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ABSTRACT

The systematic study of discrete event numerical integration
schemes can be greatly aided by an understanding of their
general form. This paper describes the structure of DEVS
models that can be used to construct multi-point discrete
event integration methods. The structure is shown to be
sufficient for describing two known methods. The utility
of the structure is illustrated by the construction of a new,
second order accurate, multi-point discrete event integrator.

1 INTRODUCTION

Computer simulation of differential equations requires that
some element of the problem be approximated by discrete
quantities. There are two dimensions that can be made
discrete; time and state. By discretizing time, the differential
equation is approximated by a difference equation (i.e., a
discrete time system). Here, the solution is calculated at
fixed points in time. By discretizing state, the differential
equation is approximated by a discrete event system. In this
instance, events correspond to jumps through the discrete
state space of the approximation.

The essential aspect of a discrete time approximation
is that the difference equation maps a discrete time set
to a continuous state set. The time discretization of the
differential equation need not be regular. It may even be
revised in the course of a calculation. Regardless, the
elementary features of a discrete time base and continuous
state space remain.

The basic aspect of a discrete event approximation
is opposite that of a discrete time approximation. The
approximating discrete event system is a function from
a continuous time set to a discrete state set. The state
discretization need not be uniform, and it may even be
revised as the computation progresses.

The existence of general forms for discrete time ap-
proximations of differential equations has greatly aided the
systematic development of that field. A systematic develop-
ment of discrete state approximations could similarly benefit
from an explicit description of form.

This paper discusses a form for multi-point discrete
event approximations of ordinary differential equations. The
form is restricted to methods that have piecewise constant
input and output trajectories, employ only first derivatives,
and use a uniform discretization of the state space. None
the less, it is general enough to describe known multi-point
integration schemes, and it provides a structure through
which new methods can be discovered. The latter purpose
is illustrated by a new, near second order accurate, integration
scheme.

2 THE GENERAL FORM OF DISCRETE EVENT
INTEGRATORS

The Discrete Event System Specification (DEVS) is the
foundation for the development of discrete event integrators.
DEVS is a general theory of discrete event systems (Zeigler,
Praehofer, and Kim 2000). It has two specific advantages
for this application (Nutaro and Sarjoughian 2004). First,
it rigorously characterizes weakly causal and multi-input
discrete event systems. These properties regularly occur in
continuous systems, and they must be dealt with explicitly
and consistently in any discrete approximation.

Second, DEVS provides a rigorous characterization of
multi-component system structure. Implicit in this character-
ization is a natural and consistent treatment of encapsulated
state space representations and simultaneous events. These
are both regular features of continuous systems, and they
must be treated precisely in discrete approximations.

Consider a differential equation in the form

ẋ(t) = f (x(t), u(t)).

The trajectory x(t) describes the state of the system, and u(t)
is the input to the system. The system input can be vector
valued, if this is needed. This system can be described by
the two component model shown in Figure 1 (see (Zeigler,
Sarjoughian, and Praehofer 2000), (Zeigler, Praehofer, and
Kim 2000), and (Kofman 2004) for other descriptions of this
decomposition). Systems of equations can be modeled by
connecting several of these elementary blocks. For example,
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the system

v̇(t) = f (v(t), w(t))

ẇ(t) = g(w(t), v(t))

is described by the coupled system shown in Figure 2.

Figure 1: An Ordinary Differential Equation with State Vari-
able x(t) and Input u(t)

Figure 2: A Pair of Coupled Ordinary Differential Equations

There are two types of dynamic components shown in
Figures 1 and 2. These are differential functions (i.e., the
functions f and g) and integrators. Both types of components
can be described by atomic DEVS models.

2.1 Differential Functions

An atomic model of a differential function has one input for
each function argument. The state of the model includes
one state variable for each function argument, and one a
state variable that describes the next event time. This value
is set to zero when the model receives an input, and this
causes the system to immediately produces its new value as
output. Otherwise, the next output time is ∞ (i.e., nothing
has changed).

Formally, the input, output, and state set for the model
are

X = {1, 2, . . . , n} × R,

Y = R, and

S = R
n × {0, ∞}.

The value (i, vi) ∈ X represents a change to the function
argument xi . The state set consists of the last input value for
each function argument and the time advance. For brevity,
the symbol q̄ will be used to represent the model state
(x1, . . . , xn, σ ). Where it is convenient, x̄ will be used in
place of the state variables x1, x2, . . . , xn.

The initial state of the model has x̄ equal to the initial
values of its function arguments and σ equal to zero. An
input event to the model indicates that the value of one of

the function arguments has changed. This will cause the
model to update its state variables to reflect the new input
value. The model immediately outputs the new value of
the function. Absence of input indicates that the function
arguments have not changed, and so no output is needed.
This is formalized in the model output, time advance, and
state transition functions

ta(q̄) = σ,

λ(q̄) = f (x̄),

δint (q̄) = (x̄, ∞),

δext (q̄, e, xb) = (x̄′, 0) where{
x′
i = vi, if (i, vi) ∈ xb

x′
i = xi, otherwise

and

δcon(q̄, xb) = δext (q̄, σ, xb)

As an example, consider the single argument function
f(x(t)). The model for this function has two state variables;
x1 and σ . The atomic model that describes this function is
defined by

X = Y = R,

S = R × {0, ∞}
ta((x1, σ )) = σ,

δint ((x1, σ )) = (x1, ∞),

δext ((x1, σ ), e, x) = (x, 0),

δcon((x1, σ ), x) = δext ((x1, σ ), σ, x), and

λ((x1, σ )) = f (x1).

Because this is a single input/single output system, xb has
been replaced by x in the external and confluent transition
functions.

2.2 Single Point Discrete Event Integrators

A single point discrete event integrator uses the most recent
input (i.e, the most recent approximation of the derivative) to
approximate f(x(t)). The integrator is a single input, single
output system. Input events represent changes in the value
of the derivative (i.e., in f(x(t))). Output events give the
value of the integrated function (i.e., x(t)) when it changes
by a significant amount. More precisely, an output event
occurs whenever x(t) changes by the integration quantum
D.

The state set of a single point discrete event integrator
is given by

ql , the last output value of the integrator,
q, the current value of the integral,
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q̇, the last known value of the derivative, and
σ , the time until the next output event.

The integrator’s input and output events are real numbers.
The value of an input event is the derivative at the time of
the event. An output event gives the value of the integral
at the time of the output.

The discrete event integrator generates output events
when the integral of the input changes by D. More generally,
if �q is the desired change, [t0,T] is the interval in which
the change occurs, and f(x(t)) is the first derivative of the
system, then

T∫
0

f (x(t0 + t)) dt = F(T ) = �q. (1)

The function F(T) gives the exact change in x(t) over the
interval [t0,T]. Equation (1) is used in two ways. If F(T)
and �q are known, then the time advance of the discrete
event integrator is found by solving for T. If F(T) and T
are known, then the next state of the integrator is given
by q+F(T), where T is equal to the elapsed time (in the
external transition function) or time advance (in the internal
transition function).

A single point scheme approximates f(x(t)) with a piece-
wise constant function. At any particular time, the value of
the approximation is given by the state variable q̇. Using
q̇ in place of f (x(t0 + T )) in equation (1) gives

T∫
0

q̇ dt = q̇T .

When q̇ and T are known, then the function

F̂ (T , q̇) = q̇T (2)

approximates F(T). Because T must be positive (i.e., we are
simulating forward in time), the exact inverse of equation
(2) can not be used to compute the time advance. However,
the absolute value of the inverse,

F̂−1(�q, q̇) =
{

�q
|q̇| if q̇ �= 0

∞ otherwise
(3)

is suitable for this purpose.
The state transition, output, and time advance functions

of the single point discrete event integrator can be defined

in terms of equations (2) and (3). This gives

δint ((ql, q, q̇, σ )) =
(q + F̂ (σ, q̇), q + F̂ (σ, q̇), q̇, F̂−1(D, q̇)),

δext ((ql, q, q̇, σ ), e, x) =
(ql, q + F̂ (e, q̇), x, F̂−1(D − |q + F̂ (e, q̇) − ql |, x)),

δcon((ql, q, q̇, σ ), x) =
(q + F̂ (σ, q̇), q + F̂ (σ, q̇), x, F̂−1(D, x)),

λ((ql, q, q̇, σ )) = q + F̂ (σ, q̇), and

ta((ql, q, q̇, σ )) = σ.

With this definition, F̂ computes the next value of the integral
using the previous value, the approximation of f(x(t)) (i.e.,
q̇), and the time elapsed since the last state transition. The
time that will be needed for the integral to change by an
amount D is computing using F̂−1. The arguments to F̂−1

are the distance remaining (i.e., D minus the distance already
traveled) and the speed with which the distance is being
covered (i.e., the approximation of f(x(t))).

Some general properties of this single point scheme
are described in (Zeigler, Sarjoughian, and Praehofer 2000),
(Kofman 2004), and (Nutaro 2003). The definition of the
time advance function given here corresponds to the def-
inition used in (Kofman 2004) when the hysteresis is set
to D. The global error for this method is proportional to
D, and the method is exact when x(t) is a line (i.e., when
f(x(t)) is a constant).

2.3 Two Point Discrete Event Integration Schemes

If the function f(x(t)) in equation (1) is approximated using
the previous two values of the derivative, then the method
is called a two point scheme. Two point schemes require
the state variables

q, ql , and σ , just as before,
q̇1 and q̇0, the last two values of the derivative,
and, possibly,
h, the time interval between q̇1 and q̇0.

Two two point methods are considered here. The first
method approximates f(x(t)) in equation (1) with the line
connecting the points q̇1 and q̇0. The distance moved by
x(t) in the interval [h,h+T] can be approximated by

h+T∫
h

q̇1 − q̇0

h
+ q̇0 dt = q̇1 − q̇0

2h
T 2 + q̇1T = �q.
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The functions

F̂1(T , q̇1, q̇0, h) = q̇1 − q̇0

2h
T 2 + q̇1T , (4)

and

F̂−1
1 (�q, q̇1, q̇0, h) = �T, (5)

where �T is the smallest positive root of

| q̇1 − q̇0

2h
T 2 + q̇1T | = �q

and ∞ if such a root does not exist, can be used to define the
state transition, output, and time advance functions (which
will be done in a moment). Equations (4) and (5) are exact
when x(t) is a quadratic.

Another approximation to f(x(t)) can be obtained with
the piecewise constant function

aq̇1 + bq̇0, a + b = 1. (6)

If x(t) is the line mt + b, then f (x(t)) = m, (am +
bm) = (a + b)m = m, and so this approximation is exact.
Integrating equation (6) over the interval [0,T] gives the
approximating functions

F̂2(T , q̇1, q̇0) = (aq̇1 + bq̇0)T , and (7)

F̂−1
2 (�q, q̇1, q̇0) = �q

|aq̇1 + bq̇0| . (8)

This approximation does not require the state variable h.
This scheme is discussed in detail in (Nutaro 2003).

For brevity, let q̄ denote the state of the integrator, and
let d̄q denote the variables q̇1, q̇0 or q̇1, q̇0, h as needed.
Which is intended will be clear from the context in which it
is used. The time advance function for a two point schemes
is given by

ta(q̄) = σ,

and the output function is defined by

λ(q̄) = F̂ (σ, d̄q).

If equations (4) and (5) are used to define the integration
scheme, then the resulting state transition functions are

δint (q̄) = (q + F̂1(σ, d̄q), q + F̂1(σ, d̄q), q1, q1, σ,

F̂−1
1 (D, q̇1, q̇1, σ )),

δext (q̄, e, x) = (ql, q + F̂1(e, d̄q), x, q1, e,

F̂−1
1 (D − |q + F̂1(e, d̄q) − ql |, x, q̇1, e)), and

δcon(q̄, x) = (q + F̂1(σ, d̄q), q + F̂1(σ, d̄q), x, q1, σ,

F̂−1
1 (D, x, q̇1, σ )).

When equations (7) and (8) are used to define the
integrator, then the state transition functions are

δint (q̄) = (q + F̂2(σ, d̄q), q + F̂2(σ, d̄q), q1, q1,

F̂−1
2 (D, q̇1, q̇1)),

δext (q̄, e, x) = (ql, q + F̂2(e, d̄q), x, q1,

F̂−1
2 (|q + F̂2(e, d̄q) − ql | − D, x, q̇1)), and

δcon(q̄, x) = (q + F̂2(σ, d̄q), q + F̂2(σ, d̄q), x, q1,

F̂−1
2 (D, x, q̇1)).

The scheme that is constructed using equations (4) and
(5) is similar to the QSS2 method in (Kofman 2004), except
that the input and output trajectories used here are piecewise
constant rather than piecewise linear.

The scheme constructed from equations (7) and (8)
is nearly second order accurate when a and b are chosen
correctly. If we select a = 3

2 and b = − 1
2 , then the error

in the integral of 6 is

E = (f (x1) − 3f (x1)

2
+ f (x0)

2
)T +

1

2
T 2 d

dt
f (x1) +

∞∑
n=3

1

n!
d

dt

(n+1)

f (x1)T
n. (9)

To make this nearly second order accurate, we want the
terms that depend on T and T2 to be as small as possible.
Let h be the time separating x1 and x0 (i.e., x1 = x(t1)

and x0 = x(t0) and h = t1 − t0), and let α = T
h

, the ratio
of the current time advance to the previous time advance.
It follows that T = αh. The function d

dt
f (x1) can be

approximated by

d

dt
f (x1) ≈

f (x1) − f (x0)

h
. (10)

Substituting equation (10) into equation (9) and dropping
the high order error terms gives

E ≈ αh(
f (x1) − f (x0)

2
+ α

f (x0) − f (x1)

2
). (11)
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Equation (11) approaches zero as α approaches 1. It seems
reasonable to assume T and h become increasingly similar
as D is made smaller. From this assumption, it follows
that the low order error terms in equation (9) vanish as D
shrinks.

Figure 3 shows the absolute error in the computed so-
lution of ẋ = −x, x(0)=1 as a function of D. The simulation
was ended at t=1.0, and α and absolute error were recorded
at that time. Figure 4 shows α as a function of D, and the
plot clearly shows that α approaches 1 as D becomes small.
The absolute error is proportional to D2. This agrees nicely
with the hypothesis that, as α goes to unity, the low order
error terms in equation (9) to drop out.

The particular choices of a = 3
2 and b = − 1

2 are critical
for obtaining second order errors. To illustrate this, Figure
5 shows the error, as a function of D, for several possible
choices of a and b. Inserting these choices into equation
(11) clearly shows that the low order error terms remain
while h > 0. This is reflected in the Figure 5, where the
error is seen to be linear in D.
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It is worth noting that, when the time step is fixed,
equation (7), with a = 3

2 and b = − 1
2 , is the second order

Adams-Bashforth method (see, e.g., (Ralston and Rabi-
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Figure 5: Error as a Function of D for Different a and b

nowitz 1978)). The second order Adams-Bashforth scheme
is obtained by integrating the line connecting f (x(t1)) and
f (x(t0)) when t1 − t0 = h. The coefficients a = 3

2 and b =
− 1

2 emerge naturally from the integral when the integration
interval is [h,2h].

This approach to deriving higher order schemes is in-
teresting because it does not rely on finding the roots of a
polynomial. While it is, in principle, possible to create third
and even fourth order methods that rely on finding the roots
of a polynomial (see, e.g., (Kofman 2005a) and (Kofman
2005b)), this approach must fail for polynomials of degree
five. Moreover, the computational cost of the root finding
problem may out pace the savings from reduced quantum
sizes when higher order methods of this type are used. If,
instead, it is possible to construct third, fourth, or even
higher order schemes that are similar to equations (7) and
(8), then the root finding problem can be entirely avoided.

2.4 General Multi-point Schemes

The one and two point schemes can be easily generalized
to describe methods that use an arbitrary number of past
derivative values. The critical element of these schemes are
the approximations F̂ and F̂−1. The function F̂ describes
how the state variables q and ql evolve through time. The
function F̂−1 predicts how long the system, evolving as
described by F̂ and assuming no change in the derivative,
will need to move a particular distance. The fact that time
must move forward prevents F̂−1 from being a true inverse
of F̂ . Instead, F̂ and F̂−1 must satisfy the somewhat weaker
relationship

F̂ (F̂−1(�q, d̄q), d̄q) = �q sgn(F̂ (F̂−1(�q, d̄q)), d̄q),

where

sgn(x) =

⎧⎪⎨
⎪⎩

1 if x > 0

−1 if x < 0

0 if x = 0

.
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It can be readily verified that equations (2) and (3), (4) and
(5), and (7) and (8) satisfy this relationship.

Errors produced by integration scheme in this form can
be seen from two different points of view. On the one hand,
there is the error in the state of the computed system at a
particular time. This point of view is shown in Figure 3.
Classical methods in error analysis prefer this viewpoint,
and it amounts to asking how well F̂ satisfies 1 when T is
known.

The second point of view focuses on how well F̂−1

predicts when the system will travel a given distance. More
formally, we ask how well F̂−1 predicts a T to satisfy
equation (1) when �q is fixed. From this vantage point,
there is an error in the time at which the computed system
enters a particular state. Figure 6 shows the absolute value
of the difference between the computed and actual times at
which the solution to ẋ = −x, x(0) = 1, is closest to e−1.
The calculation was performed using equations (7) and (8).
The general shape of the curve is a quadratic in D, just as
in Figure 3.
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Figure 6: Error in the Computed Time to State e−1 as a
Function of D.

3 CONCLUSIONS

The functions F̂ and F̂−1 are the essential elements of this
form for discrete event integrators. Here, too, is the dif-
ficulty in analyzing discrete event integration schemes. F̂

can be constructed by integrating interpolating polynomi-
als, truncating Taylor series, or any number of well known
methods (an excellent introduction can be found in (Ral-
ston and Rabinowitz 1978)). The construction of F̂−1 has
not been studied extensively, and its interaction with the
approximation F to produce truncation and global errors is
not, in general, well understood.

The form presented here is restricted to schemes that
have piecewise constant input/output trajectories, rely only
on first derivatives, and use a fixed integration quantum
size. Schemes using higher order derivatives are suggested,
but not fully developed, in (Kofman 2003). A method

using piecewise polynomial input and output trajectories is
described in (Kofman 2004) and (Wainer and Giambiasi
2005). An adaptive quantization scheme is presented in
(Bolduc and Vangheluwe 2003).

In spite of the restrictions on the form presented in
this paper, it is hoped that the explicit exposition of form
will elicit broader interest in discrete event numerical meth-
ods. The identification of the functions F̂ , F̂−1, and their
relationship as critical unknowns should help to focus re-
search efforts, and to promote discourse between researchers
working with discrete event systems and those working with
classical numerical methods.
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