
Processing dynamic PDEVS models

Jan Himmelspach, Adelinde M. Uhrmacher
Department of Computer Science and Electrical Engineering

Modeling and Simulation group
Albert-Einstein-Str. 21, 18059 Rostock, Germany

jan.himmelspach/adelinde.uhrmacher@informatik.uni-rostock.de

Abstract

Structural changes, i.e. the creation and deletion of com-
ponents, and the change of interactions are salient features
of adaptive systems. To model and specify these systems
variable structure models are required, i.e. models that
entail in their own description the possibility to change
their structure. To execute these models a simulator with a
clear semantic of intertwining structural and non-structural
changes is required.

In JAMES different simulator components, e.g. for paced,
unpaced, sequential, and parallel simulation, support the
continuous use of models and simulation from specification
to testing and a composition of the simulation engine on
demand. Two types of simulator components for variable
structure models are developed, integrated into the simula-
tion layer, and the implications discussed.

1. Introduction

Variable structure models play traditionally an important
role in areas like ecology and biology, processes like suc-
cession of ecological systems and differentiation at cellular
level are prominent representatives of these classes [26, 4].
The more software systems shall work in open dynamic
environments or exhibit properties like autonomy, flexibil-
ity, self-organization, or regulation, the more structural phe-
nomena like the emergence of new organization structures,
the generation and the loss of components become of inter-
est. Examples are providing services in AD HOC networks
[9], or the new initiative directed toward building regener-
ative software systems [14]. Although systematic experi-
mentation is not as often used in Computer Science as in
other scientific areas [22], the need for modeling and sim-
ulation as a tool to support the design and analysis of soft-
ware systems increases with the number of concurrent, dis-
tributed software systems that shall run in open, dynamic
environments. In the area of multi-agent systems, model-

ing and simulation has found its place to explore abstract
phenomena of cooperation and coordination based on mod-
eled agents [12], for testing agent implementations in com-
petitive scenarios like ROBOCUP and ROBOCUPRESCUE,
[21], and for evaluating the performance of agent systems
[19]. In the context of embedded systems models of the
software [18] and models of the environment [16] are used
to automatically generate test cases. Generally, the continu-
ity of modeling and simulation throughout software devel-
opment processes is suggested [11] and first challenges for
establishing modeling and simulation in the software de-
sign cycle have been identified [23]. Models that specify
the behavior of software systems are commonly used in de-
signing software, e.g. STATECHARTS specify the adaptive
behavior of agents and their roles, e.g. [31, 15, 5], as do
Petri Nets, e.g. [32, 13]. These models are used to auto-
matically generate source code, e.g. [15], to analyze certain
properties of the system [32], or for simulation, e.g. [13].
A clear operational semantics which defines the simulation
of the modeled systems is seen as an asset of any modeling
formalism. E.g. the operational semantic of the stochastic
pi-calculus has been implemented in a discrete event simu-
lator. However, the operational semantics of models, which
is used for simulation, has seldom been as emphasized as
in DEVS. When Zeigler developed the modeling formal-
ism in the 70s and 80s, he specified the operational seman-
tics in the abstract simulator and all DEVS variants have felt
obliged to do so afterward [30]. This clear statement how
a DEVS model is executed has been seen as one of the ad-
vantages of using DEVS [3, 34]. In the following we define
abstract simulators that allow to execute variable structure
models that are based on the PDEVS (ParallelDEVS) [33]
formalism in a flexible and unambiguous way.

2. Background

The model design in DEVS distinguishes between
atomic and coupled models. Coupled models are the means
to develop complex models by hierarchical composition. A

Proceedings of the The IEEE Computer Society’s 12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems (MASCOTS’04)

1526-7539/04 $20.00 © 2004 IEEE

coupled model is a model consisting of different compo-
nents and specifying the coupling of its components. Its
interface to its environment is given by a set of external in-
put and output events. The description of an atomic model
embraces a set of input events, a state set, a set of output
events, an internal, external, and confluent transition func-
tion, an output and time advance function. The internal
transition function (deltaInt) dictates state transitions
due to internal events, the time of which is determined by
the time advance function. The external transition function
(deltaExt) is triggered by external inputs, which are de-
fined as bags over simultaneously arriving input events. The
confluent transition function (deltaCon) is invoked if in-
ternal and external events coincide. The abstract simulator
is built by a tree of processors. The leafs are simulators
that are responsible for processing atomic models. Inter-
nal nodes are the coordinators, which propagate activation
and input output messages through the processor tree. The
original DEVS formalism [33] does not support the mod-
eling of dynamic structures. It has been extended to de-
scribe model components and couplings being created, re-
moved, e.g. [1, 27, 33]. Our modeling and simulation sys-
tem James (A Java-Based Agent Modeling Environment for
Simulation) is based on the DYNDEVS formalism [27], as
it supports variable structure models by means for reflec-
tion: a model changes its own structure. Atomic models are
responsible for inducing structural changes by model and
network transitions. No dedicated controller resides over
them as required in other approaches, e.g. [1]. JAMES

forms a component-based modeling and simulation envi-
ronment for multi-agent systems. The component based de-
sign idea permeates the entire environment: same as models
can be composed of model components, the simulation en-
gine can be composed of simulator components on demand
[10]. Simulator components for a paced, unpaced, sequen-
tial and parallel simulation have been implemented. Based
on the components the simulation engine can be adapted
to the model’s needs, hardware resources, and the user’s
preferences. Whereas a simulation engine exists that sup-
ports variable structure [29], this simulation engine is not
component-based and puts some restrictions on the execu-
tion of variable structures, i.e. an atomic model can only
delete itself, change its own interaction structure and add
new models in the coupled model it resides in, for all other
structural changes a model has to negotiate. These restric-
tions were adopted to guarantee the autonomy of agents.
However, these restrictions are not necessary for design-
ing a simulation engine. In addition, the metaphor of self-
determined agents burdens the modeling of variable struc-
ture systems that embrace multiple reactive entities access-
ing each others structure unnecessarily. Thus, to leave the
freedom of choice which metaphor to adopt to the modeler,
the new simulation engine puts little constraints on the ini-

Figure 1. dynPDEVS simulator protocol

tiation of structural changes.

3. Parallel execution of variable structures in
DEVS

Following the argumentation line of DYNDEVS, struc-
tural change requests can be issued by any atomic model
during one of its transition functions. Although the atomic
model invokes the structural changes during the transition
function, their actual execution is delayed. Some of the in-
duced structural changes can be realized by the model itself,
others will be sent up the model hierarchy. The structural
change requests are buffered and executed after all models
have finished their state transitions for the actual time t, but
before the timeAdvance method of the models is executed.
Only if the structural changes at one level have been com-
pleted and the done messages have been received, structural
changes at the next higher level of the simulator and model
tree are executed.

Since a model can induce changes at any place in the
model tree an additional complete message passing process,
comparable to the x and y message handling in the DEVS
abstract simulator, needs to be introduced. This means that
a model can be activated by either a *, x, or sc (structure
change) message. Structural changes are always executed
from bottom to top, i.e. first structural changes at the level
of atomic models are executed (ρα function in the DYN-
DEVS definition), followed by the structural changes to be
applied at the level of the coupled model. Which messages
are propagated through the simulator tree in which direc-
tion can be seen in Figure 1. Each arrow from the parent
to a child forms an entry point into the protocol which is
executed from left to right. This necessitates that null mes-
sages are sent in case no actual inputs, cp. [33], or structural
changes have to be processed.

3.1. An abstract simulator

For ease of reading we have not split up the code accord-
ing to our pre-, do-, and postEvent template.

Proceedings of the The IEEE Computer Society’s 12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems (MASCOTS’04)

1526-7539/04 $20.00 © 2004 IEEE

01 send * to child
02 wait for y message from child
03 send x message to child
04 wait for sc message from child
05 send sc message to child
06 wait for done message from child

Figure 2. Pseudo Code of the next step
method of the root coordinator

The RootCoordinator in Figure 2 receives an incoming
structure change message (04) and sends an (empty) struc-
ture change message to its child (05). A received structure
change message is currently not executed - because in the
current version it is assumed that a coupled model embraces
the entire model and all activities, structural and non struc-
tural, happen within it. The remaining lines of the root co-
ordinator’s code describe the usual DEVS processing: I.e.
sending the * message (01), waiting for the y message (02),
sending the empty x message (03), and finally waiting for
the done message (06).

01 when receive *, x or sc message
02 if message is * or x message
03 if message is * message
03 receive * message
04 send * to imminent children
05 wait for y messages from those children
06 send y message to parent
07 wait for x message from parent
08 fi
09 receive x message
10 send x messages to all influenced and

imminent children
11 wait for sc requests
12 send structural change message to parent
13 fi
14 receive sc message from parent
15 send sc message to children
16 wait for done messages from any

activated children
17 execute sc requests
18 send done message
19 end when

Figure 3. Pseudo Code of the dynamicPDEVS
coordinator

The coordinator in Figure 3 is activated either by an in-
coming *, x, or sc (structure change) message. The coordi-
nator has now to handle incoming sc messages from its par-
ent and its children, which implies waiting for them (11,14),
and propagating them (12,15), and executing those that re-
fer to the associated coupled model of the coordinator (17).
Thus, all structural changes that affect models located be-
low the coupled model are executed before the correspond-

ing coordinator sends its done message (18) to its parent.

01 when receive *, x or sc message
02 if message is * or x message
03 if message is * message
04 receive * message
05 lambda
06 send y message to parent
07 wait for receive x message
08 if isEmpty (x message)
09 deltaInt
10 else
11 receive x message
12 deltaCon
13 fi
14 else
15 receive x message
16 deltaExt
17 fi
18 send sc message
19 fi
20 receive sc message
21 execute sc requests
22 send done message
23 end when

Figure 4. Pseudo Code of the dynamicPDEVS
simulator

The simulator in Figure 4 can be activated (as the above
Coordinator) by a *, x, or sc message. A * or a x mes-
sage starts the normal DEVS processing. To complete the
processing a message with all structural changes buffered
during the δ-functions (or null if none) is sent to the parent
(18). Afterward the simulator waits for a structure change
message from its parent, which might be null, though (20).
At line 20 the simulator will start its computation if acti-
vated by a sc message. If structural changes are due they
will be executed (21). Finally, the simulator sends a done
message to the parent (22).

3.2. Coordinating structural change messages

Structure change messages are executed bottom up the
simulator hierarchy. Each simulator and coordinator filters
the messages that it will process itself. At each coordinator
the messages requesting structural changes are processed in
the following order: 1. Create models, 2. Create couplings,
3. Remove Couplings, 4. Remove models

1 before 2: Couplings can only be added to existing mod-
els. Therefore it is important to guarantee that all mod-
els are created before the couplings are added. Other-
wise the adding of couplings might fail.

3 before 4: If a model is removed all its couplings are
removed as well. If a coupling that does not exist shall
be removed this might be interpreted as an error.

Proceedings of the The IEEE Computer Society’s 12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems (MASCOTS’04)

1526-7539/04 $20.00 © 2004 IEEE

1 before 4: A removal of a model is valued higher than
invoking the creation of the same model.

2 before 3: A removal of a coupling is valued higher than
invoking the creation of the same coupling.

The latter two rules prevent nondeterministic model be-
havior: If two models want to change structures in a way
that one of the models adds entity (model or coupling) x
while the other model removes x the execution could either
end up with an exception (added an already existing entity)
or simply with x existent. However, the result would de-
pend on the (random) order of the requests. Please note that
structural changes are induced by atomic models which do
not have access to the actual overall model structure, they
rely on their knowledge about the model structure, which
might be wrong.

Structural change requests that are not executable, are
(a) the entity to be removed is not there, (b) the entity to be
added is already there or (c) a coupling shall be created with
at least one not existing model.

By default the system will throw an exception which im-
mediately stops the simulation. However, as there may be
scenarios where this shall not been interpreted as an error,
these exception mechanism can be turned off: neither the
change inducing model nor the modeler becomes aware of
the fact that a change has failed.

The mapping of the structural change requests to the ac-
tual structure is based on knowing the names of models. If
a model wants to add another model to the coupled model,
it belongs to, or wants to delete one, it only needs its short
name. If a model wants to access the components of another
coupled model it has to know the full name, which is built
by including all the coupled models the accessed compo-
nent is nested in. Thus, the modeler can restrict the possibil-
ity to induce structural changes directly by making a model
only aware about the names of the models that belong to
the same coupled model, to realize the old JAMES strategy.
To mimic the controller suggested by Barros [2], an atomic
model could be defined as a kind of concierge for each
coupled model, which knows about all model-components
and their interactions in the coupled model it resides in and
which is informed about all changes.

4. Adding external processes

EPI (external process interface) processing means that a
model has an interface to an external process through which
model and external processes can communicate while the
simulation continues. Therefore, the definition of atomic
models is extended by peripheral input and output ports.
The peripheral ports can be interpreted as part of the state,
as they are accessed each time the state is accessed: all func-

Figure 5. DEVS simulator protocol with guar-
antees

tions read the peripheral ports and the transition functions
are responsible for filling the peripheral output ports.

The simulation layer is responsible for synchronizing
simulation and externally running software. Simulation
time and wall clock time can be used for synchronizing, in
the latter case the simulation should run in paced mode - re-
lating simulation progress to the progress of wall clock time
[7]. In the following we will focus on the unpaced variant
and a synchronization in simulation time. If the externally
running software does not provide information about sim-
ulation time, the time model which is associated with an
atomic model can be used for that purposes. It maps the re-
source consumption of the external process into simulation
time.

Synchronization in the unpaced parallel variant is done
by using a guarantee asking mechanism and explicit time
models for each external process [24]. Before a (*, t) mes-
sage for any t is sent all simulators are asked for a guarantee
that the next input (from the external process) to the model
does not arrive before the time that shall be processed. The
guarantee message precedes the star message (Figure 5).
Unlike the passing of *, x/y, and sc messages, guarantee
messages are processed in a separate pulse from top to bot-
tom and bottom to top of the simulator hierarchy. As long
as external processes are running the guarantee pulse alter-
nates with the original simulation pulse, which is responsi-
ble for processing structural and non structural events.

4.1. An abstract simulator

The RootCoordinator in Figure 6 differs from the one
introduced in Figure 2. First a dynamic epi PDEVS Root-
Coordinator asks for a guarantee for the next tn (time of
next event), to ensure that no external process will deliver
any result with a smaller time stamp than tn. If one of the
guarantee requests returns a guarantee for a time less than
tn instead of the guarantee for time tn then this value will
represent the new time of next event that will be processed

Proceedings of the The IEEE Computer Society’s 12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems (MASCOTS’04)

1526-7539/04 $20.00 © 2004 IEEE

01 send guarantee request for tn
02 wait for receive guarantee answer
03 if guarantee time < tn then
04 tn = guarantee time
05 send * to child
06 wait for receive y message from child
07 send x message to child
08 wait for receive sc message from child
09 send sc message to child
10 wait for receive done message from child

Figure 6. Pseudo Code of the dynamic epi
PDEVS root coordinator

in the simulation (04). The remainder of the RootCoordi-
nator processing is equivalent to the code of the previously
introduced one.

01 when receive *, x, sc or guarantee request
message

02 if message is guarantee request
03 send guarantee requests to epi children
04 wait for receive guarantee affirmation

from those
05 send min guarantee affirmation to parent
06 else
07 if message is * or x message
08 if message is * message
09 receive * message
10 send * to imment children
11 wait for y messages from those children
12 send y message to parent
13 wait for x message from parent
14 fi
15 receive x message
16 send x messages to all influenced and

imminent children
17 wait for sc requests
18 send structural change message to parent
19 fi
20 receive sc message from parent
21 send sc message to children
22 wait for done messages from any

activated children
23 execute sc requests
24 send done message
25 end when

Figure 7. Pseudo Code of the epi dynamic
PDEVS coordinator

The Coordinator in Figure 7 is compared to the Coor-
dinator in Figure 3 slightly extended. Handling guarantee
messages is done like in the other parallel, unpaced, epi co-
ordinator, see [10]. If the message received is a guaran-
tee request this request is forwarded to all subtrees which
have at least one model with an attached external process
(03). Afterwards the coordinator has to wait until it receives
the corresponding answers (04). As a last step in guaran-

tee message handling the minimal guaranteed time of all
received guarantees is sent to the parent processor. If the
message received is not a guarantee message the same mes-
sage processing as in the Coordinator (Figure 3) is started.

01 when receive *, x, sc or guarantee request
message

02 if message is guarantee request message
03 wait until all time models of all external

processes are ≥ request or finished
04 send affirmation (min time of all time

models)
05 else
06 if message is * or x message
12 if pending ext.process msgs with

current time
13 charge the corresponding state ports
07 if message is * message
08 receive * message
09 lambda
10 send y message to parent
11 wait for receive x message
14 fi
15 if isEmpty (x message)
16 deltaInt
17 else
18 receive x message
19 deltaCon
20 fi
21 else
22 receive x message
23 deltaExt
24 fi
25 send sc message
26 create external processes and/or

transmit peripheral outport start value
assignments

27 fi
28 receive sc message
29 execute sc requests
30 send done message
31 end when

Figure 8. Pseudo Code of the dynamic epi
PDEVS simulator

In comparison with the simulator (Figure 4) an EPI sim-
ulator (Figure 8) requires to handle guarantee messages and
to charge the peripheral input ports and output ports so the
information from and to the external processes can be ac-
cessed. If activated by a guarantee message (02), the sim-
ulator will check all timeModels of all attached processes
whether they can give the guarantee or whether the pro-
cesses have finished with a smaller timeStamp (3), after-
wards it sends its minimum guarantee to the parent pro-
cessor. This is the typical behavior of all unpaced, parallel
EPI simulators and implemented in the pre-event template
method, which all of them share. If a star or external mes-
sage is received and there are pending messages from an ex-
ternal source for the current time the peripheral input ports

Proceedings of the The IEEE Computer Society’s 12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems (MASCOTS’04)

1526-7539/04 $20.00 © 2004 IEEE

shall be charged (12+13). After sending sc messages to the
parent and before executing structural changes at the level
of the simulator, the simulator creates all external processes
to be created parameterized by the values in the peripheral
output ports.

4.2. The problem of migration

At the moment a model is deleted, all external processes
will be stopped. If a model is created an external process
might be created together with the new model. A change
of coupling does not affect the externally running process.
A model might migrate by changing successively its cou-
plings and even the coupled model it resides in. In this
case, the model continues to exist and the external process
will not be affected by the migration. If the migration of a
model means that a model ceases to exist as a model and
is transported through the model as a simple message, then
the question arises what shall be done with the externally
running processes. If only a process is moved without the
state, everything is newly created at the target domain. If the
migration means that an agent migrates including its state,
different migration strategies can be distinguished:

• weak: the agent and its external processes are stopped
and the agent is started by using an explicit entry point
or

• strong: the agent, its state and its external processes
are suspended and resumed to work at the target.

The easiest solution for agents and models alike is to use
the weak migration concept which implies that all exter-
nally running processes will be suspended, and in case of a
successful migration will be stopped.

5. Combining Processors

The processor architecture allows the flexible combina-
tion of different processors (see Figure 9) [10] to compute
a model in the most efficient way. Sequential and parallel
variants can be replaced more or less arbitrarily. However,
simulators that have an external process running require that
all coordinators up to the root are able to handle the guar-
antee messages. As structural changes can not be restricted
to one area of the model, all simulators should be able to
handle variable structure models. So one variable structure
model implies that all simulators and coordinators are able
to process variable structures. So the entire tree is built from
coordinators and simulators implementing the protocol for
processing structural changes.

Moving, adding, or removing models introduces high
dynamics into a model tree. This leads to the requirement
that the processors must be adapted to the tree after each

EPI
S

S

EPI
C

EPI
C

I Seq

EPI
RC

Pac
S

Pac
S

C

C

I Pac
Seq

 RC

Figure 9. Example combinations of different
processors

structure change. Hereby, the possibility to combine epi
with non - epi dynamic structure handling processors cre-
ates a problem. For epi processing it is sufficient to have
epi processors on the path from the epi model to the root
(Figure 9, left example). The adaptation of the processor
tree can become quite expensive because new processors
have to be created and integrated in the existing process-
ing structure and data from the previous processors needs
to be transferred. Different strategies to tackle this prob-
lem can be imagined: (a) full epi processing - all (coupled-
)models are computed by epi processors (b) full adaption -
as soon as a path looses the last epi model all its processors
are changed (if an epi model is inserted into a path with-
out an epi model the processors need to be changed, too)
(c) lazy adaption - once epi the processors will not be con-
verted back, only if an epi model is inserted into a coupled
model which before was composed of models without inter-
face to an external process, the coordinator will be adapted
and if needed all the coordinators on the path up to the root.
The first solution seems to be the most practical, and the ad-
ditional effort in comparison to a non epi processor seems
neglectable.

6. Applications

In [28] the tryptophan synthase is a multi-level model
of metabolic processes comprising several thousands of
models, most of which are homogeneously structured.
Couplings are dynamically added and removed to deliver
metabolites to randomly selected enzymes. Currently the
model is extended to include the tryptophan operon which
regulates the tryptophan production. Model components
representing DNA, mRNA, ribosomes, mRNA polymerase,
and a set of different enzymes, are involved in a complex
interaction: thousands of models are dynamically added
and connected to others and models are moving across the
model tree hierarchy. These are examples for models that

Proceedings of the The IEEE Computer Society’s 12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems (MASCOTS’04)

1526-7539/04 $20.00 © 2004 IEEE

comprise several thousands of reactive entities exhibiting
changing coupling and compositional structures. No exter-
nal processes have been invoked and thus the models are ex-
ecuted by the parallel dynPDEVS simulator or its sequential
counterpart.

Reactive entities, i.e. mobile agents, are the subject of
another application: where we test the possibilities to let
mobile agents run in a simulated environment. For that pur-
pose models, so called ambassadors, have been defined in-
teracting with the externally running processes and reflect-
ing crucial changes into the simulated environment [25].
Thus, Mole agents can be executed in the virtual environ-
ment as they are executed in their normal run-time environ-
ment. Each Mole agent is started by a synchronous invo-
cation of its methods in the simulation. Calls, the sending
of messages etc. of the invoked agent’s methods are redi-
rected into the simulation environment. Agents frequently
migrate from one location to other locations, thus initiating
a migration of the ambassadors through the virtual network.

Deliberative entities and with this the invocation of plan-
ning systems, are at the core of testing the role of commit-
ment strategies in a dynamic test bed [20]. The planners are
invoked synchronously and the time models are used to put
more or less time pressure on the planning activities of the
agents. Another application analyzes different deliberation
strategies to overcome the economic and demographic con-
sequences of disasters in pre-modern towns. The model in-
cludes several thousands of utility-based models, e.g. mer-
chants, workers, and craftsmen, and one deliberating actor:
the local authority. Here, the time model is constant as only
the result of the deliberation process is of interest, rather
than how long the local authority of the town does need to
come up with a plan [6].

7. Implementational details

By further using the template pattern (see [10, 8]) the
effort for creating these new simulators was reduced. The
creation of further processors is additionally facilitated by
encapsulating the newly added functionality (sc message
parsing, passing, and execution as well as the epi handling)
in separate classes. Thus, for new processors which shall
support sc message or epi handling, we only need to weave
the calls to the separate class methods into the existing (in-
herited) code.

8. Conclusions

By providing a set of different simulator components in
JAMES the simulation engine can be easily adapted to the
characteristics of the model, the underlying infrastructure,
and the users preferences [10]. We developed simulator

components dedicated to support variable structure mod-
els. One simulator enriches the traditional parallel simu-
lation in DEVS by variable structures and one integrates
variable structures into a simulator which supports an in-
teraction between simulation and external processes. Each
simulation engine comprises the DEVS typical simulators
and coordinators. Whereas sequential and parallel simula-
tors and coordinators can be combined in the simulator tree
rather freely, one variable structure simulator requires that
all simulators and coordinators have to be able to process
variable structures. The new flexibility at the level of the
model, i.e. being able to change the structure anywhere in
the model hierarchy, implies high adaptation costs at the
level of simulators. To reduce the adaptation costs, the sim-
ulator tree should be initiated with simulators and coordina-
tors that support as many of the potentially required features
as possible. What kind of structural changes can be initi-
ated, is only limited by a model’s knowledge about its en-
vironment, thus diverse strategies to support variable struc-
ture models as implemented in different simulation systems
can easily be realized, by providing certain knowledge only
to certain models. While the unpaced EPI simulator sup-
ports the synchronous invocation of external processes, for
an asynchronous interaction between simulation and exter-
nal processes different strategies are required. An example
is the asynchronous communication of JAMES with the Au-
toMinder software [17]. An already implemented software
to remind elderlies shall be tested in a virtual household en-
vironment. Therefore we already introduced a first paced
epi variant [24]. This variant needs to be refined and to be
adapted to the new way of handling structural changes.

9. Acknowledgment

This research is supported by the DFG (German Re-
search Foundation).

References

[1] F. Barros, M. Mendes, and B. Zeigler. Variable devs — vari-
able structure modeling formalism: An adaptive computer
architecture application. In Proceedings of the Fifth An-
nual Conference on AI, Simulation, and Planning in High
Autonomy Systems ’Distributed Interactive Simulation En-
vironments’, pages 185–191, December 1994.

[2] F. J. Barros. Modeling formalisms for dynamic structure
systems. ACM Trans. Model. Comput. Simul., 7(4):501–515,
1997.

[3] S. Borland and H. Vangheluwe. Transforming statecharts
to devs. In A. Bruzzone and M. Itmi, editors, Summer
Computer Simulation Conference. Student Workshop, pages
154–159, Montral, Canada, July 2003. Society for Computer
Simulation International (SCS).

Proceedings of the The IEEE Computer Society’s 12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems (MASCOTS’04)

1526-7539/04 $20.00 © 2004 IEEE

[4] D. Degenring, M. Röhl, and A. Uhrmacher. Discrete event,
multi-level simulation of metabolite channeling. BioSys-
tems, to appear, 2004.

[5] S. A. DeLoach. Specifying agent behavior as concurrent
tasks. In Proceedings of the fifth international conference
on Autonomous agents, pages 102–103. ACM Press, 2001.

[6] U. Ewert, M. Röhl, and A. Uhrmacher. Agent Based Com-
putational Demography, chapter Consequences of Mortality
Crises in Pre-Modern European Towns. Springer Verlag,
Heidelberg, 2003.

[7] R. Fujimoto. Parallel and Distributed Simulation Systems.
John Wiley and Sons, 2000.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: elements of reusable object-oriented soft-
ware. Addison-Wesley, Reading, MA, USA, 1994.

[9] C. Gui and P. Mohapatra. Short: self-healing and optimizing
routing techniques for mobile ad hoc networks. In Proceed-
ings of the 4th ACM international symposium on Mobile ad
hoc networking & computing, pages 279–290. ACM Press,
2003.

[10] J. Himmelspach and A. Uhrmacher. A Component-based
Simulation Layer for James. In 18th Workshop on Parallel
and Distributed Simulation, Kufstein, 2004. IEEE Computer
Society Press.

[11] X. Hu, B. P. Zeigler, and X. Hu. Model continuity to support
software development for distributed robotic systems: A
team formation example. Journal of Intelligent and Robotic
Systems, 39(1):71–87, January 2004.

[12] W. Ketter, A. Babanov, and M. Gini. An evolutionary
framework for studying behaviors of economic agents. In
Proc. of the Second Int’l Conf. on Autonomous Agents and
Multi-Agent Systems, pages 1030–1031, Melbourne, Aus-
tralia, July 2003.

[13] M. Köhler and H. Rölke. Modelling mobility and mobile
agents using nets within nets. In D. Moldt, editor, Proc.
of the Second International Workshop on Modelling of Ob-
jects, Components, and Agents (MOCA’02), Technical re-
port of the Department of Computer Science, pages 141–
157, Aarhus, Denmark, August 2002. University of Aarhus.

[14] P. Liu and P. Pal, editors. Proc. First ACM Workshop on Sur-
vivable and Self-Regenerative Systems. ACM Press, 2003.

[15] O. Obst. Specifying Rational Agents with Statecharts and
Utility Functions, volume 2377 / 2002 of Lecture Notes in
Computer Science, page 173. Springer-Verlag Heidelberg,
2001.

[16] J. Peleska and M. Siegel. Test automation of safety-critical
reactive systems. South African Computer Journal, 19:53–
77, 1997.

[17] M. Pollack, L. Brown, D. Colbry, C. McCarthy, C. Orosz,
B. Peintner, S. Ramakrishnan, and I. Tsamardinos. Auto-
minder: An intelligent cognitive orthotic system for people
with memory impairment. Robotics and Autonomous Sys-
tems, 2003. to appear.

[18] A. Pretschner, O. Slotosch, E. Aiglstorfer, and S. Kriebel.
Model-based testing for real - the inhouse card case study.
International Journal on Software Tools for Technology
Transfer (STTT), 5(2-3):140–157, March 2004.

[19] O. F. Rana and K. Stout. What is scalability in multi-agent
systems? In Proceedings of the fourth international con-
ference on Autonomous agents, pages 56–63. ACM Press,
2000.

[20] B. Schattenberg and A. M. Uhrmacher. Planning Agents in
James. Proceedings of the IEEE, 89(2):158–173, Feb. 2001.

[21] T. Takahashi, S. Tadokoro, M. Ohta, and N. Ito. Agent
based approach in disaster rescue simulation - from test-bed
of multiagent system to practical application. In A. Birk,
S. Coradeschi, and S. Tadokoro, editors, RoboCup 2001,
number 2377 in LNAI, pages 102–111. Springer Verlag
Berlin Heidelberg, 2002.

[22] W. F. Tichy. Should computer scientists experiment more?
Computer, 31(5):32–40, May 1998.

[23] A. Uhrmacher. Simulation for agent-oriented software en-
gineering. In W. Lunceford and E. Page, editors, First In-
ternational Conference on Grand Challenges for Modeling
and Simulation, San Antonio, Texas, 2002. SCS, San Diego.

[24] A. Uhrmacher, M. Röhl, and J. Himmelspach. Unpaced and
paced simulation for testing agents. In Simulation in In-
dustry, 15th European Simulation Symposium, pages 71–80,
Delft, 2003. SCS-European Publishing House.

[25] A. Uhrmacher, M. Röhl, and B. Kullick. The role of reflec-
tion in simulating and testing agents: An exploration based
on the simulation system james. Applied Artificial Intelli-
gence, 9-10:795–811, October-December 2002.

[26] A. M. Uhrmacher. Reasoning about Changing Structure: A
Modeling Concept for Ecological Systems. International
Journal on Applied Artificial Intelligence, 9(2):157–180,
1995.

[27] A. M. Uhrmacher. Dynamic Structures in Modeling and
Simulation - A Reflective Approach. ACM Transactions on
Modeling and Simulation, 11(2):206–232, Apr. 2001.

[28] A. M. Uhrmacher and D. Degenring. From tryptophan
synthase to operon: A discrete-event-multi-level approach,
November 2003.

[29] A. M. Uhrmacher, P. Tyschler, and D. Tyschler. Model-
ing Mobile Agents. Future Generation Computer System,
17:107–118, 2000.

[30] G. Wainer. http://www.sce.carleton.ca/
faculty/wainer/standard/, July 2004.

[31] D. Weyns, E. Steegmans, and T. Holvoet. Combining
adaptive behavior and role modeling with state charts. In
R. Choren, A. Garcia, C. Lucena, M. Griss, D. Kung,
N. Minsky, and A. Romanovsky, editors, Proceedings of the
Third International Workshop on Software Engineering for
Large-Scale Multi-Agent Systems, pages 81–90, 2004.

[32] H. Xu and S. M. Shatz. A framework for modeling agent-
oriented software. In The 21st International Conference on
Distributed Computing Systems, page 57. IEEE Computer
Society, April 2001.

[33] B. Zeigler, H. Praehofer, and T. Kim. Theory of Modeling
and Simulation. Academic Press, London, 2000.

[34] B. P. Zeigler. Devs today: Recent advances in discrete event-
based information technology. In 11th IEEE/ACM Interna-
tional Symposium on Modeling, Analysis and Simulation of
Computer Telecommunications Systems, page 148, Orlando,
Florida, October 2003.

Proceedings of the The IEEE Computer Society’s 12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems (MASCOTS’04)

1526-7539/04 $20.00 © 2004 IEEE

	footer1:

