
Parallel DEVS and Process-Oriented Modeling in Modelica

Victorino Sanz Alfonso Urquia Sebastian Dormido
Dpto. Informática y Automática, ETSI Informática, UNED

Juan del Rosal 16, 28040, Madrid, Spain
{vsanz,aurquia,sdormido}@dia.uned.es

Abstract

This manuscript presents a new free Modelica li-
brary, named DESLib and composed of four packages:
RandomLib, DEVSLib, SIMANLib and ARENALib.
DESLib has been designed and implemented to facili-
tate the description of discrete-event models using the
Parallel DEVS formalism (using DEVSLib), and to fa-
cilitate the process-oriented modeling of logistic sys-
tems (using SIMANLib and ARENALib). SIMAN-
Lib and ARENALib models are designed as DEVS
models, and implemented using DEVSLib, to facili-
tate its development, comprehension and maintenance.
RandomLib includes functionalities to generate ran-
dom numbers and random variates, and facilitate the
development of stochastic models. The communica-
tion mechanism used to transport information between
models in DESLib is presented. This mechanism facil-
itates the combination of DEVS and process-oriented
models to describe discrete-event systems at multiple
levels. DESLib also includes interfaces to combine
its components with other Modelica libraries, facili-
tating the composition of multi-formalism and multi-
domain hybrid models. DESLib can be downloaded
from http://www.euclides.dia.uned.es.

Keywords: discrete-event systems, hybrid model-
ing, Parallel DEVS, process-oriented modeling, ran-
dom number generation, stochastic simulation, logis-
tic model

1 Introduction

Modelica provides language constructs to describe the
trigger conditions of time and state events, and also
the actions associated to the events [1]: (1) update
the value of discrete-time variables and reinitialize
continuous-time state variables, using when clauses;
and (2) change the mathematical description of equa-
tions and assignments, using the if statement.

These features have facilitated the development of

state machine models [2, 3] and also of libraries sup-
porting different formalisms for discrete-event system
modeling. Some of these libraries are StateCharts [4],
StateGraph [5], HyAuLib [6], PetriNets [7] and Ex-
tendedPetriNets [8]. Other approach is described in
[9], in which the discrete-event system is described
using an external tool that generates the correspond-
ing Modelica code. The use of Modelica language to
describe discrete-event models of communication net-
works is presented in [10].

1.1 Parallel DEVS Formalism

The support of the Modelica language to the DEVS
(Discrete EVent System specification) formalism [11]
is an open research area. The feasibility of con-
structing basic atomic and coupled DEVS models in
Modelica was demonstrated in [12]. Another im-
plementation of this formalism was performed in the
ModelicaDEVS library [13], designed to simulate
continuous-time systems using the Quantized State
System (QSS) integration methods [14, 15].

An atomic model is the simplest component that
can be defined using Parallel DEVS (PDEVS) [16],
and can be formally described with the tuple M =
(X ,S,Y,δext ,δint ,δcon,λ , ta), where X is the set of in-
put ports and values, Y is the set of output ports and
values, S is the set of sequential states, δext , δint and
δcon are the transition functions, λ is the output func-
tion and ta is the time advance function. An atomic
model updates its state with δint every time a given
amount of time (defined by ta) is elapsed without any
external input, thus triggering an internal event. An
output can be generated, using the λ function, before
executing δint . Inputs are stored in a bag, which is a
set with possible multiple occurrences of its elements.
When any input is received, the external event is trig-
gered and the state is updated by δext , that manages the
elements in the bag. The simultaneous occurrences of
an external and an internal event trigger a confluent
event, and the state is updated by δcon.

A coupled model can be described as a composition
of other atomic or coupled models. It is specified in the
PDEVS formalism with a tuple M = (X ,Y,D,{Md |d ∈
D},EIC,EOC, IC), where X is the set of input ports
and values, Y is the set of output ports and values, D
is the set of component names, Md is the set of DEVS
components, EIC is the set of connections between in-
put ports and components, EOC is the set of connec-
tions between components and output ports and IC is
the set of internal connections between components.

1.2 Process-Oriented Modeling

According to the process-oriented “world view”, sys-
tems are described from the point of view of the en-
tities that flow through them using the available re-
sources [17]. This modeling methodology, widely
used for describing complex logistic systems, is sup-
ported by several modeling languages (e.g., GPSS/H,
SLAM II, SIMSCRIPT II.5, SIMAN, SIMULA and
SIMPL/1) and integrated environments (e.g., Arena,
AutoMod, ProModel, Witness and SIMPROCESS).

Arena [18] is a widely used process-oriented sim-
ulation environment. It includes components to de-
scribe the flowchart diagram of the system, that repre-
sents the flow of entities. That diagram includes the
processes and actions performed to the entities along
the simulation run. Other components allow to de-
scribe the characteristics of those processes and ac-
tions (such as, the organization policy of the queues,
the number of available resources, etc.). Components
in Arena are internally described by the lower-level
components of the SIMAN language [19].

Process-oriented modeling with Modelica is an at-
tractive research field. An introduction of operations
management modeling with Modelica is described in
[20], where the authors present a case study of an in-
ventory system and describe the problems encountered
when modeling these kind of systems using Modelica.
Almost no other work has been performed in this field.

2 The DESLib Modelica Library

The first objective of the research work presented
in this manuscript is to facilitate the description of
discrete-event models using the PDEVS formalism
[16] and also facilitate the connection of these models
to other hybrid models developed using other Model-
ica libraries.

The second objective of our work is to facilitate the
process-oriented modeling of logistic systems using

Figure 1: DESLib library.

Modelica and also to facilitate the connection of these
logistic system models to hybrid models developed us-
ing other Modelica libraries.

In order to achieve these two objectives, a new
Modelica library, named DESLib, has been designed
and programmed using Dymola [21]. DESLib,
which is freely available under the terms of the
Modelica License 2, can be downloaded from
http://www.euclides.dia.uned.es/.

DESLib is composed of the following four pack-
ages: RandomLib, DEVSLib, SIMANLib and
ARENALib. The general architecture of the library is
shown in Fig. 1.
• The RandomLib package includes an implemen-

tation of the CMRG random number generator,
used by Arena, and some functionalities for
random variates generation.
• The DEVSLib package facilitates the description

of discrete-event models in Modelica following
the Parallel DEVS formalism.
• The SIMANLib and ARENALib packages facil-

itate the description of process-oriented models.
The components in these packages have been
designed as atomic and coupled PDEVS models,
and implemented using DEVSLib.

DEVSLib, SIMANLib and ARENALib use the same
communication mechanism to transport information
between models. This makes all their components
compatible and can be combined to develop models
at multiple description levels. The implemented com-
munication mechanism is detailed in Section 4.1.

The organization of the manuscript is as follows. A
description of the RandomLib package is included in
Section 3. The architecture and design of the DEVS-

Lib package, together with its functionalities to de-
scribe Parallel DEVS models, are described in Sec-
tion 4. The components and functionalities of the
SIMANLib and ARENALib packages are described
in Section 5. Two case studies are discussed in Sec-
tion 6: the model of a restaurant constructed using
SIMANLib and the model of an electronic factory con-
structed using ARENALib. Finally, some conclusions
are given in Section 7.

3 RandomLib

Process-oriented models are usually stochastic [22].
The RandomLib package is used in conjunction with
DEVSLib, SIMANLib and ARENALib to model
discrete-event and process-oriented stochastic models
of logistic systems.

RandomLib contains a Modelica implementation of
the Combined Multiple Recursive Generator (CMRG)
which is used in Arena [23, 24]. The implemented
random number generator (RNG) gives the possibility
of creating multiple random streams, and sub-streams,
that can be considered as independent RNGs [24]. The
generator period is close to 2191, and can be divided
into disjoint streams of length 2127. At the same time,
each stream can also be divided into 251 adjacent sub-
streams, each of length 276.

RandomLib is composed of three packages (see
Fig. 1): CMRG, Variates and Examples. The CMRG
package includes the implementation of the CMRG
uniform random number generator. Although avail-
able in C, this generator has been implemented in
Modelica in order to facilitate its use, comprehension
and reutilization in other Modelica libraries.

(a) (b)

Figure 2: Discrete and continuous probability distri-
bution functions included in RandomLib.

The Variates package includes several functions to
generate random variates from continuous and discrete
probability distributions. The included probability dis-
tribution functions are shown in Fig. 2. These func-
tions use by default the CMRG generator as source of
uniform random numbers. However, any other Mod-
elica library for uniform random number generation
can be used, redeclaring the record that represents the
generic generator, its initialization function and the
generic uniform random number generation function.

The Examples package contains several examples
of random uniform and random variates generation in
order to facilitate the use of the library. One of the
included examples is shown in Listing. 1

model VariatesSimple
"generates 5 random variates with
Expo (5) distribution"

Variates.Generator g "RNG";
Real u[5] "vector of random variates ";

algorithm
// initialization of the RngStream
when initial () then

g := Variates.initGenerator ();
end when;
when time <= 0 then

for i in 1:5 loop
// generation of variates.
(u[i],g) :=
Variates.Continuous.Exponential(g,5);

end for;
end when;

end VariatesSimple;

Listing 1: Random variates generation using Random-
Lib.

4 DEVSLib

The DEVSLib package, as shown in Fig. 1, contains
the following packages and models: the UsersGuide
that contains the documentation about the structure
and use of DEVSLib; the atomicDraft and coupled-
Draft models that are used to construct new DEVS
models; the AuxModels package that includes several
useful auxiliary models; the Examples package that
contains several examples of systems modeled using
DEVSLib and; the SRC package that includes all its
internal implementation and documentation.

DEVSLib supports the definition of models using
the PDEVS formalism. Atomic and coupled mod-
els can be constructed with DEVSLib following their
DEVS formal specification, similarly to how it is per-
formed by other DEVS tools, such as DEVSJAVA
[25], CD++ [26], or adevs [27].

Figure 3: DEVSLib atomic model structure.

The structure of an atomic model in DEVSLib is
shown in Fig. 3. The transition, output and time ad-
vance functions (con, int, ext, out and ta in Fig. 3)
are described as Modelica functions. The state is de-
scribed using a Modelica record (st), and initialized
using the initst function. Any variable required to
describe the state of the model can be added to that
record. An example of new atomic model construc-
tion using DEVSLib is given in Section 4.3.

The development of coupled models with DEVS-
Lib also follows its formal specification. Using the
object-oriented modeling capabilities of Modelica,
coupled models are constructed connecting previously
developed components and including the required in-
put/output ports.

The interconnection of the components in a coupled
model may include algebraic loops. Due to the char-
acteristics of the Modelica language, these algebraic
loops are not allowed. This problem can be avoided
by redefining the behavior of the models of the loop
into one single atomic model, or breaking the loop in-
serting the breakloop model, included in DEVSLib, in
any of its connections.

4.1 DEVSLib Model Communication

Model communication in PDEVS follows a message
passing mechanism. The output function generates a
new message and sends it through an output port. The
message will be received, triggering an external event,
by the models connected to that output port. The mes-
sage may contain any kind of information, called the
“value” of the message.

The model communication mechanism in Model-
ica is based in the definition of ports, called “connec-
tors”, and connections between ports, using “connect-
equations”. Variables defined in two connected con-
nectors are either equaled, or summed up and the sum

equaled to zero.
The Modelica model communication and the DEVS

message passing mechanisms are conceptually differ-
ent. The former equals values of variables while the
latter transports information between models.

In order to allow the description of DEVS models
in Modelica, a message passing mechanism has to be
developed [28]. The development of this mechanism
has been the most challenging problem solved during
the development of the DEVSLib package. Several ap-
proaches were studied and developed, in order to im-
plement the message passing mechanism in Modelica.

The direct implementation of the message passing
mechanism in DEVSLib using Modelica connectors
was studied. The mentioned DEVS implementations
in Modelica [12, 13] use boolean variables inside the
connectors to detect external events – i.e. received
messages. However, the connectors does not allow
the simultaneous reception of messages, because their
variables can not be assigned with several values at the
same time. Also, Modelica does not allow a variable
number of objects in a model, so the message trans-
mission can not be directly implemented.

Other approaches for implementing the message
passing mechanism in DEVSLib, based in an interme-
diate storage for the transmitted messages, were stud-
ied and implemented. The first approach was to use
a text file to store the messages, so the sender writes
the message to the file and notifies it to the receiver,
that reads it. This approach allows simultaneous re-
ception of messages, because several messages can be
written to the file, but its performance and versatility
are poor. The other approach substitutes the text files
by dynamic memory space. This increases the perfor-
mance and the versatility of the mechanism, allowing
to manage different types of messages without redefin-
ing the message management operations.

The dynamic memory approach for message pass-
ing is the mechanism implemented in DEVSLib. This
approach is combined with the standard Modelica con-
nectors to provide a transparent communication mech-
anism to the user. At the end, DEVSLib models are
connected using standard Modelica connectors and
connect-equations.

4.2 Interface Models with Other Modelica
Libraries

DEVSLib includes several interface models to trans-
late messages into continuous-time signals, and vicev-
ersa. The use of these interface models allows to com-

bine models developed using DEVSLib with the com-
ponents of other Modelica libraries.

There are two mechanisms used in the continuous-
to-discrete translation: the cross-functions and the
quantization. The former translates the value of a
continuous-time signal into a message every time the
signal crosses a given threshold, in one direction (up-
wards or downwards). The models “crossUP” and
“crossDOWN” implement this behavior in DEVSLib.
The quantization mechanism is implemented by the
“quantizer” model. This model generates a message
every time the value of the continuous-time signal
changes in a predefined quantum, similarly to the be-
havior of the QSS first-order method [15].

On the other hand, the discrete-to-continuous trans-
lation is performed generating a piecewise-constant
signal whose value is the value of the last message re-
ceived. The model “DICO” (DIscrete-to-COntinuous)
implements this behavior in DEVSLib.

These interface models are implemented to man-
age the standard DEVSLib message type. However,
the message type in DEVSLib can be redefined by the
user. In this case, the interface models can be adapted
to the new message type.

4.3 Model Development with DEVSLib

The development of new models using DEVSLib
requires the following steps:

• Declare the input and output ports of the model.
• Define the state variables of the model and their

initialization.
• Define the transition, output and time advance

functions.

A “bank teller” system is described in this section
as an example of model construction. In this system
the customers arrive to the bank and wait their turn in
the queue. If the teller is idle, the customer is served
immediately. Otherwise, the teller will serve the first
customer in the queue. When finished, the customer
leaves the bank and the teller serves another customer
if anyone else is waiting, or waits for a new arrival.

The model of this system is composed of two atomic
models: the customers and the teller. The customers
model represents the arrivals of new customers. The
inter-arrival time follows an exponential probability
distribution with mean 10 mins. The teller model rep-
resents the person serving customers and the queue.
The time spent by a customer with the teller follows an
exponential probability distribution with mean 8 mins.

The Parallel DEVS specification of the customers
model is the following:

M = (XM,S,YM,δint ,δext ,δcon,λ , ta)
where:
XM = /0
S = ℜ

+
0

YM = {”out”,{1}}
δint(sigma) = interArrivalTime
δext() = nothing since XM = /0
δcon() = nothing since XM = /0

model customers "Customers arrival"
replaceable Real interarrival = 1;
extends AtomicDEVS(numIn=1,numOut=1,

redeclare record State = st);
redeclare function Fint =

int(iat=interarrival);
redeclare function Fout = out;
redeclare function Fta = ta;
redeclare function initState = initst;
Interfaces.outPort outPort1;

equation
iEvent [1] = 0;
// OUTPUT PORTS
oEvent [1] = outPort1.event;
oQueue [1] = outPort1.queue;

end customers;

record st "state of the model"
Real sigma;

end st;

function initst "state initialization func."
output st out;

algorithm
// first internal transition at time = 1
out.sigma := 1;

end initst;

function int "Internal Transition Function"
input st s;
input Real iat //inter -arrival time;
output st sout;

algorithm
sout := s;
sout.sigma := iat;

end int;

function out "Output Function"
input st s;
input Integer queue[nports];
input Integer nports;
output Integer port[nports];

protected
stdEvent y;

algorithm
y.Value := 1;
// send output event with message y
sendEvent(queue[1],y);
port [1] := 1;

end out;

function ta "Time Advance Function"
input st s;
output Real sigma;

algorithm
sigma := s.sigma;

end ta;

Listing 2: DEVSLib code for the customers model of
the Bank Teller system.

λ (sigma) = 1
ta(sigma) = sigma

The interArrivalTime is a continuous-time input of
the model that represents the time between customer
arrivals, similarly to the continuous-time inputs de-
scribed in the DEV&DESS formalism [11].

The implementation of the customers model using
DEVSLib is shown in Listing 2. The code has been
adapted from the atomicDraft model, and follows its
structure (see Fig. 3). The input port has been re-
moved, and the iEvent array is set to 0 because the
model will never receive a message. The state record
contains a variable that represents the interval for the
next internal transition (sigma). The model will exe-
cute its first internal transition at time 1, due to the ini-
tialization of sigma. The external and confluent tran-
sition functions (ext and con) have been removed be-
cause the model has no input ports. The internal tran-
sition function (int) sets the value of sigma with the
input “iat”, which is a continuous-time input that rep-
resents the probability distribution for the inter-arrival
times. The output function generates a new message,
that represents a new customer, and sends it through
the output port. The time advance function only re-
turns the value of sigma, set by δint .

The Parallel DEVS specification of the teller model
is the following:

M = (XM,S,YM,δint ,δext ,δcon,λ , ta)
where:
XM = {”in”,{1}}
S = {”active”,”passive”}×ℜ

+
0 ×N

YM = {”out”,{1}}
δint(phase,sigma,nqueue) ={

(”active”,PT,nqueue−1) i f nqueue > 0
(”passive”,∞,0) otherwise

δext(phase,sigma,nqueue,u,e,X) ={
(”active”,PT,nqueue) i f ”passive”
(phase,sigma− e,nqueue+1) otherwise

δcon(phase,sigma,nqueue,u,e,X) =
δext(δint(phase,sigma,nqueue),u,0,X)

λ (phase,sigma,nqueue) = 1
ta(phase,sigma,nqueue) = sigma

PT is a continuous-time input of the model that repre-
sents the service time for each customer.

The implementation of the teller model is similar
to the customers model, and also follows the struc-
ture of the atomicDraft model. The teller has one in-
put and one output ports. Its state record includes the
operational mode of the teller (phase, initialized to 1
== “idle”), the interval for the next internal transition
(sigma, initialized to infinity) and the queue (nqueue,

Figure 4: Bank teller system modeled using DEVSLib.

initialized to 0 == “empty”). Since the arrival of a new
customer does not include additional information (like
its name, age, etc.), the queue only stores the num-
ber of customers waiting. At external events, when a
new customer arrives it is either serviced (teller “idle”
with phase == 1) or waits in queue (teller “busy” with
phase == 2). The value of sigma is set with the ser-
vice time (also received as a continuous-time input) or
the rest of the service time of the customer being pro-
cessed, if the teller is “idle” or “busy” respectively. At
internal events, when the serviced customer leaves, the
teller checks the value of the queue. If any other cus-
tomer is in the queue, the teller starts its service and
sets sigma to the new service time. If no customers
are waiting, the teller becomes “idle” and waits for a
new arrival setting the sigma to infinity. The output
function generates a new message that represents the
customer leaving the bank.

The system constructed using DEVSLib is shown in
Fig. 4. It includes the code for generating the random
inter-arrival and service times, using RandomLib. The
model connected to the output of the teller only shows
the departure of the customers. The results after sim-
ulating the model during 20 time units are shown in
Fig. 5, containing the arrival, the departure and the
number of customers in queue over the simulation.
The average number of customers in queue over a long
simulation (106 time units) is shown in Fig. 6. That

Figure 5: Bank teller system simulation results.

Figure 6: Average number of customers in queue from
the simulation of the bank teller system.

result tends to the analytical result (an average of 3.2
jobs in queue) of the equivalent M/M/1 queue system.

5 SIMANLib and ARENALib

SIMANLib and ARENALib support the process-
oriented modeling methodology, in a similar fashion to
SIMAN and Arena, but with limited capabilities. Sys-
tems modeled using SIMANLib and ARENALib are
composed of two parts: the flowchart diagram and the
experimental data. The flowchart diagram describes
the flow of entities through the system. It is defined by
the blocks in SIMANLib and the flowchart modules in
ARENALib. The experimental data describes the par-
ticular information of an experiment to be performed
with the system. It corresponds to the amount of avail-
able resources, the characteristics of the queues, the
statistical information to be recorded, etc. It is defined
by the elements in SIMANLib and the data modules in
ARENALib.

The structure of both packages (see Fig. 1) is sim-
ilar, and are divided into two areas: the users area
and the developers area. The users area in SIMAN-
Lib is composed of the Blocks (containing flowchart
components), Elements (containing data components),
Draft (used to construct new models) and BookExam-
ples (containing the implementation of several exam-
ples described in [19]) packages. The users area in
ARENALib is composed of the BasicProcess (contain-
ing both flowchart and data modules) and BookExam-
ples (containing the implementation of several exam-
ples described in [18]) packages. Both, SIMANLib
and ARENALib, contain a UsersGuide package that
includes a description of their characteristics, structure
and use. The developers area in both packages con-

tains the SRC package, with the internal implementa-
tion of their components and the developers documen-
tation.

The communication between flowchart components
also follows a message passing mechanism, where the
value of the messages are the entities. Entities are cre-
ated by the Create blocks or modules, and sent to the
next component. Each component performs a process
(or action) to the received entity and sends it to the
next component. Entities leave the system at Dispose
blocks or modules.

5.1 SIMANLib Components

SIMANLib reproduces several elements of the
SIMAN language [19]. The included components are
shown in Fig. 7.

Figure 7: SIMANLib components: blocks and ele-
ments.

In order to facilitate the development and main-
tenance of the SIMANLib package, the SIMANLib
blocks have been specified using the DEVS formal-
ism [29] (i.e., as atomic PDEVS models) and have
been implemented using the DEVSLib package. Also
the Resource element has been modeled as an atomic
PDEVS model, in order to manage the seize and re-
lease petitions to the resource.

5.2 ARENALib Components

ARENALib reproduces several elements of the Basic
Process panel of the Arena Simulation environment
[18]. The included components are shown in Fig. 8.

A previous implementation of the ARENALib
package was presented in [30]. That implementation,
which was directly coded in plain Modelica, was diffi-
cult to understand, maintain and modify. Arena com-

Figure 8: ARENALib components: flowchart and data
modules.

ponents are developed using SIMAN constructs [18].
Analogously to SIMANLib, the components of ARE-
NALib have been reconstructed as coupled PDEVS
models, using the SIMANLib package. As an ex-
ample, the internal structure of the Process flowchart
module is shown in Fig. 9. The use of DEVS to de-
scribe SIMANLib and ARENALib constructs facili-
tates the understanding of the behavior of each library
component, the development of new models and its
implementation.

Figure 9: Internal structure of the ARENALib process
module.

5.3 Hybrid System Modeling

SIMANLib and ARENALib include models that fa-
cilitate combining a process-oriented model with a
continuous-time model. These models are: the Exter-
nal Assign block in SIMANLib and the External Pro-
cess in ARENALib (which is not present in Arena).
These models are shown in Fig. 10. Also, due to
the compatibility between ports, any model developed
using DEVSLib can be combined with SIMANLib

and ARENALib, taking into account the values of the
transmitted messages.

(a) (b)

Figure 10: Hybrid system modeling components: a)
SIMANLib External Assign; and b) ARENALib Ex-
ternal Process.

The External Assign block behaves like an Assign
block, setting the value of a variable or attribute, and
also includes two continuous-time output ports. These
ports can be used to detect the changes in the value of
the variable, and use that value in a continuous-time
model.

The External Process behaves like a normal Pro-
cess module, representing a process performed to the
entities, but the processing time (delay) is calculated
by an external continuous-time model (named “ext-
process”). Every time an entity arrives to the module,
and after seizing the resources, if needed, the External
Process changes the value of the “entityStart” port to
the reference of the received entity. The ext-process
has to detect this change as a notification to start pro-
cessing an entity. When the process is finished, the
ext-process changes the value of the “entityEnd” port
to the reference of the previously received entity. With
that change, the External Process module detects the
end of the process, identifies the entity and lets it con-
tinue through the flowchart diagram.

5.4 Model Development with SIMANLib and
ARENALib

The “bank teller” system constructed using SIMAN-
Lib and ARENALib is presented in this section. The
flowchart diagrams of both models are shown in
Fig. 11

The model constructed using SIMANLib contains
the following blocks: Create (that represents the ar-
rival of customers), Queue, Seize (that together with
the Release manages the availability of the teller), De-
lay (that represents the delay due to the service time),
Release and Dispose (that represents the departure of
customers). It also includes the following elements:

(a)

(b)

Figure 11: Bank teller system modeled using:
a) SIMANLib; and b) ARENALib.

Resource (that represents the teller), EType (that rep-
resents the customers), Queue (that describes the or-
ganization of the queue) and DStat (that calculates the
statistics for the number of customers in queue).

The model constructed using ARENALib contains
the following flowchart modules: Create (that repre-
sents the arrivals of customers), Process (that rep-
resents a customer serviced by the teller) and Dis-
pose (that represents the departure of customers). The
data modules included are: Resource (representing the
teller) and Entity (representing the customers).

Both models are equivalent, but as shown in Fig. 11
the components in SIMANLib perform simpler ac-
tions and more components are required to model the
same behavior.

Both systems have been simulated for 106 time units
to study the steady-state behavior. The statistical in-
dicators are automatically calculated during the sim-
ulation run by the DStat elements. The results are
shown in Table 1, including the average number of
customers in queue and the half-width intervals cal-
culated by Arena (SIMAN and Arena obtain the same
results because in both cases the same seed is used to
initialize the RNG).

6 Case Studies

Two case studies are presented to show the function-
alities of SIMANLib and ARENALib: a restaurant
and an electronic factory. The first model is analyzed
running independent terminating simulations and the

Table 1: Bank teller system simulation results using
SIMANLib, ARENALib, Arena and SIMAN.

Model Avg. Customers
in Queue

Half-Width

SIMANLib 3.3073 -
ARENALib 3.1212 -
Arena 3.2089 0.22
SIMAN 3.2089 0.22

second one performing one long (steady-state) simu-
lation. The results are equivalent to the ones obtained
using SIMAN and Arena, respectively.

6.1 Restaurant Model

The restaurant model described in [19] has been com-
posed using SIMANLib (see Fig. 12a). Customers ar-
rive in groups from 2 to 5 persons and wait for an avail-
able table. If there are already 5 groups waiting, the
new group leaves without waiting. The restaurant has
50 tables. Each table is for two people, so several ta-
bles may be needed for each group. When seated, the
group is served and eats. At the end, the group pays
the check to the cashier and leaves. The restaurant re-
ceives customers from 5 p.m. to 9 p.m., and, after that,
waits until all the customers leave.

Table 2: Restaurant simulation results, comparing
SIMANLib and SIMAN.

Indicator (avg.) SIMANLib SIMAN
groups served 136.13 135.43
groups lost 15.83 14.00
busy tables 24.49 24.25
groups waiting 0.62 0.72
cashier util.(%) 42.51 41.94

In order to analyze the system, 30 independent sim-
ulation runs, each of 480 time units, have been per-
formed. Each run record statistics about the number of
customers served, the number of busy tables, the num-
ber of waiting customers, the number of groups that
left without entering and the utilization of the cashier.
The simulation results, comparing the SIMANLib and
SIMAN models are shown in Table 2 (average values).

(a)

(b)

Figure 12: Case studies: a) restaurant modeled using SIMANLib; and b) electronic assembly system modeled
using ARENALib.

6.2 Electronic Factory Model

The electronic assembly and test system described
in [18] has been composed using ARENALib (see
Fig. 12b). Two types of electronic parts (A and B) are
received in the system, are pre-processed and sealed.
Each type has a different pre-processing and sealing
time. After that, the sealed parts are inspected. Correct
parts are shipped, and the rest need to be reworked.
After the rework process, they are inspected again and
classified into salvaged and scrapped.

The system has been simulated during 50000 time
units, in order to evaluate its steady-state behavior.
Multiple statistical indicators are automatically calcu-
lated by ARENALib. Some of these indicators (av-
erage values) are shown in Table 3 and the are com-
pared with the results obtained with Arena, including
the half-width (H-W) interval.

Table 3: Electronic factory simulation results, compar-
ing ARENALib and Arena.

Indicator (avg.) ARENALib Arena H-W
Shipped 18.650 19.774 2.273
Salvaged 89.348 81.522 8.715
Scrapped 88.564 78.125 (Insuf)
Sealer.WaitTime 0.447 0.453 0.035
Sealer.ProcessTime 2.609 2.617 (Corr)
Sealer.Utilization 0.601 0.605 0.011
Sealer.NumberInQueue 0.103 0.105 0.007
Rework.WaitTime 40.272 32.974 8.020
Rework.ProcessTime 30.033 28.452 1.823
Rework.Utilization 0.622 0.583 0.043
Rework.NumberInQueue 0.834 0.675 0.180

7 Conclusions

A new free Modelica library, named DESLib, has been
designed and programmed to facilitate the develop-
ment of discrete-event and process-oriented models.
The library is composed of four packages: Random-
Lib, DEVSLib, SIMANLib and ARENALib. DEVS-
Lib supports the development of discrete-event models
following the Parallel DEVS formalism. SIMANLib
and ARENALib facilitate the development of process-
oriented models of logistic systems, with functional-
ities similar to the SIMAN language and the Arena
simulation environment. RandomLib contains an im-
plementation of the CMRG random number generator,
used in Arena, that combined with the other packages
of DESLib facilitates the development of stochastic
discrete-event models.

The hierarchic description of components in
DESLib (SIMANLib compopnents constructed using
DESLib, and ARENALib components constructed us-
ing SIMANLib) and the use of the DEVS formalism
simplifies its understanding, maintenance, reuse and
further development.

The communication mechanism developed and in-
cluded in DESLib allows to transport structured infor-
mation between models. This mechanism can also be
easily adapted to other applications and libraries.

The description and study of stochastic discrete-
event and logistic models with Modelica is supported
by DESLib. Due to the interface models included
in the library, the combination of DESLib with other
Modelica libraries facilitates the description of com-
plex hybrid models.

References

[1] Modelica Association. Modelica - A
Unified Object-Oriented Language for
Physical Systems Modeling. Language
Specification (v. 3.1). Available at
http://www.modelica.org/documents, 2009.

[2] Mattsson S. E, Otter M, Elmqvist H. Modelica
Hybrid Modeling and Efficient Simulation. In
Proc. of the 38th IEEE Conf. on Decision and
Control, pp. 3502–3507, 1999.

[3] Otter M, Elmqvist H, Mattsson S. E. Hy-
brid Modeling in Modelica Based on the Syn-
chronous Data Flow Principle. In Proc. of the
10th IEEE Intl. Symposium on Computer Aided
Control System Design, pp. 151–157, 1999.

[4] Ferreira J, de Oliveira J. E. Modelling Hy-
brid Systems Using Statecharts and Modelica.
In Proc. of the 7th IEEE Intl. Conf. on Emerg-
ing Technologies and Factory Automation, pp.
1063–1069, 1999.

[5] Otter M, Årzén K.-E, Dressler I. State-Graph -
a Modelica Library for Hierarchical State Ma-
chines. In Proc. of the 4th Intl. Modelica Conf.,
pp. 569–578, 2005.

[6] Pulecchi T, Casella F. HyAuLib: Modelling Hy-
brid Automata in Modelica. In Proc. of the 6th

Intl. Modelica Conf., pp. 239–246, 2008.

[7] Mosterman P. J, Otter M, Elmqvist H. Modelling
Petri Nets as Local Constraint Equations for Hy-
brid Systems Using Modelica. In Proc. of the
Summer Computer Simulation Conf., pp. 314–
319, 1998.

[8] Fabricius S. M. O. Extensions to the Petri Net
Library in Modelica. ETH Zurich, Switzerland,
2001.

[9] Remelhe M. A. P. Combining Discrete Event
Models and Modelica - General Thoughts and a
Special Modeling Environment. In Proc. of the
2nd Intl. Modelica Conf., pp. 203–207, 2002.

[10] Färnqvist D, Strandemar K, Johansson K. H,
Hespanha J. P. Hybrid Modeling of Communi-
cation Networks Using Modelica. In Proc. of the
2nd Intl. Modelica Conf., pp. 209–213, 2002.

[11] Zeigler B. P, Kim T. G, Prähofer H. Theory
of Modeling and Simulation. Academic Press,
2000.

[12] Fritzson P. Principles of Object-Oriented Mod-
eling and Simulation with Modelica 2.1. Wiley-
IEEE Computer Society Pr., 2003.

[13] Beltrame T, Cellier F. E. Quantised State Sys-
tem Simulation in Dymola/Modelica Using the
DEVS Formalism. In Proc. of the 5th Intl. Mod-
elica Conf., pp. 73–82, 2006.

[14] Cellier F. E, Kofman E. Continuous System Sim-
ulation. Springer, 2006.

[15] Kofman E. Discrete Event Simulation of Hybrid
Systems. SIAM Journal on Scientific Comput-
ing, 25(5):1771–1797, 2004.

[16] Chow A. C. H. Parallel DEVS: a Parallel, Hier-
archical, Modular Modeling Formalism and its
Distributed Simulator. Trans. of the Society for
Computer Simulation Intl., 13(2):55–67, 1996.

[17] Derrick E. J, Balci O, Nance R. E. A compari-
son of selected conceptual frameworks for sim-
ulation modeling. In Proc. of the 1989 Winter
Simulation Conf., pp. 711–718, 1989.

[18] Kelton W. D, Sadowski R. P, Sturrock D. T. Sim-
ulation with Arena. McGraw-Hill, 4th ed., 2007.

[19] Pegden C. D, Sadowski R. P, Shannon R.
E. Introduction to Simulation Using SIMAN.
McGraw-Hill, 1995.

[20] Mikler J, Engelson V. Simulation for Opera-
tion Management: Object Oriented Approach us-
ing Modelica. In Proc. of the 3rd Intl. Modelica
Conf., pp. 207–214, 2003.

[21] Dynasim AB. Dymola Dynamic Modeling Lab-
oratory User’s Manual. http://www.dymola.com,
2009.

[22] Law A. M. Simulation Modelling and Analysis.
McGraw-Hill, 4th ed., 2007.

[23] L’Ecuyer P. Software for Uniform Random Num-
ber Generation: Distinguishing the Good and the
Bad. In Proc. of the 33rd Conf. on Winter Simu-
lation, pp. 95–105, 2001.

[24] L’Ecuyer P, Simard R, Chen E. J, Kelton W. D.
An Object-Oriented Random-Number Package
With Many Long Streams and Substreams. Oper.
Res., 50 (6):1073–1075, 2002.

[25] Zeigler B. P, Sarjoughian H. S. Intro-
duction to DEVS Modeling & Simula-
tion With JAVA: Developing Component
Based Simulation Models. Available at
http://www.acims.arizona.edu/PUBLICATIONS/,
2003.

[26] Wainer G. CD++: A Toolkit to Develop DEVS
Models. Software: Practice and Experience,
32(13):1261–1306, 2002.

[27] Nutaro J. ADEVS - A Discrete Event Sys-
tem Simulator. Arizona Center for Integrative
Modeling & Simulation (ACIMS), Uni-
versity of Arizona, Tucson. Available at
http://www.ece.arizona.edu/˜nutaro/index.php,
1999

[28] Sanz V, Urquia A, Dormido S. Introducing Mes-
sages in Modelica for Facilitating Discrete-Event
System Modeling. In Proc. of 2nd Intl. Workshop
on Equation-Based Object-Oriented Languages
and Tools, pp. 83-93, 2008.

[29] Sanz V, Urquia A, Dormido S. DEVS Specifica-
tion and Implementation of SIMAN Blocks Us-
ing Modelica Language. In Proc. of the Winter
Simulation Conf., pp. 2374–2374, 2007.

[30] Sanz V, Urquia A, Dormido S. ARENALib: A
Modelica library for Discrete-Event System Sim-
ulation. In Proc. of the 5th Intl. Modelica Conf.,
pp. 539–548, 2006.

