent task and

will also provide a sequence of the modelling units’ execution later at runtime. In this

current validation, all units will be treated equally as the process is yet to be synthesised.

4.3.1 Call Management Centre Requirements Analysis

Initially, RE activities are performed using the i* modelling framework in (Yu 1995).

This begins with stakeholder requirements analysis and rationale for the new system. In

a MAS, agents depend on each other to achieve system goals and perform tasks. The

stakeholder analysis represents the MAS agents and the relationships between them. This

produces a high-level description of system goals and roles expressed in i*. The resultant

model consists of two components: The Strategic Dependency (SD) model which models

the different agents and the relations between them, and the Strategic Rationale (SR)

model which models the different tasks each agent has and the different proposed

alternatives to accomplish these tasks. Other goal-oriented languages such as KAOS

(Bradshaw et al. 1997; Hiroyuki et al. 2006) and AOR (Wagner 2000) could be used

instead of i*. However, various experiences with i* (Bresciani et al. 2004; Tran et al.

2008) has shown that it is a good language to express MAS requirements. The i* “actor”

56

construct lends itself to readily model the actors and agents in a CMC. For the purpose of

this validation of the modelling units, the RT analysis process applied consists of the

following five steps:

- Step 1: Identify agent roles (actors): This step produces an SD diagram, to enable

the actors’ identification.

- Step 2: Task analysis: For each identified actor, a task analysis is undertaken

producing an SR diagram that identifies tasks for each role. This step produces a

list of tasks for each agent role.

- Step 3: Identify and refine RT tasks: For each list of tasks, filter through which

tasks are RT tasks; that is, identify any which have RT constraints. For the RT

tasks, revisit whether or not they can be sub-divided. This enables the analyst to

further zoom in on the nature of RT constraint that needs to be identified.

- Step 4. Revisit RT task allocation: Ensure that the allocation of RT tasks does not

overload any single agent. This may require splitting some roles into two or more

roles.

- Step 5: Revisit RT modelling units’ allocation: For every identified RT task, for

every agent role (including newly identified roles), check if and how each of the

23 modelling units is applicable.

The Alternate Task “AT” modelling unit can lead to identifying a new task which

was not identified in step 2 initial task analysis. In such case, the identified new

task will go through steps 3-5 once again with the 23 modelling units applied to it

if applicable.

The details of each of the above five steps is presented in what follows:

4.3.2 Step 1: Identifying Actors in CMC

This step aims at identifying system stakeholders, which are represented as agent roles

(actors) and their goals (Desired state). An agent role is defined as an abstract

characterisation of the behaviour of a social actor within some specialised context or

domain of endeavour. Its characteristics are easily transferable to other social actors.

Dependencies are associated with a role when these dependencies apply regardless of

who plays the role (Yu 1995). Their goals are then analysed, refined and delegated to

existing or new actors. This process ends when sufficient goals have been delegated in a

way that all actors fulfil their assigned responsibilities and goals (Giorgini et al. 2005).

57

The i* model corresponding to the proposed MAS identifies nine agent roles (actors) as

shown in SD diagram in Figure 4-1.

The SD diagram (Figure 4-1) represents a starting point for all subsequent task

analyses yielding SR diagrams. In all, the output of this step shows the 9 identified actors

(as shown in Figure 4-1). They are as follows: inbound calling system, load balancer,

voice recorder, matcher, end-customer, main customer, outbound calling system,

relationship manager and performance monitor. This chapter will only focus on

representing the last 3 agents (outbound calling system, relationship manager and

performance monitor) while all other agents are further detailed in Appendix A.

Figure 4-1 SD diagram illustrating CMC actors dependencies

4.3.3 Step 2: Identifying Tasks for Each Actor in CMC

This step undertakes task analysis for each of the 9 actors identified in Step 1. Task

analysis defines how a goal is accomplished in terms of undertaken activities. Goals are

abstracted from the domain, including trade-offs between multiple ways to accomplishing

them, where each one represents a task and/or subtask. MAS’s tasks might be distributed

across multiple roles, reflecting their interdependencies between these roles. Agents may

also simultaneously contribute to achieving multiple or single goals (Prasad and Lesser

1999).

For each of the identified tasks, for every actor, how each task time requirements

are identified will be detailed. In this section, I show the results of the task analysis for

outbound calling system (OCS), relationship manager (RM) and performance monitor

58

(PM). Their tasks are shown in Table 4.5. The result of the tasks analysis of each of the

PM, OCS and RM are respectively shown in SD diagrams in Figures 4-2, 3 and 4.

For the Performance Monitor (PM) actor the identified tasks are as follows:

1. Count calls made.

2. Count sales made.

3. Analyse performance: This checks if there are any trends in the RM’s call logging

or performance, ex the RM logging all their calls as call backs or no sales.

4. Analysis of voice recording to analyse if the RM is saying or doing something during

the call that can be enhanced to increase his/her sales, as speaking too fast or too

low, speaking without passion or giving a bad impression for the product/service

from his/her voice tone.

5. Analyse call outcomes: This is to analyse if the RM has a trend in logging his/her

calls.

6. Generate RM performance reports.

7. Improve customer satisfaction: for example, using results of analysing voice

recordings, the number of call backs done to each end-customer and work load on

each RM.

8. Calculate RM load.

9. Determine best/worst product.

10. Determine Best/Worst performing RM.

11. Monitor Performance.

For the Relations Manager (RM) actor, the identified tasks are as follows:

1. Confirm customers’ details.

2. Offer product/service.

3. Read script provided: Once the RM is on the call, he/she should be reading from

the provided script.

4. Answer customers’ questions.

5. Log call outcome.

6. Call back.

7. Personal call back: This is when the RM believes that they can make a sale with the

end-customer; in this case, they would keep the end-customer details in a personal

call back to be able to call him at the set date/time, to carry on with the sale.

8. Sale: This is when the RM completes a sale with the end-customer.

59

9. Do not call (DNC): This is when the End-customer chooses not to receive any more

calls from the call centre/RM. The call centre has one month to block his number

from being called again.

10. Insert call details: At the end of each call the RM has to create a call report where

they put all the call details and notes on why they had to log the call as they did.

11. Create sales/customer reports.

For the Outbound calling system (OCS) actor, the identified tasks are as follows:

1. Dial number.

2. Detect call answer.

3. Start call recording.

4. Detect available RM.

5. Route call to matched RM.

6. Retrieve script.

7. Detect Call outcome.

8. Stop voice recording.

9. Reroute unanswered calls.

10. Reroute call for call back.

5Table 4.5: Relationship manager, performance monitor and outbound system tasks

RM Tasks PM Tasks OCS Tasks
Confirm customer’s details Count calls made Dial number
Offer product/service Count sales made Detect call answer
Read script provided Monitor performance Start voice recording
Answer customer’s questions Analyse performance Detect available RM
Log call outcome Analyse voice recording Route call to matched RM
Create sales/customer reports Determine best/worst RM Retrieve end-customer details
Answer calls Analyse call outcomes Retrieve script
Send sales confirmation Generate performance reports Detect call outcome
Add call history Improve customer satisfaction Stop voice recording
Call back Calculate RM load Reroute call for call back
Insert call details Determine best/worst product

60

Figure 4-2 SR for the outbound calling system agent

Figure 4-3 SR for the performance monitor agent

61

4.3.4 Step 3: Identifying RT Constraints for Role Tasks in CMC

This step first involves identifying which tasks have any time requirements. This is

basically asking “is the task required to be completed within a specific time frame?”.

Each Roles’ tasks and their RT constraint are summarised per Tables 4.6, 7 and 8.

6Table 4.6: Relationship manager real time tasks before subdividing

Tasks RT
Confirm customer’s details X
Offer product/service X
Read script provided X
Answer customer’s questions X
Log call outcome √
Create sales/customer reports √
Answer Calls √
Send sales confirmation √
Add call history X
Call back X
Insert call details √

7Table 4.7: Identifying tasks with time requirements for PM Role

Tasks RT
Count calls made √
Count sales made √
Monitor performance √
Analyse performance √
Analyse voice recording √
Determine best/worst RM √
Analyse call outcomes √
Generate performance reports √
Improve customer satisfaction √
Calculate RM load √
Determine best/worst product √

8Table 4.8: Identifying tasks with time requirements for the OCS Role

Tasks RT
Dial number √
Detect call answer √
Start call recording √
Detect available RM √
Route call to matched RM √
Retrieve script √
Detect Call outcome √
Stop voice recording √
Reroute unanswered calls √
Reroute call for call back √

62

The second part of this step is to do the following: For each RT task, revisit whether or

not they can be sub-divided. This enables the analyst to further zoom in on the nature of

RT constraint that needs to be identified. As a result, the RM tasks are subdivided into

multiple subtasks as summarised in Table 4.9.

9Table 4.9: Identifying tasks with time requirements for the RM Role after subdividing

Tasks RT Tasks RT
Confirm customer’s details X Update monitoring agent X
Offer product/service X Generate RM Skill Matrix X
Read script provided X Count calls made √
Answer customer’s questions X Count sales made √
Log call outcome √ Monitor performance √
Answer Calls √ Analyse performance √
Add call history X Analyse voice recording √
Call back X Determine best/worst RM √
Insert call details √ Analyse call outcomes √
Load products /services X Generate performance reports √
Retrieve end-customer details √ Improve customer satisfaction √
Retrieve RM sales script X Calculate RM load √
Load End-customer Details X Determine best/worst product √
Retrieve Matched Script for end-customer X Create sales/customer reports √
Generate RM profile √ Send sales confirmation √
Add call history X Update monitoring agent X

4.3.5 Step 4: Identify Agents and Ensuring Tasks Do Not Overload Any Single Agent

This step identifies new agent roles, if any. This step ensures that the allocation of RT

tasks does not overload any single agent. This may require splitting some roles into two

or more roles. During this step, the RM actor was subdivided into 3 agents (RM, RM Pre-

call and RM after call) as the RM was identified to have more than one role e.g. RM doing

administrative work such as creating reports, while also answering calls and rerouting

calls; hence, this thesis recommended distributing tasks based on the number of roles an

agent can do. This is meant to not overload agents with too many RT tasks, which might

lead to their failure i.e. an agent is more likely to fail when it has too many time

requirements to fulfil. This identifies that the task-to-agent ratio should be reduced in

order to cater for the added subtasks workload. Table 4.10 and Figure 4-4 represent the

new subdivided 3 agents (RM, RM Pre-call and RM after call) and their tasks with each

tasks’ time requirements.

63

Table 4.10: Identifying tasks with time requirements for the RM agent

Agent Tasks RT Agent Tasks RT
RM Confirm customer’s details X RM pre-call Update monitoring agent X
RM Offer product/service X RM pre-call Generate RM skill matrix X
RM Read script provided X RM after call Count calls made √
RM Answer customers’ questions X RM after call Count sales made √
RM Log call outcome √ RM after call Monitor performance √
RM Answer Calls √ RM after call Analyse performance √
RM Add call history X RM after call Analyse voice recording √
RM Call back X RM after call Determine best/worst RM √
RM Insert call details √ RM after call Analyse call outcomes √

RM Pre-Call Load products /services X RM after call Generate performance
reports √

RM Pre-Call Retrieve end-customer details √ RM after call Improve customer
satisfaction √

RM Pre-Call Retrieve RM sales script X RM after call Calculate RM load √

RM Pre-Call Load end-customer details X RM after call Determine best/worst
product √

RM Pre-Call Retrieve matched script for end-
customer X RM after Call Create sales/customer

reports √

RM Pre-Call Generate RM profile √ RM after Call Send sales confirmation √
RM Pre-Call Add call history X RM after Call Update monitoring agent X

Figure 4-4 SR for the RM, RM after call and RM pre call agents

64

4.3.6 Step 5: Applying the Modelling units

The last step is applying the 23 proposed modelling units to tasks with identified time

requirements. Hence, this step extends step 3 results and checks if and how each of the

23 modelling units is applicable to every task with time requirements.

In this step, some new tasks are identified while applying the Alternate Task “AT”

modelling unit. In this case, the identified new task will go through steps 3-5 once again

with the 23 modelling units applied to it if applicable.

The three role task and their RT constraints are summarised in Tables 4.11, 12 and 13.

Some modelling units require numeric parameters. Each table represents each agent and

how the modelling units apply to its tasks, including the parameters of the modelling units

where applicable. Then each agent is presented, its tasks and modelling units in a separate

i* SR diagram (Figures 4-5, 6 and 7) illustrating assigning the modelling units to each

task.

The Microsoft Visio objects used to draw a diagram (Stencil) created by Horkoff

(2007) for i* MAS modelling have been extended to include the proposed modelling

units. The developed 23 modelling units Visio stencil icons are summarised in Table 4.14,

where each icon represents the modelling unit value on it. However, not all modelling

unit values can be identified, so some values are zero “0”; for example, “Create

sales/customer reports” slack time , “Load/Retrieve Voice Recording” PO (Periodic

occurrence), “Receive product/service” PO (Periodic occurrence), “Receive Sale

confirmation” PO (Periodic occurrence) ,“Generate product/service matrix” REM

(Remaining Time) ,“Answer Calls” MMR (Maximum Miss Ration), “Dial number”,

MMR (Maximum Miss Ration), “Distribute the load among different RM’s”, Com

(Composite). Modelling units with no values are still represented on the i* diagram to

keep the diagram consistent and facilitate individual modelling unit recognition by their

location, in a similar way to reading a clock with no numbers; that is, the position of the

clock hands (arrows) allow reading the clock even if it doesn’t have numbers written on

it. The three agents are each represented in a table below with their modelling units’

values. Where the agents’ tasks are presented in the top row while each modelling unit is

in the first column. the values are either text e.g. Soft/Hard, Log Error, Drop Call. or

numeric values representing time in seconds, except for the sample time and deadline

“Dline” which represent a percentage of the expected. Task status is abbreviated as “O”

for on-time, “F” for fail, “I” for idle, “S” for started and “L” for late.

65

Table 4.11: RM time requirements template

 Confirm EC
details

Offer product/
service

Read script
provided

Answer EC
questions Log call outcome Answer Calls Add call history Call

back Insert call details

R/N X X X X √ √ X X √
Soft/ hard Soft Hard Soft

P 10 1 10
ED 20 5 20

Dline 101 101 101
AT LogError DropCall LogError
PO CallEnd CallStart CallEnd

RTO 5 1 5
MT 10 3 10

MOJ 5 3 5
RTD LocalAgent PABX, Phone LocalAgent

C 6 3 6
R 3 2 3

Sample Time 90 60 90
TS F O I
CP 9 4 8
VD 2 2 9

Slack Time 1 1 1
IVF 5 1 5
EAV 3 2 3
Rem 1 1 1

MMR 1 0 1
Com 5 1 5

66

Table 4.12: Performance monitor time requirements template

Count

calls made Count sales made
Monitor

performance
Analyse

performance Analyse voice recording Determine best/worst RM
R/N √ √ √ √ √ √

Soft/ hard Soft Soft Soft Soft Soft Soft
P 8 8 8 3 6 1

ED 2 2 2 2 2 2
Dline 101 101 101 101 101 101
AT LogError LogError LogError LogError LogError LogError
PO Hourly Hourly 10Min 10Min 10Min Hourly

RTO 1 1 2 1 1 4
MT 1 1 1 1 1 1

MOJ 1 2 4 3 1 3
RTD DB DB DB DB VoiceRecorder DB

C 8 8 8 2 3 3
R 3 3 3 5 5 3

Sample Time 90 90 80 40 60 60
TS O L L L F F
CP 2 2 2 2 2 2
VD 5 5 1 2 2 3

Slack Time 1 1 1 1 1 1
IVF 1 4 2 3 2 4
EAV 1 5 4 1 2 7
Rem 4 2 1 3 4 1

MMR 2 4 3 4 2 4
Com 1 1 2 1 1 4

67

Table 4.13: Outbound calling system time requirements template

 Dial
number

Detect call
answer

Start call
recording

Detect
available RM

Route call to
matched RM

Retrieve
script

Detect Call
outcome

Stop voice
recording

Reroute
unanswered calls

Reroute call for
call back

R/N √ √ √ √ √ √ √ √ √ √
Soft/
hard Hard Hard Hard Hard Hard Hard Soft Hard Soft Soft

P 1 1 1 2 1 2 8 1 10 4
ED 5 10 2 5 1 5 3 2 3 3
Dline 103 101 101 101 101 101 103 101 101 101
AT LogError DropCall DropCall StopDial DropCall Apology LogError DropCall DropCall LogNoSale

PO 3Sec Call End Call Start 1Min Answer
Detection Call Start Call End Call Start Call End CB Call End

RTO 1 5 1 1 1 1 1 1 5 1
MT 3 5 1 3 1 3 1 1 1 1
MOJ 1 2 1 3 4 2 1 3 1 2

RTD PABX PABX Voice
Recorder Local Agent PABX DB DB Voice

Recorder PABX DB

C 1 2 1 3 1 5 8 2 6 2
R 2 10 3 5 2 3 2 3 3 2
Sample
Time 20 40 20 60 20 80 90 40 80 40

TS S L S S L F O I I I
CP 4 6 2 4 2 4 2 2 2 2
VD 1 3 2 1 3 8 4 5 6 6
Slack
Time 3 1 1 1 1 1 3 1 1 1

IVF 1 5 1 2 4 1 2 4 3 1
EAV 1 3 2 1 5 3 2 1 2 5
Rem 2 4 2 1 3 1 5 2 1 3
MMR 0 2 3 4 2 2 1 2 4 3
Com 1 5 1 1 1 1 1 1 5 1

68

Table 4.14: The proposed 23 modelling units’ icons
ID Modelling Unit Proposed Icon What the icon represents

1 Real or not A chess table symbol for other modelling units to be presented on top of it.

2 Soft or Hard A rectangle with hard, soft, firm or weekly hard edges.

3 Priority
The priority pyramid with the priority value written within it.

4 Estimated duration A clock showing the estimated duration of a task, within which it is to be completed.

5 Deadline A red callout with the deadline value noted within it.

6 Alternate task An arrow pointing/linking to the alternate task.

7 periodic occurrences An index card with the value written on it.

8 Real-time order A task order tag.

9 Minimum time A sand clock.

10 Max output jitter A graph showing different execution times.

11 Real-time dependency A dotted arrow pointing to the RTD.

12 Criticality A star displaying how critical the task is.

13 Retry attempts A pentastar displaying how many times the task can be retried/restarted.

14 Warning level /Sampling time A yellow callout with the sample time within in.

15 task status A clock displaying the task current status.

16 Check points The save button as the check point saves the current task values.

17 Validity duration A parking meter.

18 Slack time An addition (add sign) to the execution time.

19 Instant value function A camera snapshot of the current execution times.

20 Execution accrued value The accrual of money, as time is money.

21 Remaining time Two clocks illustrating the time difference (remaining) between the current time and estimated duration.

22 Maximum-miss-ratio A maximised speed odometer.

23 Composite The composite work of four agents.

69

Figure 4-5 Outbound calling system agent with the modelling units

70

Figure 4-6 Performance monitor agent with the modelling units

71

Figure 4-7 RM, RM pre-call and RM after call agents with their modelling units

72

4.4 Conclusion
This chapter identifies 23 modelling units using the literature. Initially, an original set of

88 modelling units (23 defined + 65 with similar wording) is identified and then grouped

to 23, after removing duplicate modelling units with similar definitions. The grouping

process is done in two stages:

A) Gathering similar modelling units together, which is done based on their names

and definitions. The final name grouping with the definitions and references are

further detailed in Table 4.2, highlighting each group by having a thick boarder

square lines around each group.

B) The 2nd stage, is choosing the most commonly-used wording and definition to

represent each group of similar modelling units’ names. This is done by each

modelling unit name score; that is, the name that is most referenced is used as it

is the most commonly-used name.

This research documented and grouped all modelling units’ names and similar

definitions. Each modelling unit has a count of the number of times it has been referenced,

which represents the modelling unit score. That count is increased whenever a modelling

unit is stated and referenced noting the new definition and the similarity between it to the

existing modelling unit, as illustrated in Table 4.2.

These modelling units are then validated using a call centre case study that

investigated implementing a multi-agent system (MAS) in a call management system to

profile and match end-customers (EC) to relationship managers (RM), based on

demographic criteria and characteristics such as age, sex, culture, language proficiency,

experience, product knowledge; which makes the RM more convincing to the EC and

increases the chance of achieving a sale. The MAS also assists RMs in serving ECs by

adjusting call flow. For outbound calls, the MAS adjusts the RM calling list based on his

performance, skills and profile. The system creates an initial profile for each RM, which

is dynamically adjusted, based on the RM performance throughout the day in real-time.

This case study has illustrated that identifying time requirements in the early analysis

phase, leads to better load distribution among agents and ensures that agents can meet

their requirements. This answers the first question of when is best to use the modelling

units; it is preferable to use it in the analysis phase. This case study also proved that the

modelling units are usefull as they helped redistribute the agents workload, which in turn

73

ensures the system success to fulfil its real-time requirements. Identifying time

requirements is vital for building a MAS as two of its main characteristics are reliability

and redundancy. Meeting time requirements is vital for many systems but over-

engineering system redundancy and RT monitoring can have the opposite effect and lead

to a very slow, unreliable system.

This chapter has initially presented the modelling units’ advantage over current time

requirements implementation as:

1. Encourages analysts to consider 23 modelling units versus only 1, such as

deadline.

2. Encourages analysts to quantify (add values) to each of the modelling units, if

possible.

3. Identifies and resolves real-time issues as they arise. As some modelling units help

identify a late task, for example, sampling time, while other modelling units help

rectify a late running task such as an alternative task and/or checkpoints.

4. Load balance tasks-to-agents’ ratio.

5. Shifting the RT requirements to be a real-time task attribute (something attached

only to RT tasks) versus repeated tasks within every agent, as illustrated in Figure

4-6; that is, when first attempts were made to use the RT requirements without

modelling them (modelling units).

The next chapter, Chapter 5, details the meeting scheduler case study including a

detailed simulation and an implementation process development and validation. The

process was developed to address the issue stated above, and has led to implementing the

modelling units in a certain order (sequence) as well as using them as task attributes. This

was mainly to reduce the workload of running all the code even after resolving the delay

from the first executed modelling unit(s). The process also validated the efficiency of

each modelling unit to resolve task delays, as well as validating the possibility of dividing

modelling units into sub-groups. This was to determine whether all modelling units were

needed, or a subset of them would be sufficient. Hence, the process validated the quantity

(number of modelling units to be used) and the quality (efficacy in identifying and

resolving task delays) of each modelling unit, as further discussed in the next chapter.

74

CHAPTER 5

SYNTHESIS OF THE RT MODELLING PROCESS

Chapter 4 presented the second research phase of this thesis where a set of modelling

units was identified and validated using a call centre analysis domain. This chapter

presents the third phase of this thesis. It develops the process systematising the use of the

modelling units. The process guides a software developer in generating an enhanced set

of requirements models that capture real-time constraints.

To develop the process, multiple processes are created and simulated. A best-of-

breed process is chosen and refined. In choosing and validating the process, the set of

modelling units is further validated and refined. The threat against domain dependence is

mitigated, as a different domain to the call management is used. A calendar scheduling

simulation is used. The calendar here is made time aware (unlike say an Outlook

calendar). Furthermore, this calendar scheduling domain is chosen as it can be easily

mapped to other domains by using the task concept instead of a calendar events/meetings

e.g. For instance, any project context e.g. construction, software development, supply

chain, planning. all have a scheduling time component, which can be presented using their

start/end times, location and dependencies. Tasks in such domains often have time

constraints and need their scheduled time updated throughout their execution.

The calendar simulation used in this chapter monitors delays of arrival to a meeting

for instance. It also executes rescheduling actions in case of cancellations or other

unforeseen environmental changes. Users receive email alerts as required. The function

of the calendar is simulated in various scenarios representing different events with various

real-time constraints. Users are notified of delays, and reschedules are generated based

on actual expected arrival times, when possible. In simulation runs, various processes

with the modelling units are used to reschedule meetings. The chapter is organised as

follows. Section 1 introduces the calendar domain. Section 2 discusses different meeting

scenarios, starting by a two-person meeting then introducing meetings with multiple

travel options, to get further insight into the domain. Section 3 presents the modelling

units’ integration; that is, how the modelling units will be used to represent the meeting

scheduler attributes. Section 4 represents the modelling units’ dependencies, relationships

leading to various diagram representing the process, which is further discussed in Section

5. The proposed process is validated in Sections 6, as individual modelling units,

75

sequential modelling units and randomly-selected modelling unit sequences. Finally, this

chapter is concluded in Section 7.

5.1 Introduction
This section provides a background and insights into the calendar domain and the

simulation setup. The simulation describes a computer-based meeting scheduler that

determines a meeting date and location to suit the largest number possible of potential

attendees. The scheduler requests from potential attendees their availability for a date

range based on their personal agendas and mediates an agreement for an acceptable

meeting date/time. It is based on (Jurisica et al. 2004). The simulation begins starting with

only 2 people attending a single meeting, and progresses to complex settings simulating

179 people attending 101 meetings with 754 events. Events simulated range from delays

to meeting cancellations under certain conditions. The simulation is used to validate A)

that the proposed modelling units in fact enhance meeting rescheduling; B) the success

rate of each modelling unit; C) a preferred sequence (proposed process) for the modelling

units; D) whether a subset of the modelling units is preferred to the full 23 modelling

units set.

In the simulation, events are created to trigger rescheduling of meetings which

might result in a cascade of meeting conflicts. A meeting conflict is when two meetings

overlap for an attendee; that is, the assumption is that an attendee cannot be in two

meetings, in two different locations, at the same time. The modelling units from Chapter

4 and a newly proposed process are used to resolve these conflicts. Their success rate is

measured. This is reflected in how many meeting conflicts are successfully resolved (or

rescheduled), allowing all required attendees to attend them. The proposed process is then

further enhanced and a best-of-breed process is chosen and refined. For simplicity, only

public transportation mode is considered in this simulation. The option of driving is not

considered as driving routes, times, traffic conditions and parking time are less

predictable and the added complexity is out of scope. Using public transport, travelling

times can include riding one or multiple means of transport such as train, ferry or bus.

Transport schedules are known to all attendees, enabling attendees to compare their

location and times to transport schedules and estimate their travel/arrival times. All

attendees are assumed to be time-aware. Time awareness is critical to identify if they are

on track, late or early for their meeting. On the other hand, they must be able to

communicate any changes to their meeting place or time, due to rescheduling or delays.

76

A person’s delay proves to be an important factor, where delays are communicated to

other meeting attendees; if the person is running too late, the meeting is rescheduled to

another day/time.

Each meeting attendee chooses a specific transport method based to their internal

state. Assumptions leading to such a choice include a preference for a mode of transport,

arrival and departure times. These internal states are related to running costs, ease of use

and work/personal arrangements that are not directly related to this research. There are a

number of events that could affect the person’s transportation choice and time of travel,

such as:

1. External effects: For example, if the attendee has a leg injury then they would

have to choose an option that involves less walking so as to avoid changing from

buses to trains. The length of the walk from a bus stop to a train station may be

more than changing trains on the same or different platforms within the same

station.

2. Rescheduling effects: The trains are running on a different schedule due to delays

or track work. Such schedule changes would affect the attendee’s choice of time

and means of travel.

3. Weather effects: This can affect both the attendee and the schedule; for example,

on a rainy day an attendee would prefer to avoid walking in uncovered areas as

much as possible, hence avoiding walking to train stations and/or choose the

closest station/ bus stop to their destination. Rainy weather usually causes delays

directly affecting bus and ferry schedules.

4. Missing a train, bus or ferry is an event that would trigger one the following three

rescheduling actions: Firstly, consider another instance of the same transportation

mode, if it enables the attendee to meet the deadline; for example, express train,

different route. Secondly, consider an alternate transportation mode that would

enable the attendee to meet the deadline. Or, simply reschedule the meeting if the

attendee cannot meet the deadline.

A meeting is considered successful only when it takes place. Thus, the following

criteria are used to identify successful meetings:

1- No attendee has cancelled, rescheduled or notified of their absence.

77

2- The meeting does not conflict with any other attendees ‘schedule; that is, for each

meeting attendee, no other meeting start or end times falls between this meeting’s

start and end times.

3- The time between 2 consecutive meetings allows an attendee travel time between

the two meetings. That is, we cannot have meetings in 2 different locations 100

km apart with only 5 minutes between the end time of the first meeting and the

start time of the 2nd meeting.

Meeting attendees in this simulation are represented by agents in a MAS, with

which they are required to negotiate their availability and status. For simplicity, they are

referred to as attendees, while later in this and the following chapter attendees are

represented by MAS software agents. Where an agent represents an attendee, illustrating

the efforts to attend a meeting e.g. negotiation meeting start time, location and duration.

The next section presents meeting scenarios that will be simulated.

5.2 Meeting Scenarios
The calendar simulation is implemented with a database backend which stores all

attendees’ information, meetings, locations and transport schedules. The simulation runs

will be performed using different scenarios with and without time constraints. The impact

of using the modelling on the meetings success rate will be measured. The simulation will

focus on how an attendee reacts when they discover that they would be late for a meeting.

Since all transport methods are represented as scheduled meetings, alternatives to arrive

on time in the simulation will be considered as alternative meetings that satisfy the same

goal. This allows simulating alternative transport methods and meetings attendance as

calendar events to be implemented as MAS, where alternative meeting times will be

negotiated among different attendees (agents). Benefits from using the modelling units’

constraints will be assessed by comparing the success of the scheduler with and without

their use. When an attendee cannot make a meeting one of the following time aware

actions are simulated:

1. Meeting delay: If an attendee’s previous meeting takes longer than expected,

subsequent meetings are rescheduled depending on their start times. The process

of rescheduling for MAS will include negotiation and communication with other

attendees, while for a single attendee it would only be time changing without any

communication.

78

2. Meeting cancellation: If an attendee’s meeting is cancelled, this is considered

gained/free time allowing a MAS flexibility to negotiate other meetings that had

to be delayed/reschedule or cancelled if one does exist. For non-time aware

applications, this would represent only marking the meeting time as free.

3. Meeting rescheduling: If one attendee needs to reschedule a meeting, this will

require negotiation between the different attendees to agree on the best time to

meet. For a single attendee, this will require setting a new meeting time and

marking the old meeting time slot as free.

The meetings scenarios are discussed to give some preliminary insights into the

simulation variables. A simple scenario of two people travelling to meet at a specific

location is first presented. This is then enriched by adding more people and meeting

locations with alternative travelling methods. The resultant scenarios are based on actual

times from a Sydney transit website (CityRail 2014) and Google maps (Google 2014).

A Two Person Single Meeting Initial Scenario: The meeting for the two people, “A” and

“B”, is illustrated in Figure 5.1 “A” travels from train station “X” to station “Y” where

the meeting is scheduled for 11:00 am. “B” travels from station “Z” to station “Y”. For

“A” to arrive by 11:00 am s/he needs to take the train leaving station “X” at 10:30 am.

While attendee “B” can take one of three trains. “A” train leaves every 5 minutes and the

trip takes 25 minutes. The first train leaves at 10:15 am and arrives at 10:50 am. Assume

that attendee “A” is running late and arrives at station “X” at 10:35 am missing the 10:30

am train leaving. The next train leaves at 10:45 am, arriving to station “Y” at 11:15 am.

Thence, attendee “A” needs to notify attendee “B” of the delay and negotiate rescheduling

their meeting to 11:15 am instead. Depending on “A” and “B”’s schedules, the negotiation

outcome can lead to a meeting at 11:15 am or to rescheduling to another day/time. This

79

can also lead to delaying other meetings depending on how critical between “A” and “B”

meeting is in comparison to the other meetings.

8Figure 5-1 Meeting attendees travel and arrival times to a scheduled meeting

More complex scenario would include multiple attendees with a dense calendar and

multiple alternative travelling methods. For example, travelling from point “X” to “Y”

can include buses, trains, ferries, taxis, express trains, private cars or even plans to

different countries and time zones. This leads to more complex models as illustrated in

the next scenario:

Meeting with alternative travel options and more attendees: The next step in this

simulation is to develop a more advanced scenario using Google Maps to travel between

4 Sydney locations (X=Miranda, Y=Martin Place, Z=Bankstown, K=Mossman) as shown

in Figure 5.2. The scenario considers three modes of public transportation: Attendee “A”

takes only trains; Attendee “B” takes trains and buses and Attendee “I” takes buses and

ferries. All 3 attendees work together and are assumed to have a meeting together at 9:00

am; hence, all the planning is for them all to arrive before 9:00 am.

This scenario assumes that attendee “A” takes the train daily to work. S/he walks

from the house for 10 minutes to the train station “X” where they board the train. They

then change trains at station “T” to reach the closest station to their work (station “Y”).

This train trip takes between 41 and 48 minutes depending on the time of day and how

long they have to wait for a connecting train. An attendee then has to walk for 20 minutes

to reach the office. Attendee “B” takes a bus and a train to work. S/he walks from their

house for 3 minutes to the closest bus stop, where s/he takes the bus to the train station.

S/he then has a choice of taking an “express train” or “limited stop” train. “Express trains”

travel from station “Z” to “Y” in 43 minutes, while limited-stop trains take 50 minutes.

Attendee “B” has to walk from station “Y” to the office, which takes about 20 minutes.

Meeting at station “Y” At 11:00 am

Attendee “A” leaving

station “X” at 10:30 am

Attendee “B” leaving

station “Z” at 10:15 am

Arrives 10:50 am

Arrives 11:00 am

80

Attendee “I” takes a ferry, train and bus; the trip for attendee “I” starts from station “K”

“Mossman” then a 3-minute walk to take a ferry then a bus to get to work.

Figure 5.2 illustrates the travel options for the three attendees and their slack time.

The slack time represents a time buffer between two consecutive transport methods e.g.

when changing trains, or from a bus to a train. Not having enough slack time between

consecutive transports increases the chance that an attendee would miss their next ride.

However, having too much slack time will increase the overall goal time, which is not

always preferred. For example, the 2nd option for attendee “A” is to take one of 3

consecutive trains without much slack time, which represents a high risk of missing a

train. The 1st option, to take 2 trains 9 minutes apart, reduces the risk of missing the 2nd

train (e.g. if the first train is delayed) without affecting the overall goal time. Both options

start at 8:05 in order to board the 8:07 am train. The first option, with less risk, finishes

at 8:51, five minutes before the 2nd option completes at 8:56.

81

9Figure 5-2 Attendee “A”, “B”, “I” Travel options

Attendee “A” Bankstown

Attendee “B” Miranda

Attendee “I” Mosman

07:40 09:00

07:40 09:00

07:40 09:00

07:40 09:00

07:40 09:00

07:40 09:00

07:40 09:00

07:40 09:00

07:40 09:00

07:40 09:00

07:40 09:00

07:40 09:00

08:49 - 08:51
Train

08:16 - 08:51
Train

08:16
Sutherland

08:05 - 08:07
Walk

08:51 - 08:52
Walk

07:56 - 08:03
Bus

07:40 - 07:45
Walk

08:05 - 08:07
Walk

08:51 - 08:52
Walk

08:53 - 08:58
Walk

08:58 - 09:00
Walk

08:51 - 08:52
Walk

08:07 - 08:42
Train

08:51
Martin Place

08:12 - 08:37
Train

07:45 - 07:52
Walk

08:44 - 08:58
Train

08:12
Bankstown

08:48 - 08:51
Train

08:37
Sydenham

08:51
Martiin Place

08:51 - 08:56
Walk

08:36 - 08:37
Walk

08:00 - 08:01
Walk

08:42 - 08:48
Train

08:07 - 08:42
Train

08:10 - 08:12
Walk

08:12 - 08:53
Train

08:03 - 08:04
Walk

07:51 - 07:56
Walk

08:07 - 08:51
Train

08:04
Gymea

07:45 - 08:00
Bus

08:58
Martin Place

07:52 - 08:36
Train

08:00 - 08:07
Walk

08:10 - 08:12
Walk

08:09 - 08:51
Train

08:07
Bankstown

08:51
Martiin Place

08:32 - 08:50
Bus

08:20 - 08:42
Ferry

07:52 - 07:55
Walk

08:51 - 08:52
Walk

08:20 - 08:42
Ferry

07:55 - 08:17
Ferry

08:24 - 08:28
Bus

08:49 - 08:53
Bus

08:49
Circular Quay Stand

08:42 - 08:44
Walk

08:53
Martin Place

08:17 - 08:20
Walk

08:27
Martin Place

08:17 - 08:19
Walk

08:50 - 08:58
Walk

08:07 - 08:32
Walk

08:50 - 08:54
Bus
08:54 - 08:55

Walk

08:17
Circular Quay

08:42 - 08:44
Walk

08:17 - 08:20
Walk

08:20
Mosman

08:19
Circular Quay Stand

08:31
Millitary Rd

08:50
Circulary Quay Stand

07:55
Mosman

08:49
Wynyard Stand

07:45
Miranda

08:12
Bankstown

08:42
Town Hall

08:07
Bankstown

08:42
Town Hall 08:47

Circular Quay

08:51
St James Station

08:53
St James

08:07
Miranda

08:51
Martin Place

08:36
Martin Place

07:51
Miranda

07:55
Miranda

08:03
Gymea

08:00
Sutherland

08:42
Circulary Quay

08:55
Martin Place

08:58
Martin Place

08:20
Mosman

08:42
Circular Quay

82

5.3 Modelling units’ Integration
The RT analysis process discussed in chapter 4 is applied to the calendar domain to

identify the agent roles and their tasks. As earlier described, the RT analysis process

consists of 5 steps which are summarized with the analysis results below:

Step 1: Identify Agent Roles: 3 agent roles are identified: the meeting attendee, the

transport method and the meeting itself.

Step 2: Task Analysis: The tasks of each of the roles from Step 1 are identified. For the

meeting attendee, three tasks are identified: attending a meeting, taking notes in a meeting

or rescheduling a meeting. For the transport agent, two tasks are identified: either to arrive

or to leave according to given scheduled times. Finally, the meeting agent itself has these

four tasks: sending invitations to attendees, sending start reminders, or sending finish

reminders. The reminders contain the meeting details.

15Table 5.1: Meeting attendee, transport method and meeting agents identified tasks

Meeting Attendee Transport Method The Meeting

Attend a meeting Arrive on scheduled time Send invitations to attendees
Take notes Leave on scheduled time Send start reminders
Reschedule a meeting Send finish reminders

Step 3: Identify and Refine RT Tasks: Of the tasks identified in Step 2, for each agent the

real-time tasks are identified. For the attendee agent, attending a meeting has RT

constraints. For the transport agent, both arriving or leaving have RT constraints. For the

meeting agent, all three tasks (sending invitations, start reminders or finish reminders)

have also RT constraints. In the event that an attendee cannot attend a meeting, three

alternate tasks are identified: cancel, reschedule, postpone meeting. These are all RT tasks

as summarized and highlighted in Table 5.2. Not being able to attend a meeting can be

due to any environmental or extremal factor related to the attendee (e.g. being sick),

transport method (e.g. broken down or running late/ behind schedule) or the meeting itself

(e.g. meeting conflict due to the arise of a higher priority meeting or location change due

to weather, unviability)

16Table 5.2: The agents and tasks

Meeting Attendee Transport
Start reminder RT Attend RT Arrive RT
Finish reminder RT Reschedule Leave RT
Send invitation RT Take notes
 Cancel meeting RT
 Reschedule meeting RT
 Postpone meeting RT

83

Step 4: Revisit RT Task Allocation: In this domain, this step did not change the allocation

of the tasks from Step 3.

Step 5: RT Modelling Units Allocation: This step is the focus of this chapter. A selection

process is developed. Towards this, different subsets of the modelling units were tested,

and within these tests the modelling units were sequenced differently. A best of breed of

a subset and a concomitant sequence is chosen. The aim is to differentiate the importance

of the modelling units wherever possible and whether applying the units in different order

is important to the overall effectiveness of the subset. Hence, various subsets and

sequences are evaluated in terms of their effectiveness. Therefore, all the modelling units

are investigated in this domain, as follows:

1) Estimated Duration “ED”: This the estimated task duration e.g. travel time for

each transport method, which is calculated as ED = (Arrival Time)– (Departure

Time). ED also represents other task durations like the meeting scheduled

duration.

2) Slag Time “ST”: This represents the time buffer between one task end time and

the following task start time, such as the time difference between a train arrival

and the meeting start time, which gives the attendee some delay time without

affecting the meeting start time. Figure 5-2 illustrates the slack time for attendee

“B” is 10 minutes, as the attendee’s first train arrives at 10:50 while the meeting

is at 11:00.

3) Deadline “Dline”: This is the meeting start time. However, each task would

have its own deadline; note that transport methods (trains, buses and ferries)

departure times are considered deadlines.

4) Criticality “C”: This represents how important this meeting is to the attendee,

so as to consider the possibility of rescheduling other meetings for this meeting to

occur, or reschedule this meeting in favour of other meetings. For example, in

Figure 5-2, the 8:49 bus option for attendee “I” can be considered a non-critical

option as it does have an alternative option (take the 8:50 bus). Similarly, taking

the 8:07 train for attendee “A” can be considered a non-critical option as it does

have an alternate option (take the 8:12 train). For attendee “I”, the 8:20 ferry is

considered a critical option as it’s the last option - all other alternate options

happen before it; hence, if the attendee doesn’t catch the 8:20 ferry they are likely

not to meet their 9:00 deadline.

84

5) Hard/Soft Deadline “S/H”: This represents whether the meeting time is

considered a hard or soft deadline (i.e. if the attendee can be late for the meeting

or not). For example, in Figure 5-2 the 8:49 bus option for attendee “I” can be

considered a soft deadline in comparison to the 8:50 bus, as if they miss the 8:49

bus they can still catch the 8:50 bus, arriving before 9:00 (deadline). The same

can be stated for the last starting times for each attendee, where they could miss

the earliest starting times and still arrive before 9:00 (deadline). However, if the

attendee misses the last start times (8:10, 8:00 and 8:17 for attendees “A”, “B”

and “I” respectively) then they would be unable to meet their deadlines.

6) Minimum Time “MT”: This is the minimum time that a task needs to be

executed. Public transport (trains, ferries and buses) MT is represented by their

scheduled time; as they have to run at specific speed and meet certain schedules;

that is, a train cannot arrive and leave earlier than its schedule. For cars and taxis,

the MT would be the maximum speed/distance as this thesis always assumes law

obedience, that is, travelling within speed limits. Simulating walking between

transports methods also has a MT depending on how fast the person can walk or

run if necessary; hence, the current walking time is based on an average adult

walking speed.

7) Checkpoints “CP”: This represents a point where task results can be saved.

Checkpoints would be on each individual arrival time, such as, attendee leaving

train in “Town Hall”, “Circular Quay”, “Sydenham” and “Martin Place”. In each

checkpoint the attendee could confirm that they are on schedule and their status

can be saved till the next station.

8) Validity Duration “VD”: This is the maximum time the data can be held for,

before expiring or being considered invalid. The saved information is valid until

the next station, then must be overwritten by the new status and information.

9) Maximum-Miss-Ratio “MMR”: This is the maximum number of times an

attendee can miss a soft goal; for example, in Figure 5-2, the MMR for attendee

“B” is 3, so they can miss 3 trains and still arrive on time, assuming they board

the 4th train, which arrives before 9:00.

10) Instant Value Function “IVF”: This is the total accrued value of a job, which

is equal to the total travel time including time between different transport methods.

85

11) Execution Accrued Value “EAV”: The amount of time gained if the attendee

arrives early to their destination; that is, the transport method (car, bus, trains)

arriving ahead of schedule.

12) Task Status “TS”: This represents the current state of the task, which could be

on time, delayed, ahead of schedule.

13) Alternate Task “AT”: This is the different option that the attendee can perform

if they miss, or are close to missing, a deadline. In Figure 5-2, the 8:50 bus for

attendee “I” is an alternate task for the 8:49 bus.

14) Periodic Occurrence “PO”: Is the rate of arrival of the public transportation;

that is, the schedule of the public transport bus, trains and ferry. For 3 example,

attendee “I” has a bus every 15 minutes, while attendee “A” has a train every 30

minutes.

15) Sample Time/Warning “W”: Used on each station to identify if an attendee is

running on time or not.

16) The Composite “Comp” field: Used for the arrival of several events at the

same time e.g. when more than one person is delayed so the maximum delay is

considered.

17) Priority “P”: This is similar to the meeting criticality; however, Priority ranks

meetings based on their importance; while criticality ranks a meeting as critical

or not; that is, it provides a method to rank alternative transport methods.

18) Real-Time Oder “RTO”: This provides the order in which meetings must

occur. That is, the attendee first needs to reach his meeting location for the

meeting to occur, hence the meeting becomes linked to the transport method(s)

and any delay in a transport would be cascaded to dependent meetings.

19) Maximum Output Jutter “MOJ”: This is the difference between the best

execution time and the worst execution time; it has been applied for long meetings

and some transport methods, such as walking, buses. Walking does not have a

strict schedule but relies more on average walking speed, while buses are highly

affected by traffic and weather conditions. As for meetings, some attendees tend

to run over their meeting schedules, hence when meeting with such attendees the

MOJ is taken into consideration when scheduling further meetings.

86

20) Real-Time Dependency “RTD”: This is the meeting organiser who should be

notified of any delay or meeting rescheduling.

21) Retry attempts “R”: This can be used as one of the alternate tasks; the initial

alternate task is to rerun the same task if unsuccessful, then start a different

alternate task. These tasks may range from rescheduling the meeting to finding

alternative transport methods, as discussed above.

22) Real or not “R/N”: This indicates if the task time should be monitored, and

notify of any delays or if the task/meeting is not time dependent.

23) Remaining time “REM”: This is the difference between the current time and

the meeting start time.

Although the calendar simulation enables the deployment of each of the modelling

units. Based on the above discussion, and further discussions when attempting to

deploy the modelling units, it becomes clear that the below 5 modelling units are

considered duplicates:

1. The Retry “R” modelling unit allows the task to rerun once again. This is

possible when the task has enough slack time to rerun again. It suits a RT-

MAS and can be identified during the analysis phase. It adds value as it

provides a 2nd chance for the task to run before failing; however, it can be

regarded as an extraction from the Alternate Task “AT” as restarting the

same task for a number of times ensuring system redundancy; which is

similar to a self-join in a database system. Hence, modelling “R” is

recommended as part of an “AT” and not as a separate modelling unit.

2. The Real-Time Order “RTO” is the same as slack time “ST”; however slack

time is preferred as it is better documented and referenced in the synthesis

process as presented in chapter 4.

3. The remaining time “REM” is a calculated field, where its values are

populated at run time. however, it was only needed in the analysis phase to

develop the code to calculate it.

4. The Maximum Output Jutter “MOJ” field is also a calculated field; with its

values populated at run time; however, it was only needed in the analysis

phase to develop the code to calculate it.

87

5. The Composite “Comp” field is used for the arrival of several events at the

same time e.g. when more than one person is delayed so the maximum delay

is considered, which is calculated by the event delay itself.

The deployment of modelling units is required to synthesize the process sought and

adds further credence for selecting this domain. The chapter will conclude in

identifying a process describing the sequence of applying the modelling units. The

next section discusses the modelling units’ dependencies and relationships leading to

various candidate processes.

5.4 Modelling units’ Dependencies
Identifying relationships between the modelling units is the first step to develop a process

to implement them. The process, once elaborated and synthesized, becomes deployable

by system analysts and developers. The relationships are first presented per modelling

unit, then as a network of dependencies (later shown in Figure 5-3).

1) Criticality “C”: The degree of criticality is a function of dependant and alternate

tasks; that is, a task is considered critical as the number of dependant (RT

Dependency) tasks increases and the number of alternate tasks (AT) decreases.

For example, a task with no alternate and 100 dependent tasks is considered

critical, while a task that has 100 alternate tasks and no dependencies would be

considered non-critical.

↑C ≈ AT↓, RTD↑

↓C ≈ AT↑, RTD↓

2) Priority “P”: Is a function of the Task Status “TS” and how critical “C” the task

is “Criticality”; that is, a critical task running late should have a higher priority

than a non-critical task running ahead of schedule. Generally speaking, all critical

tasks should have higher priority than non-critical tasks. The priority is also a

function of Periodic Occurrence “PO”, where if task occurs in very low intervals

then its priority decreases as if it fails then the next instance of this task will run

very soon.

↑P ≈ TS” Late”, C↑, PO↑

↓P ≈ TS” Early”, C↓, PO↓

3) Real-Time Order “RTO”: The priority “P” of the task decreases if its real-time

order (RTO) has a positive value; hence, the task has some buffer time to run late.

88

4) Soft/Hard: Critical tasks normally have a hard deadline but not all tasks with a

hard deadline are critical. For example, a PhD conference paper publication would

have a hard deadline (paper submission date); however, it’s not critical for

completing a PhD thesis. While the PhD end date, first year progress review,

annual progress reports. are considered critical tasks with hard deadlines.

5) Maximum-Miss-Ratio “MMR”: All soft deadline would have a maximum miss

ration; MMR, as a soft deadline cannot be missed forever.

6) Deadline “DLine”: The deadline is a function of the Real-Time Order “RTO”; if

it has a positive value then the task duration can be extended by that value

before the dependant task fails, and vice versa for RTO negative values that is

Deadline = ED ± RTO

7) Estimated Duration “ED”: The Estimated Duration is a function of historical runs

of that task. Since first run/instance of the task will not have any history, then it

would be based on the software engineer’s input, lines of code or exception based

on his/her experience.

8) Retry “R”: Retry attempts are a function of Alternate Task (AT) and periodic

occurrence (PO); If the PO is low, then there is no need to retry as the task will

automatically re-run. However, if it keeps failing on a schedule or a retry attempt,

then this task is considered un-functional and an alternate task should be

considered if one exists.

↓R ≈ PO↓, AT↓

9) Real-Time Dependency “RTD”: RT Dependency reflects the actual task

dependencies, as highlighted in criticality above. The criticality degree is a

function of RT Dependency.

10) Warning/sample time (W) “The warning/sample time (W) is a function of how

critical the task is. A critical task should be sampled more often than a non-critical

task, so as to early identify any potential delays and fix them; for example,

assigning more resources. There is an upper limit of sample times, as sampling by

itself consumes resources and could potentially delay tasks rather than help

resolve task conflicts and/or delays.

↑W ≈ C↑

11) Slack Time “ST”: The more slack time a task has, the less priority it would have,

as it will have more time to be delayed without affecting or missing its deadline.

89

12) Validity Duration “VD”: All checkpoints have a validity duration, after which the

saved values expire.

13) Check Point “CP”: Tasks have checkpoints were their values could be saved.

The above dependencies can be graphically represented as shown in Figure 5-3, to

identify their inter-relationships.

The relationships between the 23 modelling units discussed are important to identify a

logical process to implement/execute the modelling units. That is the order in which the

modelling units should be checked e.g. since only soft deadlines have a maximum miss

ratio (MMR) then if a deadline is identified as a soft deadline then the next logical check

would be to confirm its MMR. However, this research has went beyond providing a single

logical process and has proposed a number of candidate processes, logical and randomly

chosen. As such, the next section presents the different candidate processes. They are

evaluated to identify the most effective process that enables the analysts to identify a

sufficient set of modelling units for a given RT MAS application.

10Figure 5-3 Relationships between real-time constraints

5.5 Proposed Process
No single modelling unit could resolve all conflicting meetings. Rather, a set of modelling

units in the right order is required. An effective modelling process to guide the

Task

R/N

W

ST

AT

VD

CP

Dline RTD

Soft

Hard

EAV

IVF MOJ

RTO

C

P

MMR

PO ED

+

+

+

+

MT

R

TS REM

COMP

+

+

+

+

-

+

+

 -
+

-

90

identification of modelling units thus needs to describe both, (1) a sufficient set of

modelling units, and (2) the order (sequence) of the targeting of the modelling units.

5.5.1 Identifying the Modelling units Set for the Process:

Identifying the set (i.e. a subset of the 23 modelling units) is not an easy feat. This would

require different combinations of sub-sets, which meant a sub-set of 2 modelling units

then 3,4,5…23 modelling units; with each set having different modelling units’ order i.e.

for a set of 2 modelling units there would be two tests one with modelling unit A first

then B and another test with B first then A. That meant 23^23 (2323) different candidate

sets to test and simulate, which is equivalent to

20,880,467,999,847,900,000,000,000,000,000. Unfortunately, resources were not

immediately available to develop and run such simulations. The approach here rather uses

a random sampling approach. Each of the candidate set had the modelling units randomly

chosen as well as randomly ordered. The first candidate set was a small set of only 5

modelling units randomly chosen and ordered. This was followed by a larger set of 12

modelling units and 18 modelling units, then the whole 23 modelling units available, as

per Table 5.3.

17Table 5.3: The 4 modelling units’ sets

Modelling Unit 23 18 12 5 Modelling Unit 23 18 12 5

1. R/N 13. R

2. S/H 14. W

3. P 15. TS

4. ED 16. CP

5. Dline 17. VD

6. AT 18. ST

7. PO 19. IVF

8. RTO 20. EAV

9. MT 21. REM

10. MOJ 22. MMR

11. RTD 23. COMP

12. C

5.5.2 Identifying Candidate Sequences

Each of those four sets will then be ordered in different sequences, creating 8 candidate

processes, in an attempt to evaluate the preferred sequence/order. Each set and its

91

sequence together represent the process which is to be evaluated in the remainder of this

chapter. The eight proposed processes, illustrated in Table 5.4, can be categorized in 3

main categories:

A. Sets 1, 2 and 3 represents only 5 randomly chosen and ordered modelling units

B. FC1 represents randomly ordering the 18 modelling units, FC2 represents

randomly ordering the 23 modelling units and FC3 represents randomly ordering

the 12 modelling units

C. Logic1 and 2 represents all 23 modelling units logically ordered based on the

modelling units’ dependencies, as discussed in section 5.4.

18Table 5.4: The proposed modelling units’ processes

 Set1 Set2 Set3 FC1 FC2 FC3 Logic1 Logic2

1 R W VD RN RN R RN RN
2 EAV C AT MT MT RTD W W
3 REM DLine R W W RTO REM REM
4 P CP MMR ED EAV ED TS C
5 W REM EAV EAV IVF P EAV DLine
6 IVF REM RN IVF TS
7 CP CP W CP IVF
8 VD VD C VD EAV
9 TS TS DLine SH CP
10 ST ED AT MMR VD
11 S/H ST S/H MT SH
12 MMR RTO PO C MMR
13 C SH P MT
14 P MMR ED P
15 PO C DLine ED
16 AT P RTO RTO
17 RTD PO PO PO
18 DLine R R R
19 AT AT AT
20 RTD RTD RTD
21 DLine ST ST
22

 COMP COMP COMP
23 MOJ MOJ MOJ

The 8 candidate constructed processes are shown as flowcharts (Figures 5.4 - 5.12) and

each discussed in the following subsections. This chapter will present and discuss each

candidate process using commonly used symbols (Llego 2016):

92

1- Oval: A terminal symbol representing the process start/end

2- Rectangle: A process symbol representing processing of action

3- Diamond: A decision representing the process logical test

4- Arrow Lines & Arrow heads: this shows the process decision flow from one

modelling unit to the other.

 The first set of 5 real-time modelling units’ process (Set 1):

R EAV REM P W

Low EAV Enough REM P<3

1 2 3 4 5

11Figure 5-4 Set 1 representing the first set of 5 modelling units

The process shown in Figure 5-4 represents the first of three candidate processes with 5

modelling units. The process requires running each step (identified by bullet points

below) until a meeting conflict in successfully resolved. Hence not all steps of the process

must run each time; As the conflicting meetings in some cases can be resolved early in

the process and the process ends at the step/ modelling unit that resolved the meeting

conflict. Each modelling unit is identified by a number in a green box, to help identify the

modelling units represented in each process. While each termination/exit point is

highlighted as a blue oval task in the process. However, in some instances all the steps

are run utilizing all the process modelling units as described in what follows:

 R “Retry attempts”: The process starts by checking if this is a recurring meeting that

can be postponed to its next occurrence. If not, the process proceeds with validating

the next modelling unit “Execution Accrued Value”

 EAV “Execution Accrued Value”: The process then checks the accrued value from

previous meetings. If there is enough value to move/reschedule the meetings, then

the process would adjust the meetings accordingly. If not, the process proceeds with

validating the next modelling unit “Remaining Time”

93

 REM “Remaining Time”: If the Remaining time is enough to withhold the meeting,

then the meeting can be completed. However, if the REM is not enough then the

process will move to the next check, validating the Priority

 P “Priority”: This ensures priority meetings happen on their scheduled times. If the

priority value is less than or equal to the priority threshold, that is, P <= 3, then the

meeting is considered a low priority meeting and process quits logging “successful

as low priority meeting”. However, if the priority is greater than the priority

threshold, that is, P > 3, then this is considered a high priority meeting and the process

will move to the next step, validating the “Sample time”

 W “Warn/Sample time”: If the current duration is more than the sample time the

process samples the meeting values, the meeting is marked as successful and the

success rate is incremented. While if the process could not resolve a meeting conflict,

then the meeting is marked as failed, decreasing the process success rate.

 The 2nd set of 5 real-time modelling units’ process (Set 2):

W C Dline CP REM

C<3 Dline<Current Time Valid CP

1 2 3 4 5

12Figure 5-5 Set 2 representing the 2nd set of 5 modelling units

The process shown in Figure 5-5 represents the 2nd of three candidate processes with 5

modelling units. The process will run the steps (identified by bullet points below) until a

meeting conflict in successfully resolved as described in what follows:

 W “Warn/Sample time”: If the current duration is more than the sample time the

process samples the meeting values. However, if the sample time is less than or equal

to the current duration the process will move to the next step, validating the Criticality

 C “Criticality”: This ensures critical meetings happen on their scheduled times and

less critical meetings are the ones rescheduled not the critical ones if possible. If the

94

criticality value is less than or equal to the highly critical threshold, that is, C <= 3

then the meeting is considered a non-critical meeting and the process quits logging

“successful as non-critical meeting”. However, if the criticality is greater than the

criticality threshold, that is, C > 3, then this is considered a critical meeting and the

process will move to the next step, validating the Deadline

 Dline “Deadline”: This step checks if the deadline has passed or not by comparing

the current time versus the meeting start time (assuming that the deadline is the

meeting start time). If the deadline has passed the process will move to the next step,

validating Checkpoint

 CP “Checkpoint”: If the checkpoint is less than or equal to current duration then the

process skips logging “too early for checkpoint”. However, if the checkpoint is

greater than the current duration then the process will move to the next check,

validating the “Remaining Time”

 REM “Remaining Time”: If the Remaining time is more than or equal to the

estimated duration, then the task can be completed. The process quits logging

“Successful as REM more than ED”. However, if the REM is less than the ED then

the process will move to the next check, validating the warn time. then the meeting

is marked as successful and the success rate is incremented. While if the process

could not resolve a meeting conflict, before its REM, then the meeting is marked as

failed, decreasing the process success rate.

 The 3rd set of 5 real-time modelling units’ process (Set 3):

VD AT R MMR EAV

AT Started Restarted MMR-1

1 2 3 4 5

13Figure 5-6 Set 3 representing the 3rd set of 5 modelling units

The process shown in Figure 5-6 represents the 3rd of three candidate processes with 5

modelling units. The process will run the steps (identified by bullet points below) until a

meeting conflict in successfully resolved as described in what follows:

95

 VD “Validity Duration”: If the validity duration is greater than current time then this

checkpoint is considered valid and has not expired. Then the process increments the

validity duration by 1. That is, VD+ = 1, to give a new expiry to the new checkpoint

values then quits logging “Successful After updating VD”. However, if the VD is

less than or equal to the current time then process identifies that this checkpoint has

expired and it will move to the next check, validating the “Alternate Task” after

saving the current values as a new checkpoint

 AT “Alternate Task”: If an alternate meeting exists and can be attended, then the

process quits logging “Successful after starting the AT”. However, if there is no

alternate meeting (alternate task value is less than or equal to zero, that is, AT <= 0),

then the process will move to the next step checking the next modelling unit “Retry

attempts”

 R “Retry attempts”: If this is a recurring meeting then the process will postpone this

meeting to the next recurrence. If not, then the process will move to the next step

checking the “Maximum Miss ratio”

 MMR “Maximum Miss ratio”: If the MMR is greater than zero, then this considered

a soft constraint which has not reached its MMR, and can still be violated so the

process reduces the MMR by 1, that is, MMR- = 1 and quits logging “successful with

soft constraint MMR above Zero”. However, if the MMR is zero or less, then the

process assumes that the meeting has exceeded its MMR and will move to the next

step, validating the “Execution Accrued Value”

 EAV “Execution Accrued Value”: The process then checks the accrued value from

previous meetings. If there is enough value to move/reschedule the meetings, then

the process would adjust the meetings accordingly. If the process can reschedule the

meeting, then the process is marked as successful and the success rate is incremented.

While if the process could not resolve a meeting conflict, then the meeting is marked

as failed, decreasing the process success rate.

96

5.5.2.4 The 18 real-time modelling units’ process (FC 1):

R/N

WED

Delayed

Early TS

Hard Soft
C C <3

P P <3

ATPO

MT

CP <VD

IVF

EAV

MMR-1

RTD

ST

>Deadline Notify
RTD

On-time

S/H

PO>30 min

Started Notified

Current Duration
>MT

Delay <ST

1

2
35

6
7 8

9

10

11 12

13

14

15 16
17

18

4

14Figure 5-7 FC1 The 18 real-time modelling units’ process

The process shown in Figure 5-7 represents the candidate process with 18 modelling

units. The process will run the steps (identified by bullet points below) until a meeting

conflict in successfully resolved as described in what follows:

 R/N “Real or Not”: If the meeting is time-dependent this value would be “1” and the

process checks the rest of the modelling units, starting with the “Minimum Time”

modelling unit. However, if “R/N” has a value of “0” then all other modelling units

should be “0” and the process quits logging “Non real-time task”

 MT “Minimum Time”: This ensures that the meeting has taken places; hence if the

current duration of a meeting is more than the MT value, the process quits logging

“Successful as less than Minimum Time”. However, if the current duration of a

meeting is less than or equal to MT value, then the process will move to the next step,

validating the “Sample time”

 W “Warn/Sample time”: If the current duration is more than the sample time the

process samples the meeting values. However, if the sample time is less than or equal

to the current duration then the process will move to the next step, validating the

“Estimated Duration”

97

 ED “Estimated Duration”: Which is the meeting scheduled duration and is compared

to the current meeting duration. Based on this comparison the Task Status is updated

to one of the following three values:

I. Early: If ED is greater than the current duration, then the “Task Status” TS is

considered early and the process increments IVF and EAV by 1; that is, IVF+

= 1 and EAV+ = 1. Then the process quits logging “successful early”

II. On-Time: If ED is equal to the current duration, then the “Task Status” TS is

considered “on-Time” and the process creates a checkpoint and updates the

validity duration

III. Delayed: If ED is less than the current duration, then the process sets the “Task

Status” TS as “Delayed”. Then the process will move to the next step,

validating the “Slack Time”

 ST “Slack Time”: If the meeting is delayed, however there is enough ST for it to

complete before its ED i.e. there was enough buffer for the delay then the meeting

would still succeed and finish before within an acceptable time. However, if the delay

was more than the ST i.e. no room for that much delay then the process will move to

the next step, validating next modelling unit “Soft or Hard”

 S/H “Soft or Hard”: If the meeting has a “Soft” constraint, then the next modelling

unit, “maximum miss ratio” is checked. While if the meeting has a “Hard” constraint,

then the process would move to the next step, validating the meeting Criticality

 MMR “Maximum Miss Ratio”: If the MMR is greater than zero, then this soft

constraint has not reached its MMR, and can still be violated so the process reduces

the MMR by 1, and quits logging “successful with soft constraint MMR above Zero”

 C “Criticality”: This ensures critical meetings happen on their scheduled times and

less critical meetings are the ones rescheduled not the critical ones if possible. If the

criticality value is less than or equal to the highly critical threshold, that is, C <= 3

then the meeting is considered a non-critical meeting and the process quits logging

“successful as non-critical meeting”. However, if the criticality is greater than the

criticality threshold, that is, C > 3, then this is considered a critical meeting and the

process will move to the next step, validating the Priority

 P “Priority”: This ensures priority meetings happen on their scheduled times. If the

priority value is less than or equal to the priority threshold, that is, P <= 3, then the

meeting is considered a low priority meeting and process quits logging “successful

98

as low priority meeting”. However, if the priority is greater than the priority

threshold, that is, P > 3, then this is considered a high priority meeting and the process

will move to the next step, validating “Periodic Occurrence”

 PO “Periodic Occurrence”: Which presents meeting re-occurrence and/or available

time slots for meeting booking. The PO modelling unit has 2 checks:

i. If PO is between waiting threshold and 0, that is, 0 > PO <= 30, assuming

that meetings run every 30 minutes, then the process will move to the next

step, validating the “Alternate Task”

ii. If the periodic is more than the “waiting threshold”, that is, PO > 30, then

the process will re-run the meeting and reduce the value by 1, that is, PO-

= 1 and then the process quits logging “successful with PO”

 AT “Alternate Task”: If an alternate meeting exists and can be attended, then the

process quits logging “Successful after starting the AT”. However, if there is no

alternate meeting (alternate task value is less than or equal to zero, that is, AT <= 0),

then the process will move to the next step checking the next modelling unit “Real-

time Dependency”

 RTD “Real-time Dependency”: If the RTD is greater than zero, that is, RTD exists,

then the process will notify the parent agent (RTD), whom is usually the meeting

organizer, to take the necessary action, and the process quits logging “successful after

notifying RTD”. However, if RTD is less than or equal to zero then the process

assumes there is no dependent agent to notify and will move to the next step checking

the deadline modelling unit

 DLine “Deadline”: This step checks if the deadline has passed or not by comparing

the current time versus the meeting start time (assuming that the deadline is the

meeting start time). If the deadline has passed yet any of the above steps has

successfully resolved the meeting conflict i.e. enabling the attendees to attend the

meeting, then the meeting is marked as successful and the success rate is

incremented. While if the process could not resolve a meeting conflict, before its

deadline, then the meeting is marked as failed, decreasing the process success rate.

99

 The set of 23 real-time modelling units’ process (FC 2):

Hard

SoftS/H

R/N

ST

EAV

REM

COMP

RTD

TS

Delayed

VDIVFP

P<3

DlineMT

Actual
Duration > MT

ED

CP

AT

CC <3

PO

MOJ

W

R

MMR

Ontime
Early

RTO

1

2

3

4

5

6

7

8

9
11

12
13

14

16

17

18

19

20

21

23

10

22

15

15Figure 5-8 FC2 The 23 real-time modelling units’ process
The process shown in Figure 5-8 represents the candidate process with 23 modelling

units. Each modelling unit is identified by a number in a green box, to help identify the

23 modelling units represented in each process, while there are 5 modelling units in red

boxes which were considered duplicates and removed to create the 18 modelling units’

process. The process will run the steps (identified by bullet points below) until a meeting

conflict in successfully resolved as described in what follows:

 If the meeting “S/H” modelling unit has a “Hard” constraint, then the process would

move to the next step, validating the meeting “Real or Not”

 R/N “Real or Not”: If the meeting is time-dependent this value would be “1” and the

process will check the rest of the modelling units, starting with the “Slack Time”.

However, if “R/N” has a value of “0” then all other modelling units should be “0”

and the process quits logging “Non real-time task”

100

 ST “Slack Time”: If the meeting is delayed, however there is enough ST for it to

complete before its ED i.e. there was enough buffer for the delay then the meeting

would still successes and finish before within an acceptable time. However, if the

delay was more than the ST i.e. no room for that much delay then the process will

move to the next step, validating next modelling unit “Execution Accrued Value”

 EAV “Execution Accrued Value”: The process then checks the accrued value from

previous meetings. If there is enough value to move/reschedule the meetings, then

the process would adjust the meetings accordingly. If not, the process proceeds with

validating the next modelling unit “Remaining Time”

 REM “Remaining Time”: If the Remaining time is enough to withhold the meeting,

then the meeting can be completed. However, if the REM is not enough then the

process will move to the next check, validating the “Composite”

 COMP “Composite”: If the COMP is greater than zero, that is, COMP values exists,

then the process will quit logging “Comp>0”. However, if COMP is less than or equal

to zero then the process will move to the next step checking the “Real-time

Dependency” modelling unit

 RTD “Real-time Dependency”: If the RTD is greater than zero, that is, RTD exists,

then the process will notify the parent agent (RTD), whom is usually the meeting

organizer, to take the necessary action, and the process quits logging “successful after

notifying RTD”. However, if RTD is less than or equal to zero then the process

assumes there is no dependent agent to notify and will move to the next step checking

the “Task Status” modelling unit

 TS “Task Status”: which is the meeting scheduled duration and can have one the

following 3 values:

i. Early: If ED is greater than the current duration, then the “Task Status” TS

is considered early and the process quits logging “successful early”

ii. On-Time: If ED is equal to the current duration, then the “Task Status” TS

is considered “on-Time” and the process quits logging “On-Time”

iii. Delayed: If ED is less than the current duration, then the process sets the

“Task Status” TS as “Delayed”. Then the process will move to the next

step, checking the “Validity Duration”

 VD “Validity Duration”: If the validity duration is greater than current time then this

checkpoint is considered valid and has not expired. Then the process increments the

101

validity duration by 1. That is, VD+ = 1, to give a new expiry to the new checkpoint

values then quits logging “Successful After updating VD”. However, if the VD is

less than or equal to the current time then process identifies that this checkpoint has

expired and it will move to the next check, validating the “Retry attempts” modelling

unit, after saving the current values as a new checkpoint

 R “Retry attempts”: If this is a recurring meeting then the process will postpone this

meeting to the next recurrence. If not, then the process will move to the next step

checking the “Instant Value Function”

 IVF “Instant Value Function”: If the total accrued value from the meetings is higher

than the delay then the meeting can be successfully extended. If not, then the process

will move to the next step checking the Priority

 P “Priority”: This ensures priority meetings happen on their scheduled times. If the

priority value is less than or equal to the priority threshold, that is, P <= 3, then the

meeting is considered a low priority meeting and process quits logging “successful

as low priority meeting”. However, if the priority is greater than the priority

threshold, that is, P > 3, then this is considered a high priority meeting and the process

will move to the next step, validating the Deadline

 Dline “Deadline”: This step checks if the deadline has passed or not by comparing

the current time versus the meeting start time (assuming that the deadline is the

meeting start time). If the deadline has passed the process will move to the next step,

validating the “Minimum Time”

 MT “Minimum Time”: This ensures that the meeting has taken places; hence if the

current duration of a meeting is more than MT value, the process quits logging

“Successful as less than Minimum Time”. However, if the current duration of a

meeting is less than or equal to MT value, then the process will move to the next step,

validating the “Real-time Order”

 RTO “Real-time Order”: The process will check the time between each meeting and

if there is enough time for the meeting to be delayed then process quits logging

“successful with enough RTO”. If not then the process will move to the next step,

validating the “Estimated Duration”

 ED “Estimated Duration”: Which is the meeting scheduled duration and is compared

to the current meeting duration. If the actual duration is less than the ED the process

quits logging “meeting still running”. However, if the duration is more than the ED

102

i.e. the meeting has gone for longer than expected then the process will move to the

next step, validating the checkpoint

 CP “Checkpoint”: If the checkpoint is less than or equal to current duration then the

process skips logging “too early for checkpoint”. However, if the checkpoint is

greater than the current duration then the process will move to the next check,

validating the “Alternate Task”

 AT “Alternate Task”: If an alternate meeting exists and can be attended, then the

process quits logging “Successful after starting the AT”. However, if there is no

alternate meeting (alternate task value is less than or equal to zero, that is, AT <= 0),

then the process will move to the next step checking the next modelling unit

Criticality

 C “Criticality”: This ensures critical meetings happen on their scheduled times and

less critical meetings are the ones rescheduled not the critical ones if possible. If the

criticality value is less than or equal to the highly critical threshold, that is, C <= 3

then the meeting is considered a non-critical meeting and the process quits logging

“successful as non-critical meeting”. However, if the criticality is greater than the

criticality threshold, that is, C > 3, then this is considered a critical meeting and the

process will move to the next step, validating the “Periodic Occurrence”

 PO “Periodic Occurrence “: Which presents meeting re-occurrence and/or available

time slots for meeting booking. The PO modelling unit has 2 checks:

iii. If PO is between waiting threshold and 0, that is, 0 > PO <= 30, assuming

that meetings run every 30 minutes, then the process will move to the next

step, validating the “Maximum Output Jitter”

iv. If the periodic is more than the “waiting threshold”, that is, PO > 30, then

the process will re-run the meeting and reduce the value by 1, that is, PO-

= 1 and then the process quits logging “successful with PO”

 MOJ “Maximum Output Jitter”: This step compares the MOJ (difference between

shortest meeting time and maximum meeting time). If the MOJ is larger than this

meeting delay, the process quits logging “successful MOJ”. If not, the process will

move to the next step, validating the “Maximum Miss Ratio”

 MMR “Maximum Miss Ratio”: If the MMR is greater than zero, then this considered

a soft constraint which has not reached its MMR, and can still be violated so the

process reduces the MMR by 1, that is, MMR- = 1 and quits logging “successful with

103

soft constraint MMR above Zero”. However, if the MMR is zero or less, then the

process assumes that the meeting has exceeded its MMR and will move to the next

step, validating the “Sample time”

 W “Warn/Sample time”: If the current duration is more than the sample time the

process samples the meeting values. If the Sample time has passed yet any of the

above steps has successfully resolved the meeting conflict i.e. enabling the attendees

to attend the meeting, then the meeting is marked as successful and the success rate

is incremented. While if the process could not resolve a meeting conflict, then the

meeting is marked as failed, decreasing the process success rate.

 The set of 12 real-time modelling units’ process (FC 3):

R

RTD

PRNWCDline

AT

S/H

PO

RTO

C<3

Started

Soft

NonReal

P<3

RTD>0

ED

RTO>0

2

1

6
5

9
8 7

10

11

12

4

3

16Figure 5-9 FC3 The 12 real-time modelling units’ process

The process shown in Figure 5-9 represents the candidate process with 12 modelling

units. The process will run the steps (identified by bullet points below) until a meeting

conflict in successfully resolved as described in what follows:

 R “Retry attempts”: If this is a recurring meeting then the process will postpone this

meeting to the next recurrence. If not, then the process will move to the next step

checking the “Real-time Dependency”

 RTD “Real-time Dependency”: If the RTD is greater than zero, that is, RTD exists,

then the process will notify the parent agent (RTD), whom is usually the meeting

organizer, to take the necessary action, and the process quits logging “successful after

notifying RTD”. However, if RTD is less than or equal to zero then the process

104

assumes there is no dependent agent to notify and will move to the next step checking

the “Real-time Order” modelling unit

 RTO “Real-time Order”: The process will check the time between each meeting and

if there is enough time for the meeting to be delayed then process quits logging

“successful with enough RTO”. If not then the process will move to the next step,

validating the “Estimated Duration”

 ED “Estimated Duration”: Which is the meeting scheduled duration and is compared

to the current meeting duration to identify if the meeting is:

a. Early: If ED is greater than the current duration, then the meeting is

considered early. Then the process quits logging “successful early”

b. On-Time: If ED is equal to the current duration, then the meeting is

considered “on-Time”

c. Delayed: If ED is less than the current duration, then the process will move

to the next step, validating the Priority

 “P” Priority: This ensures priority meetings happen on their scheduled times. If the

priority value is less than or equal to the priority threshold, that is, P <= 3, then the

meeting is considered a low priority meeting and process quits logging “successful

as low priority meeting”. However, if the priority is greater than the priority

threshold, that is, P > 3, then this is considered a high priority meeting and the process

will move to the next step, validating “Real or Not”

 R/N “Real or Not”: If the meeting is time-dependent this value would be “1” and the

process will check the rest of the modelling units, starting with the estimated duration

“ED”. However, if “R/N” has a value of “0” then the process will move to the next

step, validating the “Sample time”

 W “Warn/Sample time”: If the current duration is more than the sample time the

process samples the meeting values. However, if the sample time is less than or equal

to the current duration then the process will move to the next step, validating the

Criticality

 C “Criticality”: This ensures critical meetings happen on their scheduled times and

less critical meetings are the ones rescheduled not the critical ones if possible. If the

criticality value is less than or equal to the highly critical threshold, that is, C <= 3

then the meeting is considered a non-critical meeting and the process quits logging

“successful as non-critical meeting”. However, if the criticality is greater than the

105

criticality threshold, that is, C > 3, then this is considered a critical meeting and the

process will move to the next step, validating the deadline

 Dline “Deadline”: This step checks if the deadline has passed or not by comparing

the current time versus the meeting start time (assuming that the deadline is the

meeting start time). If the deadline has passed the process will move to the next step,

validating “Alternate Task”

 AT “Alternate Task”: If an alternate meeting exists and can be attended, then the

process quits logging “Successful after starting the AT”. However, if there is no

alternate meeting (alternate task value is less than or equal to zero, that is, AT <= 0),

then the process will move to the next step checking the next modelling unit “Soft or

Hard”

 S/H “Soft or Hard”: If the meeting has a “Soft” constraint, then the process exists

reporting a “soft constraint”. However, if the meeting “S/H” modelling unit has a

“Hard” constraint, then the process would move to the next step, validating the

meeting “Periodic Occurrence”

 PO “Periodic Occurrence”: Which presents meeting re-occurrence and/or available

time slots for meeting booking. The PO modelling unit has 2 checks:

i. If the periodic is more than the “waiting threshold”, that is, PO > 30, then

the process will re-run the meeting and reduce the value by 1, that is, PO-

= 1 and then the process quits logging “successful with PO”

ii. If PO is between waiting threshold and 0, that is, 0 > PO <= 30, assuming

that meetings run every 30 minutes, yet any of the above steps has

successfully resolved the meeting conflict i.e. enabling the attendees to

attend the meeting, then the meeting is marked as successful and the

success rate is incremented. While if the process could not resolve a

meeting conflict then the meeting is marked as failed, decreasing the

process success rate.

106

 The first set of 23 real-time modelling units’ process logically sequenced (Logic

1):

R/N

W

TSOn-time Early

Delayed

CP

VD

IVF EAV

S/H

Hard Soft

MMR-1

MT

C

P

ED

Dline

REM

RTO

PO

R

AT

RTD

ST

COMP

MOJ

Restarted C<3

P<3

Started

Notified

Dline<Current Time

ED<Current Time

Actual Duration>MT

PO>30 min

RTO>0

Comp>0

ST<Delay

1

2 3

4

5
6

7

8

9

10

11

12

13

14

1516

17

18

19

20

21

22

23

17Figure 5-10 Logic1 The 23 real-time modelling units’ process

The process shown in Figure 5-10 represents the candidate process with 23 modelling

units ordered in the first of two logical flow charts. The logical flow chart is based on the

modelling units’ relationships and dependencies, as discussed in section 5.4. The process

will run the steps (identified by bullet points below) until a meeting conflict in

successfully resolved as described in what follows:

 R/N “Real or Not”: If the meeting is time-dependent this value would be “1” and the

process will check the rest of the modelling units, starting with the “Sample time”

107

However, if “R/N” has a value of “0” then all other modelling units should be “0”

and the process quits logging “Non real-time task”

 W “Warn/Sample time”: If the current duration is more than the sample time the

process samples the meeting values. However, if the sample time is less than or equal

to the current duration then the process will move to the next step, validating the

“Task Status”

 TS “Task Status”: Which is the meeting scheduled duration and can have one the

following 3 values:

i. Early: If ED is greater than the current duration, then the TS is considered

early and the process increments IVF and EAV by 1; that is, IVF+ = 1 and

EAV+ = 1. Then the process quits logging “successful early”

ii. On-Time: If ED is equal to the current duration, then the “Task Status” TS

is considered “on-Time” and the process quits logging “successful On-

Time”

iii. Delayed: If ED is less than the current duration, then the process sets the

“Task Status” TS as “Delayed”. Then the process will move to the next

step, validating the “Soft or Hard” modelling unit

 S/H “Soft or Hard”: If the meeting has a “Soft” constraint, then the next modelling

unit, maximum miss ratio “MMR”, is checked. While if the meeting has a “Hard”

constraint, then the process would move to the next step, validating the “Minimum

Time” modelling unit

 MMR “Maximum Miss Ratio”: If the MMR is greater than zero, that is, MMR > 0,

then this soft constraint has not reached its MMR, and can still be violated so the

process reduces the MMR by 1, that is, MMR- = 1 and quits logging “successful with

soft constraint MMR above Zero”

 MT “Minimum Time”: This ensures that the meeting has taken places; hence if the

current duration of a meeting is more than MT value, the process quits logging

“Successful as less than Minimum Time”. However, if the current duration of a

meeting is less than or equal to MT value, then the process will move to the next step,

validating the Criticality

 C “Criticality”: This ensures critical meetings happen on their scheduled times and

less critical meetings are the ones rescheduled not the critical ones if possible. If the

criticality value is less than or equal to the highly critical threshold, that is, C <= 3

108

then the meeting is considered a non-critical meeting and the process quits logging

“successful as non-critical meeting”. However, if the criticality is greater than the

criticality threshold, that is, C > 3, then this is considered a critical meeting and the

process will move to the next step, validating the Priority

 “P” Priority: This ensures priority meetings happen on their scheduled times. If the

priority value is less than or equal to the priority threshold, that is, P <= 3, then the

meeting is considered a low priority meeting and process quits logging “successful

as low priority meeting”. However, if the priority is greater than the priority

threshold, that is, P > 3, then this is considered a high priority meeting and the process

will move to the next step, validating “Estimated Duration”

 ED “Estimated Duration”: Which is the meeting scheduled duration and is compared

to the current meeting duration. If the actual duration is less than the ED the process

quits logging “meeting still running”. However, if the duration is more than the ED

i.e. the meeting has gone for longer than expected then the process will move to the

next step, validating the Deadline

 DLine “Deadline”: This step checks if the meeting deadlines including the meeting

start time and end time. If the deadline has passed then the process will move to the

next step, validating the “Real-Time Order”

 RTO “Real-Time Order”: The process will check the time between each meeting and

if there is enough time for the meeting to be delayed then process quits logging

“successful with enough RTO”. If not then the process will move to the next step,

validating the “Periodic Occurrence”

 PO “Periodic Occurrence”: Which presents meeting re-occurrence and/or available

time slots for meeting booking. The PO modelling unit has 2 checks:

i. If PO is between waiting threshold and 0, that is, 0 > PO <= 30, assuming

that meetings run every 30 minutes, then the process will move to the next

step, validating the “Retry attempts”

ii. If the periodic is more than the “waiting threshold”, that is, PO > 30, then

the process will re-run the meeting and reduce the value by 1, that is, PO-

= 1 and then the process quits logging “successful with PO”.

 R “Retry attempts”: If this is a recurring meeting then the process will postpone this

meeting to the next recurrence. If not, then the process will move to the next step

checking the “Alternate Task”

109

 AT “Alternate Task”: If an alternate meeting exists and can be attended, then the

process quits logging “Successful after starting the AT”. However, if there is no

alternate meeting (alternate task value is less than or equal to zero, that is, AT <= 0),

then the process will move to the next step checking the next modelling unit RT

Dependency “Real-Time Dependency”

 RTD “Real-Time Dependency”: If the RTD is greater than zero, that is, RTD exists,

then the process will notify the parent agent (RTD), whom is usually the meeting

organizer, to take the necessary action, and the process quits logging “successful after

notifying RTD”. However, if RTD is less than or equal to zero then the process

assumes there is no dependent agent to notify and will move to the next step checking

the “Slack Time” modelling unit

 ST “Slack Time”: If the meeting is delayed, however there is enough ST for it to

complete before its ED i.e. there was enough buffer for the delay then the meeting

would still successes and finish before within an acceptable time. However, if the

delay was more than the ST i.e. no room for that much delay then the process will

move to the next step, validating next modelling unit “Composite”

 COMP “Composite”: If the COMP is greater than zero, that is, COMP values exists,

then the process will quit logging “Comp>0”. However, if COMP is less than or equal

to zero then the process will move to the next step checking the “Maximum Output

Jitter” modelling unit

 MOJ “Maximum Output Jitter”: This step compares the MOJ (difference between

shortest meeting time and maximum meeting time). If the MOJ is larger this meeting

delay, yet any of the above steps has successfully resolved the meeting conflict i.e.

enabling the attendees to attend the meeting, then the meeting is marked as successful

and the success rate is incremented. While if the process could not resolve a meeting

conflict then the meeting is marked as failed, decreasing the process success rate.

110

 The 2nd set of 23 real-time modelling units’ process logically sequenced (Logic

2):

R/N

W

TSOntime Early

Delayed

CP

VD

IVF
EAV

S/H

Hard

Soft

MMR

MT

C

P

ED

Dline

REM

RTO

PO

R

AT

RTD

ST

COMP

MOJ

Comp>0

ST<Delay

Notified

Started

Restarted

PO>30 min

RTO>0
ED<Current Time

P<3

Actual Duration>MT

C<3

Dline<Current Time

1

2
3

4

5

6

7
8

9

15

10

11

12

13

14

16

17

18

19

20

23

21

22

18Figure 5-11 Logic2 The 23 real-time modelling units’ process

The process shown in Figure 5-11 represents the candidate process with 23 modelling

units ordered in the 2nd of two logical flow charts. The logical flow chart is based on the

modelling units’ relationships and dependencies, as discussed in section 5.4. The process

will run the steps (identified by bullet points below) until a meeting conflict in

successfully resolved as described in what follows:

111

 R/N “Real or Not”: If the meeting is time-dependent this value would be “1” and the

process will check the rest of the modelling units, starting with the “sample time”.

However, if “R/N” has a value of “0” then all other modelling units should be “0”

and the process quits logging “Non real-time task”

 W “Warn/Sample time”: If the current duration is more than the sample time the

process samples the meeting values. However, if the sample time is less than or equal

to the current duration then the process will move to the next step, validating the

Criticality

 C “Criticality”: This ensures critical meetings happen on their scheduled times and

less critical meetings are the ones rescheduled not the critical ones if possible. If the

criticality value is less than or equal to the highly critical threshold, that is, C <= 3

then the meeting is considered a non-critical meeting and the process quits logging

“successful as non-critical meeting”. However, if the criticality is greater than the

criticality threshold, that is, C > 3, then this is considered a critical meeting and the

process will move to the next step, validating the Deadline

 DLine “Deadline”: This step checks if the deadline has passed or not by comparing

the current time versus the meeting start time (assuming that the deadline is the

meeting start time). If the deadline has passed then the process will move to the next

step, validating the “Task Status”

 TS “Task Status”: Which is the meeting scheduled duration and can have one the

following 3 values:

i. Early: If ED is greater than the current duration, then the “Task Status” TS

is considered early and the process increments IVF and EAV by 1; that is,

IVF+ = 1 and EAV+ = 1. Then the process quits logging “successful early”

ii. On-Time: If ED is equal to the current duration, then the “Task Status” TS

is considered “on-Time” and the process creates a checkpoint “CP” and

updates the validity duration “VD”

iii. Delayed: If ED is less than the current duration, then the process sets the

“Task Status” TS as “Delayed”. Then the process will move to the next

step, validating the S/H

 S/H “Soft or Hard”: If the meeting has a “Soft” constraint, then the next modelling

unit, maximum miss ratio “MMR”, is checked and accumulated (MMR+1). While if

112

the meeting has a “Hard” constraint, then the process would move to the next step,

validating the meeting minimum time “MT”

 MMR “Maximum Miss Ratio”: If the MMR is greater than zero, that is, MMR > 0,

then this soft constraint has not reached its MMR, and can still be violated so the

process reduces the MMR by 1, that is, MMR- = 1 and quits logging “successful with

soft constraint MMR above Zero”

 MT “Minimum Time”: This ensures that the meeting has taken places; hence if the

current duration of a meeting is more than MT value, the process quits logging

“Successful as less than Minimum Time”. However, if the current duration of a

meeting is less than or equal to MT value, then the process will move to the next step,

validating the Priority

 P “Priority”: This ensures priority meetings happen on their scheduled times. If the

priority value is less than or equal to the priority threshold, that is, P <= 3, then the

meeting is considered a low priority meeting and process quits logging “successful

as low priority meeting”. However, if the priority is greater than the priority

threshold, that is, P > 3, then this is considered a high priority meeting and the process

will move to the next step, validating “Estimated Duration”

 ED “Estimated Duration”: Which is the meeting scheduled duration and is compared

to the current meeting duration. If the actual duration is less than the ED the process

quits logging “meeting still running”. However, if the duration is more than the ED

i.e. the meeting has gone for longer than expected then the process will move to the

next step, validating “Real-Time Order”

 RTO “Real-Time Order”: The process will check the time between each meeting and

if there is enough time for the meeting to be delayed then process quits logging

“successful with enough RTO”. If not then the process will move to the next step,

validating the “Periodic Occurrence”

 PO “Periodic Occurrence”: Which presents meeting re-occurrence and/or available

time slots for meeting booking. The PO modelling unit has 2 checks:

i. If PO is between waiting threshold and 0, that is, 0 > PO <= 30, assuming

that meetings run every 30 minutes, then the process will move to the next

step, validating the “Retry attempts”

113

ii. If the periodic is more than the “waiting threshold”, that is, PO > 30, then

the process will re-run the meeting and reduce the value by 1, that is, PO-

= 1 and then the process quits logging “successful with PO”

 R “Retry attempts”: If this is a recurring meeting then the process will postpone this

meeting to the next recurrence. If not, then the process will move to the next step

checking the Alternate task “AT”

 AT “Alternate Task”: If an alternate meeting exists and can be attended, then the

process quits logging “Successful after starting the AT”. However, if there is no

alternate meeting (alternate task value is less than or equal to zero, that is, AT <= 0),

then the process will move to the next step checking the next modelling unit “Real-

Time Dependency”

 RTD “Real-Time Dependency”: If the RTD is greater than zero, that is, RTD exists,

then the process will notify the parent agent (RTD), whom is usually the meeting

organizer, to take the necessary action, and the process quits logging “successful after

notifying RTD”. However, if RTD is less than or equal to zero then the process

assumes there is no dependent agent to notify and will move to the next step checking

the “Slack Time” modelling unit

 ST “Slack Time”: If the meeting is delayed, however there is enough ST for it to

complete before its ED i.e. there was enough buffer for the delay then the meeting

would still successes and finish before within an acceptable time. However, if the

delay was more than the ST i.e. no room for that much delay then the process will

move to the next step, validating next modelling unit “Composite”

 COMP “Composite”: If the COMP is greater than zero, that is, COMP values exists,

then the process will quit logging “Comp>0”. However, if COMP is less than or equal

to zero then the process will move to the next step checking the “Maximum Output

Jitter” modelling unit

 MOJ “Maximum Output Jitter”: This step compares the MOJ (difference between

shortest meeting time and maximum meeting time). If the MOJ is larger this meeting

delay, yet any of the above steps has successfully resolved the meeting conflict i.e.

enabling the attendees to attend the meeting, then the meeting is marked as successful

and the success rate is incremented. While if the process could not resolve a meeting

conflict then the meeting is marked as failed, decreasing the process success rate.

114

This section presented the 8 proposed processes to be evaluated. In the following sections,

simulations are used to test each process on two levels; first whether the collection of

individual modelling units is considered a sufficient set, then if the candidate sequential

set of modelling units is better in resolving meeting conflicts and whether the identified

relationships between the modelling units hold.

5.6 Simulating the Candidate Processes
Some characteristics of the domain of this simulation (calendar) are worth noting first.

From an attendee’s perspective, the action taken in not attending a meeting is similar to

the one taken in cancelling a meeting. But the consequences to other attendees and the

calendar rescheduling overall will depend on how many other attendees are affected. For

a meeting with only 2 attendees, where one will not attend, the meeting can be considered

cancelled. If the meeting has many more attendees, then the meeting might not be

cancelled and the person need to only notify the meeting organiser of their absence. For

example, in a lecture, the attendee can notify the lecturer, leaving the lecture unaffected.

For any transport delay, the transport times require updating. The meeting times

that depend on this transport are also checked to validate any attendees’ delay. The

simulation validates the use of the modelling units in general, by getting a total of all

successful meetings as a result of using the proposed modelling units. Even with the use

of appropriate modelling units, not all meetings will succeed. However, using the

modelling units will enable identifying a number of meetings as successful, e.g. either by

starting a new task, or from identifying the slack time or accumulated gained time, or by

notifying the meeting organiser. If a task does not have an alternate task, but the notified

RTD (meeting organiser) starts an alternate task or generates an alternate plan, then the

modelling unit is useful in making the initial task succeed. The modelling unit success

rate is calculated by counting the successful meetings that the modelling unit has checked.

That is, if the modelling unit was not checked or validated then this meeting would have

succeeded/failed without the need for that modelling unit. The simulation is performed in

2 stages: First is to assess the overall positive impact of the use of modelling units. This

compares the meeting success rates with and without modelling units. Second is to assess

the impact of each modelling unit individually to check whether or not it should be

considered in the mix of units.

The calendar simulation uses a conflict identification process as without using any

modelling unit, logical errors could be identified; however, real-time errors (i.e. errors

115

relating to time constraints e.g. delays) were not possible to detect, as at this stage the

initial simulation did not cater for real-time updates. To illustrate this (logical versus real-

time errors), Table 5.5 below, lists all attendee (agent) “1” meetings. When sorted by start

and end time, the simulation is able to identify the unreachable meeting “6” ending at

14:41, which is considered unreachable as the next meeting “2” starts at 14:00, that is, 41

minutes before the end of the first meeting; hence attendee/agent “1” cannot attend

meeting “2” (BankstownMeeting), as his train arrives Bankstown at 2:41 PM which is 41

minutes after the meeting start time.

19Table 5.5: Attendee “1” meetings

MeetingID LocationName Subjectname StartTime EndTime AttendeeID

5 Sutherland TrainSuthUOW 9:39 10:49 1

1 North Wollongong
(UOW) WeeklyCatchup 11:00 12:00 1

6 North Wollongong
(UOW) TrainUOWBank 12:08 14:41 1

2 Bankstown BankstownMeeting 14:00 14:30 1

7 Bankstown TrainBankSuth 14:32 15:14 1

3 Sutherland SutherlandMeeting 16:00 17:00 1

8 Sutherland TrainSuthUsyd 17:02 17:40 1

4 Redfern (USYD) USYDMeeting 18:00 19:30 1

The above test was that the previous meeting ending time (14:41) exceeds the start

time of the next meeting (14:00). This example does not consider the meeting criticality

or priority, that is, which meeting is more important to attend. If the “BankstownMeeting”

is more important than the “WeeklyCatchup”, then the attendee/agent would miss the

“WeeklyCatchup” to catch the train from UOW to Bankstown “TrainUOWBank”. In this

case, the unreachable meeting would be meeting ID “1” and not meeting ID “2”.

Attendees (agents) might also take the train to Bankstown “TrainUOWBank “and arrive

late for the BankstownMeeting, causing delay to all future meetings, which may or may

not succeed. However, this is considered as part of the meeting rescheduling process.

Agent “1” had 8 meetings in total. S/he managed to attend 7, while only 1 was

unreachable. The simulation simple testing could not identify other failed meetings like

meeting “7” (in Table 5.5). As Agent “1” arrives Bankstown at 14:41, which is 9 minutes

after the train leaves. This was further enhanced and was identified on all further tests.

The next phase of this simulation testing is to add real-time modelling units and detect

real-time errors in addition to the previous logical errors. This simulation increased the

116

number of meetings to 102 meetings with a single meeting for each agent except meeting

“101”, which is a general lecture with 98 attendees. There was a high level of meeting

success, 99 out of 102, as each agent had a single meeting on the day. There was not much

conflict, interaction or unforeseen events that could affect the agent’s attendance; which

was advanced further by creating dense agent calendars; that is, more meetings per day

for each agent.

5.6.1 Individual Modelling Units’ Simulation
The next stage of validation is to get an indication of the success rate of each modelling

unit. This is the number of meetings that succeed as a direct result of using this specific

modelling unit. This simulation logs the last checked modelling unit that caused the

meeting to succeed. Meetings that have failed after checking the RT modelling units are

then tested if an extra modelling unit is needed, as the researcher manually double-checks

the modelling unit values to validate them and ensure there was no other way to make

this meeting succeed. Although the number of direct successful modelling units is critical,

some modelling units with low success rate should still be present in the proposed process

as some are considered supplementary to other highly successful modelling units. That

is, modelling units that directly contribute to the meeting success; for example, sample

time (warning level) is important to be proactive in identifying a task/meeting that is

unlikely to succeed. Even if it doesn’t directly ensure a meeting success, it indirectly

ensures the meeting doesn’t fail by proactively identifying those that are likely to fail.

The simulation starts with simple events of non-dense calendars and it then escalates to

include denser calendars with complex events, as follows:

1- This simulation creates a new event “Event 7” to change the general lecture’s

time, which affects all 98 attendees. When this simulation changed the time from

14:15-15:00 to 18:15 -19:00 this simulation had 74 successful attendees leaving

24 unable to attend. However, they were not reported as failed, as they did report

their absence in advance or took other alternative actions. All 24 non-attendees

were not time aware, hence they failed to reschedule or attend the lecture.

117

20Table 5.6: General lecture non-attendees

ID MeetingID AttendeeID MU_ID RN
104 101 5 91 0
108 101 9 95 0
112 101 13 99 0
116 101 17 103 0
120 101 21 107 0
127 101 28 115 0
131 101 32 119 0
135 101 36 123 0
139 101 40 127 0
143 101 44 131 0
147 101 48 135 0
151 101 52 139 0
155 101 56 143 0
159 101 60 147 0
163 101 64 151 0
167 101 68 155 0
168 101 69 156 0
172 101 73 160 0
176 101 77 164 0
180 101 81 168 0
185 101 86 172 0
189 101 90 176 0
193 101 94 180 0
197 101 98 184 0

This rescheduling test was simple, as each agent had only one meeting, so there

were no conflicts when rescheduling. Non-RT agents were unaware of the reschedule

hence they failed to attend the meeting. However, as agents get busy (have more meetings

per day), the success rate is expected to decrease. However, RT agents will be notified

earlier, based on the sample/warning times, so they would have enough time to reschedule

and re-plan other meetings depending on the meeting criticality and priority, or have

alternative solutions, so that for a lecture they can arrange for someone attending to record

the lecture. They are also able to notify the instructor/tutor (RTD) explaining their

situation, hence would not have failed to attend as they were not absent without reason;

based on the assumption that the proper rules, regulations and procedures were followed

in the notification process and the university rules allows absence with a valid reason. As

the number of meetings increases the complexity of rescheduling increases, needing some

form of Artificial Intelligence “AI” to reschedule the meetings based on the proposed

118

modelling units. Table 5.7 below illustrates each modelling units’ success rate when each

agent had only 1 meeting to attend.

21Table 5.7: Results when each agent had 1 meeting only

Meeting Date Outcome Success Rate

9/27/2013 Meeting Successful After IVF 30
9/27/2013 Meeting Successful as TS early or on time 54
9/23/2013 Meeting Successful After updating VD 50
9/23/2013 Meeting Successful Early 26
9/18/2013 Meeting Successful 80
9/5/2013 Meeting Successful 99
9/5/2013 Meeting Unreachable 3
9/4/2013 Meeting Successful 7
9/4/2013 Meeting Unreachable 1
9/3/2013 Meeting Unreachable 2

1- More meetings were added to each agent making it harder to reschedule individual

meetings, due to their dense calendars. Table 5.8 below illustrates the success rate as

a result of an event affecting (rescheduling) meetings 1 and 101 only, when each agent

had more than one meeting to attend.

22Table 5.8: Adding more meetings to each agent results

Meeting Date Outcome Success Rate

9/27/2013 Meeting Successful After IVF 60
9/27/2013 Meeting Successful as TS early or on time 113
9/23/2013 Meeting Successful After updating VD 50
9/23/2013 Meeting Successful Early 26
9/18/2013 Meeting Successful 80
9/5/2013 Meeting Successful 99
9/5/2013 Meeting Unreachable 3
9/4/2013 Meeting Successful 7
9/4/2013 Meeting Unreachable 1
9/3/2013 Meeting Unreachable 2

The success rate was considerably good due to the IVF and TS modelling units, which

successfully enabled rescheduling 30 and 59 meetings respectively as per Table 5.9

below.

23Table 5.9: IVF and TS effect on the meetings success rate

Meeting Date Outcome Success Rate

9/27/2013 Meeting Successful After IVF 30
9/27/2013 Meeting Successful as TS early or on time 59

119

2- To examine how a large number of events going wrong simultaneously impact the

contribution of individual modelling unit(s) to a meeting success, 99 simultaneous

events affecting 99 meetings (2-100) were simulated. This uncovered that the more

important contribution of IVF, TS and REM modelling units to the success rate as,

per below Table 5.10.

24Table 5.10: Results of 99 events on meetings 2-100

Meeting Date Outcome Success Rate

9/30/2013 Meeting Successful After IVF 2

9/30/2013 Meeting Successful as REM more than ED 3

9/30/2013 Meeting Successful as TS early or on time 9

This section has validated each single modelling unit; however, the proposed

modelling units are not intended to be used individually or independently of each other.

As such, the next section validates a sequential modelling units set.

5.6.2 Sequential Modelling Units’ Simulation
This simulation creates sequential modelling units’ values with a variance of 5 above and

below the modelling unit threshold’s. That is, if the modelling unit checked a value of X

> 5, then the simulation would have x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (±5) from the threshold

(5 in this example). This simulation then validates the success rate of each modelling unit

independently. That is, validated individual modelling units illustrating each one’s

success rate. However, since the sample data is ±5 then one would assume that all

modelling units would have the same success rate.

This simulation then added more modelling units (RTO, RTD and Comp) then ran

the events on the sequential process, sequentially checking the modelling units rather than

a single modelling unit. Table 5.11 below represents the results conducted on meetings

scheduled for 2 days with 223 events (141 meetings reschedules, 41 transports events and

41 agent’s cancellations).

25Table 5.11: Success rate for 223 events

Meeting Date Outcome Success Rate

10/15/2013 Meeting Successful After IVF 1

10/15/2013 Meeting Successful as less than Min Time 22

10/15/2013 Meeting Successful as REM more than ED 25

10/15/2013 Meeting Successful as TS early or on time 139

10/15/2013 Non Real-time task 11

10/14/2013 Meeting Successful After IVF 3

120

Meeting Date Outcome Success Rate

10/14/2013 Meeting Successful as less than Min Time 130

10/14/2013 Meeting Successful as REM more than ED 129

10/14/2013 Meeting Successful as TS early or on time 813

10/14/2013 Non Real-time task 57

This section has validated the sequence of modelling units set, which could be biased. As

such, the next section has validated randomly chosen modelling units’ sets and sequences.

5.6.3 Random Modelling Units’ Simulation
This simulation commenced more simulations on 3 event groups where each group

consists of 1 events, 10 events and 100 events respectively; hence this test consisted of

12 (4*3) simulations. The test validated how the modelling units’ sets would resolve the

meeting conflicts with random events and random modelling units’ values; unlike the

previous test which had sequential values. The test runs for only the following three

agents that were randomly chosen from a pool of 179 agents:

26Table 5.12: The 3 randomly chosen agents

Person Id Person Name Job Title

96 Michael Webmaster

136 Ramy System Administrator

147 Marianne Manager

Between the 3 randomly chosen agents, there were 24 meetings to be held between them,

out of the 101 total meetings (Table 5.13). Each meeting is given a unique identification

number (ID) which is for the database to use to identify each meeting. As for the

attendees, they can identify the meetings they are invited to by the person Name and by

the subject name, Start and End time:

27Table 5.13: Meetings held by the 3 randomly chosen agents

Subject
name

Start
Time

End
Time

Person
Name ID Subject

name
Start
Time

End
Time Person Name ID

meeting 29 16:39 16:59 Marianne 29 meeting 88 3:45 4:00 Michael 88
meeting 22 17:08 17:30 Marianne 22 meeting 21 11:30 12:00 Michael 21

TrainUOWB
ank 18:20 18:50 Marianne 6 meeting 98 12:30 12:45 Michael 98

meeting 42 19:00 19:30 Marianne 42 meeting 33 14:00 14:30 Michael 33
meeting 99 19:00 19:15 Marianne 99 meeting 41 15:00 15:15 Michael 41

meeting 52 20:30 20:40 Marianne 52 WeeklyCat
chup 15:00 16:00 Michael 1

meeting 91 21:15 22:00 Marianne 91 meeting 50 16:30 16:45 Michael 50
meeting 81 22:30 23:00 Marianne 81 meeting 61 17:00 17:15 Michael 61
meeting 82 23:45 0:00 Marianne 82 meeting 71 20:00 20:15 Michael 71
meeting 78 23:00 0:00 Ramy 78 meeting 85 20:00 20:20 Michael 85
meeting 36 0:00 0:15 Marianne 36 meeting 40 20:02 20:40 Michael 40

121

Subject
name

Start
Time

End
Time

Person
Name ID Subject

name
Start
Time

End
Time Person Name ID

BankstownM
eeting 1:00 12:00 Marianne 2 meeting 27 20:30 21:00 Michael 27

meeting 100 10:15 10:30 Marianne 10
0 meeting 70 21:15 21:30 Michael 70

meeting 92 11:00 11:15 Marianne 92 meeting 51 22:00 22:15 Michael 51

meeting 13 11:39 12:49 Marianne 13 General
Lecture 22:15 23:00 Michael 101

meeting 98 12:30 12:45 Marianne 98 meeting 81 22:30 23:00 Michael 81
meeting 72 13:30 14:00 Marianne 72 meeting 9 14:05 15:05 Ramy 9

USYDMeeti
ng 13:55 14:40 Marianne 4 meeting 30 16:00 16:30 Ramy 30

meeting 65 19:30 20:00 Ramy 65 meeting 23 17:15 17:30 Ramy 23
meeting 27 20:30 21:00 Ramy 27 meeting 14 17:18 18:41 Ramy 14
meeting 68 20:45 21:00 Ramy 68 meeting 26 17:30 17:45 Ramy 26

meeting 20 21:00 21:15 Ramy 20 TrainUOW
Bank 18:20 18:50 Ramy 6

meeting 83 22:45 23:00 Ramy 83 meeting 46 18:45 19:15 Ramy 46
meeting 94 19:15 19:30 Ramy 94

28Table 5.14: The randomly chosen events

Events ID's Not Attending attendees 1 Event 1 Not attending attendees

645 521 9 701
23 580
16 677

170 821

677 228

683 522

149 42

655 897

65 825

585 20

29Table 5.15: Total successful and unreachable meetings

ID Meeting ID Person ID Constraint ID

127 101 28 115

30Table 5.16: The 10 random not attending agents

ID

Meeting

ID

Person

ID

Constraint

ID

111 101 12 98

1039 40 112 1035

1045 46 106 1041

550 51 113 546

890 91 97 886

608 9 171 604

849 50 56 845

122

ID

Meeting

ID

Person

ID

Constraint

ID

229 30 30 216

926 27 133 922

105 101 6 92

31Table 5.17: The 100 random not attending agents

ID

Meeting

ID

Person

ID

Constrai

nt ID ID

Meeting

ID

Person

ID

Constraint

ID ID

Meeting

ID

Person

ID

Constraint

ID

175 101 76 163 797 98 4 793 104 101 5 91
684 85 111 680 690 91 105 686 740 41 55 736
620 21 175 616 1019 20 132 1015 37 26 29 24
732 33 63 728 477 78 40 473 420 21 19 416
921 22 128 917 445 46 8 441 187 101 88 174

1050 51 101 1046 908 9 115 904 425 26 14 421
57 40 49 44 693 94 102 689 229 30 30 216
59 41 51 46 47 33 39 34 651 52 144 647

1025 26 126 1021 198 101 99 185 650 51 145 646
269 70 10 256 721 22 74 717 160 101 61 148
929 30 136 925 169 101 70 157 171 101 72 159
567 68 130 563 835 36 42 831 949 50 156 945
133 101 34 121 412 13 27 408 208 9 9 195
664 65 131 660 971 72 178 967 239 40 10 226

1001 2 150 997 997 98 154 993 621 22 174 617
108 101 9 95 613 14 176 609 703 4 92 699
877 78 84 873 881 82 88 877 1 1 1 88
967 68 174 963 401 2 38 397 529 30 92 525
281 82 22 268 820 21 27 816 464 65 27 460
186 101 87 173 195 101 96 182 143 101 44 131
977 78 174 973 712 13 83 708 241 42 12 228

1008 9 143 1004 32 22 24 19 1051 52 100 1047
701 2 94 697 121 101 22 108 114 101 15 101
440 41 3 436 481 82 44 477 645 46 150 641
849 50 56 845 564 65 127 560 137 101 38 125
628 29 167 624 925 26 132 921 769 70 26 765
149 101 50 137 113 101 14 100 58 40 50 45
152 101 53 140 148 101 49 136 441 42 4 437
221 22 22 208 497 98 60 493 432 33 7 428
39 27 31 26 880 81 87 876 270 71 11 257

632 33 163 628 192 101 93 179 102 101 3 89
136 101 37 124 725 26 70 721 893 94 100 889
722 23 73 718 899 100 106 895 301 2 2 297
649 50 146 645

123

This simulation illustrated that the number of conflicts could be above the number of

meetings as the number of meetings only counts the meetings for the 3 agents while the

conflicts checks all conflicting meetings involving all agents and not only the 3 sampled

agents. This simulation preferred checking all agent conflicts due to the interdependency

between meetings and agents. For example, if sampled agent “A” has a meeting with

agent “X”, which is not part of the 3 sampled agents, rescheduling this meeting (between

agent “A” and “X”) can cause conflicts on the schedule of agent “X” which would only

be included if all conflicting meetings were checked and not only for the sampled 3

agents.

5.6.3.1 Random Simulation Tests
This simulation conducted the following 12 simulation tests, catering from simple

to complex scenarios with 5, 12, 18 and 23 modelling units to validate which Process

(modelling unit(s) combination) is preferred, and if there is a degree of dependency

between scenario complexity and number of modelling units. This simulation attempts to

reschedule 3 randomly drawn agents from a pool of 179. These three agents had 48

meetings between them out of the 101 total meetings attended by the 179 agents. The

events were also randomly chosen from a pool of 754 events, simulating different delays,

location changes and proposing new meeting start and end times. These tests can be

categorised into the following four categories:

T1: Random choosing an event (environment change) that results in rescheduling a

number of meetings

T2: Rescheduling a random meeting under the below 3 strict rules

A. Minimum number of agents: this checks that the number of meeting agents

exceeds the required minimum.

B. Specific attendees (agents) that must attend; this represents a critical person

to a meeting.

C. Meeting dependencies: this checks that the new proposed meeting time slot

is not after the end time of a dependent meeting.

T3: Rescheduling a meeting with the 3 Rules and having 1 agent not attending

T4: Rescheduling a meeting with the 3 Rules and having 1 agent not attending and

randomly choosing an event that results in rescheduling a number of meetings.

124

These four categories were chosen to illustrate the effect of agent (attendee) verses

event (environment) effect on the process outcomes. then another dimension was added

to apply each of the above categories however having 1 ,10 and 100 events changed and

not only 1 event. This dimension simulates the effect of meeting and events complexity

and density. The combination of the four test categories and the randomly chosen

1,10,100 events resulted in the below 12 tests:

1. T1_1 (1 Event): This tested having 1 random event to reschedule a single meeting.

2. T1_10 (10 Events): This tested having 10 random events to reschedule a number

of meetings; the number of meetings was not pre-identified as the events were

randomly chosen.

3. T1_100 (100 Events): This tested having 100 random events to reschedule a

number of meetings; the number of meetings was not pre-identified as the events

were randomly chosen.

4. T2_1 (3Const 1 Event): This tested having 3 rules (constants) and then attempting

to reschedule a single meeting based on test 1 (T1) random event.

5. T2_10 (3Const 10 Events): This tested having 3 rules then rescheduling a number

of meetings based on the same 10 random events that was chosen in T1.

6. T2_100 (3Const 100 Events): This tested having 3 rules then rescheduling a

number of meetings based on the same 100 random events that was chosen in T1.

7. T3_1 (3Const 1 Event Not Attending): This tested having 3 rules then having one

random agent not attending a meeting.

8. T3_10 (3Const 10 Events Not Attending): This tested having 3 rules then having

10 random agents not attending their meetings.

9. T3_100 (3Const 100 Events Not Attending): This tested having 3 rules then

having 100 random agents not attending their meetings.

10. T4_1 (3Const 1 Event Both Events): This tested having 3 rules then having the

same random events of T1 and the same T3 random agents not attending their

meetings.

11. T4_10 (3Const 10 Events Both Events): This tested having 3 rules then having

the same random events of T1 and the same 10 random T3 agents not attending

their meetings.

125

12. T4_100 (3Const 100 Events Both Events): This tested having 3 rules then having

the same random events of T1 and the same 100 random T3 agents not attending

their meetings.

5.6.3.2 Random Simulation Results
All test results proved the modelling units’ high success rates. Most unsuccessful

meetings were rescheduled and the number of conflicting meetings were reduced. The 10

events setup resulted in 10 conflicting meetings out of 48 meetings. That is 10 meetings

that agents could no longer attend, however applying the modelling processes reschedules

these meetings allowing agents to attend their meetings. The number of successfully

rescheduled conflicting meetings illustrates the modelling framework success rate i.e. if

all conflicting meetings were rescheduled and all agents could attend their meetings then

the success rate is 100%. The rescheduling in some cases affected how agents had

scheduled their other tasks. For example, the 100 events resulted in 25 conflicting

meetings however to reschedule them, there were 27 meetings and tasks to be rescheduled

due to meeting/tasks dependencies and priorities. The modelling process always had a

positive success rate except in only 3 cases; where the modelling process had a negative

success rate i.e. increased the conflicting meetings rather than reduced them, as

highlighted in red in Table 5.18.

32Table 5.18: Summarised simulation results

The success rate was mostly 100% for simple events e.g. T1_10 and T1_10. That

is, all meetings conflicts were resolved, however, as the number of conflicts and events

increased the success rate was less than 100% yet was high enough to consider the

modelling process validation successful, as illustrated in Table 5.19 and Figures 5.12-16.

 T1_1 T1_10 T1_100 T2_1 T2_10 T2_100 T3_1 T3_10 T3_100 T4_1 T4_10 T4_100

Conflicts 15 19 75 16 22 126 15 16 13 15 20 100
Logic 1 3 0 28 9 11 25 14 5 6 6 11 8
Logic 2 0 0 23 8 10 23 11 3 9 3 12 11

FC 1 0 0 18 0 0 7 9 5 4 6 2 38
FC 2 0 5 27 11 13 22 10 13 9 8 7 12
FC 3 0 7 26 11 17 32 18 5 13 4 14 11
Set 1 0 5 25 9 24 63 11 8 7 12 16 24
Set 2 0 8 27 16 24 20 11 11 9 11 12 8
Set 3 4 14 13 8 15 28 10 12 10 10 7 10
Min 0 0 13 0 0 7 9 3 4 3 2 8

126

33Table 5.19: The Meeting success rate in resolving calendar conflicts

Success
Rate T1_1 T1_10 T1_

100 T2_1 T2_10 T2_
100 T3_1 T3_

10
T3_
100 T4_1 T4_

10
T4_
100

Logic 1 80% 100% 62.7% 43.8% 50% 80.2% 6.7% 68.8% 53.8% 60% 45% 92%
Logic 2 100% 100% 69.3% 50% 54.5% 81.7% 26.7% 81.3% 30.8% 80% 40% 89%

FC 1 100% 100% 76% 100% 100% 94.4% 40% 68.8% 69.2% 60% 90% 62%
FC 2 100% 73.7% 64% 31.3% 40.9% 82.5% 33.3% 18.8% 30.8% 46.7% 65% 88%
FC 3 100% 63.2% 65.3% 31.3% 22.7% 74.6% -20% 68.8% 0% 73.3% 30% 89%
Set 1 100% 73.7% 66.7% 43.8% -9.1% 50% 26.7% 50% 46.2% 20% 20% 76%
Set 2 100% 57.9% 64% 0% -9.1% 84.1% 26.7% 31.3% 30.8% 26.7% 40% 92%
Set 3 73.3% 26.3% 82.7% 50% 31.8% 77.8% 33.3% 25% 23.1% 33.3% 65% 90%

19Figure 5.12-16 Individual success rate test results for T1-T4 and all test comparison

The higher the success rate the better the modelling process would be in resolving

conflicting meetings. The 18 modelling units’ process (FC1) seems to be the modelling

127

process with the highest success rate in all tests, followed by Logic 2. However, when it

came to the hardest test where 100 events and both meeting reschedules and agents were

not attending, logic 1 and “Set 2” had the best success rate with only 8 out of the 100

conflicting meetings remaining (92% success rate). There was no real “best” or “worst”

process, as success rates changed between all sets with none having a straight highest or

lowest success rate in all tests. There were only 2 frameworks (Set 3 and Set 1) that held

the lowest success rates.

5.7 Conclusion
The simulation proved that adding the real-time modelling units’ process has actually

improved the robustness of the simulation and its scheduling. The user (agent) was

notified when the agent was running late for meetings, giving enough time to reschedule

meeting(s) or choose faster travelling method(s) to arrive on time. The 5 and 12 modelling

units’ processes were not considered sufficient; For example, the slack time was

compared to the delay to attending a meeting. But this comparison in certain cases didn’t

accurately indicate whether an agent is late or not. A more accurate indication can be

obtained by considering the EAV (Execution Accrued Value). Adding EAV to the slack

time and comparing it to the delay was more accurate in identifying if the attendee (agent)

will be late to the meeting or unable to attend it. Other useful modelling units like MMR

(Maximum Miss Ratio), VD (Validity Duration) and MT (Minimum Time) allows the

agent to better understand delays and their attendance status.

Using the 18 modelling units’ process (FC1) was preferred to using the 23

modelling units’ process as discussed in section 5.3, where the 5 modelling units (Retry,

Real-time Order, Remaining Time, Maximum Output Jitter and Composite) were

considered duplicate. Hence The 18 modelling units’ process (FC1) was considered

sufficient and enabled the meeting attendees (agents) to accurately identify delays. In

general, using the modelling process enabled the researcher and developers to create a

more robust simulation, in terms of having monitoring agents and applying the real-time

modelling process on communication and agents’ response times.

However, this simulation had a number of limitation. For example, it was carried

on a controlled environment, which might not accurately represent the real word. Hence

the next chapter validates the 18 modelling units’ process (FC1), identified by this

simulation as having the highest success rate, in the real world uncontrolled environment.

This is achieved by developing an iPhone calendar application utilizing the process to

128

assist users in identifying and rescheduling their meetings as events arise; these events

can be delays, meeting cancellation.

Another limitation, was agent delays were simulated as notifications, that is, the

simulation triggers a delay by sending a notification that the user is running late by X

minutes with expected arrival time. This delay would then be considered by the process

logic and an appropriate action is taken to, for example, reschedule a meeting if possible,

while for short delays, less than 5 minutes, a notification would be sent to the meeting

organiser. Hence this simulation did not consider other uncontrolled actions that real life

agent would take e.g. moving the meeting to a closer location. This is only achieved by

the use of mobility, which was fully utilised in the iPhone application utilising the built-

in GPS system, identifying the agent location, speed, travel direction. as discussed in the

next chapter.

However, using physical mobiles in the real world, as represented in the next

chapter, illustrated new challenges and limitations e.g. when agents could not be

contacted that did not mean the agent would not attend the meeting as mobile batteries

could have run out or the mobile would be out of coverage. In MAS domains, this would

have to be considered, as when remote computers running tasks fail then all tasks running

on that remote computer would fail, unless it had a self-healing or redundancy

mechanism. This should be considered and identified when designing the application.

129

 CHAPTER 6

RT MODELLING FRAMEWORK IN AN IPHONE APPLICATION

Chapter 5 developed eight candidate processes (second component of framework). The

candidates were validated using a meeting scheduler simulation. This identified a highly

successful process with 18 modelling units’ process (FC1). This process is now coupled

with the 18 modelling units to constitute the framework. This completed phase 3 of the

research plan of the thesis and readies the framework for validation as one complete

artefact. This chapter represents phase 4 of this thesis which further validates and refines

both the set of modelling units and the process to apply them as a single framework. In

this phase, two validity threats will be further mitigated: the first will be the dependence

on the application domain, and the second will be the usability, of the framework, by

different software developers. Finally, the usability and enhanced effectiveness of the RT

MAS developed will be illustrated.

The chapter is structured as follows: Section 6.1 introduces the application

background. Section 6.2 presents the application requirements and system goals. Section

6.3 describes the integration issues faced by the developer. Section 6.4 presents the

application and its interface. Section 6.5 presents the application testing and validation.

Section 6.6 presents the application results. Section 6.7 presents the threats to this

application. Finally, Section 6.8 concludes the chapter highlighting the future planned

work.

6.1 Introduction

An iPhone is a smartphone manufactured by Apple Inc. The iPhone has gained popularity,

and a significant portion of the smartphone market share, since its first release in 2007.

Apple sold over 500,000 iPhones on the first weekend and over 42 million in the

following 30 months, making it one of the bestselling mobile phones ever launched

(Laugesen and Yuan 2010). On July 27, 2016 Tim Cook, current CEO of Apple Inc.,

announced at an employee meeting in Cupertino that Apple recently sold the billionth

iPhone (Apple 2016). Its popularity and significant market share are mainly due to its

ability to browse the internet and the number of applications that have been developed to

integrate with it, as its browser is based on personal computer standards and not rewritten

for a mobile device (West and Mace 2010). This has made it preferable to traditional

mobile phones as their browsers were limited in regards to internet and applications

130

usage. Over the years this has changed, and a number of competing smartphone

manufacturers have gained a significant portion of the market share and have enhanced

their applications and browsers, for example, Samsung, Nokia, HTC and BlackBerry, that

are mainly supported by operating systems from major software houses like Microsoft

Windows, Google Android.

The iPhone has evolved to replace a computer in many instances, including

meetings planning, emails, watching movies, gaming and simple internet browsing. With

an increasing number of applications developed specifically for iPhone, it has also gained

ground in other areas like GPS navigation, internet banking, education, medical and

scheduling. (Wallace et al. 2012; Ling and Sundsoy 2009; Shih et al. 2010; Faliagka et

al. 2011; Mayer et al. 2010). The initial iPhone did not allow 3rd party application

development; however, with the opening of the App Store in July 2008, that changed and

user-developed software has been allowed since then (Kim et al 2016).

Indeed, this chapter discusses an application named Pcal, developed for the iPhone

mobile with a time clock icon (in the form of the author’s initials “AA”). This

application is developed to validate the framework that has been synthesized in chapters

4 and 5 of the thesis. The application described in this chapter extends the existing iPhone

calendar to include the modelling units. Some modelling units are mapped to existing

fields. For example, Deadline unit is mapped to a meeting start time; others, such as slack

time and REM are calculated values, hence no need for them in the application interface.

Still others, like priority, have been added to the application interface. An initial version

of the application was developed for Windows mobile phones but it was abandoned in

favour of the iPhone platform. There was a clear chance of acceptance once the

application is developed for an iPhone device, which is more widely used within the

authors’ network and peer groups.

An option to develop the application for an Android-supported phone was also

considered; however, learning and using Objective-C development tools for iPhone

development proved to be easier and more fruitful for the author (rather than learning and

using Java development tools for Android development). The main challenges faced

when developing for Android (and also Windows phones) is the calendar integration

capabilities and APIs. Collecting enough data usage from users’ mobile devices is

important for the purpose of this research and this is better facilitated with iPhone

platform. Windows and Android phone calendar integration are not well-documented and

131

supported, in comparison to the iPhone integration documentation and support. The same

can be said about Global Positioning System (GPS) and location support. GPS is also

difficult to integrate with the Windows calendar to import and interact with users’

meetings and schedules.

The GPS integration is crucial in the application. A mobile smartphone device is

indeed chosen in this validation as it has a built-in GPS system and can integrate with the

user’s existing calendar. GPS is a radio-based navigation system that provides location

and timing services to anyone with a GPS receiver; this service was first developed by

the US Air Force, then made available to civilians in 1996 (Whipple et al. 2009). The user

does not have to re-enter their meetings and schedules because the application imports all

calendar meetings into its database. The current calendar application has the meeting

location, and the iPhone has a built-in GPS system; however, it does not notify mobile

users of their delay, based on their speed and location. The introduced Pcal application

enables this functionality, notifying users of their delay and expected arrival time based

on their current location, speed and meeting schedule. However, to limit the use of the

iPhone battery and cellular data, which is preferred and recommended for any iPhone user

and developer, the application notifies only when the location services are enabled and

the application is in use. This is a part of the requirements and goals as detailed in the

next section.

6.2 Application Requirements and System Goals

The proposed calendar scheduler requirements are generally similar to those of the

scheduler simulation discussed in Chapter 5. However, there are a number of system goals

and requirements specific to the iPhone application, which shaped the application design,

development and interface. They include the following:

1- The application should be supported on various iPhone models and devices -

iPhone 4, 5, 6.

2- The application must integrate with the existing user’s calendar, which includes

the iPhone calendar and any another other application calendar imported into the

iPhone calendar from Outlook, Google.

3- The application events must be reflected in the iPhone calendar so that if the user

creates a new meeting in the application it must show in the iPhone calendar.

Similarly, any changes made to a meeting using the application must be reflected

in the iPhone calendar.

132

4- The application must not consume too much data, potentially incurring heavy

costs for the application user.

5- The application must not drain the mobile battery; this limited the negotiating and

agent communication.

6- This application is not intended for business use, as the location could not identify

meeting rooms within the same building. Hence, it targets meetings in different

addresses that require travel from one location to another.

An assumption is made that users always try to attend meetings in their calendar.

The initial analysis suggested including a checkbox identifying if a meeting has been

actually attended or not. However, this raises questions about the need to audit if someone

attended a meeting, based on the assumption that if a user accepts a meeting request then

they would have attended it unless it was cancelled. Meetings only appear on users’

calendars if they have accepted an invitation to a meeting or they are the meeting

organisers themselves. Another assumption, that had to be taken into consideration, is to

differentiate between a user checking a past meeting for information versus being late for

a meeting and checking it to act on it i.e. contact the meeting organizer or reschedule it.

By a user checking a past meeting, this thesis means a user opening a meeting calendar

event after its scheduled date/time. This is considered in the form of a time constraint,

where opening a meeting 10 minutes after its start time, can be considered as a user

checking a late meeting. while opening it 10 hours after its start time, can be considered

as a user checking the meeting for information. This research also takes into consideration

that a meeting (conference) scheduled over a number of days could be opened 10 hours

after its start date/time as some attendees might not attend the first day, which is usually

the opening ceremony and registration.

The Pcal application integrating with the iPhone calendar, replicates all its

functionality and interface to a degree that the user is familiar with. This leads to one of

the main issue faced in developing the Pcal application; that is, how to integrate with the

existing iPhone calendar and extend its capabilities yet not copy the existing calendar

interface; existing copyright laws prohibit copying the application interface yet the

application needed an interface similar to what the user was familiar with. The main

purpose of the application is not the interface or the current calendar; it is the added

functionality and capabilities which enables this research to gather enough information to

analyse and validate the framework.

133

To overcome these limitations, a SQL database that has fields for existing calendar

and the proposed RT modelling units is created. Hence, for any calendar operation, the

application applies the change to both the new database as well as the iPhone calendar.

For example, when a user changes a meeting time, the application updates the calendar

meeting and the meeting database record. To link meetings in both the iPhone calendar

and the Pcal application database, the application relies on the existing iPhone calendar

primary key (Unique identifier). Hence, when importing the existing meetings, the Pcal

application copies them with their primary keys, while when creating a new meeting the

application first creates it in the iPhone calendar then retrieves its newly-created primary

key to be used in the database. The Pcal application extends the calendar by creating a

new SQL database to record all events and meetings with their respective RT modelling

units. This database was composed of a single table “Meetings” which had the following

29 fields (Columns) representing the modelling units and mapping existing current

iPhone calendar fields when possible. However, some fields are not relevant to the

research, such as All Day event, calendar, show as, private and URL which are not

mapped, as discussed and illustrated in Figure 6-1 and Table 6.1:

SQL Database

SMSEmail Call Reschedule

Identify Delay
GPS

Framework

Pcal Schedule

Google
Analytics Logs

Alarm

IPhone Calendar

Pcal
Interphase

1Figure 6-1 Pcal application diagram

134

12Table 6.1: Database fields mapped to existing iPhone calendar fields

Current iPhone Calendar New Database fields Unmapped Fields

Title Title Hard

Location Location MMR

Starts
Dline TS

StartDate REM

Ends EndDate CP

Repeat
R VD

PER Real

 UID P

Invitees RTD C

Alerts W RTO

Notes Notes Slack time

All-Day Event* EAV

Calendar Calendar IVF

Show as Show as MOJ

Private Private COM

URL URL ED

 MT

The above fields are mapped to existing iPhone calendar fields, where the mapped

fields appear next to each other. The “All Day event” field is not mapped as the

application identifies it using its start and end times which are “00:00” and “23:59”

respectively. Most fields depend on the users input except the following fields which are

calculated:

1- REM: This is the remaining time to the meeting which is calculated based on the

difference between the meeting start time and the current time.

2- TS: This represents task status and is based on the time left to the meeting versus

the expected travel time. If the user had 30 minutes left to the meeting, while the

expected travel time is 60 minutes, then the application identifies that they are

running 30 minutes late and notifies the user.

3- Slack time: This is calculated as the difference between the end time of a meeting

and the start time of the next meeting.

This section discussed the system goals and requirements. The next section illustrates

how the framework is used to develop the Pcal application, as well as to facilitate the

meeting rescheduling.

135

6.3 Integrating RT Requirements within the iPhone Calendar

The RT modelling units and process (the two components of the framework) are used in

2 parts of the Pcal application:

1) In the Pcal application development analysis phase the modelling units were used

to identify potential time constraints and bottlenecks, and then the framework was

used to work around such identifications. The framework enhances the Pcal

application analysis and development by early identification of bottlenecks and

exceptions. The potential exceptions identification includes time exceptions, such

as when tasks take longer than expected.

Some identified time constraints that are implemented include when to

send data, and how often the application should send the data so as to preserve the

battery life and cellular data consumption, while having as much real-time data as

possible. In this exercise, the analyst prioritises data sources where critical

information needs to be sent imminently e.g. a user location to identify if the user

is running late. While other low priority data sources, such as analysis and data

usage are stored locally and sent in batches every 20 minutes. It also helps the

developer consider alternative options and tasks to be executed in case the original

code fails, for example, if speed is not identified due to the user not moving, a

minimum speed of 1KM/hr is assumed; if no database file is found, or the device

is unresponsive.

2) In the Pcal application development code the modelling units are used to identify

user delay to attend meetings and to apply the framework to reschedule and re-

plan such meetings, expected delays and/or meeting in attendance.

The framework leads to identification of tasks to help reschedule meetings, identify

if the user is late or not and identify the appropriate actions to take. For example, being

late for an unimportant meeting, an SMS or email to the organiser can be appropriate. For

critical meetings, a phone call to better explain the delay and reschedule is more

appropriate. Moreover, if the expected arrival is within the meeting time then the user

only reports a delay, while if the user is expected to arrive after the meeting end then a

reschedule is necessary.

This section has presented the use of the modelling units in the iPhone calendar

application. The next section details the application and its interface.

136

6.4 The Pcal Application

The Pcal application interface is made up of 4 screens which connects to the database

component of the application. The database has been discussed earlier, so this section will

only focus on the application interface, features and functionality. The interface is

developed using objective C classes and X-Code development framework which provide

the tools required to build an iPhone application. The first screen, presented in Figure 6-

2, represents the meetings list view, listing scheduled meetings for the next 30 days. The

30-day view is only to limit the list display; however, all future and past meetings are

stored in the database unless deleted by the user. All meetings are also stored on the

iPhone calendar to facilitate search and integration between both calendars.

2Figure 6-2 Pcal application home screen listing a month’s meetings

On top of the meetings list there are 2 buttons which are an “Update” button and

an add “+” button. The update button is used to import all changes from the iPhone

calendar to the Pcal application, including any meeting updates in the iPhone calendar

(deletion or addition of new meetings). Such updates are not currently automatically

reflected into the application. At any time, a user can delete a meeting by swiping the to-

be-deleted meeting in the meeting list to the left. This will show a delete button, as shown

in Figure 6-3 below.

3Figure 6-3 Deleting a meeting

The add “+” button is used to create a new meeting which is automatically reflected

in the iPhone calendar and the Pcal application. This button opens the 2nd screen (the edit

screen) presented in Figure 6-4; however, the fields do not have values in that screen. If

the user edits a meeting, by pressing the “i” icon next to the meeting in the meeting list,

the application will load the 2nd screen (the edit screen) with the meeting values in the

137

appropriate fields. A user editing the information in the 2nd screen (Figure 6-4), will see

the following fields:

1- Meeting title: This holds the meeting title.

2- Priority: This is an integer from 0-100 to highlighting importance of a meeting.

3- Location: This marks where the meeting will take place; clicking on this button

will open the 3rd screen (map search screen) of the Pcal application.

4- Start Date: This is the meeting start date.

5- End Date: This is the meeting end date.

6- Speed and delay information: This is a read-only label illustrating:

A. Speed: The users current average speed.

B. Remaining Distance: The distance from the user’s current location to the

meeting location.

C. Remaining time: The time left from now till the meeting start time.

D. You’re early by or you’re late by: This illustrates the users delay or early

expectancy based on his current speed, remaining distance and remaining time

to the meeting scheduled start date/time.

7- Save Button: This saves any changes the user makes to the meeting. The changes

are saved to both the iPhone calendar and the Pcal application database.

8- Go Back Button: This takes the user back to the first screen (meetings list).

4Figure 6-4 Edit meeting screen

Once the user presses on the location button a map search screen opens. The map

search allows the user to enter an address, which is then validated and all search results

for the entered location are listed below the search bar, as per Figure 6-5.

138

5
Figure 6-5 Location search screen

Once the user selects a search result, a map screen is opened displaying the users’

selection on the map to confirm the location. The top left button “Map Search” takes the

user back to the previous screen (Map search) if the user needs to update the location

address or go back to the Pcal application main screen (meeting list) by clicking back

again on the edit screen.

6Figure 6-6 Location map display

All meetings are synchronised with other devices and calendars. Once the Pcal

application updates the iPhone calendar, the relevant calendar is updated and

synchronised on other devices. e.g. Microsoft Outlook calendar is updated once the

iPhone calendar changes. The published application versions in the App Store are not in

a sequential order, due to some versions being rejected by Apple then reviewed and

enhanced for bug fixes before being accepted and published on the App Store. The current

published versions are:

139

 3Table 6.2: Pcal application versions

Version Publish Date Notes

1.3 06 Feb 2015 Without Google Analytics

1.7 27 Feb 2015 8 Reported Event categories

2.5 07 Mar 2015 35 Reported Event categories

3.1 24 Mar 2015 8 Reported Event categories

3.11 31 Mar 2015 1 Reported Event categories

5 12 May 2015

6 07 Oct 2015 Bug fixes

This section has presented the application interface, features and functionality. The

next section discusses the tests conducted and data gathering.

6.5 Application Testing and Validation

Before making it available on the App Store for public download, the Pcal application

was tested internally. Any iPhone user was able to download the Pcal application for free,

and to validate how it was able to notify users of their delay and assist them in

rescheduling the meeting and/or arriving on-time to their scheduled meetings. There were

a number of conditions that led to a meeting rescheduling including, but not limited to:

User delay in attending a meeting, a meeting cancelation by one of the attendees or a

meeting rescheduled by one of the attendees.

The user delay was automatically identified by the user’s GPS position, travel speed

and remaining time to the meeting start. These variables allowed the Pcal application to

identify the user status, that is, whether the user will arrive on time, early or is expected

to be late for the meeting. Based on the user’s expected status, the application uses the

process shown in Figure 6-7 (as identified from the previous case study), to re-plan and

advise the user what to do. E.g. to notify meeting attendees about the expected delay, to

reschedule the meeting, or to do nothing when the expected delay is less than 5 minutes

(considered an acceptable delay).

The test was mainly to validate the whole framework consisting of the 18 modelling

units coupled with the process (labelled FC1 in chapter 5), in an uncontrolled real life

environment. Although the results from this case study mainly focus on the framework

140

end results, some modelling units’ results were recorded using Google Analytics as a

means of validation and verification of the framework usage and validity. Although this

research does not control the activities of the iPhone users who download the application

from the App Store, this research obtains usage results via Google Analytics. Google

Analytics is a service offered by Google that generates detailed statistics about mobile

applications’ usage, after including specific code within the mobile application. Google

Analytics reports the total events and hits an application has had, as well as how many

unique users an application had over a specific period of time, which country they came

from, and more. By tracking events in the application, like pressing specific buttons or

performing different actions, this setting provides insights on calendar event, users’

delays and delay causes without violating any privacy laws.

R/N

WED

Delayed

Early TS

Hard Soft
C C <3

P P <3

ATPO

MT

CP <VD

IVF

EAV

MMR-1

RTD

ST

>Deadline Notify
RTD

On-time

S/H

PO>30 min

Started Notified

Current Duration
>MT

Delay <ST

1

2
35

6
7 8

9

10

11 12

13

14

15 16
17

18

4

7Figure 6-7 The framework showing the process and the used 18 modelling units

Each of version of the Pcal application reported user events. These were analysed

and used to enhance further versions. The main events were whether the meeting was

successful or not. Other supplementary events were which modelling and part of the

framework enabled the meeting success. The application version 2.5 was the best

performing version with 1,717 events in 35 categories within 3 weeks. This was mainly

141

due to the advertisement and high user engagement, as it was this thesis’ first published

application with the aim of gathering as much input and data as possible. The next version,

3.1, had only 399 events in 8 categories in one week, and the longest version (5) lasted 5

months, yet only recorded 388 events in 6 categories. These event results illustrate the

effective role advertising and publicity play in marketing an application and user

engagement. Although the Pcal application was highly successful, users were not engaged

for long periods and would only check it when running late to meetings or events out of

their offices, due to lack of location services within the same building; the application

could not identify distance and user location when the meeting was held in the same

address but in different meeting rooms, floors or offices. The Pcal application interface is

also said to be “not that attractive”, but this is not the aim of the research author, who

developed the application only to collect user data for analysis.

8Figure 6-8 Pcal application users density per country, as per Google Analytics e.g. 1000 users from
USA, i.e. the darker the blue colour the more users per country

6.6 Results

This research is not intended to develop a profitable commercial level application, as the

application is developed only as a data source to validate the framework. The application

has been approved and published on the App Store as “Pcal”, short for priority calendar,

on 14/03/2015. Since then it has been downloaded by 2,890 users from 86 different

countries in 6 continents as per Figure 6-8, and is still being downloaded on a daily basis.

All reviews and results were in favour of the application.

An interesting item of consumer feedback is that flight calendar events deadline

should be 45 min before the scheduled flight departure time, as that is when the gates

close for boarding passengers. While if the event is to meet an arriving passenger, then

the deadline should be 45 minutes after the schedule flight arrival time, to cater for the

142

time taken by the traveller to exit the airport through customs, border security. This is

actually part of the core of this thesis, but is not documented properly in the application

manual to keep it simple to access.

9Figure 6-9 The total number of events and their categories, actions and labels
Google Analytics results show, as per Table 6.3, the majority of the 1,117 events

were events relating to users being late for meetings; this is due to the fact that users tend

to check late meetings more than meetings they are actually running early for, or are on

time, while the application only communicates results after a user checks and opens it.

Although there were reported 1,117 late events, the SendMessage, SendEmail, reschedule

and PhoneCall functionality (events) were only used 10 (0%),12(0%), 20 (1%) and 48

(2%) times respectively. These results illustrate that users prefer using the built-in iPhone

functionality for making phone calls, sending emails and messages, to using the Pcal

application functionality when they are late. These figures illustrate the limitation of the

developed Pcal application and its inability to lock the user to only use it and not use other

built-in iPhone features like making phone calls, sending emails, sending messages,

rescheduling directly using the built-in calendar. Not using the logged features in the Pcal

application results in some of the reported usage figures seeming to be missing,

incomplete or even incorrect and misleading. Some modelling units were not illustrated

due to a bug in the Pcal application logic flow. The bug has been identified and fixed.

The Google Analytics new data is time-based, while this thesis compared versions based

only on their publish date. However, this analysis might not be accurate, as some users

might not have upgraded their Pcal application and continued to use the older version

which did not report on some of the modelling units.

143

4Table 6.3: Google events modelling units’ events hits and percentage

Event Action Total Events Total Events %

LateUser 1,117 36%

EarlyUser 373 12%

TS 297 10%

NotReal 254 8%

EVENT-TRACKING.COM 89 3%

High MT 74 2%

High CP 52 2%

High VD 52 2%

High EAV 51 2%

High ED 51 2%

High MOJ 51 2%

High IVF 50 2%

PhoneCall 48 2%

REM 34 1%

CP 32 1%

High REM 32 1%

RN 32 1%

VD 31 1%

ButtonPress 25 1%

ED 29 1%

EAV 27 1%

MOJ 27 1%

MT 27 1%

IVF 26 1%

REAL 24 1%

Low W 23 1%

Reschedule 20 1%

Low CP 19 1%

Low ED 19 1%

Low MT 19 1%

Low VD 19 1%

Low EAV 18 1%

Low MOJ 18 1%

Low IVF 16 1%

SendEmail 12 0%

Low REM 11 0%

SendMessage 10 0%

Total 3,109 100%

144

5Table 6.4: Detailed Google Analytics per Pcal application events

 V1.7 V2.5 V3.1 V3.11 V5

LateUser 629 297 124 167

TS 120

NotReal 77 120 134

EarlyUser 296 74 33

High MT 52 4

High CP 52

High VD 51

High EAV 51

High ED 51

High MOJ 50

High IVF 34

REM 32

CP 32

High REM 32

RN 31 32

VD 29

ED 28

PhoneCall 19 27 18 1

EAV 27

MOJ 27

MT 26

IVF 24

REAL 23 4

Low W 19 4

Low CP 19

Low ED 19

Low MT 19

Low VD 18

Low EAV 18

Low MOJ 16

Low IVF 11

Low REM 4

SendEmail 7 4 1

SendMessage 4 2 1

Reschedule 20 2

 EVENT-TRACKING 7 83

ButtonPress 25

145

10Figure 6-10 Detailed Google Analytics per Pcal application event

6Table 6.5: Summarized Google Analytics per Pcal application event

 V1.7 V2.5 V3.1 V3.11 V5
 CP 103

 EAV 96
 ED 98

 EVENT-TRACKING 0 7 83
 IVF 45

 MOJ 93
 REM 68
 VD 98
 W 19 4

buttonPress 25
EarlyUser 296 74 33

IVF 24
LateUser 629 297 124 167

MT 97 4
RN 131 120 36 134

PhoneCall 19 27 18 1
Reschedule 20 2
SendEmail 7 4 1

SendMessage 4 2 1
TS 120

 In general, users seem to be using the Pcal application to identify if they are

running late and check their estimated arrival time, yet they prefer taking matters into

their own hands or using other means to reschedule, re-plan or contact the relative parties

and negotiate their meeting changes; for example, version 5 of the Pcal application had

167 late users yet only 2 sent a message, 1 made a phone call and one sent an email.

Similar results were noted for version 3.1 which had 124 late users with only 18 making

phone calls. However, 32 were identified as non-real meetings as they were not time-

dependent and could be done at any convenient time; mostly these are actual calendar

scheduled tasks with no attendees or specific start time, such as all-day events or tasks

with titles like “write a shopping list”, “start reading a new book”, “watch a movie”,

“finish writing documentation”. Four meeting delays exceeded the minimum time, and 4

were sampled early enough to speed up and arrive on time.

146

11Figure 6-11 Summarised Google Analytics per Pcal application event

Version 2.5, which is the most-used Pcal application version with most of the

functionalities and buttons clicked, provided more insight details on user activity and

delay. In total, there were 1,717 reported events, 321 of them were late users and 77 were

actually early for their meetings. While 297 were users only checked their status and 120

were non real-time meetings. Although the Pcal application did not log all events due to

a reported bug, the logged events are consistent with previous research findings in

Chapters 5, which validate the importance and effectiveness of the framework to ensure

the meeting success. The use of the framework enabled the system to resolve meetings

conflicts. The preferred modelling units were: task status (identifying if the user is late or

early for the meeting); alternate action (rescheduling meeting, alternate transport

method.); and to notify the meeting organizer (RTD). There were always “make call”,

“send email” or “send message” events in all the Pcal application events, even those with

very limited reported results (e.g. V5 and V3.11). High priority meetings didn’t seem to

be checked that regularly, as it seems people were more aware of such meetings.

6.7 Threats

Apple’s IOS 8.1 introduced a new feature to the iPhone calendar named “Travel Time”,

which allows users to choose estimated travel duration from a pre-set list. However, this

option is used to alert by a specific time before the travel time or before the actual meeting

147

time as per Figure 6-12 and 13. This is different from this thesis’ framework as the “travel

time” feature is based on the user’s alarm choice; that is, it’s like setting the iPhone alarm

to go off at a specific time before the scheduled travel start time. The framework here

identifies delay before and during the task or “travel time”, and also proposes alternative

travel and rescheduling options enabling the user to attend the meeting on time.

12 Figure 6-12 Apple’s IOS 8.1 Travel Time Alert settings option

13Figure 6-13 Apple’s IOS 8.1 Travel Time option

6.8 Summary

The framework developed in chapters 4 and 5 was used in the Pcal application. Starting

by designing and analysing the user requirements, on to implementing the Pcal

application and utilising this research findings and framework to extend the existing

iPhone calendar functionality. This is the initial version of the Pcal application and further

enhancements can be made, such as alerting the user without the need to open the Pcal

application while still maintaining battery life and cellular data usage. Other required

enhancements include automatically importing all updates from the iPhone calendar to

148

the Pcal application without the need to press the “Update” button, and enhancing the

user interface and performance. These have been marked for future work but currently

they have little bearing on the validation of the framework as an analysis tool.

The use of the framework to identify real-time requirements ensured that nothing

is missed or overlooked. Hence, the development of this Pcal application validates the

framework as an analysis tool and shows how it enhances the system analysis process by

early identifying and avoiding a number of exceptions what would have otherwise been

considered as bugs or errors in the application. However, the application is not guaranteed

to be bug free as there will always be a number of bugs that are not identified (as in any

other software development exercise). However, there is a clear case that the framework

actually enhances the product quality. The quality of analysis is also affected by the

guidelines and process, so by enriching the guidelines and process, the software analysis

in general is being enriched.

149

CHAPTER 7

CONCLUSION

This chapter concludes the thesis by summarising its main achievements and

contributions. The chapter is structured as follows: Section 1 summarizes the research;

Section 2 highlights the thesis’ main contributions from both a general software

development perspective and a specific multi agent systems perspective; Section 3

outlines the limitations of the research done and the possibilities for future and Section 4

concludes the thesis with final remarks.

7.1 Thesis Summary

This thesis facilitates the use of multi-agent systems for real-time applications by

developing a framework, composed of a set of modelling units and a process to guide

their use. The framework enables the software developer to define concepts from which

elements from the set of modelling units be instantiated from which a model (a design)

can be constructed. The design can then be hand-coded or used as the input to a model

based (or model-driven) information systems development. The framework ensures that

failed tasks can be distinguished from those that are likely to succeed even if they are a

bit late, e.g. ensuring that the latter ones are provided with more resources, or delaying

dependant tasks to prevent a cascade of failed tasks.

The first component of the framework, the set of modelling units consists of two

subsets: The first subset provides the knowledge to identify the success or failure of the

task to meet its real-time constraints. The second subset provides the possible set of

available behavioural actions. Both subsets of the modelling units were identified based

on a rigorous literature review as advocated in Kitchenham et al (2009) and also used by

other agent modelling researchers e.g. Kardas (2013). The output of the review was

analysed into the operational set of modelling units to be used during the requirements

analysis phase. To facilitate their use, the modelling units were represented using

symbolic icons which were first used in the i* SR model and applied to a call centre case

150

study requirements analysis. This first case study investigated the requirements analysis

of a real-time multi-agent system in a call system to match end-customers to agents

representing relationship managers according to specific criteria and characteristics e.g.

skills, age, sex, culture, language proficiency, experience and product knowledge. This

case study illustrated that identifying real-time requirements in the early analysis phase

leads to a better load distribution among agents and ensures that agents can meet their

real-time requirements and helps design a more efficient, reliable, robust and redundant

system.

To enable the systematic use of the modelling units in the analysis development

phase, the framework has an analysis process. The process essentially interleaves the use

of the modelling units into typical agent oriented requirements analysis. To develop the

process, multiple processes were created and simulated. Candidate processes were

formulated based on an analysis of the relationships between the various modelling units.

A best-of-breed process was then chosen and refined. The threat against domain

dependence of the framework was mitigated by using a different domain in the second

case study, a calendar scheduling. The calendar was made real time aware. Choosing the

calendar scheduling domain ensures the generalisability of the framework as this domain

can be easily mapped to other domains. For instance, any project context e.g.

construction, software development, supply chain or planning and other, all has a

scheduling time component, which can be presented using their start/end times, location

and dependencies. Tasks in such domains often have time constraints and need their

scheduled time updated throughout their execution. The function of the calendar was

simulated in various scenarios representing different events with various real-time

constraints. The calendar simulation was made time aware by monitoring delays of arrival

to a meeting. It also executed rescheduling actions in case of cancellations or other

unforeseen environmental changes. Users were notified of delays, and new schedules

were generated based on actual expected arrival times, when possible. In simulation runs,

various processes with the modelling units were developed to reschedule meetings. In

total eight processes with different modelling unit combinations were developed and

validated using a simulation case study that confirmed that a process with 18 modelling

units (framework) had the highest success rate i.e. succeeded in rescheduling unreachable

and/or conflicting meetings. In choosing and validating the process, the set of modelling

units were further validated and refined.

151

The overall framework, the modelling units and the process combined, was further

validated using an iPhone application publicly available in the Apple Store. This was

done to further validate the framework in an uncontrolled environment. The research

presented in the thesis followed a design science methodology. Using the design science

research approach, the research was organized into 4 phases: problem identification,

solution proposal, synthesis literature review, and case study validation. The modelling

units and process (the framework) have been identified, developed, refined, modelled,

formalized and validated using both a synthesis literature review and the case studies from

the two different domains (call management and a calendar meeting scheduling).

7.2 Thesis Contributions

Software modelling processes typically involve a number of phases including analysis,

specification, design, implementation, and testing. Each phase would create its own

model (system representation) and bring the software system closer to realisation. Each

phase represents the software system from a different abstraction point of view and

collectively they represent the system. This research takes the view that the earlier we

model real-time requirements in the software development life cycle, the more reliable

and robust the resultant system will be. Furthermore, the more likely it is that an

appropriate balance between competing time requirements will be achieved.

The requirements analysis phase in developing multi-agent systems captures

system goals and refines these into agent goals and respective roles descriptions. Later in

the design phase, goals and roles are further analysed to identify agent tasks and agent

classes that are closer to the system implementation (DeLoach 2001). The main

contribution of the thesis is a framework consisting of a set of identified real-time

modelling units and their deployment process in the requirements analysis phase of

developing a MAS. This framework enhances the analysis tasks of requirements

engineering for MAS. The modelling framework can be viewed as a real-time metamodel

to support requirements analysis of a MAS, tightly coupled with a process to identify the

real-time requirements of a multi-agent system during the analysis phase. With this view

in mind, the thesis contributes to bridging the gap between modelling the MAS

requirements and the realisation of the real-time software components required to

operationalise real-time constraints of MAS tasks. The research presented facilitates

152

identifying a sufficient set of activities that can be used by software modellers to identify

when a task has failed to meet its real-time constraints.

Current agent methods do not easily enable analysts to make these distinctions i.e.

identify problematic tasks and set “an alternative course of action”, thus creating a more

robust system overall, let alone identify real-time tasks in the midst of requirements

analysis and elicitation. This research fills this gap and in essence it promotes further

context awareness of agents as advocated in (Barbosa et al 2012). To represent the salient

features of the environment and the required agent interactions that are relevant to identify

real-time constraints on agent’s actions, this research focussed on providing a reliable and

precise analysis process. It ensures that the system modeller captures the real-time

constraints and the concomitant required agent’s behaviour. The work relied on using

modelling criteria to identify the set of alternative actions to be taken once a task has been

determined as having failed to meet its real-time constraints. This set of behaviour actions

can range from logging an error to starting an alternate task. The need to include further

support for modelling languages to support RT requirements was addressed. This thesis

provides a list of constructs to assist analysts in identifying real-time tasks and specifying

their relevant and critical attributes. This thesis also provides a process that interleaves

the use of the constructs in a typical agent oriented system analysis phase.

7.3 Thesis Limitations and Future Work

Using the framework incurs additional analysis effort on the part of the system’s

developers. This added effort is clearly justified in critical applications. However, the

rigour of the process identifying the RT constraints could conceivably be reduced in less

critical applications. A line for possible future extension of this research is making the

process part of the framework more adaptive. A more adaptive process could incorporate

a cost-benefit analysis in applying the modelling units. In critical applications, for

instance, the added cost can be easily justified. In less critical applications, a less thorough

process could be applied.

The framework enables the software developer to define concepts from which

modelling elements can be instantiated and a model (a design) can be constructed. How

the design is converted to a system was not within the scope of the thesis. The design can

either be hand-coded or used as the input to a model based (or model-driven) information

systems development, as in MDE (model-driven engineering) or a specific flavour of

153

MDE like OMG’s Model-Driven Architecture (MDA) (Pavón et al 2006, Rodrigues 2015

and OMG 2008). This framework differentiates between RT requirements that are

modelled by the software developer during the design stage and RT related actions that

are performed by the multi-agent system during run-time in order to satisfy the RT

requirements. This allows for the development of a RT-aware platform-independent

design, providing part of a Platform Independent Model for MDA. In this sense, in this

thesis MDE support is restricted to providing RT language elements to facilitate

requirements analysis. Further support for a MDE development approach is to realize a

working RT-aware multi-agent system for a specific platform requires additional

modelling framework for the remaining phases of the development and bridging this

framework to the requirements models in this thesis work. The work presented in Hahn

et al (2009) and Wautelet et al (2016) can then be used to support the remainder of MDE

or RT MAS. Facilitating the linkage between the output of the framework and the input

for such MDE approaches is a strong future possibility for extending this research.

Many efforts that attempt to bridge the gap between modelling requirements and

generating a working system, i.e. facilitating MDE of MAS, also provide a graphical

editor to enable the easy capture and mapping of models e.g. (Fuentes-Fernandez et al.

2010; Kardas et al. 2009; Gómez-Sanz et al. 2010). An extension of the effort in this

thesis will also consider developing a graphical editor to ease the access and the

deployment of the approach.

7.4 Concluding Remarks

The research successfully achieved its original three main goals:

1. Providing a modelling framework to facilitate identifying when a task has failed

to meet its real-time requirements.

2. Synthesizing a reliable and precise analysis process to ensure that the system

modeller captures the real-time requirements and the concomitant required

agent’s behaviour.

3. Using modelling criteria to identify the set of alternative actions to be taken once

a task has been determined that it failed to meet its real-time requirements.

This thesis provided an effective framework to create more effective multi-agent

systems in a real-time setting. This is very significant as many modern applications of

such systems do entail real-time constraints. The framework complements the

154

requirements analysis phase with a model driven approach to better identify real-time

tasks. Following a rigorous validation of its two components (the modelling units and the

concomitant process), the full framework was effectively used to develop an iPhone

application, which validated the effectiveness of the framework. The overall resultant

system had improved robustness. Users were notified when they were running late for

appointments, giving them enough time to reschedule meetings or choose other alternate

faster traveling methods to arrive on time.

The modelling framework developed will help developers better understand the

problem requirements and give them more insights as to the different real-time aspects of

the problem. This will avoid future problems that might arise as a result of not meeting

real-time constraints.

This thesis proposed framework can be applied in critical RT applications including

applications where any response delays or faults can cost lives e.g. medical, flight

autopilot and self-driving cars applications. For example, if a self-driving car detects a

fault it cannot just stop the car in the middle of the street, however it should safely park

the car and notify the driver whom can override such process and takeover driving at any

time. A fault detection can be from an unresponsive device e.g. a lost GPS signal that

does not allow the car to self-drive safely.

Many efforts that attempt to bridge the gap between modelling requirements and

generating a working system, i.e. facilitating MDE of MAS, provide a graphical editor to

enable the easy capture and mapping of models e.g. Fuentes-Fernandez et al, 2010;

Kardas et al 2009; Gómez-Sanz et al 2010. An extension of the effort in this paper will

also consider developing a graphical editor to ease access and deployment of the

approach.

155

APPENDIX A

CALL MANAGEMENT SYSTEM SR DIAGRAMS

12A-1 Outbound calling system SR diagram

156

34A-2 SR with modelling units

157

56A-3 Performance monitor SR diagram

158

78A-4 Performance monitor SR modelling units diagram

159

910A-5 Relationship manager SR diagram

160

1112A-6 RM after split SR diagram

161

1314A-7 Relationship manager after split SR modelling units diagram

162

APPENDIX B

TABLE 4.2 SOURCES OF MODELLING UNITS

1. Wei, J., W. Hanpin and Z. Meixia (2011). Modeling MARTE Sequence

Diagram with Timing Pi-Calculus. Object/Component/Service-Oriented Real-

Time Distributed Computing (ISORC), 2011 14th IEEE International

Symposium on Object/Component/Service-Oriented Real-Time Distributed

Computing, 61-66.

2. Chantem, T., W. Xiaofeng, M. D. Lemmon and X. S. Hu (2008). Period and

Deadline Selection for Schedulability in Real-Time Systems. Real-Time

Systems, 2008. ECRTS '08. Euromicro Conference on Real-Time Systems.

3. Cavalieri, S. (2005). "Meeting real-time constraints in CAN." Industrial

Informatics, IEEE Transactions on 1(2): 124-135.

4. Jyhjong, L. (2000). Real-time systems development: from structured analysis

to object-oriented design. Real-Time Computing Systems and Applications,

2000. Proceedings. Seventh International Conference on Real-Time

Computing Systems and Applications. IEEE: 486-490.

5. Kim, K. H., L. Juqiang and K. Moon-Hae (2000). Deadline handling in real-

time distributed objects. Object-Oriented Real-Time Distributed Computing,

2000. (ISORC 2000) Proceedings. Third IEEE International Symposium on

Object-Oriented Real-Time Distributed Computing:7-15.

6. Jennings, N. R. (2000). "On agent-based software engineering." Artificial

Intelligence.117(2): 277-296.

7. Neto, A., F. Sartori, F. Piccolo, R. Vitelli, G. De Tommasi, L. Zabeo, A.

Barbalace, H. Fernandes, D. F. Valcárcel and A. J. N. Batista (2009). MARTe:

a Multi-Platform Real-Time Framework. Proc. of the 16th IEEE NPSS Real-

Time Conference, Beijing, China.

8. Dasarathy, B. (1985). "Timing constraints of real-time systems: Constructs for

expressing them, methods of validating them." Software Engineering, IEEE

Transactions on (1): 80-86.

9. Occello, M., Y. Demazeau and C. Baeijs (1998). "Designing organized agents

for cooperation with real time constraints." In Collective Robotics, First

International Workshop, volume 1456, pages 25-37. LNCS, Springer.

163

10. Kirk, B., Nigro, L., & Pupo, F. (1997). Using real time constraints for

modularisation. Lecture Notes in Computer Science (Vol. 1204, 236-251).

Berlin: Springer.

11. Liu, G., A.K. Mok, and P. Konana (1998). A unified approach for specifying

timing constraints and composite events in active real-time database systems.

In RTAS. IEEE.

12. Soh, L.-K. and C. Tsatsoulis (2005), A real-time negotiation model and a multi-

agent sensor network implementation. Autonomous Agents and Multi-Agent

Systems. 11(3): p. 215-271.

13. Atkins, E. M., T. F. Abdelzaher, K. G. Shin and E. H. Durfee (2001). "Planning

and resource allocation for hard real-time, fault-tolerant plan execution."

Autonomous Agents and Multi-Agent Systems 4(1): 57-78.

14. Giunchiglia, F., J. Mylopoulos, and A. Perini (2003), The tropos software

development methodology: processes, models and diagrams. Agent-Oriented

Software Engineering III: p. 162-173.

15. Červenka, R., I. Trenčanský, M. Calisti and D. Greenwood (2005). AML:

Agent modeling language toward industry-grade agent-based modeling.

Agent-Oriented Software Engineering V, Springer: 31-46.

16. Miller, T., S. Pedell, L. Sterling and B. Lu (2011). Engaging Stakeholders with

Agent-Oriented Requirements Modelling. Agent-Oriented Software

Engineering XI. D. Weyns and M.-P. Gleizes, Springer Berlin Heidelberg.

6788: 62-78.

17. Weyns, D. (2007), A. Omicini, and J. Odell, Environment as a first class

abstraction in multiagent systems. Autonomous Agents and Multi-Agent

Systems. 14(1): 5-30.

18. Brazier, F. M. T., F. Cornelissen, C. M. Jonker and J. Treur (2000).

"Compositional Specification and Reuse of a Generic Cooperative Agent

Model." International Journal of Cooperative Information Systems 9(3): 171.

19. Flake, S. (2002) Real-time constraints with the OCL. in Object-Oriented Real-

Time Distributed Computing, 2002. (ISORC 2002). Proceedings. Fifth IEEE

International Symposium on Object-Oriented Real-Time Distributed

Computing.

164

20. Zhihao, J., M. Pajic, A. Connolly, S. Dixit and R. Mangharam Real-Time Heart

Model for Implantable Cardiac Device Validation and Verification. Real-Time

Systems (ECRTS), 2010 22nd Euromicro Conference on Real-Time Systems.

21. Legout, V., M. Jan, and L. Pautet (2015), Scheduling algorithms to reduce the

static energy consumption of real-time systems. Real-Time Systems. 51(2):

153-191.

22. Liu, C. and J.H. Anderson (2012). Supporting soft real-time parallel

applications on multicore processors. in Embedded and Real-Time Computing

Systems and Applications (RTCSA), IEEE 18th International Conference on.

IEEE.

23. Buttazzo, G.C. (2011), Hard real-time computing systems: predictable

scheduling algorithms and applications. Vol. 24: Springer.

24. Axer, P., M. Sebastian, and R. Ernst. (2011) Reliability analysis for MPSoCs

with mixed-critical, hard real-time constraints. in Hardware/Software

Codesign and System Synthesis (CODES+ ISSS), Proceedings of the 9th

International Conference on. IEEE.

25. Broster, I., G. Bernat, and A. Burns. (2002) Weakly hard real-time constraints

on controller area network. IEEE.

26. DiPippo, L. C., V. Fay-Wolfe, L. Nair, E. Hodys and O. Uvarov (2001). A real-

time multi-agent system architecture for e-commerce applications. Fifth

International Symposium on Autonomous Decentralized Systems, Dallas,

Texas, IEEE Computer Society Washington, DC, USA.

27. Silly-Chetto, A.M.a.M. (2006), Dynamic Real-time Scheduling of Firm

Periodic Tasks with Hard and Soft Aperiodic Tasks Real-Time Systems. 32(1-

2): 21-47.

28. Bergmans, L. and M. Aksit, (1996) Composing synchronization and real-time

constraints. Journal of parallel and distributed computing. 36(1): p. 32-52.

29. Kihwal, L. and S. Lui. (2005) A dependable online testing and upgrade

architecture for real-time embedded systems. 11th IEEE International

Conference on Embedded and Real-Time Computing Systems and

Applications.

30. Palopoli, L., G. Buttazzo, and P. Ancilotti. (1999) A C language extension for

programming real-time applications. in Real-Time Computing Systems and

165

Applications, 1999. RTCSA '99. Sixth International Conference on Real-Time

Computing Systems and Applications.

31. Moron, C.E. (1996) Designing a real-time recoverable action. in Real-Time

Computing Systems and Applications, Proceedings of the Third International

Workshop on Real-Time Computing Systems and Applications.

32. Cha, S. K., B. D. Park, S. J. Lee, S. H. Song, J. H. Park, J. S. Lee, S. Y. Park,

D. Y. Hur and G. B. Kim (1995). Object-oriented design of main-memory

DBMS for real-time applications. Real-Time Computing Systems and

Applications, Proceedings of the Second International Workshop on Real Time

Computing Systems and Applications.

33. Izosimov, V., P. Eles, and Z. Peng. (2010) Value-based scheduling of

distributed fault-tolerant real-time systems with soft and hard timing

constraints. in Embedded Systems for Real-Time Multimedia (ESTIMedia),

2010 8th IEEE Workshop on Embedded Systems for Real-Time Multimedia.

34. Krasovec, G., N. Shankar, and P. Ward. (1996) Integration of formal

verification with real-time design. in Object-Oriented Real-Time Dependable

Systems, Proceedings of WORDS '96., Second Workshop on Object-Oriented

Real-Time Dependable Systems.

35. Kuster, J. and J. Stroop. (2001) Consistent design of embedded real-time

systems with UML-RT. in Object-Oriented Real-Time Distributed Computing,

ISORC - 2001. Proceedings. Fourth IEEE International Symposium on Object-

Oriented Real-Time Distributed Computing.

36. Laouadi, M.A., F. Mokhati, and H. Seridi-Bouchelaghem, (2010) A novel

formal specification approach for real-time multi-agent system functional

requirements, in Multiagent System Technologies, Springer. p. 15-27.

37. Pěchouček, M. and V. Mařík, (2008) Industrial deployment of multi-agent

technologies: review and selected case studies. Autonomous Agents and Multi-

Agent Systems. 17(3): 397-431.

38. Furfaro, A., L. Nigro, and F. Pupo, (2006) Modular Design of Real-Time

Systems Using Hierarchical Communicating Real-time State Machines. Real-

Time Systems. 32(1): 105-123.

39. Bruno, O. M., R. M. Cesar, L. A. Consularo and L. D. F. Costa (2001).

"Σynergos—Synergetic Vision Research." Real-Time Systems 21(1): 7-41.

166

40. Schmidt, D.C., D.L. Levine, and S. Mungee, (1998) The design of the TAO

real-time object request broker. Computer Communications. 21(4): 294-324.

41. Hwang, S.I., C.M. Chen, and A.K. Agrawala. (1996) Scheduling an overloaded

real-time system. IEEE.

42. Gerards, M. E., J. L. Hurink and P. K. Hölzenspies (2016). "A survey of offline

algorithms for energy minimization under deadline constraints." Journal of

Scheduling: 1-17.

43. Mahabadi, A., A. Khonsari, B. Khodabandeloo, H. Noori and A. Majidi (2014).

"Critical Path-Aware Voltage Island Partitioning and Floorplanning for Hard

Real-Time Embedded Systems." Integration, the VLSI Journal.

44. Liu, C. and J.H. Anderson. (2013) Suspension-Aware Analysis for Hard Real-

Time Multiprocessor Scheduling. in Real-Time Systems (ECRTS), 25th

Euromicro Conference on. IEEE.

45. Ellouze, Z., N. Louati, and R. Bouaziz. (2013) A real-time object-oriented data

model and prototype implementation. in Object/Component/Service-Oriented

Real-Time Distributed Computing (ISORC), 2013 IEEE 16th International

Symposium on. IEEE.

46. Abdeddaïm, Y., Y. Chandarli, and D. Masson. (2013) The Optimality of

PFPasap Algorithm for Fixed-Priority Energy-Harvesting Real-Time Systems.

in Real-Time Systems (ECRTS), 2013 25th Euromicro Conference on. IEEE.

47. Toma, A. and J.-J. Chen (2013). Computation offloading for frame-based real-

time tasks with resource reservation servers. in Real-Time Systems (ECRTS),

2013 25th Euromicro Conference on. IEEE.

48. Axer, P., S. Quinton, M. Neukirchner, R. Ernst, B. Dobel and H. Hartig (2013).

Response-time analysis of parallel fork-join workloads with real-time

constraints. Real-Time Systems (ECRTS), 25th Euromicro Conference on,

IEEE.

49. Lemerre, M. and E. Ohayon. (2012) A Model of Parallel Deterministic Real-

Time Computation. in Real-Time Systems Symposium (RTSS), IEEE 33rd.

IEEE.

50. Stigge, M., P. Ekberg, N. Guan and W. Yi (2011). On the tractability of

digraph-based task models. Real-Time Systems (ECRTS), 23rd Euromicro

Conference on, IEEE.

167

51. Chen, J.-J. and S. Chakraborty. (2012) Partitioned packing and scheduling for

sporadic real-time tasks in identical multiprocessor systems. in Real-Time

Systems (ECRTS), 24th Euromicro Conference on. IEEE.

52. Short, M. and J. Proenza. (2013) Towards efficient probabilistic scheduling

guarantees for real-time systems subject to random errors and random bursts

of errors. in Real-Time Systems (ECRTS), 25th Euromicro Conference on.

IEEE.

53. Hettiarachchi, P.M., N. Fisher, and L.Y. Wang. (2013) Achieving Thermal-

Resiliency for Multicore Hard-Real-Time Systems. in Real-Time Systems

(ECRTS), 25th Euromicro Conference on. IEEE.

54. Toma, A. and J.-J. Chen. (2013) Server resource reservations for computation

offloading in real-time embedded systems. in Embedded Systems for Real-time

Multimedia (ESTIMedia), IEEE 11th Symposium on. IEEE.

55. Li, J., M. Qiu, J.-W. Niu, L. T. Yang, Y. Zhu and Z. Ming (2013). "Thermal-

aware task scheduling in 3D chip multiprocessor with real-time constrained

workloads." ACM Transactions on Embedded Computing Systems (TECS)

12(2): 24.

56. Zhang, S., Z. Wang, M. Qiu and M. Liu (2013). "Energy-Efficient Soft Real-

Time Scheduling for Parameter Estimation in WSNs." International Journal of

Distributed Sensor Networks.

57. Abdeddaïm, Y. and D. Masson. (2012) Real-time scheduling of energy

harvesting embedded systems with timed automata. in Embedded and Real-

Time Computing Systems and Applications (RTCSA), IEEE 18th International

Conference on. IEEE.

58. Kapitanova, K., S. H. Son, K. Woochul and K. Won-Tae (2011). Modeling and

Analyzing Real-Time Data Streams. Object/Component/Service-Oriented

Real-Time Distributed Computing (ISORC), 14th IEEE International

Symposium on Object/Component/Service-Oriented Real-Time Distributed

Computing.

59. Zhang, F., A. Burns, and S. Baruah. (2010) Sensitivity analysis for EDF

scheduled arbitrary deadline real-time systems. IEEE.

60. Petters, S. M., M. Lawitzky, R. Heffernan and K. Elphinstone (2009). Towards

real multi-criticality scheduling, IEEE.

168

61. Vikhorev, K., N. Alechina, and B. Logan. (2009) The ARTS Real-Time Agent

Architecture. in Proceedings of Second Workshop on Languages,

Methodologies and Development Tools for Multi-agent Systems.

62. Farzinvash, L. and M. Kargahi. (2009) A scheduling algorithm for execution-

instant sensitive real-time systems. IEEE.

63. Yang, Z., L. Jie, and E.A. Lee. (2007) A Programming Model for Time-

Synchronized Distributed Real-Time Systems. in Real-time and Embedded

Technology and Applications Symposium, RTAS '07. 13th IEEE.

64. Lu, R.G.a.S., (2006) Modeling distributed real-time applications with

specification PEARL Real-Time Systems. 35(3): p. 181-208.

65. Mitra, T. and P. Yu. (2005) Satisfying real-time constraints with custom

instructions. IEEE.

66. Pao-Ann, H. and L. Shang-Wei. (2005) Model checking timed systems with

priorities. in Embedded and Real-Time Computing Systems and Applications,

Proceedings of the 11th IEEE International Conference on.

67. Hsin-Wen, W., H. Pei-Chi, C. Hsung-Pin and S. Wei-Kuan (2005). Scheduling

real time information in a broadcast system with non real time information. in

Proceedings of the 11th IEEE International Conference on Embedded and

Real-Time Computing Systems and Applications, 286-292.

68. Wehrmeister, M.A. and L.B. Becker, (2005) An object-oriented platform-

based design process for embedded real-time systems. Proc. of the 8th IEEE

Int. Symp. on Object-Oriented Real-Time Distributed Computing, IEEE

Computer Society, 125-128

69. Dang Van, H. and A. Bui Vu. (2005) Model checking real-time component

based systems with blackbox testing. in Proceedings of 11th IEEE International

Conference on Embedded and Real-Time Computing Systems and

Applications, Washington, DC, USA, 76–79.

70. Broster, A.B.a.G.R.-N., (2005) Timing Analysis of Real-Time Communication

Under Electromagnetic Interference. Real-Time Systems. 30(1-2): p. 55-81.

71. Hoang, H., et al. (2006) Computing the Minimum EDF Feasible Deadline in

Periodic Systems. Proceedings of the 12th IEEE Int'l Conf. Embedded and

Real-Time Computing Systems and Applications, 125-134.

169

72. Moon Hae, K., L. Sun-Hwa, and K. Jung-Guk. (2003) Modeling of a real-time

distributed network management based on TMN and the TMO model.

Proceedings of the Eighth International Workshop on Object-Oriented Real-

Time Dependable Systems (WORDS 2003).

73. Isovic, D., G. Fohler, and L. Steffens. (2003) Timing constraints of MPEG-2

decoding for high quality video: misconceptions and realistic assumptions. in

Real-Time Systems, Proceedings of the 15th Euromicro Conference on Real-

Time Systems.

74. Gonzalez Harbour, M., J. J. Gutierrez Garcia, J. C. Palencia Gutierrez and J.

M. Drake Moyano (2001). MAST: Modeling and analysis suite for real time

applications. Proceedings of the 13th Euromicro Conference on Real-Time

Systems, p.125.

75. Saehwa, K., C. Sukjae, and H. Seongsoo. (2000) Schedulability-aware

mapping of real-time object-oriented models to multi-threaded

implementations. Proceedings of the Seventh International Conference on

Real-Time Computing Systems and Applications.

76. Seong Woo, K., C. Byung Jae, and K. Byung Kook. (2000) Checkpointing

strategy for multiple real-time tasks. Proceedings of the Seventh International

Conference on Real-Time Computing Systems and Applications.

77. Jigorea, R., S. Manolache, P. Eles and Z. Peng (2000). Modelling of real-time

embedded systems in an object-oriented design environment with UML.

Proceedings of the Third IEEE International Symposium on Object-Oriented

Real-Time Distributed Computing (ISORC 2000).

78. Bondavalli, A. and F. Di Giandomenico (2000). A position on design, methods,

and tools for object-oriented real-time computing. Proceedings of the Third

IEEE International Symposium on Object-Oriented Real-Time Distributed

Computing (ISORC 2000).

79. Pasaje, J.L.M., M.G. Harbour, and J.M. Drake. (2001) MAST real-time view:

A graphic UML tool for modeling object-oriented real-time systems.

Proceedings of the 22nd IEEE real-time systems symposium, London, UK, pp

245–256

170

80. Gumzej, R. and M. Colnaric. (2001) An approach to modeling and verification

of real-time systems. Proceedings of the Fourth IEEE International Symposium

on Object-Oriented Real-Time Distributed Computing ISORC - 2001.

81. Attoui, A., (2000) Real-Time and Multi-Agent Systems, ed. 1st: Springer.

82. Haritsa, J.R., M.J. Carey, and M. Livny. (1990) On being optimistic about real-

time constraints. in PODS '90 Proceedings of the ninth ACM SIGACT-

SIGMOD-SIGART symposium on Principles of database systems. ACM.

83. Jahanian, F., R. Rajkumar, and S.C.V. Raju, (1994) Runtime monitoring of

timing constraints in distributed real-time systems. Real-Time Systems. 7(3):

p. 247-273.

84. Hou, C.J. and K.G. Shin. (1992) Allocation of periodic task modules with

precedence and deadline constraints in distributed real-time systems. IEEE

Transactions on Computers 46(12): 1338–1356.

85. Ramamritham, K., (1996) Where Do Time Constraints Come From? Where Do

They Go? Journal of Database Management Spring. 7(2): p. 4-4.

86. Gerber, R. and S. Hong, (1995) Compiling real-time programs with timing

constraint refinement and structural code motion. Software Engineering, IEEE

Transactions on. 21(5): p. 389-404.

87. Han, C.C. and K.J. Lin, (1992) Scheduling real-time computations with

separation constraints. Information Processing Letters. 42(2): p. 61-66.

88. Savor, T. and P. Dasiewicz (1993). A real-time extension to logic programming

based on the concurrent constraint logic programming paradigm. Proceedings

of First Workshop on Principles and Practice of Constraint Programming.

Ottawa National Library of Canada: 279-287.

89. Campos, S., E. Clarke, W. Marrero and M. Minea (1995). Timing analysis of

industrial real-time systems. Workshop on Industrial-Strength Formal

Specification Techniques, IEEE.

90. Raju, S.C.V., R. Rajkumar, and F. Jahanian. (1992) Monitoring timing

constraints in distributed real-time systems. Proc. Real-Time Systems Symp.,

57-67, IEEE.

91. Pang, H., M. Livny, and M.J. Carey. (1992) Transition scheduling in multiclass

real-time database systems. Proceedings of the Real-Time Systems Symp., 23-

34, IEEE.

171

92. Tei-Wei, K., N. Shie-Kai, and H. Giun-Haur. (1998) Load adjustment and

filtering based on process criticality. Proceedings of the Fifth International

Conference on Real-Time Computing Systems and Applications.

93. Baba, M. D., H. Ekiz, A. Kutlu and E. T. Powner (1996). Toward adaptable

distributed real-time computer systems. Proceedings of the Third International

Workshop on Real-Time Computing Systems and Applications (RTCSA’96),

Seoul, Korea (170–175).

94. Takashio, K., H. Shitomi, and M. Tokoro. (1995) Constructing distributed real-

time systems with DROL real-time objects. Proceedings of the Second

International Workshop on Real-Time Computing Systems and Applications.

95. Hooman, J. and O. van Roosmalen. (1997) Timed-event abstraction and timing

constraints in distributed real-time programming. Proceedings of the Third

International Workshop on Object-Oriented Real-Time Dependable Systems

153-170.

96. Bosch, J. and P. Molin. (1997) A model for a flexible and predictable object-

oriented real-time system. Proceedings of the Third International Workshop on

Object-Oriented Real-Time Dependable Systems.

97. Fraga, J., J. Farines, and O. Furtado. (1997) RTR model: an approach for

dealing with real-time programming in open distributed systems. Proceedings

of the Third International Workshop on Object-Oriented Real-Time

Dependable Systems.

98. Chen, Y.J., D. Mosse, and S.K. Chang. (1996) An object-based model for

dependable real-time distributed systems. Proceedings of WORDS '96.,

Second Workshop on Object-Oriented Real-Time Dependable Systems.

99. Streich, H. and M. Gergeleit. (1997) On the design of a dynamic distributed

real-time environment. Proceedings of the Joint Workshop on Parallel and

Distributed Real-Time Systems, 251-256.

100. Van der Stok, P.D.V. and P.T.A. Thijssen (1994). Simulation of distributed

real-time transactions. Proceedings of the Second Workshop on Parallel and

Distributed Real-Time Systems, 82–87.

101. Baruah, S.K. (1998) A general model for recurring real-time tasks. In

Proceedings of the Real-Time Systems Symposium. Madrid, Spain: IEEE

Computer Society Press, 114-122.

172

102. Selic, B. (1996) Modeling real-time distributed software systems. Proceedings

of the 4th International Workshop on Parallel and Distributed Real-Time

Systems, 11-18.

103. Gumzej, R. and S. Lu, (2007) Modeling distributed real-time applications with

specification PEARL. Real-Time Systems. 35(3):181-208.

104. Bihari, T.E. (1993) Real-time software product development. Proceedings of

the IEEE Workshop on Real-Time Applications.

105. Roop, P.S. and A. Sowmya. (1998) Hidden time model for specification and

verification of embedded systems. Proceedings of the 10th Euromicro

Workshop on Real-Time Systems, pages 98-105. IEEE Computer Society

Press.

106. Eriksson, C., J. Gustafsson, J. Brorson and M. Gustafsson (1993). An Object-

Oriented Framework for Designing Hard Real-Time Systems. Proceedings of

the Fifth Euromicro Workshop on Real-Time Systems, pages 90-97. IEEE

Computer Society Press.

107. Huang, J. and L. Gruenwald. (1996) Impact of timing constraints on real-time

database recovery. Proceedings of the workshop on Databases: active and real-

time (Concepts Meet Practice), DART’96, 54-58, Rockville, Md.

108. Lofrumento, G. and V. Fazio. (1993) An Object-Oriented Representation of

Real-Time Application Domains. Proceedings of the Fifth Euromicro

Workshop on Real-Time Systems, Oulu, Finland.

109. Jin Song, D. and Z. Lin. (1997) A framework for adding time into formal object

models. Proceedings of the Third IEEE International Workshop on Object-

Oriented Real-Time Dependable Systems (WORDS’97).

110. Kelling, C. and G. Hommel. (1994) Modeling priority schemes with timed Petri

nets. Proceedings of the Second Workshop on Parallel and Distributed Real-

Time Systems, Cancun, Mexico.

111. Mercer, C.W. and H. Tokuda. (1990) The ARTS real-time object model.

Proceedings. Of the 11th IEEE Real-Time Systems Symposium, 2-10.

112. Alvarez, J. M., M. Diaz, L. Llopis, E. Pimentel and J. M. Troya (2003). "An

object-oriented methodology for embedded real-time systems." The Computer

Journal 46(2): 123.

173

113. Kim, J. H., H. S. Shim, H. S. Kim, M. J. Jung, I. H. Choi and J. O. Kim (1997).

A cooperative multi-agent system and its real time application to robot soccer,

Proceedings of the IEEE International Conference on Robotics and

Automation, Minneapolis, MN, 638–643

114. Garousi, V. (2010) Experience and challenges with UML-driven performance

engineering of a Distributed Real-Time System. Information and Software

Technology. 52(6): 625-640.

115. Sorel, Y. (1994) Massively parallel computing systems with real-time

constraints: the "Algorithm Architecture Adequation" methodology.

Proceedings of the Massively parallel Computing Systems Ischia: IEEE.

116. Dudani, A., F. Mueller, and Y. Zhu. (2002) Energy-conserving feedback EDF

scheduling for embedded systems with real-time constraints. ACM SIGPLAN

Notices. 37(7): 213-222.

117. Alur, R. and T. Henzinger, (1992) Logics and models of real-time: A survey in

“Real-Time: Theory in Practice”, Lecture notes in computer science, vol 600,

74-106, Springer-verlag, New York/Berlin.

118. Lele, A. (2014) Analyzing preemptive fixed priority scheduling of data flow

graphs, 2014 IEEE 12th Symposium on Embedded Systems for Real-time

Multimedia (ESTIMedia), IEEE, 50–59.

119. Imes, C., D. H. Kim, M. Maggio and H. Hoffmann (2015). POET: a portable

approach to minimizing energy under soft real-time constraints. Real-Time and

Embedded Technology and Applications Symposium (RTAS), IEEE.

120. Stigge, M. and W. Yi. (2012) Hardness results for static priority real-time

scheduling. in 24th Euromicro Conference on Real-Time Systems (ECRTS),

IEEE.

121. Bohlin, M., Y. Lu, J. Kraft, P. Kreuger and T. Nolte (2009). Simulation-based

timing analysis of complex real-time systems, in 15th IEEE International

Conference on Embedded and Real-Time Computing Systems and

Applications (RTCSA'09), 321-328.

122. Saksena, M., P. Freedman, and P. Rodziewicz. (1997) Guidelines for

automated implementation of executable object oriented models for real-time

embedded control systems. Proceedings of the IEEE Real-Time Systems

Symposium, 240-251.

174

123. Briand, L.C., Y. Labiche, and M. Shousha. (2005) Stress testing real-time

systems with genetic algorithms. Proceedings of the 7th annual conference on

Genetic and evolutionary computation GECCO '05. ACM.

124. Saehwa, K., C. Sukjae, and H. Seongsoo. (2001) Automatic implementation of

real-time object-oriented models and schedulability issues. Proceedings of the

Sixth International Workshop on Object-Oriented Real-Time Dependable

Systems, 149-153.

125. Florescu, O., J. Huang, J. Voeten and H. Corporaal (2006). Strengthening

Property Preservation in Concurrent Real-Time Systems. Proceedings of the

12th IEEE International Conference on Embedded and Real-Time Computing

Systems and Applications (RTCSA), 106-109.

126. Chokshi, D.B. and P. Bhaduri. (2008) Modeling fixed priority non-preemptive

scheduling with real-time calculus, Proceedings of the 2008 14th IEEE into

conf. on Embedded and Real-Time Computing Systems and Applications

(RTCSA'08).

127. Bollella, G. and J. Gosling. (2000) The real-time specification for Java.

Addison-Wesley. 33(6): 47-54.

128. Lisa Cingiser DiPippo, V.F.-W., Lekshmi Nair, (2001) Ethan Hodys, Oleg

Uvarov. A Real-Time Multi-Agent System Architecture for E-Commerce

Applications. Fifth International Symposium on Autonomous Decentralized

Systems: 357-364.

129. Sifakis, J. (2004) Modeling Real-Time Systems. In IEEE Real-Time

Symposium (RTSS04), pages 5–6.

130. Puente, J.A.d.l. (2000) Real-Time Object-Oriented Design and Formal

Methods. Real-Time Systems. 18(1): 79-83.

131. Ulusoy, O. (1993) Lock-based concurrency control in distributed real-time

database systems. Journal of Database Management. 4(2): 3-3.

132. Sasikumar Punnekkat, A.B.a.R.D. (2004) Analysis of Checkpointing for Real-

Time Systems. Real-Time Systems. 20(1): 83-102.

133. Brandenburg, B.B. (2013) A fully preemptive multiprocessor semaphore

protocol for latency-sensitive real-time applications. In 25th Euromicro

Conference on Real-Time Systems (ECRTS). IEEE.

175

134. Konrad, S. and B. H. C. Cheng (2005). Real-time specification patterns.

Proceedings of the 27th international conference on Software engineering. St.

Louis, MO, USA, ACM: 372-381.

135. Karangelen, N.E. and N.T. Hoang. (1994) Representing system behavior in

design and analysis of large complex real-time systems. Proceedings of the

Second Workshop on Parallel and Distributed Real-Time Systems.

136. Panait, L. and S. Luke. (2005) Cooperative multi-agent learning: The state of

the art. Autonomous Agents and Multi-Agent Systems. 11(3): 387-434.

137. Fisher, N., J. Goossens, and S. Baruah. (2010) Optimal online multiprocessor

scheduling of sporadic real-time tasks is impossible. Real-Time Systems.

45(1): 26-71.

138. Alur, R. and D. Dill. (1990) Automata for modeling real-time systems.

Automata, languages and programming: 322-335.

139. Howe, A.E., D.M. Hart, and P.R. Cohen. (1990) Addressing real-time

constraints in the design of autonomous agents. Real-Time Systems. 2(1):81-

97.

140. Wooldridge, M., N.R. Jennings, and D. Kinny. (2000) The Gaia methodology

for agent-oriented analysis and design, Autonomous Agents and Multi-Agent

Systems. 3(3): 285-312.

141. Zeilinger, M. N., D. M. Raimondo, A. Domahidi, M. Morari and C. N. Jones

(2014), "On real-time robust model predictive control, " Automatica 50(3):

683-694.

142. Liu, K., V. C. Lee, J. K.-Y. Ng and S. H. Son (2013), Scheduling temporal data

for real-time requests in roadside-to-vehicle communication, RTCSA,

Citeseer.

143. Gang, T., L. Jun-lin, Y. Fu-min and L. Wei (2007). Relationships between

Window-based Real-time Constraint, In 13th IEEE International Conference

on Embedded and Real-Time Computing Systems and Applications, RTCSA.

144. Wolfgang. Halang, R.G., Matjaz Colnaric and Marjan Druzovec (2004),

Measuring the Performance of Real-Time Systems Real-Time Systems. 18(1):

59-68.

176

145. Mok, A.K. (1983) Fundamental design problems of distributed systems for the

hard-real-time environment, Ph.D. Dissertation, M.I.T., Cambridge, MA

02139.

146. Bresciani, P., A. Perini, P. Giorgini, F. Giunchiglia and J. Mylopoulos (2004),

"Tropos: An agent-oriented software development methodology."

Autonomous Agents and Multi-Agent Systems 8(3): 203-236.

147. Kung, D. C., J. Lin, P. Hsia and B. Carroll (1997). Object-oriented real time

systems modeling and verification. Proceedings of the Third International

Workshop on Object-Oriented Real-Time Dependable Systems.

148. Selic, B. (1996) Tutorial: real-time object-oriented modeling (ROOM), in

Real-Time Technology and Applications Symposium, IEEE, 214-217.

149. Hanish, A.A. and T.S. Dillon. (1997) Object-oriented behaviour modelling for

real-time design, Proceedings of the Third International Workshop on Object-

Oriented Real-Time Dependable Systems, Newport Beach, IEEE, Los

Alamitos/USA, S. 74–82.

150. Seung-Min, Y., Y. Tae-Myung, K. Moon Hae, M. Byoung-Joon, K. Jung-Guk

and H. Shin (1996), System development based on a real-time object model,

Proceedings of WORDS '96, Second Workshop on Object-Oriented Real-Time

Dependable Systems.

151. Bruno, G. and A. Castella (1992). Software Models For Real-time Systems,

Proceedings of the Fourth Euromicro workshop on Real-Time Systems.

177

BIBLIOGRAPHY

1. Adams, L. A. and J. F. Courtney (2004). Achieving relevance in IS research

via the DAGS framework, Proceedings of the 37th Annual Hawaii

International Conference on System Sciences. Los Alamitos, CA: IEEE

Computer Society Press.

2. Agudo-Peregrina, Á. F., S. Iglesias-Pradas, M. Á. Conde-González and Á.

Hernández-García (2014). "Can we predict success from log data in VLEs?

Classification of interactions for learning analytics and their relation with

performance in VLE-supported F2F and online learning." Computers in human

behavior 31: 542-550.

3. Alhir, S. S. (2003). Learning Uml, O'Reilly Online Books.

4. Ambriola,V.and Gervasi,V.(1999).Experiences with domain-based parsing of

natural language requirements. In Proceedings of the Fourth International

Conference on Applications of Natural Language to Information Systems, G.

Fliedl and H. C. Mayr, Eds. OCG Schriftenreihe (Lecture Notes), no. 129.

OGC, Klagenfurt, Austria, 145-148.

5. Apple (2016). "Apple celebrates one billion iPhones ". Retrieved 01/08/2016,

from http://www.apple.com/newsroom/2016/07/apple-celebrates-one-billion-

iphones.html.

6. Argente, E., G. Beydoun, R. Fuentes-Fernández, B. Henderson-Sellers and G.

Low (2011), Modelling with agents, Agent-Oriented Software Engineering X,

Springer: 157-168.

7. Ashamalla, A., G. Beydoun and G. Low (2011). Towards agent-oriented

approach to a call management system, Information Systems Development,

Springer New York: 345-356.

8. Ashamalla, A., G. Beydoun and G. Low (2017). "Model Driven Approach for

Real-time Requirements Analysis of Multi-Agent Systems." Computer

Languages, Systems and Structures journal’s (COMLAN), Elsevier.

9. Ashamalla, A., G. Beydoun, G. Low and J. Yan (2012). "Towards Modelling

Real time Constraints." ICSOFT 2012 7th International Conference on

Software Paradigm Trends. SciTePress Digital Library: 158-164.

178

10. Ashamalla, A., G. Beydoun and N. Paramesh (2014). "Real-time task attributes

and temporal constraints.". AMCIS 2014 American conference on information

systems. Savannah, Georgia, August 2014.

11. Attoui, A. (2000). Real-time and Multi-agent Systems, Springer Verlag.

12. Badano, B. I. (2008). "A multi-agent architecture with distributed coordination

for an autonomous robot." University of Girona, PhD theses.

13. Barbosa, J., F. Dillenburg, G. Lermen, A. Garzão, C. Costa and J. Rosa (2012).

"Towards a programming model for context-aware applications." Computer

Languages, Systems & Structures 38(3): 199-213.

14. Basra, R., K. Lu and P. Skobelev (2007). "Resolving scheduling issues of the

London Underground using a multi-agent system." International Journal of

Intelligent Systems Technologies and Applications 2(1): 3-19.

15. Bellifemine, F., A. Poggi and G. Rimassa (2001). Developing multi-agent

systems with JADE. Intelligent Agents VII Agent Theories Architectures and

Languages, Springer: 89-103.

16. Beydoun, G., C. Gonzalez-Perez, B. Henderson-Sellers and G. Low (2006).

Developing and Evaluating a Generic Metamodel for MAS Work Products.

Software Engineering for Multi-Agent Systems IV. A. Garcia, R. Choren, C.

Lucena et al., Springer Berlin Heidelberg. 3914: 126-142.

17. Beydoun, G., G. Low and P. Bogg (2013). "Suitability assessment framework

of agent-based software architectures." Information and Software Technology

55(4): 673-689.

18. Beydoun, G., G. Low, F. García-Sánchez, R. Valencia-García and R. Martínez-

Béjar (2014). "Identification of ontologies to support information systems

development." Information Systems 46(0): 45-60.

19. Beydoun, G., G. Low, B. Henderson-Sellers, H. Mouratidis, J. J. Gomez-Sanz,

J. Pavon and C. Gonzalez-Perez (2009). "FAML: a generic metamodel for

MAS development.", IEEE Transactions on Software Engineering 35(6): 841-

863.

20. Beydoun, G., G. Low, H. Mouratidis and B. Henderson-Sellers (2009). "A

security-aware metamodel for multi-agent systems (MAS)." Information and

Software Technology 51(5): 832-845.

179

21. Beydoun, G., G. Low, N. Tran and P. Bogg (2011). "Development of a peer-

to-peer information sharing system using ontologies." Expert Systems with

Applications 38(8): 9352-9364.

22. Beydoun, G., N. Tran, G. Low and B. Henderson-Sellers (2006). Foundations

of Ontology-Based MAS Methodologies. Agent-Oriented Information

Systems III: 7th International Bi-Conference Workshop, AOIS 2005, Utrecht,

Netherlands, July 26, 2005, and Klagenfurt, Austria, October 27, 2005, Revised

Selected Papers. M. Kolp, P. Bresciani, B. Henderson-Sellers and M. Winikoff.

Berlin, Heidelberg, Springer Berlin Heidelberg: 111-123.

23. Bicchi, A. and L. Pallottino (2000). "On optimal cooperative conflict resolution

for air traffic management systems." Intelligent Transportation Systems, IEEE

Transactions on 1(4): 221-231.

24. Bogg, P., G. Beydoun and G. Low (2008). When to Use a Multi-Agent System?

11th Pacific Rim International Conference on Multi-Agents, Prima 2008.

Hanoi, Vietnam, Springer Berlin / Heidelberg. Volume 5357/2008: 98-108.

25. Bohlin, M., Y. Lu, J. Kraft, P. Kreuger and T. Nolte (2009). Simulation-based

timing analysis of complex real-time systems, in 15th IEEE International

Conference on Embedded and Real-Time Computing Systems and

Applications (RTCSA'09), August 2009, 321-328.

26. Botti, V., C. Carrascosa, V. Julián and J. Soler (1999). "Modelling agents in

hard real-time environments." Multi-Agent System Engineering: 63-76.

27. Botti, V. and V. Julian (2004). "Developing real-time multi-agent systems."

Integrated Computer-Aided Engineering 11(2): 135-149.

28. Botti, V., Navarro, M. and V. Julian (2008). Commitment Management in Real

Time Multi Agent Systems. International Symposium on Distributed

Computing and Artificial Intelligence (DCAI 2008), Springer.

29. Bradshaw, J. M., S. Dutfield, P. Benoit and J. D. Woolley (1997). "KAoS:

Toward an industrial-strength open agent architecture." Proceedings of the

CIKM ’95 Workshop on Intelligent Information Agents: 375-418.

30. Brazier, F. M. T., F. Cornelissen, C. M. Jonker and J. Treur (2000).

"Compositional Specification and Reuse of a Generic Cooperative Agent

Model." International Journal of Cooperative Information Systems 9(3): 171-

207.

180

31. Bresciani, P., A. Perini, P. Giorgini, F. Giunchiglia and J. Mylopoulos (2004).

"Tropos: An agent-oriented software development methodology."

Autonomous Agents and Multi-Agent Systems 8(3): 203-236.

32. Broster, A. B. a. G. R.-N. (2005). "Timing Analysis of Real-Time

Communication Under Electromagnetic Interference." Real-Time Systems

30(1-2): 55-81.

33. Budgen, D. and P. Brereton (2006). Performing systematic literature reviews

in software engineering, in: Proceedings of the 28th International Conference

on Software Engineering (ICSE’06), Shanghai, China, 1051-1052.

34. Cabri, G., L. Leonardi and F. Zambonelli (2003). BRAIN: A Framework for

Flexible Role-Based Interactions in Multiagent Systems. On The Move to

Meaningful Internet Systems: CoopIS, DOA, and ODBASE, Springer Berlin /

Heidelberg. 2888: 145-161.

35. Carrera, Á., C. A. Iglesias and M. Garijo (2014). "Beast methodology: An agile

testing methodology for multi-agent systems based on behaviour driven

development." Information Systems Frontiers 16(2): 169-182.

36. Červenka, R., I. Trenčanský, M. Calisti and D. Greenwood (2005). AML:

Agent modeling language toward industry-grade agent-based modeling.

Agent-Oriented Software Engineering V, Springer: 31-46.

37. Cha, S. K., B. D. Park, S. J. Lee, S. H. Song, J. H. Park, J. S. Lee, S. Y. Park,

D. Y. Hur and G. B. Kim (1995). Object-oriented design of main-memory

DBMS for real-time applications, Proceedings of the Second International

Workshop on Real Time Computing Systems and Applications

38. Chen, B. and H. H. Cheng (2010). "A review of the applications of agent

technology in traffic and transportation systems." Intelligent Transportation

Systems, IEEE Transactions on 11(2): 485-497.

39. Cheng, P. D.-M. (2012). "RTMAS: An Expert System for Real Time

Monitoring and Analysis." Expert Systems: Applications to Urban Planning:

105.

40. Chung, L., B. A. Nixon, E. Yu and J. Mylopoulos (2012). Non-functional

requirements in software engineering, Springer Science & Business Media.

41. Chise, C., I. Jurca and Ieee (2009). Towards Early Performance Assessment

Based on UML MARTE Models for Distributed Systems, proceedings of the

181

5th International Symposium on Applied Computational Intelligence and

Informatics (SACI '09), New York, IEEE: 511-516.

42. CityRail (2014). "Sydney Trains Timetables." from

http://www.sydneytrains.info/.

43. Colin, A., K. Thomas, et al. (2003). "Model-Driven Development: A

Metamodeling Foundation." IEEE Software 20(5): 36-41.

44. Collinot, A., A. Drogoul and P. Benhamou (1996). Agent oriented design of a

soccer robot team. Proceedings of the Second International Conference on

Multi-Agent Systems (ICMAS-96).

45. Colson, C. M. and M. H. Nehrir (2013). "Comprehensive real-time microgrid

power management and control with distributed agents." IEEE Transactions on

Smart Grid 4(1): 617-627.

46. Cossentino, M., V. Hilaire, N. Gaud, S. Galland and A. Koukam (2014). The

ASPECS Process. Handbook on Agent-Oriented Design Processes, Springer:

65-114.

47. Cossentino, M. and V. Seidita (2014). PASSI: Process for agent societies

specification and implementation. Handbook on Agent-Oriented Design

Processes, Springer: 287-329.

48. Cross, N. (2007). "Forty years of design research." Design studies 28(1): 1-4.

49. Dalessandro, L., V. J. Marathe, M. F. Spear and M. L. Scott (2007).

Capabilities and limitations of library-based software transactional memory in

C++. Proceedings of the 2nd ACM SIGPLAN Workshop on Transactional

Computing.

50. Damir Isovic and G. Fohler (2009). "Handling mixed sets of tasks in combined

offline and online scheduled real-time systems." Real-Time Systems 43(3):

296-325.

51. DeLoach, S. A., M. F. Wood and C. H. Sparkman (2001). "Multiagent systems

engineering." International Journal of Software Engineering and Knowledge

Engineering 11(03): 231-258.

52. DeLoach, S. A. and J. C. Garcia-Ojeda (2014). The O-MaSE Methodology.

Handbook on Agent-Oriented Design Processes, Springer: 253-285.

53. Demathieu, S., F. Thomas, C. André, S. Gérard and F. Terrier (2008). First

experiments using the UML profile for MARTE, 11th IEEE International

182

Symposium on Object Oriented Real-Time Distributed Computing (ISORC),

IEEE.

54. Denaro, G., A. Polini and W. Emmerich (2004). Early performance testing of

distributed software applications. ACM SIGSOFT Software Engineering

Notes, ACM.

55. DiPippo, L. C., V. Fay-Wolfe, L. Nair, E. Hodys and O. Uvarov (2001). A real-

time multi-agent system architecture for e-commerce applications. Fifth

International Symposium on Autonomous Decentralized Systems, Dallas,

Texas, IEEE Computer Society Washington, DC, USA.

56. Doe, J. (2007). "Call Center Simulation." Retrieved 03/09/2008, from

http://contactcenter.limra.com/Products/Samples/Ccs.pdf.

57. Elsawah, S., J. H. Guillaume, T. Filatova, J. Rook and A. J. Jakeman (2015).

"A methodology for eliciting, representing, and analysing stakeholder

knowledge for decision making on complex socio-ecological systems: From

cognitive maps to agent-based models." Journal of environmental management

151: 500-516.

58. Ephrati, E. and J. S. Rosenschein (1992). Constrained intelligent action:

Planning under the influence of a master agent, In Proceedings of the Tenth

National Conference on Artificial Intelligence, San Jose, California: 263-268.

59. Estefan, J. A. (2007). "Survey of model-based systems engineering (MBSE)

methodologies.", Rev. B, INCOSE-TD-2007-003-01, MBSE Initiative,

International Council on Systems Engineering, Seattle, WA.

60. Faliagka, E., P. Karkoulias, M. Rigkou, S. Sirmakessis, G. Tzimas and A.

Tsakalidis (2011). Investigating the Integration of Hand-Held Haptic Devices

in Daily Work Activities: The Case of a Tennis Coaching Assistant on iPhone.

Design, User Experience, and Usability. Theory, Methods, Tools and Practice,

Springer: 555-563.

61. Franch, X., C. Quer, S. Renault, C. Guerlain and C. Palomares (2013).

Constructing and Using Software Requirements Patterns. Managing

requirements knowledge, Springer: 95-116.

62. Fuentes-Fernández, R., I. García-Magariño, A. M. Gómez-Rodríguez and J. C.

González-Moreno (2010). "A technique for defining agent-oriented

183

engineering processes with tool support." Engineering Applications of

Artificial Intelligence 23(3): 432-444.

63. Garcia-Ojeda, J. C., S. A. DeLoach, W. H. Oyenan and J. Valenzuela (2008).

O-MaSE: a customizable approach to developing multiagent development

processes, In Proceedings of the 8th international workshop on agent oriented

software engineering (AOSE 2007), 1-15.

64. Garijo, F. J., J. J. Gomez-Sanz and P. Massonet (2005). "The MESSAGE

methodology for agent-oriented analysis and design." Agent-Oriented

Methodologies , IDEA Group Publishing 8: 203-235.

65. Garousi, V., L. C. Briand and Y. Labiche (2009). "A UML-based quantitative

framework for early prediction of resource usage and load in distributed real-

time systems." Software & Systems Modeling 8(2): 275-302.

66. Gary B, C., Plano; Paul H. Lemon, McKinney (2000). Skills-based scheduling

for telephone call centers. US Patent. USA. 6044355.

67. Genesys (2009). "Call centres matching demographics." Retrieved 1/4/2009,

2009, from

http://callcentres.net/CALLCENTRES/LIVE/me.get?site.sectionshow&CAL

L1575.

68. Georgeff, M. P. and A. L. Lansky (1986). "Procedural knowledge."

Proceedings of the IEEE 74(10): 1383-1398.

69. Ghaisas, S. and N. Ajmeri (2013). Knowledge-assisted ontology-based

requirements evolution. Managing requirements knowledge, Springer: 143-

167.

70. Ghidini, C., B. Kump, S. Lindstaedt, N. Mahbub, V. Pammer, M. Rospocher

and L. Serafini (2009). Moki: The enterprise modelling wiki. The Semantic

Web: Research and Applications, Springer: 831-835.

71. Giorgini, P., J. Mylopoulos and R. Sebastiani (2005). "Goal-oriented

requirements analysis and reasoning in the tropos methodology." Engineering

Applications of Artificial Intelligence 18(2): 159-171.

72. Giunchiglia, F., J. Mylopoulos and A. Perini (2003). "The tropos software

development methodology: processes, models and diagrams." Agent-Oriented

Software Engineering III: 162-173.

184

73. Gokhale, A. S., B. Natarajan, D. C. Schmidt and J. K. Cross (2004). "Towards

real-time fault-tolerant CORBA middleware." Cluster Computing 7(4): 331-

346.

74. Goknil, A., I. Kurtev, K. Van den Berg and J.-W. Veldhuis (2011). "Semantics

of trace relations in requirements models for consistency checking and

inferencing." Software & Systems Modeling 10(1): 31-54.

75. Goldman, G. H. (2000). Characterization of the Effects of Cavities and

Canopies on Radar Target Signatures, US Army Research Laboratory,

Adelphi, MD, ARL-TN-154.

76. Golpelwar, M. K. (2015). Global Call Center Employees in India: Work and

Life between Globalization and Tradition, Springer.

77. Gómez, R. (2009). A compositional translation of timed automata with

deadlines to uppaal timed automata. Formal Modeling and Analysis of Timed

Systems, Springer: 179-194.

78. Gómez-Sanz, J. J., C. R. Fernández and J. Arroyo (2010). "Model driven

development and simulations with the INGENIAS agent framework."

Simulation Modelling Practice and Theory 18(10): 1468-1482.

79. Google (2014). "Google Maps." 2014, from

https://www.google.com.au/maps/.

80. Gumzej, R. and M. Colnaric (2001). An approach to modeling and verification

of real-time systems. Proceedings of the Fourth IEEE International Symposium

on Object-Oriented Real-Time Distributed Computing (ISORC).

81. Hahn, C., C. Madrigal-Mora and K. Fischer (2009). "A platform-independent

metamodel for multiagent systems." Autonomous Agents and Multi-Agent

Systems 18(2): 239-266.

82. Hassine, J., J. Rilling and R. Dssouli (2010). "An evaluation of timed scenario

notations." Journal of Systems and Software 83(2): 326-350.

83. Hevner, A. R., S. T. March, J. Park and S. Ram (2004). "Design Science in

Information Systems Research." Mis Quarterly 28(1): 75-105.

84. Hiroyuki, N., K. Takuya and H. Shinichi (2006). Analysis of multi-agent

systems based on KAOS modeling. Proceedings of the 28th international

conference on Software engineering. Shanghai, China, ACM: 926 - 929

185

85. Horkoff, J. (2007). "Visio." Retrieved Thursday 24 of May, 2007 23:13:15,

2007, from http://tanne.informatik.rwth-aachen.de:7777/tiki-

index.php?page=VISIO.

86. Hsin-Wen, W., H. Pei-Chi, C. Hsung-Pin and S. Wei-Kuan (2005). Scheduling

real time information in a broadcast system with non real time information,

Proceedings of the 11th IEEE International Conference on Embedded and

Real-Time Computing Systems and Applications.

87. Hull, M. E. C., S. Ewart and J. R. P. Hanna (2004). "Modeling Complex Real-

Time and Embedded Systems—The UML and DORIS Combination." Real-

Time Systems 26(2): 135-159.

88. Iglesias, C. A., M. Garijo, J. C. González and J. R. Velasco (1996). A

methodological proposal for multiagent systems development extending

CommonKADS. Proceedings of the 10th Banff knowledge acquisition for

knowledge-based systems workshop, Citeseer.

89. Jayashankar, M. S., F. S. Stephen and M. S. Norman (1998). "Modeling supply

chain dynamics: A multiagent approach." Decision sciences 29(3): 607.

90. Jurisica, I., J. Mylopoulos and E. Yu (2004). "Ontologies for Knowledge

Management: An Information Systems Perspective." Knowledge and

Information Systems 6(4): 380-401.

91. Karangelen, N. E. and N. T. Hoang (1994). Representing system behavior in

design and analysis of large complex real-time systems, Proceedings of the

Second Workshop on Parallel and Distributed Real-Time Systems.

92. Kardas, G. (2013). "Model-driven development of multiagent systems: a

survey and evaluation." The Knowledge Engineering Review 28(04): 479-503.

93. KARDAS, G., A. GOKNIL, O. DIKENELLI and N. Y. TOPALOGLU (2009).

"MODEL DRIVEN DEVELOPMENT OF SEMANTIC WEB ENABLED

MULTI-AGENT SYSTEMS." International Journal of Cooperative

Information Systems 18(02): 261-308.

94. Kellogg, M. (2016). "Word Reference." from

http://www.wordreference.com/definition/task.

95. Kim, H. J., I. Kim and H. Lee (2016). "Third-party mobile app developers’

continued participation in platform-centric ecosystems: An empirical

186

investigation of two different mechanisms." International Journal of

Information Management 36(1): 44-59.

96. Kitchenham, B., O. P. Brereton, D. Budgen, M. Turner, J. Bailey and S.

Linkman (2009). "Systematic literature reviews in software engineering–a

systematic literature review." Information and Software Technology 51(1): 7-

15.

97. Koji Iwamura, N. M., Yoshitaka Tanimizu and Nobuhiro Sugimura (2009). "A

Study on Real-Time Scheduling for Holonic Manufacturing Systems –

Determination of Utility Values Based on Multi-agent Reinforcement

Learning." Lecture Notes in Computer Science 5696/2009: 135-144.

98. Konrad, S. and B. H. C. Cheng (2005). Real-time specification patterns.

Proceedings of the 27th international conference on Software engineering. St.

Louis, MO, USA, ACM: 372-381.

99. Konrad, S. J. (2006). Model-driven development and analysis of high

assurance systems. Department of Computer Science. Michigan, Michigan

State University. DOCTOR OF PHILOSOPHY: 443.

100. Kopetz, H. (2000). Software engineering for real-time: A roadmap. Proc. 22nd

Int. Conf. Software Eng, Citeseer.

101. Larue, D. L. C. R., IA), Ivey, James Brian (Marion, IA), Leonard, Timothy M.

(Coralville, IA) (1999). Generalized customer profile editor for call center

services. U. S. Patent. United States, MCI Communications Corporation

(Washington, DC).

102. Laugesen, J. and Y. Yuan (2010). What factors contributed to the success of

Apple's iPhone?, Proceedings of the Ninth International Conference on Mobile

Business and 2010 Ninth Global Mobility Roundtable (ICMB-GMR), IEEE.

103. Ling, R. and P. R. Sundsoy (2009). The iPhone and mobile access to the

internet. ICA pre-conference on mobile communication, Chicago, IL.

104. Lisa Cingiser DiPippo, V. F.-W., Lekshmi Nair, Ethan Hodys, Oleg Uvarov

(2001). "A Real-Time Multi-Agent System Architecture for E-Commerce

Applications." Proceedings of the Fifth International Symposium on

Autonomous Decentralized Systems: 357-364.

105. Llego, A. G. T. J. H. (2016). "Computer programming: Know How to

Flowchart." Retrieved 12/10/2016, from

187

http://www.slideshare.net/Dkiceiceice/computer-programmingknow-how-to-

flowchart.

106. Lopez-Lorca, A. A., G. Beydoun, L. Sterling and T. Miller (2011). Ontology-

mediated Validation of Software Models. Information Systems Development,

Springer: 455-467.

107. Lopez-Lorca, A. A., G. Beydoun, R. Valencia-Garcia and R. Martinez-Bejar

(2016). "Supporting agent oriented requirements analysis with ontologies."

International Journal of Human-Computer Studies 87: 20-37.

108. Mallet, F. (2008). "Clock constraint specification language: specifying clock

constraints with UML/MARTE." Innovations in Systems and Software

Engineering 4(3): 309-314.

109. March, S. T. and V. C. Storey (2008). "Design science in the information

systems discipline: an introduction to the special issue on design science

research." Management Information Systems Quarterly 32(4): 6.

110. Marin, O., P. Sens, J.-P. Briot and Z. Guessoum (2001). Towards adaptive fault

tolerance for distributed multi-agent systems. Proceedings of ERSADS.

111. Mayer, D. A., D. Teubert, S. Wetzel, U. Meyer and G. Neugebauer (2010).

appoint-A Distributed Privacy-Preserving iPhone Application. 3rd ACM

Conference on Wireless Security (WISEC), Poster Session.

112. Micacchi, C. and R. Cohen (2008). "A framework for simulating real-time

multi-agent systems." Knowledge and Information Systems 17(2): 135-166.

113. Miller, T., S. Pedell, L. Sterling and B. Lu (2011). Engaging Stakeholders with

Agent-Oriented Requirements Modelling. Agent-Oriented Software

Engineering XI. D. Weyns and M.-P. Gleizes, Springer Berlin Heidelberg.

6788: 62-78.

114. Moon Hae, K., L. Sun-Hwa and K. Jung-Guk (2003). Modeling of a real-time

distributed network management based on TMN and the TMO model,

Proceedings of the Eighth International Workshop on Object-Oriented Real-

Time Dependable Systems (WORDS 2003).

115. Moraitis, P. and N. Spanoudakis (2006). "The Gaia2Jade process for multi-

agent systems development." Applied Artificial Intelligence 20(2-4): 251-273.

188

116. Morandini, M., F. Dalpiaz, C. D. Nguyen and A. Siena (2014). The Tropos

Software Engineering Methodology. Handbook on Agent-Oriented Design

Processes, Springer: 463-490.

117. Mouratidis, H. and P. Giorgini (2007). "Secure tropos: a security-oriented

extension of the tropos methodology." International Journal of Software

Engineering and Knowledge Engineering 17(02): 285-309.

118. N. A. Sabour, H. M. F. a. M. E. K. (2008). "Multi-Agent Based Framework for

Target Tracking Using a Real Time Vision System." International Conference

on Computer Engineering and Systems, ICCES 2008 355-363

119. Nakashima, H., H. Fujii and M. Suwa (2014). Designing methodology for

innovative service systems. Serviceology for Services, Springer: 287-295.

120. Navarroa, M., V. Julian, S. Heras, J. Soler and V. Botti (2006). Multi-Agent

systems over RT-Java for a mobile robot control. International Conference on

Intelligent Data Engineering and Automated Learning, Springer.

121. Neto, A., F. Sartori, F. Piccolo, R. Vitelli, G. De Tommasi, L. Zabeo, A.

Barbalace, H. Fernandes, D. F. Valcárcel and A. J. N. Batista (2009). MARTe:

a Multi-Platform Real-Time Framework. Proc. of the 16th IEEE NPSS Real-

Time Conference, Beijing, China.

122. Nguyen, T. M., J. Schiefer and A. M. Tjoa (2007). "ZELESSA: an enabler for

real-time sensing, analysing and acting on continuous event streams."

International Journal of Business Intelligence and Data Mining 2(1): 105-141.

123. NoahGans, G. K., Avishai Mandelbaum (2003). "Telephone call centers

:tutorial,review and research prospects." Manufacturing and service operations

management 5: 79-141.

124. OMG, O. M. G. (2008). "UML profile for modeling and analysis of real-time

and embedded systems (MARTE)." Retrieved 2-12-2010, from

http://www.omg.org/.

125. Othman, S. H. and G. Beydoun (2013). "Model-driven disaster management."

Information & Management 50(5): 218-228.

126. Palopoli, L., G. Buttazzo and P. Ancilotti (1999). A C language extension for

programming real-time applications. Sixth International Conference on Real-

Time Computing Systems and Applications (RTCSA '99).

189

127. Papasimeon, M. and C. Heinze (2001). Extending the UML for designing

JACK agents. 13th Australian Software Engineering Conference (ASWEC'01),

Canberra, Australia

128. Pavón, J., J. Gómez-Sanz and R. Fuentes (2006). Model Driven Development

of Multi-Agent Systems. Model Driven Architecture – Foundations and

Applications: Second European Conference, ECMDA-FA 2006, Bilbao, Spain,

July 10-13, 2006. Proceedings. A. Rensink and J. Warmer. Berlin, Heidelberg,

Springer Berlin Heidelberg: 284-298.

129. Peffers, K., T. Tuunanen, M. A. Rothenberger and S. Chatterjee (2007). "A

design science research methodology for information systems research."

Journal of Management Information Systems 24(3): 45-77.

130. Picard, G. (2003). UML Stereotypes Definition and AUML Notations for

ADELFE Methodology with OpenTool. First European Workshop on Multi-

Agent Systems (EUMAS'03).

131. Pires, P. F., F. C. Delicato, R. Cóbe, T. Batista, J. G. Davis and J. H. Song

(2011). "Integrating ontologies, model driven, and CNL in a multi-viewed

approach for requirements engineering." Requirements Engineering 16(2):

133-160.

132. Prasad, M. N. and V. R. Lesser (1999). "Learning situation-specific

coordination in cooperative multi-agent systems." Autonomous Agents and

Multi-Agent Systems 2(2): 173-207.

133. Riemsdijk, M. B. v., D. Mehdi, M. John-Jules Ch and S. d. B. Frank (2006).

Goal-oriented modularity in agent programming. Proceedings of the fifth

international joint conference on Autonomous agents and multiagent systems.

Hakodate, Japan, ACM.

134. Rodrigues da Silva (2015). "Model-driven engineering: A survey supported by

the unified conceptual model." Computer Languages, Systems & Structures 43:

139-155.

135. Rodriguez, J. A. (2003). "On The Design and Construction of Agent-Mediated

Electronic Institutions." Artificial Intelligence Research Institute. Barcelona,

UAB - Universitat Autonòma de Barcelona.

136. Roger, S. Pressman. (2010). "Software engineering: a practitioner’s approach."

McGrow-Hill International Edition.

190

137. Rong-he, D., L. I. Xiao-an and D. Jun-hua (2009). "A Study of the Real-Time

MAS Architecture and the Modeling Method in Dynamic Environments."

Computer Engineering & Science, Vol. 01.

138. Sadraei, E., A. Aurum, G. Beydoun and B. Paech (2007). "A field study of the

requirements engineering practice in Australian software industry."

Requirements Engineering 12(3): 145-162.

139. Saehwa, K., C. Sukjae and H. Seongsoo (2000). Schedulability-aware mapping

of real-time object-oriented models to multi-threaded implementations.

Proceedings of the Seventh International Conference on Real-Time Computing

Systems and Applications.

140. Selic, B. (2003). Model-driven development of real-time software using OMG

standards, Sixth IEEE International Symposium on Object-Oriented Real-Time

Distributed Computing.

141. Selic, B. (2003). "The pragmatics of model-driven development." Software,

IEEE 20(5): 19-25.

142. Shamshirband, S., N. B. Anuar, M. L. M. Kiah and A. Patel (2013). "An

appraisal and design of a multi-agent system based cooperative wireless

intrusion detection computational intelligence technique." Engineering

Applications of Artificial Intelligence 26(9): 2105-2127.

143. Shen, J., G. Beydoun, G. Low and L. Wang (2014). "Aligning ontology-based

development with service oriented systems." Future Generation Computer

Systems 32: 263-273.

144. Shih, G., P. Lakhani and P. Nagy (2010). "Is android or iPhone the platform

for innovation in imaging informatics." Journal of Digital Imaging 23(1): 2-7.

145. Siegemund, K., E. J. Thomas, Y. Zhao, J. Pan and U. Assmann (2011).

Towards ontology-driven requirements engineering. Workshop Semantic Web

Enabled Software Engineering at 10th International Semantic Web Conference

(ISWC), Bonn.

146. Silly-Chetto, A. M. a. M. (2006). "Dynamic Real-time Scheduling of Firm

Periodic Tasks with Hard and Soft Aperiodic Tasks " Real-Time Systems 32(1-

2): 21-47.

147. Simon, H. A. (1996). The sciences of the artificial, MIT press.

191

148. Soh, L.-K. and C. Tsatsoulis (2005). "A real-time negotiation model and a

multi-agent sensor network implementation." Autonomous Agents and Multi-

Agent Systems 11(3): 215-271.

149. Thomas R. Robbins, D. J. M. a. P. D. (2006). Evaluating arrival rate uncertainty

in call centers. Simulation Conference, WSC 06. Proceedings of the Winter.

Monterey, California Winter Simulation Conference: 2180 - 2187

150. Thomas S. Fisher, R. A. J. a. M. I. R. (2003). System for automatically

predicting call center agent work time in a multi-skilled agent environment U.

S. Patent. USA. US 6,553,114 B1.

151. Tran, N., G. Beydoun and G. Low (2007). Design of a Peer-to-Peer Information

Sharing MAS Using MOBMAS (Ontology-Centric Agent Oriented

Methodology). Advances in Information Systems Development: New Methods

and Practice for the Networked Society. W. Wojtkowski, W. G. Wojtkowski,

J. Zupancic, G. Magyar and G. Knapp. Boston, MA, Springer US: 63-76.

152. Tran, Q. N. N., G. Low and G. Beydoun (2006). "A methodological framework

for ontology centric oriented software engineering." International Journal of

Computer Systems Science & Engineering 21(2): 117-132.

153. Tran, Q.-N. N., G. Beydoun, G. Low and C. Gonzalez-Perez (2008).

Preliminary validation of MOBMAS (ontology-centric agent oriented

methodology): design of a peer-to-peer information sharing MAS. Agent-

Oriented Information Systems IV, Springer: 73-89.

154. Tran, Q.-N. N. and G. Low (2008). "MOBMAS: A methodology for ontology-

based multi-agent systems development." Information and Software

Technology 50(7): 697-722.

155. Vikhorev, K., N. Alechina and B. Logan (2009). The ARTS Real-Time Agent

Architecture. Proceedings of Second Workshop on Languages, Methodologies

and Development Tools for Multi-agent Systems.

156. Villaplana, E. a. (2005). "A proposal for an organizational MAS methodology."

International Conference on Autonomous Agents.

157. Vincent Conitzer, T. S. (2007). "AWESOME: A general multiagent learning

algorithm that converges in self-play and learns a best response against

stationary opponents." Machine Learning 67 (1-2/may 2007): 23 - 43

192

158. Wagner, G. and K. Taveter (2004). Towards radical agent-oriented software

engineering processes based on AOR modeling. Proceedings.

IEEE/WIC/ACM International Conference on Intelligent Agent Technology.

(IAT 2004).

159. Wagner, G. (2000). Agent-object-relationship modeling. In Proc. of Second

International Symposium - from Agent Theory to Agent Implementation

together with EMCRS 2000, Vienna, Austria

160. Wallace, S., M. Clark and J. White (2012). "‘It's on my iPhone’: attitudes to

the use of mobile computing devices in medical education, a mixed-methods

study." BMJ open 2(4): e001099.

161. Wang, S., M. Van Schyndel, G. Wainer, V. S. Rajus and R. Woodbury (2012).

Devs-based building information modeling and simulation for emergency

evacuation. Proceedings of the 2012 Winter Simulation Conference (WSC),

IEEE.

162. Wautelet, Y. and M. Kolp (2016). "Business and model-driven development of

BDI multi-agent systems." Neurocomputing 182: 304-321.

163. Webber, R. (2007). "Using names to segment customers by cultural, ethnic or

religious origin " Journal of Direct, Data and Digital Marketing Practice 8(3):

226-242.

164. West, J. and M. Mace (2010). "Browsing as the killer app: Explaining the rapid

success of Apple's iPhone." Telecommunications Policy 34(5): 270-286.

165. Westley, W. and C. N. George (2004). "Finding and preventing run-time error

handling mistakes." SIGPLAN Not. 39(10): 419-431.

166. Weyns, D., A. Omicini and J. Odell (2007). "Environment as a first class

abstraction in multiagent systems." Autonomous Agents and Multi-Agent

Systems 14(1): 5-30.

167. Whipple, J., W. Arensman and M. S. Boler (2009). A public safety application

of GPS-enabled smartphones and the android operating system. International

Conference on Systems, Man and Cybernetics, SMC 2009, IEEE.

168. Wolfgang. Halang, R. G., Matjaz Colnaric and Marjan Druzovec (2004).

"Measuring the Performance of Real-Time Systems " Real-Time Systems

18(1): 59-68.

193

169. Wooldridge, M. and P. Ciancarini (2001). "Agent-oriented software

engineering: The state of the art." Lecture Notes in Computer Science: 1-28.

170. Wooldridge, M., N. R. Jennings and D. Kinny (2000). "The Gaia methodology

for agent-oriented analysis and design." Autonomous Agents and Multi-Agent

Systems 3(3): 285-312.

171. Xu, D., C. Wijesooriya, Y.-G. Wang and G. Beydoun (2011). "Outbound

logistics exception monitoring: A multi-perspective ontologies’ approach with

intelligent agents." Expert Systems with Applications 38(11): 13604-13611.

172. Yu, E. S. K. (1995). Modelling strategic relationships for process

reengineering. Computer Science. Toronto, Canada, University of Toronto.

Doctor of Philosophy: 131.

173. Zahariev, A. (2009). "Google app engine." Helsinki University of Technology.

174. Zahia Guessoum, J.-P. B., Pierre Sens, and Olivier Marin (2001). "Toward

Fault-Tolerant Multi-agent Systems." from http://www-

poleia.lip6.fr/~briot/publications/ft-mas-maamaw01.pdf.

175. Zambonelli, F., N. Jennings, M. Wooldridge and P. Ciancarini (2001).

Organisational Abstractions for the Analysis and Design of Multi-agent

Systems. Agent-Oriented Software Engineering, Springer Berlin / Heidelberg.

1957: 407-422.

176. Zambonelli, F., N. R. Jennings and M. Wooldridge (2003). "Developing

multiagent systems: The Gaia methodology." ACM Transactions on Software

Engineering and Methodology (TOSEM) 12(3): 317-370.

177. Zambonelli, F., N. R. Jennings and M. Wooldridge (2005). "Multi-agent

systems as computational organizations: the Gaia methodology." Agent-

Oriented Methodologies 6: 136-171.

178. Zeynep Aksin, M. A., Vijay Mehrotra (2007). "The Modern Call-Center: A

Multi-Disciplinary Perspective on Operations Management Research "

Production and Operations Management 16(6): 665-689.

179. Zhang, L. (2006). "Development Method for Multi-Agent Real-Time

Systems." International Journal of Information Technology 12(5).

180. Zhang, X. and H. Xu (2006). Towards Automated Development of Multi-

Agent Systems Using RADE. IC-AI.

194

181. Zhang, C., A. Hammad and H. Bahnassi (2009). "COLLABORATIVE

MULTI-AGENT SYSTEMS FOR CONSTRUCTION EQUIPMENT BASED

ON REAL-TIME FIELD DATA CAPTURING." Electronic Journal of

Information Technology in Construction 14: 204-228.

182. Zhang, Y. and A. K. Mackworth (1993). Design and analysis of embedded real-

time systems: An elevator case study, Citeseer.

	Title Page
	Certificate of Original Authorship
	Acknowledgement
	Publications Based On Work Performed in This Thesis
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Chapter 1 Introduction
	1.1 Background and Motivation
	1.2 Multi-Agent Systems and Real-Time Requirements
	1.3 Thesis Goals and Significance
	1.4 Thesis Structure
	1.5 Chapter Summary

	Chapter 2 Background and Literature Review
	2.1 Introduction
	2.2 Real-Time Multi-Agent Systems (RTMAS)
	2.2.1 Benefits of RTMAS Technology

	2.3 RTMAS Applications and Implementations
	2.4 RTMAS Requirements Engineering
	2.5 AOSE Methodologies and Modelling Languages
	2.5.1 AOSE Methodologies
	2.5.2 Modelling Languages

	2.6 Summary
	2.7 Summary

	Chapter 3 Research Design
	3.1 Overview of Design Science Research
	3.2 Phase 1: Problem Identification
	3.3 Phase 2: Identifying Initial Set of Modelling units
	3.4 Phase 3: Synthesis of the Modelling Units Deployment Process
	3.5 Phase 4: Validation of Modelling units and Concomitant Process
	3.6 Summary

	Chapter 4 Identifing the modelling Units
	4.1 Synthesis of the Modelling units
	4.2 Call Centre Management Domain
	4.2.1 Call Centre Management Background
	4.2.2 Confirming the Suitability of a MAS Architecture for CMC Requirements

	4.3 Validating the Modelling units in the Requirements Analysis of the CMC MAS
	4.3.1 Call Management Centre Requirements Analysis
	4.3.2 Step 1: Identifying Actors in CMC
	4.3.3 Step 2: Identifying Tasks for Each Actor in CMC
	4.3.4 Step 3: Identifying RT Constraints for Role Tasks in CMC
	4.3.5 Step 4: Identify Agents and Ensuring Tasks Do Not Overload Any Single Agent
	4.3.6 Step 5: Applying the Modelling units

	4.4 Conclusion

	Chapter 5 Synthesis of The RT Modelling Process
	5.1 Introduction
	5.2 Meeting Scenarios
	5.3 Modelling units’ Integration
	5.4 Modelling units’ Dependencies
	5.5 Proposed Process
	5.5.1 Identifying the Modelling units Set for the Process
	5.5.2 Identifying Candidate Sequences

	5.6 Simulating the Candidate Processes
	5.6.1 Individual Modelling Units’ Simulation
	5.6.2 Sequential Modelling Units’ Simulation
	5.6.3 Random Modelling Units’ Simulation

	5.7 Conclusion

	Chapter 6 RT Modelling framework in an iPhone Application
	6.1 Introduction
	6.2 Application Requirements and System Goals
	6.3 Integrating RT Requirements within the iPhone Calendar
	6.4 The Pcal Application
	6.5 Application Testing and Validation
	6.6 Results
	6.7 Threats
	6.8 Summary

	Chapter 7 Conclusion
	7.1 Thesis Summary
	7.2 Thesis Contributions
	7.3 Thesis Limitations and Future Work
	7.4 Concluding Remarks

	Appendices
	Appendix A Call Management System SR Diagrams
	Appendix B Table 4.2 Sources of Modelling Units

	Bibliography

