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Cost-Effectiveness and Value-of-Information

Analysis Using Machine Learning–Based
Metamodeling: A Case of Hepatitis C

Treatment

John Austin McCandlish, Turgay Ayer, and Jagpreet Chhatwal

Background. Metamodels can address some of the limitations of complex simulation models by formulating a mathe-
matical relationship between input parameters and simulation model outcomes. Our objective was to develop and
compare the performance of a machine learning (ML)–based metamodel against a conventional metamodeling
approach in replicating the findings of a complex simulation model. Methods. We constructed 3 ML-based metamo-
dels using random forest, support vector regression, and artificial neural networks and a linear regression-based
metamodel from a previously validated microsimulation model of the natural history hepatitis C virus (HCV) con-
sisting of 40 input parameters. Outcomes of interest included societal costs and quality-adjusted life-years (QALYs),
the incremental cost-effectiveness (ICER) of HCV treatment versus no treatment, cost-effectiveness analysis curve
(CEAC), and expected value of perfect information (EVPI). We evaluated metamodel performance using root mean
squared error (RMSE) and Pearson’s R2 on the normalized data. Results. The R2 values for the linear regression
metamodel for QALYs without treatment, QALYs with treatment, societal cost without treatment, societal cost with
treatment, and ICER were 0.92, 0.98, 0.85, 0.92, and 0.60, respectively. The corresponding R2 values for our ML-
based metamodels were 0.96, 0.97, 0.90, 0.95, and 0.49 for support vector regression; 0.99, 0.83, 0.99, 0.99, and 0.82
for artificial neural network; and 0.99, 0.99, 0.99, 0.99, and 0.98 for random forest. Similar trends were observed for
RMSE. The CEAC and EVPI curves produced by the random forest metamodel matched the results of the simula-
tion output more closely than the linear regression metamodel. Conclusions ML-based metamodels generally outper-
formed traditional linear regression metamodels at replicating results from complex simulation models, with random
forest metamodels performing best.

Highlights

� Decision-analytic models are frequently used by policy makers and other stakeholders to assess the impact of
new medical technologies and interventions. However, complex models can impose limitations on
conducting probabilistic sensitivity analysis and value-of-information analysis, and may not be suitable for
developing online decision-support tools.

� Metamodels, which accurately formulate a mathematical relationship between input parameters and model
outcomes, can replicate complex simulation models and address the above limitation.

� The machine learning–based random forest model can outperform linear regression in replicating the
findings of a complex simulation model. Such a metamodel can be used for conducting cost-effectiveness and
value-of-information analyses or developing online decision support tools.
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Introduction

Policy makers and other stakeholders frequently use
decision-analytic models to assess the impact of new
medical technologies and interventions.1 Recently, with
the availability of more data and computational speed,
the complexity of decision-analytic models has increased.2

Such computationally intensive simulation models are
useful for accurately capturing important real-world
nuances in disease modeling.

However, the increased complexity of simulation
models can impose limits on conducting probabilistic
sensitivity analysis (PSA) and value-of-information anal-
ysis (VOI),1 which are recommended by various cost-
effectiveness guidelines to identify future research priori-
ties.3 For instance, the Agency for Healthcare Research
and Quality published a report on VOI that included a
systematic review of 60 studies conducting model-based
VOI analysis,4 and out of the 60 studies, only 3 used
microsimulation modeling.5–7 Furthermore, complex
models may not be suitable for developing online
decision-support tools needed by different stakeholders,
because complex models may not generate outcomes in
near real time.

To address these challenges, researchers use metamo-
dels, which formulate a mathematical relationship
between input parameters and simulation model out-
comes. Metamodels are sometimes called models of
models, and a well-calibrated metamodel may replace
the original simulation model when timely results are
needed. In addition to efficiently conducting extensive
sensitivity analyses and VOI, metamodels can also be
used for developing online decision-support tools for
real-time use.8,9 This makes metamodels a vital tool for

researchers seeking fast and reliable information neces-
sary for decision making.

Traditional metamodeling techniques, such as linear
regression metamodels (LRMs) and Gaussian process
metamodels (GPMs), have limitations.9 LRMs are often
ineffective at modeling nonlinear relationships between
outcomes and parameters, which is typically the case
when dealing with complex simulation models. Adjusting
LRMs to capture such nonlinear relationships quickly
becomes computationally expensive and increases the
potential for structurally biased estimates.10 GPMs, while
quite effective at capturing nonlinear trends, are compu-
tationally expensive and require advanced statistical
expertise for tuning to accurately capture the relationship
between input parameters and outcomes.11 Of note, only
a limited number of existing metamodeling techniques
have been used for cost-effectiveness analysis and VOI.12

Machine learning (ML)–based metamodels can offer
some advantages over the commonly used LRMs and
GPMs. ML models have superior predictive accuracy
over traditional statistical methods when the functional
form being modeled exhibits high degrees of nonlinearity
or is noncontinuous. This is especially applicable to cost-
effectiveness analyses, in which the outputs (e.g., incre-
mental cost-effectiveness ratio) are nonlinear and highly
sensitive to model inputs. While there are numerous
examples of ML-based metamodels in other fields such
as information systems,13–15 there are few examples of
ML-based metamodels in medical decision making.9,16,17

The application of ML methods in health economics and
outcomes research (HEOR) remains in the early stages.9

The objective of this study is to compare the perfor-
mance of 3 ML-based metamodels—random forest (RF),
support vector regression (SVR), and artificial neural
network (ANN) metamodels—with a commonly used
LRM in replicating a complex microsimulation model,
the Markov-based Analysis of Treatment for Chronic
Hepatitis C (MATCH),18–20 designed for analyzing the
cost-effectiveness of direct-acting antivirals, a new treat-
ment for hepatitis C. We further compare the perfor-
mance of these different metamodels for conducting VOI
analysis and replicating cost-effectiveness analysis. This
case study aims to demonstrate the ability of ML-based
metamodels to replicate a highly complex simulation
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model designed for HEOR and to assess their perfor-
mance relative to traditional statistical methods in terms
of accuracy, precision, and computation time.

Methods

Rationale for the Choice of Metamodels

Linear regression metamodels (LRMs) are intuitive and
have strong theoretical guarantees if formulated cor-
rectly.8 The inclusion of coefficients, confidence inter-
vals, and P values for each input parameter allows for
approximations of parameter contribution and uncer-
tainty.8 However, LRMs have considerable limitations.
First and foremost, the strict parametric assumptions of
LRMs make them highly sensitive to model specifica-
tion, which must be stipulated by the researcher. An
improper formulation is shown to produce highly biased
predictions and coefficient estimates.10 Furthermore, the
estimation of nonlinearities and interactions between
input parameters involves a significant expansion of the
parameter space, increasing computation time. A simple
full second-order model with p –1 input parameters

requires estimation of 2p+
p

2

� �
coefficients; thus, a full

second-order LRM for a simulation model with 40 input
parameters would require the estimation of 902 coeffi-
cients.21 Yet, past studies have found that inclusion of
interaction and higher-order effects are often necessary
when constructing LRMs for complex simulation mod-
els, especially for conducting cost-effectiveness analysis.8

In addition, the inclusion of higher-order terms also
comes at the cost of interpretability, as estimating indi-
vidual variable contributions requires consideration of
all nonlinear terms and interactions.

GPMs are Bayesian nonparametric metamodels that
exploit the spatial distance between model input and out-
put values. GPMs are better equipped to estimate non-
linear relations than LRMs, and like LRMs, they have
strong theoretical guarantees if properly formulated. The
parametric assumptions of GPMs also ensure that the
prediction function is smooth. However, this greater flex-
ibility comes at a significant expense of computational
efficiency and interpretability. Most current GP software
is ill-equipped to handle models with more than 30 para-
meters and necessitates a high level of statistical expertise
to ensure proper smoothing.9,11 Further, training a GPM
requires a substantial amount of computational time
(often days or weeks to train on a data set of 10,000
observations).11 Crucially, the complexity and para-
metric restrictions of GPMs can make VOI and thresh-
old analysis difficult and time-consuming.9 Given the

number of input parameters in the MATCH model and
the size of our PSA sample, we did not include a GPM
for comparison in this study.

ML-based algorithms have received widespread atten-
tion in many other fields but have remained relatively
unexamined in the metamodeling literature, especially
within the context of medical decision making and
HEOR.9 There are many ready-to-implement ML algo-
rithms widely available on free software packages such
as R and Python. RF, SVR, and ANN models have all
demonstrated high predictive accuracy in several applica-
tions when the functional form being modeled exhibits
high degrees of nonlinearity and cannot be accurately
modeled using traditional statistical methods.21 Perhaps
the biggest drawback of these models is their lack of
interpretability: ANN models, for example, are pure
black boxes, so they provide little insight into the under-
lying structure of the data. Nevertheless, many of these
algorithms, such as RF, do maintain a degree of inter-
pretability in addition to potentially valuable characteris-
tics, such as measures of which input parameters drive
outcomes or the ability to cluster like observations based
on both input and output characteristics.

Hepatitis C Simulation Model

We use a previously validated microsimulation model,
the MATCH, a comprehensive model that simulates the
progression of chronic hepatitis C and estimates the cost-
effectiveness of direct-acting antiviral treatment.18–20 We
developed different metamodels using the techniques
described above (LR, RF, SVR, and ANN) designed to
replicate the outcomes of MATCH.

In the MATCH model, patients progress through dif-
ferent stages of chronic hepatitis C (defined by fibrosis
stages: F0 through F4), decompensated cirrhosis of the
liver, hepatocellular carcinoma (liver cancer), and need
for a liver transplant, with death being an absorbing state
(Figure 1). Patients who receive hepatitis C treatment
could achieve sustained virologic response, a surrogate
for a cure. The model accounts for costs associated with
the management of hepatitis C disease (e.g., liver trans-
plant and liver cancer) and the cost of antiviral treat-
ment, as well as quality-of-life adjustments for fibrosis,
cirrhosis, and liver cancer. The MATCH model uses 40
input parameters and calculates the average total cost
and average quality-adjusted life-years (QALYs) per
patient for both treatment and no treatment with a life-
time horizon. The incremental cost-effectiveness ratio
(ICER) of hepatitis C treatment is the key outcome of
interest to researchers in HEOR. Uncertainty is captured
via PSA, with each run varying 40 input parameters that
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account for quality-of-life weights (10 parameters), costs
(8 parameters), probabilities (18 parameters), and patient
characteristics (4 parameters) according to predefined dis-
tributions (see Appendix Table 1 for a detailed descrip-
tion of each input parameter and its assigned PSA
distribution). While the original MATCH model includes
different types of hepatitis C treatment, we simulated only
2 strategies—antiviral treatment versus no treatment—
when building the metamodel for simplicity.

Data-Generation Processes

The data set for metamodel construction is most often
generated using either a PSA output or a deterministic
design such as full-factorial SA design.8 Our data-
generation process involved using 1000 hypothetical
patients for the inner loop and 1 million parameter
draws for the outer loop. Our final PSA sample was pro-
duced from the original simulation model using C++
and took 1 wk to run on an Acer Aspire 5 with an Intel
Core 7-7700 processor. For each PSA simulation, all but
5 parameters were drawn from gamma distributions
(patient characteristics and treatment costs were drawn
from uniform distributions). Our final data set con-
tained 5 outcomes of interest: total QALYs with and
without treatment, societal-level costs with and without

treatment, and the ICER of hepatitis C treatment, as
well as the realized values of all 40 input parameters
for each simulation run. We chose to generate our data
directly from PSA rather than a deterministic design
because of its ability to generate a large number of
observations, and because, as Jalal et al.8 point out, the
R2 value can be misleading when deterministic designs
are used because each parameter has only a few data
points to capture variation. In addition, as PSA is usu-
ally a required step in the evaluation of HEOR models,
it is a more convenient data-generation process than a
full-factorial design.8

Construction of Metamodels

Three of the 40 input parameters of the MATCH model
were categorical (patient sex, starting stage, and disease
genotype). As such, we dichotomized these categorical
variables by adding dummy variables for these para-
meters for all metamodels, bringing our total number of
parameters to 48. Finally, we normalized all input para-
meters and outcomes and randomly divided the PSA
sample into a training set of 100,000 simulations and a
testing set of 900,000 simulations. While it is typical for
the testing set to be smaller than the training set, a cen-
tral benefit of constructing a metamodel is the reduced

Figure 1 Schematic for the simulation model of hepatitis C natural history and treatment. The microsimulation model tracks the
health and cost outcomes associated with progression of hepatitis C. At a given time, a patient occupies one of the health states.
Arrows between states represent possible transitions based on annual probabilities. As time progresses, patients can transition to
another state and acquire cost and health utilities associated with that state. The model stops when all patients transition to the
death state. A patient could transition to a death state from any of the other states because of background mortality (these
transitions are not shown for clarity). F0-F4 = METAVIR fibrosis stages; DC = decompensated cirrhosis; HCC =
hepatocellular carcinoma; LRD = liver-related death; LT = liver transplantation. The DC and LT states were further divided
into first-year and subsequent-year states to account for different mortality rates and costs; however, they are collapsed into 1
state for presentation purposes.
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computation time required to conduct complex analyses.
For example, expected value of partial perfect informa-
tion (EVPPI), which estimates the value of knowing a
subset of input parameters, often requires hundreds of
thousands of simulation scenarios. As such, we were
interested in assessing the ability of metamodels to repli-
cate a large PSA sample of unseen simulation scenarios.
A larger testing set of unseen simulation scenarios also
provides an indicative test of whether a metamodel has
successfully re-created the data-generation process of the
original simulation. We chose a training set size of
100,000 because it represents a PSA sample that can be
produced in a reasonable time frame (approximately
17 h).

We constructed 2 LRM models for QALYs without
treatment, QALYs with treatment, societal-level cost
without treatment, societal-level cost with treatment, and
ICER. We first fit a simple LRM that included only
main effects for each parameter. To account for nonli-
nearity and potential interaction effects, we next fit a
partial second-order model that contained the squared
values of all features as well as all within-group interac-
tion effects for probability, quality of life, cost, and
patient characteristic parameters. Because the structure
of the simulation model was such that QALYs and
societal-level cost were each calculated omitting cost
parameters and quality-of-life parameters, respectively,
we did not include quality-of-life weights in our LRM
for societal-level cost, nor did we include cost parameters
in our LRM for QALYs. This brought the total number
of features for our QALY second-order LRMs to 266,
our cost second-order LRMs to 245, and our ICER
second-order LRM to 310. We also fit LRMs with third-
order terms for all parameters but found no improve-
ment in R2, and so the second-order LRMs were selected
to be our baseline comparison metamodel. All LRMs
were trained using R version 4.03 for Windows 10.22

An overview of ANN, RF, and SVR algorithms can
be seen in Lazic.23 All ML-based metamodels required
tuning hyperparameters. The ANN metamodel required
tuning of 4 hyperparameters: number of hidden layers
(1, 2), nodes per layer (25, 50, 75, 100), activation func-
tion (identity, logistic, hyperbolic tan, rectified linear
unit), and alpha value (0.0001, 0.001, 0.01). The RF
metamodel required tuning 2 hyperparameters: number
of trees (50, 100, 150, 200) and maximum number of fea-
tures selected for splitting (10, 15, 20, 25, 30). The SVR
metamodel required tuning 3 hyperparameters: kernel
(linear, polynomial, radial, sigmoid), C (1, 10, 100), and
epsilon (0.001, 0.01, 0.1). To reduce computation time,
hyperparameters were tuned using a subsample of 10,000
PSA simulations with 5-fold cross-validation. The final

set of hyperparameters for each metamodel was selected
based on the average cross-validated R2 values across
outcomes using an exhaustive grid search across all 96,
25, and 36 possible hyperparameter combinations for
ANN, RF, and SVR metamodels, respectively. A single
set of hyperparameters was selected for all outcomes,
and final models were trained on the full training set of
100,000 simulations. The RF metamodel was tuned and
trained using the ranger package in R version 4.03 for
Windows 10, while the ANN and SVR metamodels were
tuned and trained using the scikit-learn in Python ver-
sion 3.6 for Windows 10.24,25

Comparison of Outcomes

For each model, we used RMSE and R2 on the normal-
ized testing sample of 900,000 PSA simulations as the pri-
mary performance metrics for comparing the models. We
also constructed a cost-effectiveness acceptability curve
(CEAC) using both data from the original PSA testing
sample and the predicted values from the LRM and the
best-performing ML-based metamodel. Finally, we cal-
culated the expected value of perfect information (EVPI),
which quantifies how much a society is willing to pay to
eliminate parametric uncertainty in the decision. Equa-
tions 2 and 3 show its calculation, as outlined by Briggs
et al.3,8–11

EVPI =Eufmax
x

NB x, uð Þg �max
x

Eu NB x, uð Þf g½ � ð2Þ

NB x, uð Þ=QALYs x, uð Þ �WTP� Cost x, uð Þ,
for strategy x and input parameters u ð3Þ

The EVPI was calculated for willingness-to-pay (WTP)
thresholds from $1,000 to $200,000 using both the origi-
nal PSA testing sample and the predicted values from the
LRM and best-performing ML-based metamodel.

Financial support for this study was provided in part
by a grant from the National Science Foundation. The
funders played no role in the objectives, methods, or con-
clusions of this study.

Results

The amount of time required for hyperparameter tuning
for each ML-based metamodel was 24 min for ANN, 3 h
for RF, and 5 h for SVR. Training final metamodels for
all 5 outcomes took 1, 3, 16, and 135 min for LR, ANN,
RF, and SVR, respectively. All metamodels were able to
generate predicted outcomes for our testing set of
900,000 PSA simulations in less than 1 min. The final
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ANN metamodels had 2 hidden layers of 100 nodes
each, a logistic activation function, and an alpha value
of 0.001. The final RF metamodels had 200 trees and 30
candidate parameters for splitting. The final SVR meta-
models had a linear kernel, a C value of 1.0, and an epsi-
lon value of 0.1.

Table 1 shows the normalized RMSE and R2 values
for all metamodels. The SVR metamodels produced
lower R2 values (higher RMSEs) than the LRMs across
all outcomes. The ANN metamodels produced higher R2

values (lower RMSEs) than the LRMs for all outcomes
apart from ICER, in which the R2 values were compara-
ble (R2 of 0.582 compared with 0.601 for LRM). Our RF
metamodels produced higher R2 values (lower RMSEs)
than the LRMs. Because it performed better than the
LRM across outcomes and because it outperformed all
other metamodels on ICER, we selected the RF metamo-
del as our primary comparator to the baseline LRM.

Of note, the R2 values for ICER for all metamodels
were uninterpretable when all 1 million observations
were included for training, as both models produced neg-
ative R2 values. Further analysis revealed that this could
be attributed to rare outliers in ICER produced by the
original simulation model. Both models performed
poorly at predicting ICER values for observations in
which the true ICER was greater than $300,000. This is
likely because, in the original model, large ICER values
were infrequently observed and quite variable. As ICER
is estimated by dividing changes in cost by changes
in QALYs, ICER values become quite large as the differ-
ence in QALYs between treatment and no treatment

approaches zero. Researchers interested in analyzing the
cost-effectiveness of interventions typically set WTP
thresholds well below $300,000/QALY: the World
Health Organization recommends an upper-bound WTP
threshold of 33 gross domestic product per capita
($190,600), and the National Institute for Health and
Care Excellence uses a threshold of £100,000/QALY
($131,000) for evaluation of highly specialized technolo-
gies.26 Thus, the R2 values for ICER in Table 1 were cal-
culated using only those observations with true ICER
values at or below $300,000.25 We verified that both the
RF metamodel and LRM predicted ICER values of
greater than $300,000 for all observations, with true
ICER values greater than $300,000. We decided this was
a reasonable exclusion for 2 reasons: fewer than 1.3% of
observations had ICER values of more than $300,000,
and large prediction errors for ICER values of more than
$300,000 would be unlikely to alter a cost-effectiveness
determinations so long as predicted values were also
beyond $300,000. In some cases, such as for rare diseases,
a much higher threshold may be used, and we did not
evaluate such cases as hepatitis C is not a rare disease.

Figure 2 shows a scatterplot of the predicted versus
actual ICER values for the LRM and RF metamodel
using the PSA testing sample. The RF metamodel pre-
dictions remained more centered and closely clustered
around the line of fit than the LRM predictions across
WTP thresholds from $1,000 to $200,000. LRM predic-
tions demonstrated systematic bias, with ICER predictions
systematically high for low ICER values and systemati-
cally low for high ICER values.

Table 1 Performance Metrics for Metamodels

Model QALY: No Treatment QALY: Treatment Cost: No Treatment Cost: Treatment ICER
a

LR
RMSE 0.2753 0.1497 0.3877 0.2887 0.0069
R2 0.924 0.978 0.850 0.917 0.601

RF
RMSE 0.0793 0.0484 0.2387 0.1378 0.0048
R2 0.994 0.998 0.943 0.981 0.810

ANN

RMSE 0.0491 0.0468 0.0917 0.0729 0.0071
R2 0.998 0.998 0.992 0.995 0.582

SVR

RMSE 0.2968 0.1580 0.4500 0.3238 0.0078
R2 0.912 0.975 0.797 0.895 0.489

ANN, artificial neural network; ICER, incremental cost-effectiveness ratio; LR, linear regression; QALY, quality-adjusted life year; RF, random

forest; RMSE, root mean squared error; SVR, support vector regression. The RMSE and R2 values reported for both the LRM and RF

metamodel, with the true simulation output as the predictors. Separate metamodels were constructed for the 5 main outputs of the simulation

model.
aBecause the simulation model produced some extremely large ICER values, we report only the performance of our metamodels for ICER values

between $0 and $300,000.
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The x-axis is the ICER values produced by the origi-
nal simulation model, while the y-axis is the ICER values
predicted by the LRM (in light gray) and the RFM (in
black). The RF metamodel appears both more accurate
and precise. The LRM predictions are both more widely
spread around the line of perfect fit and are systemati-
cally high for low true ICER values and systematically
low for high true ICER values.

Figure 3 compares the CEAC produced using the orig-
inal PSA sample output to the CEACs produced using
the predicted ICER values from the LRM and RF meta-
model. The RF metamodel predictions systematically
underpredicted ICER values across WTP thresholds but

remained closer to the CEAC produced using the PSA
sample than the LRM predictions for most WTP thresh-
olds. We estimated the average distance between the orig-
inal and predicted CEACs from WTP thresholds $1,000
to $200,000 to be 0.053 for the LRM and 0.017 for the
RF metamodel.

The CEAC was produced by the original simulation
for WTP thresholds from $0 to $250,000 using the
MATCH simulation model and then recalculated using
the 2 metamodels. The solid black line represents the
results from the simulation, whereas the dashed blue and
red lines are the results from the LRM and RF metamo-
del, respectively.

Figure 4 shows the performance of our LRM and RF
metamodel in predicting EVPI compared with the out-
put from the PSA testing sample. Although both the
LRM and RF metamodel accurately predicted EVPI
for WTP thresholds below $25,000, the LRM accuracy
declined for WTP thresholds beyond this point. The
RF metamodel matched the results of the PSA testing
sample closely for WTP thresholds up to $200,000. We
estimated the average distance between the actual and
predicted EVPI curves from WTP thresholds $1,000 to
$200,000 to be $8,260 for the LRM and $2,511 for the
RF metamodel.

The EVPI was calculated for the WTP thresholds
from $0 to $200,000 using the MATCH simulation
model and then recalculated using the 2 metamodels.
The solid black line shows the results from the simula-
tion, while the dashed blue and red lines are the results
from the LRM and RF metamodel, respectively. The
RF metamodel outperforms the LRM across all WTP

Figure 2 Actual versus predicted incremental cost-
effectiveness ratio values for the linear regression metamodel
and random forest metamodel.

Figure 3 Cost-effectiveness acceptability curve.

Figure 4 Expected value of perfect information by willingness-
to-pay.
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thresholds and significantly outperforms the LRM for
WTP thresholds above $25,000.

Discussion

An ideal metamodel should be accurate, precise, inter-
pretable, and require a reasonably short training time.8,9

In this study, we built multiple metamodels to replicate
the outcomes of a previously validated hepatitis C
treatment simulation model that evaluated the cost-
effectiveness of hepatitis C treatment. We demonstrated
that ML-based metamodels generally outperformed tra-
ditional LRMs for cost-effectiveness analysis. The RF
metamodel in particular demonstrated a strong ability to
mimic simulation model results, both in predicting model
outcomes and in conducting CEAC and EVPI. In con-
trast, the LR metamodel exhibited lower predictive
accuracy across all outcomes and showed substantial
deviations from simulation results for both CEAC and
EVPI. CEAC and EVPI are relatively simple analyses
that seldom require a large number of PSA scenarios, so
an inability to replicate these results underlines the poten-
tial hazards of using LR metamodels for more complex
analyses such as EVPPI.

A variety of tools for conducting VOI analyses have
been evaluated, including Monte Carlo simulation, effi-
cient calculation with nonparametric regression, and
LRMs. Our approach builds on the previous literature
by demonstrating the potential of ML-based metamodels
to emulate the data-generation process of a complex
simulation model more accurately than an LRM without
requiring the computation time required for Monte Carlo
simulation. In our case, for example, conducting EVPPI
with 1000 iterations in both the outer and inner loop (1
million PSA scenarios) would take approximately 1 wk to
compute, while the total time required to generate 100,000
PSA scenarios, tune and construct an RF metamodel, and
generate predictions for EVPPI would take less than 23 h
total (17 for generating the data, 3 for hyperparameter tun-
ing, 12 min for training, and less than 1 min for generating
predicted values). As we have demonstrated, an effective
ML-based metamodel can generate a large artificial PSA
sample in a matter of minutes, and the structure allows
researchers to choose which input parameters to vary and
which to hold constant when generating metamodel out-
put. Thus, once effectively trained, an ML-based metamo-
del can be used to conduct multiple VOI analyses in a
relatively short period of time.

Published studies in other fields have compared ML-
based metamodels among each other and with respect to
traditional methods.14,27–29 Many of these studies find
that ML-based methods outperformed LRMs,27,28 and 1

study we identified similarly found an RF metamodel to
perform best.28 While other studies have compared vari-
ous metamodeling approaches, this is the first study to
our knowledge that performs an extensive comparison of
ML-based metamodels on a widely used simulation
model with the specific aim of analyzing their application
to cost-effectiveness and VOI analysis. In addition to
their predictive accuracy, we analyzed each model’s abil-
ity to replicate EVPI and CEAC, analyses often per-
formed in HEOR. A good fit on these curves is a signal
that the fit metamodel can be effectively used for more
computationally expensive analyses, such as EVPPI,
which often require a large PSA sample for estimation.11

A key benefit of ML-based metamodels is that, unlike
more complex methods such as GPMs, many easy-to-
implement software packages exist for developing ML
models that are designed to handle large data sets. Once
trained, ML-based models generate predicted values with
speed comparable to LRMs. Further, while training
GPMs may take days or weeks, ML-based models are
often fully trained within hours. Several readily available
packages for a wide array of ML-based models exist in
R and Python.

Many RF packages, including ranger, have features
that can provide additional insights into the original
simulation model. Two such features are the impurity
measure and the proximity matrix. The impurity measure
describes the level of reduction of within-group variance
in model outcomes that is achieved, on average, by split-
ting the training data by a given input parameter.29,30

For example, if dividing the observations by patient age
produces a very large reduction in the within-group var-
iation in QALYs, the impurity measure would regard
patient age as a parameter of high importance for deter-
mining QALYs. This can allow researchers and policy
makers to obtain an unbiased estimate of which para-
meters are the important drivers of outcomes. The prox-
imity matrix is a measure of how often observations
within the original data set fall into the same leaf group
of a decision tree and can be viewed as a measure of dis-
tance between observations both in terms of their para-
meters and outcomes. This allows researchers to easily
cluster simulations to identify key subgroups within the
data.31 A thorough analysis of these tools is a valuable
route for future research.

Generating 100,000 PSA scenarios may be prohibitive
for many simulation models. As a supplemental analysis,
we trained a new set of metamodels on a random subset
of 10,000 PSA scenarios drawn from our original train-
ing set, again assessing performance on our full testing
set of 900,000. Hyperparameters for ML-based metamo-
dels were once again tuned via a grid search with 5-fold
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cross-validation. Even when trained on this smaller set,
the testing performance of the RF metamodel remained
superior to the traditional LR metamodel. A full table of
results can be seen in e-Table 2 in the appendices.

This study has several limitations. A detailed analysis
of the RF metamodel revealed that predictions were less
precise and accurate for certain patient cohorts. In par-
ticular, we found that our model performed worse for
young patients beginning in the late stages of hepatitis C,
which we attributed to a lack of training data. We next
evaluated the performance of both the RF and LR meta-
model on a small data set of 10,000 PSA scenarios with
the input parameter distributions perturbed. We found
the performance of both metamodels declined signifi-
cantly, illustrating the well-reported dangers of using
metamodels to extrapolate to simulation scenarios that
deviate too far from the original PSA data-generation
process. Another limitation of our study is that although
there were correlations between model input parameters
in the original simulation, these were ignored when gen-
erating PSA samples. An additional limitation of this
study is that we did not consider feature selection using
established ML-based methods. A robust discussion of
feature selection is a valuable route for future research.
We did not compare ML metamodels to GPMs, as it
was beyond the scope of this study. However, we encour-
age future research to address this. In particular, we
believe that the potential benefit of an ML-based meta-
model over a GPM is primarily with regard to the faster
training time of the ML algorithm. That is, while this
study focuses on the improvements in model perfor-
mance that accrue from switching to an ML metamodel
from a LRM, future research may focus on the potential
improvements in training time that accrue from switch-
ing to ML metamodel from a GPM. It is important to
note that while our findings provide some unique
insights, the high performance of our RF metamodels
might not be necessarily generalizable. Linear regression
or GP metamodels may continue to be preferred for
models with a small number of inputs. Further research
on the generalizability of ML-based metamodels remains
a promising avenue for research.

Conclusion

We found that an ML-based metamodel using RFs out-
performs a traditional LRM in replicating the cost-
effectiveness analysis of a complex simulation model. In
addition to outperforming traditional methods, RF algo-
rithms are a highly intuitive and computationally afford-
able means of constructing metamodels. Additional

benefits of RF models such as accurate measures of vari-
able importance and mechanisms for clustering similar
patients provide further added value for researchers and
policy makers.32 RF algorithms could be considered a
valuable tool for metamodeling, whether the aim is
model replication, cost-effectiveness analysis, the VOI
analysis, or developing online decision support tools.
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