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Abstract - This paper deals with the design of an efficient 
object n7odelforpropaga1ion phenomena. I f  is applied to 
the phenomenological model developed at the University 
ofCorsica, within the context of simtrlation of vegetation 
fives. Tl7e objective is to simulate largescale f ire 
propagation. and on the longer term f a  develop a 
decision aid tool to guide forest firemen and managers. 
Based on both cellular automata and discrete Event 
Specification (DEVS) formalisms, a new kind of model, 
called Active-DEVS, is specjfied. Modeling methods 
based on enhanced cellular automata facilitate both 
spatial dynamic expression of propagation phenomena, 
and parallel architectures exploitation. However, such 
environments usually lock the ability to integrate easy 
compoitenr modifications. The DE VSfirmalism makes it 
possible to exploit the cellular models efficiently 
whatever their dimensions, and to reduce simulation 
times considerably. A simulation framework is developed 
to implement and compare Active-DEVS model and 
classical Discrete Time System Specification (DTSS) 
models. ?his frammork relies on designs pattems, and 
thus keeps a modular, elegant and adaptable design. 

Keywords: Fire spread simulation, DEVS formalism, design 
patterns, object oriented programming. 

1 Introduction 
This paper describes Active-DEVS an efficient model 

for large-scale propagation phenomena. The reliability of 
this approach is shown by simulating an original fire 
spreading model, designed at the University of Corsica, 
which is based on physical specifications [l]. The 
implementation of active-DEVS models uses a combination 
of recent modeling and discrete event techniques [2]. The 
execution time is reduced by limiting computations to 
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active components, which is then independent of the 
domain size. Based on a formal specification, the structure 
of the model avoids modeling ambiguities and reduces the 
testing phase. This approach is intended in longer term to 
be integrated in a software tool to aid decisionmaking for 
firemen and fire managers. Exploring a complex 
phenomenon through simulation necessitates a constant 
modification ofthe software architecture as scientists learn 
more about the phenomenon. Designing a reusable, 
extensible, and adaptable architecture is a difficult task and 
design patterns can be used to help achieving this goal [3, 
41. During the development of the simulation famework, 
profiles of classes and collaborations of objects are used 
in order to have a modular, elegant and adaptable design. 
The architecture is presented hereafter and constitutes 
with the Active-DEVS model the main contribution of this 
communication. ?he framework developed aims at 
structuring reliable simulation systems by allowing 
optimized simulation models to be composed in a flexible 
manner. As example, a comparison between the efficiency 
of the Active-DEW model of simulation and traditional 
DTSS model for propagation phenomena is carried out. 

The first section is devoted to the presentation of the 
phenomenological model of propagation used. The second 
section deals with discrete time computing of modeling 
and propagation simulation of fire vegetation. The third 
section underlines the advantages of apprehending 
simulation using an approach based on discrete events. 
The fourth section is dedicated to the presentation of the 
extensible objectariented framework for simulating fire 
propagation in a virtual laboratory. The abstract factory 
pattern can be used to build an extensible object oriented 
framework for simulation experiments. We overcome the 
limitation of inheritance, when trying to flexibly compose 
simulation components. I t  makes it possible thereafter to 
compare Active-DEVS model, with the discrete time model. 
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The comparison is carried out in  a fifth section. The results 
obtained are then commented. Finally, the last section 
concludes on the approach considered and presents the 
future research prospects. 

2 The physical model of propagation 
Developing an effective fire spread model remains a 

challenge for research. To improve the decision aid ability 
of current fire spread models, physical models are 
currently used. The physical model we use [ I ]  has been 
validated against numerous experiments [ I ,  8, 9, 10, and 
121. The data used in the model comes from real 
experiments (evolution of a front of flame in a domain of 1 
m’ of pine needles, without slope, nor wind). The model 
will he tested this year after having experimented fires in 
much large areas. For that, we will suppose that the 
physical mechanisms describing the propagation, 
identified and modeled on laboratory -scale, remain valid at 
the scale of the domain. A preliminary numerical study 
makes it possible to solve the model using the explicit 
method of finite differences, leading to a system of 
differential equations. The domain of propagation is then 
subdivided in elementary components which constitute 
the ground and the plants, each one being described by 
the following algebraic equation (I) 

where Tij represent the temperature of a node of the grid. 
The coefficients a, h, c and d depend on the time step and 
the space step considered. The parameters of the model 
are given starting from experimental statements of 
temperature obtained according to time. The cellular 
division of space generates problems in extreme cases. In 
order to solve them a fixed value is given to edge cells [SI. 
The numerical results were compared with experimental 
data from various ignitions and the quality of the 
predictions is remarkable [I]. 

Figure 1. The simulation of the propagation of vegetation 
fire across a heterogeneous medium. 

However, the precision of these models makes them 
difficult to be simulated under real-time constraints. 

Moreover, fire spread complexity requires progressively 
refined model specifications according to the simulation 
results. The corresponding simulation code has to he 
modified easily to reduce both implementation and testing 
phases. Nevertheless, the corresponding simulation code 
lacked in: (1) easy integration of model modifications as 
research advances (new ground vegetation, influence of 
both slope and wind, etc.), ( 2 )  meeting real-time deadlines 
and (3) optimally exploiting the inherent parallelism of 
cellular models [6].  Hence, an object-oriented framework is 
developed to get round these difficulties. It integrates 
simulation components which are designed in order to 
support the evolutionary nature of their stucture and their 
behavior. I t  is presented hereafter and constitutes with the 
ActiveDEVS model, one of the main contributions of this 
article. An example of fire spread simulation obtained 
using an Active-DEVS model is provided in figure I .  

3 Discrete time fire simulation 
Discrete time models based on space oriented 

approaches are often most intuitive to represent the 
dynamic systems [7]. They are formalized using algorithms 
which specify a stepwise execution of the simulation. At 
an instant ‘t’, the model is in a particular state S and 
defines how its state variables will change. The next state 
depends often on the current state S, hut it also depends 
on the influence of its environment. The computational 
domain is cut into regular cells and each one is associated 
to a behavior. Each cellular element is influenced by the 
cells of its neighborhood. At each time step, all the 
elements of the domain are scanned, and the state of each 
cell at ‘t+l’ time step, depends on the state ofeach cells of 
its neighborhood at the time ‘1’ step. The system is type of 
cellular automata network. 

3.1 Discrete Time System Specification 
A discrete time system is a structure (2) : 

DTSS = (X, Y, Q, 6, A, h) 
where, 

X , is the set of input ports, 
Y , is the set of output ports, 
Q , is the set of states 

6 , is the state transition function, 
a , is the output function, 
h ,  is the simulation step. 

DTSS modeling of fire propagation 3.2 
The structure of the DTSS model of propagation is 

inspired by cellular automata, which is described like a 
multicomponent [2]. It has an input port and an output 
port. The input port generates the execution of the 

1858 



phenomenon and the results of the simulation are 
observed on the output port. The associated simulator 
must scan the components which model the domain of 
propagation, in order to update their individual states. 
This operation results from the execution of the individual 
functions of transition. Moreover, it must apply the 
individual functions of output, which define together the 
output of the multicomponent system. This latter has a 
global function of state transition 6 and a global function 
of output A . It is composed of cellular elements C,, , each 
of them implementing respectively, the local transition 
function s,,, and the local output function a,,, . The 

behavior of the model is described according tothe DTSS 
fomialism as depicted in the algorithm 1. 

1 :  

,main) 
CI,, //Cellular components lpropayatioi 

I<,, //set influencing the component Cl,, 
t,,,, //Simulation Virtual time 
//Domain ignition at t=O 
For all C,,, of  the domain Do 

If not Border Element Then 
//-->recover to of influencing cell: 
UpdateNeighb(I,,j) //Neighborhood upd. 

C,,,->S It,,,,) ; //ti,, Transition func 
Cs,,->A (I,,,] ; / /  output Of cx,, 

End If 
Enf For 

t,,,,= tnext+ h 
Id Global T r a n s i t i o n  Function 
. .  
Ci,, //Cellular components of the domain 
nexrT //Temperature of the i, j comp. at ttk 

//-->Domain update by racking T’nent 
For All Ci,, of the domain DO 

//-->Get TO f o r  tih 
nextT= ti,] ->  getNextTemperature I 1  ; 
//-->Temperature update 
ti,, -> setTemperature I n e x t T )  ; 

End F o r  
nd Global Ovtput Funct ion  

Algorithm I .  DTSS model specification for simulating 
propagation of vegetation fire. 

3.3 General algorithm of DTSS simulation 
The specification of a discrete time model requires 

the definition of transition rules. From these rules, the 
model in a current state Q, carries out the events which 
come from its environment through its input ports, and 
determines its future state. The state of the model evolves 
in a discrete way on a temporal basis where time 
increments by constant step of times h, which are multiple 
periods of time like second, hour or year. If ‘q’is the state 
of the model at time ‘t’ and ‘2 an input at time ‘l’, then the 

state ofthe model at time ‘t+h’is given by 8(q,x)and the 

output ‘y’ at time ‘1’ is given by A(q) .  Here, 6 and 

represent respectively the state and output transition 
function of the discrete time model, specified before. 

I 

Figure 2. UML sequence diagram of the discrete time 
simulation for simulating the propagation of vegetation 

fm. 

The global simulator is a tree stmcture of control; it forms 
the tree of the simulation. This tree is responsible for the 
exploitation of the model attached. The leaves of this tree 
constitute the processors, i.e. the simulators specific to the 
different components of the model. Simulation is carried 
out here, thanks to the use of processors like the DTSS 
coordinators and the DTSS simulators. 

When the simulator receives a ‘* message’, all the 
ouput values of the components are calculated, and the 
general ouput of the system i s  calculated by the parent 
coordinator, following the reception of a ’y message’. The 
reception of a ‘x message’ by the simulator, involves the 
computation of the new states, as well as the storage of 
the elementary states ‘q’a’. For that the elementary 
transition functions 6, of each component are requested. 
The current simulation time is then increased to one unit 
and the state variables of the different components are 
updated, from the values stored in the temporary state 
variables. The simulation algorithm is depicted m figure 2, 
for a more precise description please refer to [Z]. 
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The DTSS Coordinator associated to the DTSS 
simulator has the role of initiating the stepwise execution 
of the whole simulation cycles, I t  achieves this task while 
sending '*messages', then 'x messages' to the 
subordinate simulator at each time step. 

4 Discrete events fire simulation 
This model schedules events on a restricted set of 

cells (components). At each time step, a list of active cells 
is defined. It results from the application of the rule 
answering to the criterion stated by Zeigler [Z]: <( A cell 
will not change state at the next state transition time, if 
none of its neighboring cells changed state at the current 
state transition time. The event-based simulation 
procedure follows from this logic ... b. Then the list is 
updated by seeking the cells that will change state at the 
next time step. The computations are thus reduced to a 
handful of active cells. 

4.1 Active-DEVS System Specification 
To reduce execution time, the simulation relies on 

discrete events techniques. The latter is applied to each 
individual component of the model, which define the 
Active-DEVS system structure (3) : 

Active- DEVS = (X, Y ,  S, 6,, , Si,, ,tu, A, D)  (3) 
where, 

X, is the set of input ports, 
Y, is the set of output ports, 
S, is the set o f  states which characterizes the Active- 

DEVS model, 
6,, , is the external transition function, which 

specifies the behavior of theActivcDEVSmode1, when an 
external event occurs; 

Si,, , is the internal transition function, which 

specifies the new state o f  the Active-DEVS model, after 
the time ta() has elapsed; 

la , is the time advance function, which schedules 
internal transitions; 

A , is the output function, which is carried out 
before the internal transition function and generates the 
response of the ActiveDEVSmodel; 

D ,  is the list of the behavioral elementary 
components of the Active-DEVS model. 

The dynamic interpretation o f  the behavior of the Active- 
DEVS model is related to the atomic DEVS models 
described in [ 111. Fulthermore, the whole methodology 
allows sevcral ActiveDEVS models to be simulated in 
parallel. Their synchronizations can be simply managed 
thanks to the time advance function ta(). Thus, Active- 
DEVS models represent the complex behavior of a part of 

the domain, described structurally on the hasis of a 
structure inspired from the cellular automata, and restrict 
computations to the active cellular elements. 

4.2 Active-DEVS modeling of fne 
propagation 

An Active-DEVS model provides a global description 
of the dynamic behavior of the different components 
which represents the simulation domain. It has an input 
port and an output put, through which it interacts with the 
external environment of the system. Its working is close to 
the working of the atomic components which are described 
by the DEVS formalism; also, it allows the deployment of 
chains of discrete events simulations and facilitates the 
parallel simulations of several propagation domains [E]. 
When an external event occurs on the input port of an 
ActiveDEVS model, this latter reacts within the external 
transition function state s,, which implements the 
response of the model. This response occurs following 
internal events which result to the execution ofthe internal 
transition function state J,,, . The behavior of the model is 

translated according to the ActiveDEVS specification as 
depicted in the algorithm 2. 

6, : 

/ /  Model activation (if in passive mode) 
If phase = passive Then 

phase t active 
s t 1  
t,,,, t,.,, 

e t 0  
= t,,,, + ta [ )  

E l s e  

End i f  
Display e Synchronisation error ! s 

End Ex te rna l  T r a n s i t i o n  Funct ion 

'in, : 

SetOfActiveCells 
nextT I /  temp. of the component i, j at ttl 
C,,, / /  Cellular component of. domain 
I k  / /  Set influencing Ci,, 

I /  If the model is active. it evolves 
If phase s active Then 

For  A l l  Cl,, of SetOfActiveCells DO 

and Ci,,->1nPr~nt=tr~e 

C1,,.->InFrant False 
For A l l  I, of Cs,, 

If ~,,,->9etTempe~at~1e()> 'I' Ambient 

Then 

If no t  bo rde r  component 
and no t  active Then 
Ik a active n 
I> a front component n 
SetOfActiveCells -> add(1,)  

End If 



End For 
End If 

End For 
For All C,,, i n  SetOfActiveCellS Do 

I f  CL,, is active 
Then 

//-->Get T‘ at t+h 
nexttC,,,->setNextTemperature ( )  : 
//-->Update temperature 
C>,,->setTemperature (nextT) i 

End If 
End For 
phase  << p a s s i v e  n 
s c 1  
e f 0  
t,, t t,.,, + ta ( )  

Display << Synchronisation Error ! s 
E l s e  

End If 
Ind I n t e r n a l  T r a n s i t i o n  Func t ion  

i :  
Send a ‘(y,t)-message‘ t o  t h e  parent 

imulator 
nd Output Funct ion  

a o  : 
Send h 

,nd Advance T i m e  Funct ion 

Algorithm 2. Active-DEVS model specification for the 
simulation of vegetation fire propagation. 

The ActiveDEVS model uses a list which references 
the cells of the fire front. I t  describes two levels of 
abstraction. At the highest level, it represents the overall 
fire propagation, within the domain. At the lower level, it 
describes the local propagation phenomena. Computation 
is restricted to a handle of components called ‘active 
components’. Each component is clearly identified in the 
propagation domain, and their management is based on 
the list of references. The simulation ofthe front tire, then, 
is carried out with the help of iterators, which move along 
the list. This can he implemented with the C+t STL 
(Standard Template Library). 

4.3 General algorithm of Active-DEVS 
simulation 

The Active-DEVS model allows the restriction of 
scans only to the cellular components which are 
programmed by the next event. The list of the active 
components reference front cells at an instant ‘t’, in order 
to apply the transition rules which permit to update the 
propagation domain. All the specified actions are deduced 
from the virtual time ‘1’ and are executed simultaneously at 
virtual time ‘t+l’. The global simulation algorithm is 
schematized figure 3. At each time step, each front 
component is tested in order to update the list of active 
elements. An addition, it is always preceded by the 

activation of the property frontcell of the domain 
components, in order to avoid the double references. The 
additions are done at the end of the list, in order to not 
disturb the loop that it is initiated on this latter. 

Figure 3. UML sequence diagram of the discrete event 
simulation of a vegetation fire propagation. 

5 The simulation framework 
Vimal laboratories for fire simulation experiments are 

built using an extensible object-oriented framework. 
Profiles of classes and collaborations of objects of the 
simulation framework have been considered lo provide a 
modular, elegant and adaptable design. The framewrk 
aims at structuring reliable simulation systems by allowing 
optimized simulation models to be composed in a flexible 
manner. In fact, the capacity to adapt the architecture to 
the different physical models implies to take into account 
the possible evolution of coordinators, simulators and 
models. In our case, using a model implies hoththe use of 
a coordinator anda simulator. Coordinators and simulators 
must be created differently according to the specified 
model. It is thus necessary to be able to build the same 
tree structure, but on the basis of different 
implementations. The issue here is to make possible forthe 
root coordinator to choose a model, a coordinator and a 
simulator, then to build the object architecture of the 
simulation, using a simple interface. A possible solution 
relies on the abstract factory patterns, which is used to get 
round the limitations of inheritance as far as the complexity 
of programming. The structure obtained facilitates the 
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creation of the simulation models, as well as their related 
simulators and coordinators [3]. The prototype is written 
in C+k, and is fully operational for large-scale experiments. 
The interfaces are developed using the factory pattern, 
instanciations of related models and processors are 
submitted to sub-classes. Three hierarchies of parallel 

classes are inter-connected: Model class, Simulator class 
and Coordinator class, as described in figure4. 

I 

Coordinator - 
I 1  
I t  

I 
I 1 

Ac-DEVSCwrdlnator I DTSSCoordinalor I r---- 
I ,  
I .  

I I  
l l  
I 1  

I 

I 
Simulator I 

. .  
I I  
I I  

I 
I 
I 
I 

I 
Q 

Figure 4. The abstract factory pattern in the simulation framework. 

The architecture is independent from the way of creating, 
composing and representing, the models, the simulators 
and the coordinators. The root coordinator builds the 
sitnulation tree using as starting point the different families 
of models and algorithms available. A library of simulation 
tools is then made up. The parent root coordinator does 
not know the implementation classes of the families of 
models and processors (simulators and coordinators). The 
permutation between the latter becomes simple, and the 
consistency inside the models md of the processors is 
reinforced. In that case, during the addition or the 
modification ofthe simulation encapsulated tools, only the 
SimFactory objects are modified. 

6 Experimentation 
Discrete time simulation is not effective in the case of 

large-scale simulations of fire spreading. Indeed, the 
simulation times obtained are higher than those obtained 
using the discrete events model. Moreover, the increase of 
the size of the simulation domains corroborates this report. 
The Active-DEVS model developed guarantees the best 
possible simulation times, limiting computations to the 
active components ofthe simulation. Validations of future 
large-scale experiments will start from this point. 
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Figure 5. Comparison of execution times for a real 
propagation lasting 1000 seconds. 

7 Conclusion 
In this document, the ActiveDEVS model inspired 

from the DEVS formalism is presented. I t  simplifies the 
modeling of propagation phenomena. Its efficiency is 
compared to the traditional discrete time model, which it is 
described by the DTSS formalism. The Active-DEVS model 
is much more efficient than the classical DTSS model, 
however its performance is not yet good enough for a real 
time use, but we are currently working on performance 
evaluations and code optimization [12]. The object 
oriented framework we proposed provides the basic 
components for the construction of discrete event cellular 
simulations. It is designed to be flexible, extensible and it 
integrates the Active-DEVS and DTSS models. It  is 
adapted to the issue of our work, has a weak coupling and 
a strong global cohesion, and it also helps in developing 
new model specifications. The framework is designed to 
ease programmers in building reliable simulation systems 
and is based on design patterns as architecture elements 
in addition to basic classes. With this framework the 
simulation system is composed of processors and 
propagation models, and we have the ability to designate 
each component and to experiment for various 
specifications. Moreover, the discrete techniques of 
simulation confer reduced simulation times, compared to 
the traditional propagation models [IO]. We plan now to 
improve the framework’s capabilities and to model new 
physical experiments. This will be achieved using the 
Active-DEVS model and its supporting framework as a 
foundation for a parallel and distributed simulation 
environment, which is currently under development [SI. 
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