
2004 IEEE International Conference on Systems, Man and Cybernetics

Active-DEVS: a computational model for the simulation
of forest fire propagation*

Eric Innocenti
Alexandre Muzy
Antoine AieUo

Jean-Franqois Santucci
SPE - UMR CNRS 6134
Pascal Paoli University

Campus GrossettiBP 52,20250
Corti, France

e-mail : inoauniv-corse.fr

Abstract - This paper deals with the design of an efficient
object n7odelforpropaga1ion phenomena. I f is applied to
the phenomenological model developed at the University
ofCorsica, within the context of simtrlation of vegetation
fives. Tl7e objective is to simulate largescale f ire
propagation. and on the longer term f a develop a
decision aid tool to guide forest firemen and managers.
Based on both cellular automata and discrete Event
Specification (DEVS) formalisms, a new kind of model,
called Active-DEVS, is specjfied. Modeling methods
based on enhanced cellular automata facilitate both
spatial dynamic expression of propagation phenomena,
and parallel architectures exploitation. However, such
environments usually lock the ability to integrate easy
compoitenr modifications. The DE VSfirmalism makes it
possible to exploit the cellular models efficiently
whatever their dimensions, and to reduce simulation
times considerably. A simulation framework is developed
to implement and compare Active-DEVS model and
classical Discrete Time System Specification (DTSS)
models. ?his frammork relies on designs pattems, and
thus keeps a modular, elegant and adaptable design.

Keywords: Fire spread simulation, DEVS formalism, design
patterns, object oriented programming.

1 Introduction
This paper describes Active-DEVS an efficient model

for large-scale propagation phenomena. The reliability of
this approach is shown by simulating an original fire
spreading model, designed at the University of Corsica,
which is based on physical specifications [l]. The
implementation of active-DEVS models uses a combination
of recent modeling and discrete event techniques [2]. The
execution time is reduced by limiting computations to

* 0-7803-8566-71041S20.00 0 2004 EEE

David RC. HILL
ISIMNLIMOS UMR CNRS 6158

Blaise Pascal University
Campus des Cezeaux BP 10125,63177

Aubiire Cedex, France
email : drch@isima.fr

active components, which is then independent of the
domain size. Based on a formal specification, the structure
of the model avoids modeling ambiguities and reduces the
testing phase. This approach is intended in longer term to
be integrated in a software tool to aid decisionmaking for
firemen and fire managers. Exploring a complex
phenomenon through simulation necessitates a constant
modification ofthe software architecture as scientists learn
more about the phenomenon. Designing a reusable,
extensible, and adaptable architecture is a difficult task and
design patterns can be used to help achieving this goal [3,
41. During the development of the simulation famework,
profiles of classes and collaborations of objects are used
in order to have a modular, elegant and adaptable design.
The architecture is presented hereafter and constitutes
with the Active-DEVS model the main contribution of this
communication. ?he framework developed aims at
structuring reliable simulation systems by allowing
optimized simulation models to be composed in a flexible
manner. As example, a comparison between the efficiency
of the Active-DEW model of simulation and traditional
DTSS model for propagation phenomena is carried out.

The first section is devoted to the presentation of the
phenomenological model of propagation used. The second
section deals with discrete time computing of modeling
and propagation simulation of fire vegetation. The third
section underlines the advantages of apprehending
simulation using an approach based on discrete events.
The fourth section is dedicated to the presentation of the
extensible objectariented framework for simulating fire
propagation in a virtual laboratory. The abstract factory
pattern can be used to build an extensible object oriented
framework for simulation experiments. We overcome the
limitation of inheritance, when trying to flexibly compose
simulation components. I t makes it possible thereafter to
compare Active-DEVS model, with the discrete time model.

1057

http://inoauniv-corse.fr
mailto:drch@isima.fr

The comparison is carried out in a fifth section. The results
obtained are then commented. Finally, the last section
concludes on the approach considered and presents the
future research prospects.

2 The physical model of propagation
Developing an effective fire spread model remains a

challenge for research. To improve the decision aid ability
of current fire spread models, physical models are
currently used. The physical model we use [I] has been
validated against numerous experiments [I , 8, 9, 10, and
121. The data used in the model comes from real
experiments (evolution of a front of flame in a domain of 1
m’ of pine needles, without slope, nor wind). The model
will he tested this year after having experimented fires in
much large areas. For that, we will suppose that the
physical mechanisms describing the propagation,
identified and modeled on laboratory -scale, remain valid at
the scale of the domain. A preliminary numerical study
makes it possible to solve the model using the explicit
method of finite differences, leading to a system of
differential equations. The domain of propagation is then
subdivided in elementary components which constitute
the ground and the plants, each one being described by
the following algebraic equation (I)

where Tij represent the temperature of a node of the grid.
The coefficients a, h, c and d depend on the time step and
the space step considered. The parameters of the model
are given starting from experimental statements of
temperature obtained according to time. The cellular
division of space generates problems in extreme cases. In
order to solve them a fixed value is given to edge cells [SI.
The numerical results were compared with experimental
data from various ignitions and the quality of the
predictions is remarkable [I].

Figure 1. The simulation of the propagation of vegetation
fire across a heterogeneous medium.

However, the precision of these models makes them
difficult to be simulated under real-time constraints.

Moreover, fire spread complexity requires progressively
refined model specifications according to the simulation
results. The corresponding simulation code has to he
modified easily to reduce both implementation and testing
phases. Nevertheless, the corresponding simulation code
lacked in: (1) easy integration of model modifications as
research advances (new ground vegetation, influence of
both slope and wind, etc.), (2) meeting real-time deadlines
and (3) optimally exploiting the inherent parallelism of
cellular models [6]. Hence, an object-oriented framework is
developed to get round these difficulties. It integrates
simulation components which are designed in order to
support the evolutionary nature of their stucture and their
behavior. I t is presented hereafter and constitutes with the
ActiveDEVS model, one of the main contributions of this
article. An example of fire spread simulation obtained
using an Active-DEVS model is provided in figure I .

3 Discrete time fire simulation
Discrete time models based on space oriented

approaches are often most intuitive to represent the
dynamic systems [7]. They are formalized using algorithms
which specify a stepwise execution of the simulation. At
an instant ‘t’, the model is in a particular state S and
defines how its state variables will change. The next state
depends often on the current state S, hut it also depends
on the influence of its environment. The computational
domain is cut into regular cells and each one is associated
to a behavior. Each cellular element is influenced by the
cells of its neighborhood. At each time step, all the
elements of the domain are scanned, and the state of each
cell at ‘t+l’ time step, depends on the state ofeach cells of
its neighborhood at the time ‘1’ step. The system is type of
cellular automata network.

3.1 Discrete Time System Specification
A discrete time system is a structure (2) :

DTSS = (X, Y, Q, 6, A, h)
where,

X , is the set of input ports,
Y , is the set of output ports,
Q , is the set of states

6 , is the state transition function,
a , is the output function,
h , is the simulation step.

DTSS modeling of fire propagation 3.2
The structure of the DTSS model of propagation is

inspired by cellular automata, which is described like a
multicomponent [2]. It has an input port and an output
port. The input port generates the execution of the

1858

phenomenon and the results of the simulation are
observed on the output port. The associated simulator
must scan the components which model the domain of
propagation, in order to update their individual states.
This operation results from the execution of the individual
functions of transition. Moreover, it must apply the
individual functions of output, which define together the
output of the multicomponent system. This latter has a
global function of state transition 6 and a global function
of output A . It is composed of cellular elements C,, , each
of them implementing respectively, the local transition
function s,,, and the local output function a,,, . The

behavior of the model is described according tothe DTSS
fomialism as depicted in the algorithm 1.

1 :

,main)
CI,, //Cellular components lpropayatioi

I<,, //set influencing the component Cl,,
t,,,, //Simulation Virtual time
//Domain ignition at t=O
For all C,,, of the domain Do

If not Border Element Then
//-->recover to of influencing cell:
UpdateNeighb(I,,j) //Neighborhood upd.

C,,,->S It,,,,) ; //ti,, Transition func
Cs,,->A (I,,,] ; / / output Of cx,,

End If
Enf For

t,,,,= tnext+ h
Id Global T r a n s i t i o n Function
. .
Ci,, //Cellular components of the domain
nexrT //Temperature of the i, j comp. at ttk

//-->Domain update by racking T’nent
For All Ci,, of the domain DO

//-->Get TO f o r tih
nextT= ti,] -> getNextTemperature I 1 ;
//-->Temperature update
ti,, -> setTemperature I n e x t T) ;

End F o r
nd Global Ovtput Funct ion

Algorithm I . DTSS model specification for simulating
propagation of vegetation fire.

3.3 General algorithm of DTSS simulation
The specification of a discrete time model requires

the definition of transition rules. From these rules, the
model in a current state Q, carries out the events which
come from its environment through its input ports, and
determines its future state. The state of the model evolves
in a discrete way on a temporal basis where time
increments by constant step of times h, which are multiple
periods of time like second, hour or year. If ‘q’is the state
of the model at time ‘t’ and ‘2 an input at time ‘l’, then the

state ofthe model at time ‘t+h’is given by 8(q,x)and the

output ‘y’ at time ‘1’ is given by A(q) . Here, 6 and

represent respectively the state and output transition
function of the discrete time model, specified before.

I

Figure 2. UML sequence diagram of the discrete time
simulation for simulating the propagation of vegetation

fm.

The global simulator is a tree stmcture of control; it forms
the tree of the simulation. This tree is responsible for the
exploitation of the model attached. The leaves of this tree
constitute the processors, i.e. the simulators specific to the
different components of the model. Simulation is carried
out here, thanks to the use of processors like the DTSS
coordinators and the DTSS simulators.

When the simulator receives a ‘* message’, all the
ouput values of the components are calculated, and the
general ouput of the system i s calculated by the parent
coordinator, following the reception of a ’y message’. The
reception of a ‘x message’ by the simulator, involves the
computation of the new states, as well as the storage of
the elementary states ‘q’a’. For that the elementary
transition functions 6, of each component are requested.
The current simulation time is then increased to one unit
and the state variables of the different components are
updated, from the values stored in the temporary state
variables. The simulation algorithm is depicted m figure 2,
for a more precise description please refer to [Z].

1859

The DTSS Coordinator associated to the DTSS
simulator has the role of initiating the stepwise execution
of the whole simulation cycles, I t achieves this task while
sending '*messages', then 'x messages' to the
subordinate simulator at each time step.

4 Discrete events fire simulation
This model schedules events on a restricted set of

cells (components). At each time step, a list of active cells
is defined. It results from the application of the rule
answering to the criterion stated by Zeigler [Z]: <(A cell
will not change state at the next state transition time, if
none of its neighboring cells changed state at the current
state transition time. The event-based simulation
procedure follows from this logic ... b. Then the list is
updated by seeking the cells that will change state at the
next time step. The computations are thus reduced to a
handful of active cells.

4.1 Active-DEVS System Specification
To reduce execution time, the simulation relies on

discrete events techniques. The latter is applied to each
individual component of the model, which define the
Active-DEVS system structure (3) :

Active- DEVS = (X, Y , S, 6,, , Si,, ,tu, A, D) (3)
where,

X, is the set of input ports,
Y, is the set of output ports,
S, is the set o f states which characterizes the Active-

DEVS model,
6,, , is the external transition function, which

specifies the behavior of theActivcDEVSmode1, when an
external event occurs;

Si,, , is the internal transition function, which

specifies the new state o f the Active-DEVS model, after
the time ta() has elapsed;

la , is the time advance function, which schedules
internal transitions;

A , is the output function, which is carried out
before the internal transition function and generates the
response of the ActiveDEVSmodel;

D , is the list of the behavioral elementary
components of the Active-DEVS model.

The dynamic interpretation o f the behavior of the Active-
DEVS model is related to the atomic DEVS models
described in [111. Fulthermore, the whole methodology
allows sevcral ActiveDEVS models to be simulated in
parallel. Their synchronizations can be simply managed
thanks to the time advance function ta(). Thus, Active-
DEVS models represent the complex behavior of a part of

the domain, described structurally on the hasis of a
structure inspired from the cellular automata, and restrict
computations to the active cellular elements.

4.2 Active-DEVS modeling of fne
propagation

An Active-DEVS model provides a global description
of the dynamic behavior of the different components
which represents the simulation domain. It has an input
port and an output put, through which it interacts with the
external environment of the system. Its working is close to
the working of the atomic components which are described
by the DEVS formalism; also, it allows the deployment of
chains of discrete events simulations and facilitates the
parallel simulations of several propagation domains [E].
When an external event occurs on the input port of an
ActiveDEVS model, this latter reacts within the external
transition function state s,, which implements the
response of the model. This response occurs following
internal events which result to the execution ofthe internal
transition function state J,,, . The behavior of the model is

translated according to the ActiveDEVS specification as
depicted in the algorithm 2.

6, :

/ / Model activation (if in passive mode)
If phase = passive Then

phase t active
s t 1
t,,,, t,.,,

e t 0
= t,,,, + ta [)

E l s e

End i f
Display e Synchronisation error ! s

End Ex te rna l T r a n s i t i o n Funct ion

'in, :

SetOfActiveCells
nextT I / temp. of the component i, j at ttl
C,,, / / Cellular component of. domain
I k / / Set influencing Ci,,

I / If the model is active. it evolves
If phase s active Then

For A l l Cl,, of SetOfActiveCells DO

and Ci,,->1nPr~nt=tr~e

C1,,.->InFrant False
For A l l I, of Cs,,

If ~,,,->9etTempe~at~1e()> 'I' Ambient

Then

If no t bo rde r component
and no t active Then
Ik a active n
I> a front component n
SetOfActiveCells -> add(1,)

End If

End For
End If

End For
For All C,,, i n SetOfActiveCellS Do

I f CL,, is active
Then

//-->Get T‘ at t+h
nexttC,,,->setNextTemperature () :
//-->Update temperature
C>,,->setTemperature (nextT) i

End If
End For
phase << p a s s i v e n
s c 1
e f 0
t,, t t,.,, + ta ()

Display << Synchronisation Error ! s
E l s e

End If
Ind I n t e r n a l T r a n s i t i o n Func t ion

i :
Send a ‘(y,t)-message‘ t o t h e parent

imulator
nd Output Funct ion

a o :
Send h

,nd Advance T i m e Funct ion

Algorithm 2. Active-DEVS model specification for the
simulation of vegetation fire propagation.

The ActiveDEVS model uses a list which references
the cells of the fire front. I t describes two levels of
abstraction. At the highest level, it represents the overall
fire propagation, within the domain. At the lower level, it
describes the local propagation phenomena. Computation
is restricted to a handle of components called ‘active
components’. Each component is clearly identified in the
propagation domain, and their management is based on
the list of references. The simulation ofthe front tire, then,
is carried out with the help of iterators, which move along
the list. This can he implemented with the C+t STL
(Standard Template Library).

4.3 General algorithm of Active-DEVS
simulation

The Active-DEVS model allows the restriction of
scans only to the cellular components which are
programmed by the next event. The list of the active
components reference front cells at an instant ‘t’, in order
to apply the transition rules which permit to update the
propagation domain. All the specified actions are deduced
from the virtual time ‘1’ and are executed simultaneously at
virtual time ‘t+l’. The global simulation algorithm is
schematized figure 3. At each time step, each front
component is tested in order to update the list of active
elements. An addition, it is always preceded by the

activation of the property frontcell of the domain
components, in order to avoid the double references. The
additions are done at the end of the list, in order to not
disturb the loop that it is initiated on this latter.

Figure 3. UML sequence diagram of the discrete event
simulation of a vegetation fire propagation.

5 The simulation framework
Vimal laboratories for fire simulation experiments are

built using an extensible object-oriented framework.
Profiles of classes and collaborations of objects of the
simulation framework have been considered lo provide a
modular, elegant and adaptable design. The framewrk
aims at structuring reliable simulation systems by allowing
optimized simulation models to be composed in a flexible
manner. In fact, the capacity to adapt the architecture to
the different physical models implies to take into account
the possible evolution of coordinators, simulators and
models. In our case, using a model implies hoththe use of
a coordinator anda simulator. Coordinators and simulators
must be created differently according to the specified
model. It is thus necessary to be able to build the same
tree structure, but on the basis of different
implementations. The issue here is to make possible forthe
root coordinator to choose a model, a coordinator and a
simulator, then to build the object architecture of the
simulation, using a simple interface. A possible solution
relies on the abstract factory patterns, which is used to get
round the limitations of inheritance as far as the complexity
of programming. The structure obtained facilitates the

1861

creation of the simulation models, as well as their related
simulators and coordinators [3]. The prototype is written
in C+k, and is fully operational for large-scale experiments.
The interfaces are developed using the factory pattern,
instanciations of related models and processors are
submitted to sub-classes. Three hierarchies of parallel

classes are inter-connected: Model class, Simulator class
and Coordinator class, as described in figure4.

I

Coordinator -
I 1
I t

I
I 1

Ac-DEVSCwrdlnator I DTSSCoordinalor I r----
I ,
I .

I I
l l
I 1

I

I
Simulator I

. .
I I
I I

I
I
I
I

I
Q

Figure 4. The abstract factory pattern in the simulation framework.

The architecture is independent from the way of creating,
composing and representing, the models, the simulators
and the coordinators. The root coordinator builds the
sitnulation tree using as starting point the different families
of models and algorithms available. A library of simulation
tools is then made up. The parent root coordinator does
not know the implementation classes of the families of
models and processors (simulators and coordinators). The
permutation between the latter becomes simple, and the
consistency inside the models md of the processors is
reinforced. In that case, during the addition or the
modification ofthe simulation encapsulated tools, only the
SimFactory objects are modified.

6 Experimentation
Discrete time simulation is not effective in the case of

large-scale simulations of fire spreading. Indeed, the
simulation times obtained are higher than those obtained
using the discrete events model. Moreover, the increase of
the size of the simulation domains corroborates this report.
The Active-DEVS model developed guarantees the best
possible simulation times, limiting computations to the
active components ofthe simulation. Validations of future
large-scale experiments will start from this point.

1862

10000 40000 90000 160000 250000
Number of components

Figure 5. Comparison of execution times for a real
propagation lasting 1000 seconds.

7 Conclusion
In this document, the ActiveDEVS model inspired

from the DEVS formalism is presented. I t simplifies the
modeling of propagation phenomena. Its efficiency is
compared to the traditional discrete time model, which it is
described by the DTSS formalism. The Active-DEVS model
is much more efficient than the classical DTSS model,
however its performance is not yet good enough for a real
time use, but we are currently working on performance
evaluations and code optimization [12]. The object
oriented framework we proposed provides the basic
components for the construction of discrete event cellular
simulations. It is designed to be flexible, extensible and it
integrates the Active-DEVS and DTSS models. It is
adapted to the issue of our work, has a weak coupling and
a strong global cohesion, and it also helps in developing
new model specifications. The framework is designed to
ease programmers in building reliable simulation systems
and is based on design patterns as architecture elements
in addition to basic classes. With this framework the
simulation system is composed of processors and
propagation models, and we have the ability to designate
each component and to experiment for various
specifications. Moreover, the discrete techniques of
simulation confer reduced simulation times, compared to
the traditional propagation models [IO]. We plan now to
improve the framework’s capabilities and to model new
physical experiments. This will be achieved using the
Active-DEVS model and its supporting framework as a
foundation for a parallel and distributed simulation
environment, which is currently under development [SI.

References
[I] P.A. Santoni, J.H. Balbi, et J.L. Dupuy. “Dynamic
modelling of upslope fire growth”, International Journal
of Wildland Fire, Vol9, No. 4, pp. 28549% 1998.

[2] Bernard P. Zeigler, Herbert Praehofer, Tag Con Kim.
Theoly of Modeling and Simulation: Integrating Discrete
Event and Continuous ConIplex Dynamic Systems,
Academic Press, 2000.

[3] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design patterns. Eleinents of Reusable
Object-Oriented Sofmare, Addison Wesley. 1994.

[4]
la pratique. Technologies objet. Eyrolles. 2002.

[SI Patrick Coquillard, David R.C. Hill. Moddisation et
Simulation d ‘EcosyslPines. Des modeles diterntinistes aux
simulations a henements discrets, Masson, 1997.

[6] J. Jorba, T. Margalef, E. Luque, J.C.S. Andre, D.X.
Viegas. “Parallel Approach to the simulation of forest Fire
Propagation”, Proc. Environmental Communication in the
Information Society, 16th International Conference,
Informatics for Environmental Protection, pp. 2527,
September 2002.

r/] C. Lett, “ModClisation et simulation de la dynamique
des Ccosysthes forestiers: des modeles agr6ges aux
modeles individuels spatialisis”. Th&e de doctorat en
sciences du vivant. Universite Louis Pasteur - Strasbourg
1.1999.

[SI E. Innocenti, A. Muzy, A. Kiello, J. F. Santucci, and
D.R.C. Hill, “Design of a Multithreaded Parallel Model for
Fire Spread”, Proc. Simulation in Industry, 15 th European
Simulation Symposium, SCS European Council, p p . 104-
109, November, 2003.

191 J.L. Dupuy, “Slope and fuel load effects on fire
behavior : laboratory experiments in pine needles fuel
beds”. I~lternational Journal of IWdlaird Fire, vol. 5, pp.
153-164. 1995.

1101 A. Muzy, G. Wainer, E. Innocenti, A. Aiello, J.F.
Santucci. ‘Comparing simulation methods for fire
spreading across a fuel bed”, Proc. AIS, Simulation and
planning in high autonomy systems, Lisbon, Portugal. pp.

Alan Shalloway, James R. Trott. Design patternspar

,2002.

[I l l Bemard P. Zeigler, Theor), of Modelling and
Simulation. Wiley,New York, NY. 1976.

[I21 A. Muzy, E. Innocenti, G. Wainer, A. Aiello and J.F.
Santucci “Cell-DEVS quantization techniques in a fire
spreading application”, Proc. the Winter Simulation
Conference, Exploring new frontiers ,San Diego, USA, pp.
m - w , 2 0 0 2

1863

