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Abstract
The study of infectious disease models has become increasingly important during the COVID-19 pandemic. The fore-
casting of disease spread using mathematical models has become a common practice by public health authorities, assist-
ing in creating policies to combat the spread of the virus. Common approaches to the modeling of infectious diseases
include compartmental differential equations and cellular automata, both of which do not describe the spatial dynamics
of disease spread over unique geographical regions. We introduce a new methodology for modeling disease spread
within a pandemic using geographical models. We demonstrate how geography-based Cell-Discrete-Event Systems
Specification (DEVS) and the Cadmium JavaScript Object Notation (JSON) library can be used to develop geographical
cellular models. We exemplify the use of these methodologies by developing different versions of a compartmental
model that considers geographical-level transmission dynamics (e.g. movement restriction or population disobedience to
public health guidelines), the effect of asymptomatic population, and vaccination stages with a varying immunity rate.
Our approach provides an easily adaptable framework that allows rapid prototyping and modifications. In addition, it
offers deterministic predictions for any number of regions simulated simultaneously and can be easily adapted to unique
geographical areas. While the baseline model has been calibrated using real data from Ontario, we can update and/or
add different infection profiles as soon as new information about the spread of the disease become available.
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1. Introduction

Bacteria, viruses, fungi, and parasites are all infectious

agents, capable of infecting many people and causing mass

fatalities. In December 2019, a novel coronavirus named

SARS-COV-2, which produces a disease known as

COVID-19, emerged and became a global pandemic

within the span of 1 month. Never in the history of our

species have pathogens such as SARS-COV-2 been able

to travel the entire globe at a rapid pace. Actions were

taken by governments to restrict international travel and

encourage the social isolation of citizens, but all precau-

tions proved insufficient to prevent the pandemic. The

cumulative global fatality count due to COVID-19 infec-

tion exceeds 5.8 million people as of February 2022,1

resulting also in significant economic impacts.

The COVID-19 pandemic highlights the importance of

studying and combatting the spread of pathogens so that

their effect on daily life may be controlled. If the mechan-

isms of disease spread are understood, then efficient inter-

ventions may be implemented to contain local pandemics

before they spread globally, and in the event, they do
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become global to prepare for the impacts. In particular, the

study of pandemics and pathogens can be used to develop

predictive models of how particular infectious agents may

spread in specific geographical environments over time,

which can assist governments and health authorities in

planning and implementing containment policies.

Despite the efforts of health agencies, many countries

are still coping with new waves of COVID-19 cases, often

associated with variants of concern, are typically reaching

higher peaks than the first wave in 2020.2,3 One difficulty

with the control of the pandemic of COVID-19 is due to

the asymptomatic carriers—that is, those individual not

showing symptoms and being unaware that they are

infected. As these individuals do not take precautions, they

may spread the disease to at-risk individuals unknow-

ingly.4 The proportion of asymptomatic carriers can be as

high as 80%.5–8 In December 2021, a new variant of

COVID-19, Omicron was discovered in over 89 countries.

Omicron spread throughout the world faster than any other

variants of concern. Studies were performed in sub-

Saharan Africa to study the new variant, one of these stud-

ies found that the Omicron variant had a much higher rate

of asymptomatic carriage compared to other variants of

concern. The study found many of these asymptomatic

carriers had high nasal viral loads, suggesting these asymp-

tomatic carriers may have been a major factor in the rapid

spread of Omicron.9 Due to these issues, short of regular

testing of the population (which did not prove overly

effective in the few countries attempting it), modeling and

simulation showed to be helpful for estimating the spread

of the disease, including the prevalence of asymptomatic

carriers.10

This is not the first time that organizations and govern-

ments use mathematical models and simulations to fore-

cast and prevent the spread of infectious diseases. Models

have been used to predict the spread of serious pathogens

such as Ebola and HIV,11,12 and health agencies have long

relied on predictive models to estimate future trends and

to assess the potential effectiveness of various disease con-

trol methods.13 One of the most widely used models uses

compartmental differential equation models, describing

how individuals in different states of infection interact and

influence one another. These compartmental epidemiolo-

gical models, introduced by Kermack and McKendrick,14

classify the population in individuals Susceptible to the

disease, Infected (i.e. can transmit the disease), and

Recovered (SIR). Modifying the parameters of the model,

public health officials can investigate how much a disease

might evolve depending on the measures put in place

(such as lockdowns, mandatory quarantines, and physical

distancing). With the emergence of the SARS-CoV-2

virus, these models have become relevant, being used to

track and monitor the potential spread of the disease.

Often missing from the differential equation approach

to modeling is the consideration of how populations are

distributed over physical space, and how they travel

between geographical regions with unique characteristics.

Such so-called geographical models allow for geolocated

simulations of various phenomena; their resolution typi-

cally ranges from continental models to city neighbor-

hoods.15 For instance, each component in city areas can

use its own defined population and characteristics, allow-

ing for an accurate representation of a given geography.

Geographical modeling can determine which regions are

most impacted by a given infection. These insights can

help create improved public health measures.

A popular method to model spatial distribution of the

disease is cellular automata (CA), which has been widely

used in recent years to investigate the spatial dynamics of

disease spread.16–18 CA divides physical space into a grid

representation of cells, with rules of interaction between

adjacent or neighboring cells. This division is traditionally

a two-dimensional (2D) uniform square grid, where cells

are related to one another in a uniform neighborhood pat-

tern. However, the geography in which populations reside

is rarely uniform, contradictory to the use of regular neigh-

borhood patterns in traditional CA.

Considering these issues, this research discusses the

definition of new methods to represent the spread of

COVID-19, with the objective of predicting the spread of

COVID-19 in distinct geographical areas using a

geography-based model. Our research considers the popu-

lation of each geographical area in a non-uniform neigh-

borhood topology, where each cell population is divided

into age groups, each of which may have different infec-

tion characteristics and behaviors. We use groups as an

example of a population division where the behavior for

transmitting the disease differs. In other scenarios, age

groups could represent people with different levels of edu-

cation, social status, wealth, and so on.

More specifically, the contribution of this paper is intro-

ducing a new methodology for modeling disease spread

using geographical models, Cell-Discrete-Event Systems

Specification (DEVS), and the Cadmium JavaScript

Object Notation (JSON) library. We demonstrate how

these methodologies and tools can be used by developing

different versions of SIR-type compartmental models that

consider geographical-level transmission dynamics (e.g.

movement restriction or population disobedience to public

health guidelines), the effect of asymptomatic population,

and vaccination stages with a varying immunity rate.

Our approach provides an easily adaptable framework

that allows rapid prototyping and modifications. We show

how the model can be quickly revised as new disease

information is discovered (for instance, the change of

infectivity by new variants like Omicron). Our implemen-

tation allows users to run the model in user-specified

geographical regions, to visualize how COVID-19

might spread through a city, town, or country. For exam-

ple, Ralli et al.8 show the negative effects of asymptomatic
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COVID-19 infections within homeless shelters. Our model

could be used to geographically locate homeless shelters

within specific neighborhoods and simulate the effect of

homeless shelters on surrounding neighborhoods.

Section 2 explains the foundations of the SIR model,

CA, the Cell-DEVS formalism, and irregular geography-

based cell spaces. Using this knowledge, section 3 defines

a baseline Cell-DEVS model and gives simulations of the

model in the geography of Ontario, Canada. Section 4

gives an extension of the baseline model to accommodate

the effect of asymptomatic infection carriers. Section 5

gives a further extension of the baseline model in which a

two-dose vaccination schedule is implemented, and finally,

this paper concludes in section 6.

2. Background

Mathematical disease models date back to the 17th cen-

tury, where Bernoulli published the first formal disease

spread model which assessed the effect that variolation to

smallpox could have on average life expectancy in

France.19 In 1927, Kermack and McKendrick14 defined

the SIR model using differential equations. This model

remains the basis of many infectious disease spread mod-

els used at present because of its success in describing the

spread of disease. In this section, we will discuss the

related work used as a basis for our model specifications.

2.1. SIR models

Following Ross20 and Ross and Hudson,21 Kermack and

McKendrick14 defined a model that classified a given pop-

ulation into three ‘‘compartments’’: SIR. They defined

how individuals within a population could move from one

compartment to another over time. The SIR model divides

each member of a population into one of three categories:

susceptible (S), infected (I), and recovered (R). Susceptible

individuals are vulnerable to the pathogen and will become

infected if they have sufficient contact with infected peo-

ple. Infected people spread the disease to susceptible indi-

viduals through their daily contacts. Recovered people

have overcome the disease and have permanent immunity

(or died) and are no longer infectious.

The amount of people in the states S, I, and R over time,

can be expressed as a function of time, and as a fraction of

total population (N). For example, s(t) = S(t)/N represent

the fraction of susceptible people at time t. At time zero

(and therefore, at any other time), the sum of these frac-

tions must be 100% (i.e. s(0) + i(0) + r(0) = 1).

By making some assumptions about the behavior of the

population, the model is completed by the set of differen-

tial equations (Equation (1)), which describe the rate of

change between states over time, typically measured in

days:

ds

dt
=� ls tð Þi tð Þ (1a)

di

dt
= ls tð Þi tð Þ � gi(t) (1b)

dr

dt
= gi(t) (1c)

8>>>>>><
>>>>>>:

ð1Þ

Two new parameters are introduced in the set of equa-

tions (Equation (1)) to model disease characteristics: l

(the virulence of the disease), which describes the level of

infectious contact that Infected people have with

Susceptible people, and g (the recovery rate), which

defines the rate at which Infected people become

Recovered each day. The change in the Susceptible popu-

lation is described in Equation (1a) as being proportional

to s(t), i(t), and the virulence rate of the disease. The nega-

tive sign indicates that this is always a net decrease in the

number of people in the Susceptible population, as mem-

bers of the population transition to Infected. Equation (1b)

describes the change in the Infected population as the

addition of new infections (ls(t)i(t)) and the subtraction of

new recoveries (gi(t)). The daily change in the Recovered

population is given in Equation (1c) as the product of the

Infected population i(t) and the recovery rate g. All mem-

bers of the population are also assumed to have a consis-

tent number of daily contacts with others, implied in l, no

matter their infection state. These assumptions serve to

simplify the model, but certainly decrease the accuracy of

predictions. In addition, since the sum of s(t), i(t), and r(t)

is 100% at time zero and the model assumes there is no

birth, death, or migration in the population, that condition

will be satisfied at any time.

The typical trajectory of an SIR model pandemic is

shown in Figure 1, where the curves shown are the values

of s(t), i(t), and r(t) in percentage as defined in Equation

(1). The trajectory described by the SIR model is predict-

able: a population begins as 100% Susceptible before a

pathogen spreads, the Infected then rises exponentially as

the pathogen spreads and infects the population, and the

number of Recovered increases over time as in the graph

of Figure 1. The exponential growth of the Infected is slo-

wed by the decreasing number of Susceptible that may

become Infected, as the Recovered state is terminal.

Kermack and McKendrick’s work defined the frame-

work and mathematics that SIR-type models continue to

follow today. The model assumes that every person

behaves identically, having a constant number of daily

contacts at random, regardless of any person’s infection

status. These assumptions make such a simple model

impractical for predicting the real world. To increase the

accuracy of this model, more infection states can be

added. This standard SIR model has evolved over the

years to incorporate more advanced disease spread rules

and more compartments. The simplest of these evolutions

Davidson et al. 3



is the SIRD model which incorporates a Deceased (D)

compartment which models terminal illness and the per-

manent removal of individuals from the population and

includes death factors and fatality rates.22 SEIRD models

add an Exposed (E) state which describe the latency

period preceding contagious infection used as a transition

from Susceptible to Infected.23 Over time, these models

became significantly more advanced, having different,

complex compartments such as quarantined, which

describe a period of reduced human contact while in a

phase of infection;24 Asymptomatic states (A) which

define individuals who are not aware of their infection but

are contagious; Hospitalized,25 Diagnosed23, and among

others. The infection states that do vary over time in the

real world (Exposed, Infected, Recovered) can also be

modeled with sub-states that represent time-varying dis-

ease characteristics in sequential days of infection. Real-

world data can then be used to profile how the infection

behaves on average per infection day, from initial expo-

sure to eventual recovery or fatality. Populations in the

Exposed state can transition to the Infected state according

to a statistical curve of the pathogen’s incubation time.

Each day of the Infected state can have variable conta-

giousness, probability of recovery, and probability of fatal-

ity. A state transition diagram of an SEIRDS model is

given in Figure 2. Adding a second S to the end of the

model type name indicates that the Recovered population

becomes Susceptible again after several days spent in the

Recovered state.

The spread of COVID-19 using non-geographical SIR

models has been successfully predicted in individual cities

and countries. Caccavo26 describes an SIRD model that

correctly estimates the spread of COVID-19 in China and

Italy. An SEIIR model presented in Danon et al.27 having

two distinct phases of Infected was shown to predict the

COVID-19 outbreaks in Wales and England. Similar com-

partmental differential equation models have accurately

predicted the spread of COVID (as discussed in detail in

the next section). However, not may offer specific estima-

tions of spatial disease spread dynamics.

2.2. Asymptomatic infection and SIR-type models

In medicine, an asymptomatic patient is one that tests

positive for a disease but shows no symptoms.24

Asymptomatic carriers can shed the disease to those

around them, but at a slower rate than those that are symp-

tomatic.4 The main issue is that asymptomatic carriers do

not know they have the disease; thus, they may not follow

the same procedures as someone who knows they are

infectious. For example, someone who has a cough may

cover their mouth to protect those around them; however,

if they did not have any noticeable symptoms, they will

spread the disease unknowingly.8

The asymptomatic effect has caused problems in

tracking and planning for many diseases including

COVID-19.5–7 The proportion of asymptomatic infec-

tions that make up the COVID-19 pandemic has been

widely debated, and ranges between 4% and 80%.4–8

The problem with these studies is how to collect and

validate their data, which is more complex considering

the asymptomatic carriers.

Several studies have explored the integration of the

asymptomatic state in disease spread modeling. For exam-

ple, Sen and Sen28 proposed an SIARD (Susceptible,

Infected, Asymptomatic, Recovered, Dead) and an

SQIARD model (where Q is the Quarantine state). The

SIARD model uses a simple transition from the

Susceptible state to the Infected or Asymptomatic state

using a given infectious rate. The SQIARD model incorpo-

rated the Asymptomatic state as a transition from the

Quarantine state. The model splits the population that

moves from the Quarantine state to the Asymptomatic or

Infected state using specific rates. This model provides

results that resemble real-world case counts in different

countries such as China, India, Italy, and the United States.

Figure 1. SIR model trajectory.

Figure 2. SEIRDS state diagram.
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Giordano et al.25 proposed an advanced SIDARTHE

model, which also includes states for Diagnosed (D),

Ailing (A), Recognized (R), Threatened (T), Healed (H),

and Extinct (E) individuals. Asymptomatic individuals are

added using multiple disease subcategories under one

state: Asymptomatic is a subcategory of the Infected state.

When an individual moves from Susceptible to Infected,

they can become Asymptomatic, Infected, or undetected.

The Asymptomatic individuals will then move to either

Diagnosed, Ailing, or Healing. If an Asymptomatic indi-

vidual becomes detected, they are considered diagnosed

Asymptomatic. Asymptomatic individuals who move to

Ailing develop symptoms and become undiagnosed symp-

tomatic, and those who move to Healing will recover from

the infection. The proportion of individuals who move to

each state is defined by the states specific transition rate,

that is, those who move from Asymptomatic to Ailing is

denoted by the probability for a host to develop symptoms.

The authors also remark the importance of those who are

asymptomatic or undetected as they will not be isolating

like those who are known infectious.

Barman et al.23 presented an SEAIRD model that

showed a similar transition method as those described pre-

viously. They use an Asymptomatic state where an asymp-

tomatic rate a is defined to split the infected population

into Infected (I) or Asymptomatic (A). Susceptible indi-

viduals can become exposed to the virus (E) or remain in

the susceptible (S) state. Exposed individuals can become

asymptomatic (A = aE) or infectious (I = a(1 2 E)). The

model showed how asymptomatic cases can affect the rate

and magnitude of new infectious cases in a population.

The authors also described a more advanced model called

the SEAIRD-Control model where a Quarantine state and

a Hospitalization state have been introduced. Although our

focus is on the influence of asymptomatic cases, these

extra states (Quarantined, Hospitalized, etc.) can be con-

sidered as future additions to our model.

None of the models above include the geographical

aspect of the disease where the relationship between two

neighborhoods impacts how the disease can spread. The

model described in this paper addresses this idea and incor-

porates geographical attributes in disease transmission

dynamics.

2.3. CA pandemic models

Traditional SIR models have no consideration of physical

space, and therefore, geographical spread of pathogen. CA

can be used together with differential equations to create a

spatial pandemic model. CA is a mathematical formalism

that describes an N-dimensional space of adjacent cells that

contain values that can change over time. Any number of

dimensions may be represented in CA, but the most practi-

cal models are in either two or three dimensions. The value

of each cell is computed by the same set of transition rules

executed in discrete time steps, which describe how the

value of neighboring cells affects each other.

SIR-based discrete time CA models have widely stud-

ied, including to study the spatial spread of COVID-19.

Medrek and Pastuszak18 described a CA SEIR model that

uses the age group distributions and population counts of

regions to stochastically generate heterogeneous cell

spaces. The model includes geographical considerations in

creating the cell spaces and uses a regular neighborhood

pattern. A probabilistic SEIQR CA defined in Ghosh and

Bhattacharya17 use similar methods of cell space genera-

tion based on population density and variation to define a

cell space representing a country. The authors use a genetic

algorithm to find the optimal disease parameters based on

what is known from the epidemiological data of near

areas.

A limitation of traditional CA is that it may not provide

realistic neighborhoods when modeling large and complex

geographical areas. Using real geographical data to define

cell spaces is preferred to hypothetical scenarios because

the model results are verifiable to a degree and offer more

useful results to decision-makers. The research in Tobler29

gives a foundation of cellular geography, including the

description of geographical regions as cells in both regular

and irregular neighborhood patterns. Zhong et al.16 defined

a geographical SIRS CA using irregular geography-based

cell spaces, where a cell’s neighborhood is defined by the

amount of border length shared with other regions. This

neighborhood definition allows cells to have unequal

influences on one another, based on the shape of their 2D

geographical borders. Cárdenas et al.30 introduced a simi-

lar SIR model with unequal border lengths using the

Cadmium Discrete-Event System Specification simulation

library (the software used to implement the model pre-

sented in this research).

The question of how to best model geographical rela-

tions is difficult. A simple guiding heuristic principle of

geographical relation is every geographical area is related

to every other geographical area, but near areas are more

related than distant areas.31 Using this principle, a correla-

tion factor can be calculated to represent the level of rela-

tion or connection populations have between a pair of

geographical areas. The simplest possible correlation fac-

tor is represented as a binary state, either indicating that no

correlation exists (zero) or a correlation does exist (one).

More complex correlation factors can be derived based on

geographical features and population sizes. For instance,

when working with irregular topologies in which each cell

represents a geographical region, we can compute a geo-

graphical weight wi, j between regions i and j as the length

of the shared border between them, divided by the peri-

meter of the region represented by cell i. Alternatively, if

we have enough data about the area of interest, wi, j could

depend on the average mobility of people from cell j to

cell i. Figure illustrates how geographical data can be
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processed to generate cellular models that support irregular

topologies. For each geographical region in Figure 3(a), a

cell with the same identification number is created in

Figure 3(b). The arrows between cells represent the cell

neighborhoods and their directionality of influence. The

color of the arrows interconnecting cells indicates the

degree correlation factor.

Cell i is usually a neighbor of itself, and its autocorrela-

tion factor wi, i is usually close to 1 (in Figure 3(b), these

autocorrelation arrows are black). Correlation factors can

be directional (i.e.wi, j 6¼ wj, i if i 6¼ j). For example, w3, 4 is

high, as people of region 4 usually move to region 3.

However, w4, 3 is close to 0 (in the figure, the arrow’s

color is light gray). It is also possible that cell i belongs to

the neighborhood of cell j, but cell i does not consider cell

j as a neighbor (this is the case between cells 2 and 4 in

Figure 3(b)).

As SIR-based models track infection of a geographically

dispersed population, its correlation factors should repre-

sent the flow of population between geographical areas.

A correlation factor cij based on shared border between

two cells i and j can be calculated as follows:

wij =
zij

lj
(2a)

wij =wji =

zij

li
+

zji

lj

2
(2b)

cij =wij (2c)

8>>>>><
>>>>>:

ð2Þ

Equation (2a) describes a weight wij between two cells i

and j based on their shared border length zij and the total

border length lj. This weight is not identical in both direc-

tions of correlation between the two cells. Equation (2b)

defines a weighting factor for cells i and j that are identical

in both directions of correlation. Equation (2c) states that

the correlation factor is equal to the weighting factor in this

case, and no additional computation is required to scale wij

and wji to the range of 0–1.

The correlation factor of Equation (2c) can be used to

describe how strongly a Susceptible population of one cell

interacts with the Infected population of another cell. Cell-

DEVS neighborhoods can be defined by Equation (2c)

instead of by predetermined neighborhood patterns, where

a cell is in another cell’s neighborhood if there exists a

correlation factor between them that is greater than 0. A

neighborhood defined this way allows cells to have any

number of neighbors. We have used this method of neigh-

borhood construction and shared border length correlation

factors.

Cárdenas et al.30 define an SEIRDS with more details

in the infection profile, built using new simulation meth-

odologies and tools. The model described here builds on

this, including vaccinated states, and in turn, immunity

rates, which affects the rate of exposures and thus

infections.

We define an SEIRD cellular model that predicts the

state of infection of a group of cells over time, where the

state variables S, E, I, R, and D describe the percentage of

total cell population having that state at a given time t. We

further specify some of these states with time-varying

behavior by giving infection characteristics that vary per

day spent in that state. For instance, the length of the

Exposed state is TE days, where each sequential day incurs

a higher probability of transitioning to Infected. Infected

individuals who have caught the disease are contagious for

TI days, and have time-varying contagiousness. Recovered

individuals have overcome the disease and are indefinitely

immune. In a model that includes reinfection, the

Recovered population would have immunity from the dis-

ease for a period of TR days before becoming Susceptible

again. The Deceased state describes the population that

dies because of infection but do remain in the original

population count.

The cell space of the SEIRD CA model is formed using

2D geography-based neighborhoods, consisting of a set of

cells M = (m1, m2,., mi) each with population Ni, where

the subscript i is the cell’s index. Each cell i has a unique

neighborhood definition Vi that is defined as a set of cell

names (neighbors) and their correlational weights,

Vi = {(mi, 1), (mk, cik), ., (mx, cix)}, where a cell’s auto-

correlation factor is 1. The Exposed and Infected states of

this model include time-varying characteristics per day

spent in the state, where each day within a state is referred

to as the phase q of the state. The population in a specific

phase q of Exposed at time t can be further specified as

Ei
t(q), and the population of a specific phase of Infected

can be specified as Ii
t(q). Each cell population Ni is

divided into age groups, specified by the subscript a,

which describes the proportion of total cell population Ni

that are members of age group a. Dividing each population

into age groups allows the incorporation of the age-

specific factors that influence human behavior and disease

Figure 3. Irregular cell-DEVS schematic: (a) Real Map and
(b) Irregular Cell-DEVS equivalent.
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outcomes. A summary of this notation is given in Table 1,

and will be used throughout this paper.

The probability that an Exposed individual enters the

Infected state is controlled by the incubation rate e(q). The
probability that an Infected individual becomes Recovered

is controlled by the recovery rate g(q). The probability that

an Infected individual enters the Dead state from each

phase of Infected is controlled by the fatality rate d(q). The

contagiousness of individuals in each phase of Infected is

given by the virulence rate l(q), which approximates the

epidemiological Ro of the disease over the phases of

Infected. The rate at which individuals make potentially

infectious contact with others is described by the mobility

rate m(q), which models the difference in movement beha-

vior between age groups. Further definitions of parameter

symbology are given in Table 2.

The local transition function of the discrete time SEIRD

model is defined by Equations (3a)–(3g):

Et+ 1
i, a 1ð Þ= St

i, a �
P

j 2 V cij

� �
�
P

b 2 A

q 2 1, 2, . . . , Tif g
aj, b � mb qð Þ � lb qð Þ � I t

j, b qð Þ
� �2

64
3
75

2
64

3
75 (a)

Et + 1
i, a qð Þ= 1� ea q� 1ð Þð Þ � Et

i, a q� 1ð Þ
� �

(b)

with q 2 f2, 3, . . . , Teg

I t+ 1
i, a 1ð Þ= Et

i, a Teð Þ +
PTe�1

q= 1

ea qð Þ � Et
i, a(q)

� �" #
(c)

I t+ 1
i, a qð Þ= I t

i, a q� 1ð Þ
� �

� 1� ga q� 1ð Þ � da q� 1ð Þð Þ (d)

with q 2 f2, 3, . . . , Tig

Rt + 1
i, a = Rt

i, a + I t
i, a Tið Þ � 1� da Tið Þð Þ

� �
+

PTi�1

q= 1

ga qð Þ � I t
i, a(q)

� �" #
(e)

Dt + 1
i, a = Dt

i, a +
PTi

q= 1

da qð Þ � I t
i, a qð Þ

� �P" #
(f)

St + 1
i, a = 1 �

PTe

q= 1

Et + 1
i, a qð Þ

� �" #
�

PTi

q= 1

I t + 1
i, a qð Þ

� �" #
� Rt + 1

i, a � Dt+ 1
i, a (g)
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ð3Þ

Equation (3a) describes how the Susceptible population

of cell i interacts with neighboring Infected populations of

all age groups, calculating the new Exposed. The first

Exposed phase population (q = 1) is equal to the product

of the Susceptible population, the value cij 2 [0,1], and the

Infected in each phase q considering the virulence and the

mobility of infected individuals in phase q. The geographi-

cal correlation factor between regions i and j (cij) describes

the amount of population interaction between cells i and j.

The A symbol represents the set of age groups within cell j.

Equation (3b) describes the population in all Exposed

phases except the first. The population in all subsequent

Exposed phases is the Exposed population in the previous

phase multiplied by 1 minus the incubation rate of that

phase. Equation (3c) describes the newly infectious popu-

lation in Infected phase 1. The population in Infected phase

1 is equal to the population leaving the Exposed state,

Table 1. SEIRD CA cell and state notation.

Parameter Symbol

Cell specifier index i, j
Time index t
Neighborhood of cell i Vi

Age group index a
Phase index of state q
Susceptible population of cell i in age group a at time t St

i,a

Exposed population of cell i in age group a at time t, with phase q Et
i,a(q)

Infected population of cell i in age group a at time t, with phase q Iti, a(q)

Recovered population of cell i in age group a at time t Rt
i,a

Deceased population of cell i in age group a at time t Dt
i,a

SEIRD: Susceptible, Exposed, Infected, Recovered, Deceased; CA: cellular automata.
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where all individuals who reach the final Exposed phase

become Infected on the next time step. Equation (3d) states

that the Infected population in each subsequent phase of

Infected is equal to the Infected of the previous phase,

minus the recoveries and deaths that occur during that

phase. Equation (3e) states that the Recovered population

is equal to the Recovered population of the previous time

step, plus the sum of all new recoveries from each phase of

Infected, plus the entirety of all Infected that reach phase

Ti and do not die. The Dead Equation (3f) states that the

total deaths within a cell are equal to the deaths of the pre-

vious time step plus all new deaths occurring due to each

phase of Infected. The Susceptible Equation (3g) states that

the sum of all infection states within an age group is

always equal to one. The sum of all age group proportions

in A is also always one.

2.4. Geographical Cell-DEVS models

As discussed earlier, our research focuses on defining

advanced geographical models that consider the population

of each geographical area and uses a non-uniform topology

including non-uniform cells divided into age groups each

of which may have different infection characteristics and

behaviors. Traditional CA is not adapted to such kinds of

representation. Instead, Cell-DEVS32,52 allows the incor-

poration of these factors. The Cell-DEVS modeling metho-

dology allows the definition of cell spaces based on the

DEVS.33 Cell-DEVS describes an n-dimensional cell space

where each cell represents a DEVS atomic model. The cell

space containing the n cells is defined as a DEVS coupled

model where each cell is connected to its neighboring

cells, as in Figure 4.

When a cell receives an input, the local computing

function t is activated, which will compute the next state

for the cell. This discrete-event approach only considers

and computes active cells using a continuous time base. If

there is a change in the cell’s state, the change is trans-

mitted after a time delay d. In Figure 4(b), we can see how

a cell (center) will transmit information to the neighboring

cells using a von Neumann neighborhood. Cell-DEVS

accepts other neighborhoods and irregular topologies as

well (as discussed later). Compared to CA models, each

cell executes asynchronously only when activity is

detected, improving performance. Discrete-event models

use a continuous time base, making it simpler to deal with

a variety of time scales in the models. The delay functions

also allow defining complex time specifications at the

cell’s level, without relying in a centralized global clock

which can introduce timing management complexities in

the model.

Cell-DEVS inherits the modularity and hierarchical

modeling ability of DEVS. This allows for models to bet-

ter interact with other models, tools, data sets, and visuali-

zation tools, making it an easy and efficient method to

build complex cellular models. The DEVS is a formalism

used to model and simulate discrete-event systems. Cell-

DEVS can be used to specify and implement cellular mod-

els and facilitates their simulation and integration with

Table 2. SEIRD CA cell and state notation.

Parameter Symbol

Cell i’s set of neighbors, where a neighborhood relationship
consists of cell name and correlational weight. Index j iterates through i’s neighbors in V.

V

Cell i’s set of age group proportions. A
Proportion of cell j’s total population of age group b ([0,1]). Index b iterates through A. aj,b

The incubation rate of age group a in phase q of Exposed. εa(q)
The virulence rate of age group a in phase q of Infected. λb(q)
The mobility rate of age group a in phase q of Infected. μb(q)
The recovery rate of age group a in phase q of Infected. γa(q)
The fatality rate of age group a in phase q of Infected. δa(q)
The geographical correlation factor between cell’s i and j. cij

Number of phases in the Exposed state. Te

Number of phases in the Infected state. Ti

SEIRD: Susceptible, Exposed, Infected, Recovered, Deceased; CA: cellular automata.

Figure 4. Cell-DEVS model: (a) atomic cell schematics and (b)
two-dimensional Cell-DEVS neighborhood.
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other models. In this research, we use the Cadmium tool,34

which allows users to define model inputs using JSON, a

data format to store and transmit large amounts of human

readable data. JSON stores data in key-value pairs allow-

ing for the simple representation of neighborhoods, their

attributes, and their relationships. Cadmium allows the

user to include complex geographical inputs that load into

the model at runtime resulting in a flexible model that

allows for efficient rapid prototyping. Rapid prototyping

allows modelers to add new disease characteristics to

existing models, adapting them to fit their evolving needs.

These changes should be efficient and accessible to mode-

lers. This approach also enables one to incorporate addi-

tional critical parameters not known when the modeling

commenced. The Cadmium JSON library enables the user

to load cells from a JSON format file, allowing the user to

generate complex neighborhoods and state variables to be

run as scenarios of the model. This project generates a

Cadmium JSON cell space from geographical data and

state information before using it as an input to the model.

The 2016 Canadian census offers good data on populations

per geographical regions and is used in generating the

results of this model. The input JSON is generated by a

python script, which parses geographical census data from

input files and creates a cell space with neighborhoods cor-

responding to the geographical data, virus characteristics,

and initial pandemic conditions. For each geographical

area in the input data, a cell ID is created, a set of cell state

variables are initialized, and the neighborhoods of each

cell are constructed by a correlation factor.

SIR models have been enhanced through the use of

complex topologies based on geographical information.

Cárdenas et al.30 described a model for the spread of infec-

tious diseases among geographic regions. They describe

how individuals can become mobile and be in contact with

individuals in other regions, resulting in the spread of a

disease across regions. They show how geographical infor-

mation can complement the standard SIR model as well as

lead to better, more defined results. Cárdenas et al.30

described a geographical Cell-DEVS SIR model. Their

model is based on Zhong et al.16 to simulate the spread of

epidemics in a geographical-based 2D cell space. The

model has described that at time t, a given cell (i, j) has a

given population Nij. Each cell stores the proportion of

individuals in each state. The SIR model described in

Zhong et al.16 and translated to Cell-DEVS in Cárdenas

et al.30 uses a geographical correlation factor defined by

the shared boundaries as defined in the set of Equation (3).

The correlation factor is a method the model uses to link

two regions together to allow for interaction between their

populations. This is not necessarily the most accurate

method to model the flow of populations as it does not

take other key factors into account. For example, it does

not consider the density of population areas and workplace

hubs such as downtown Ottawa. Adding transportation

networks35 or human movement and mixing models36

shows how the addition of these factors would give more

accurate results. However, the shared border length corre-

lation method has been shown to produce accurate results,

and it is easily adaptable for geographical simulations.16

Being able to quickly adapt a model to receive new data is

crucial for rapid prototyping, and this model allows the

user to change both the geographical level they are simu-

lating as well as the disease characteristics. The equations

for the correlation factor between neighborhoods (i.e.

cells) are the ones shown and explained in Equation (2).

The model developed in Cárdenas et al.30 also includes

parameters that define hospital capacities and lockdowns

correction factors.

Cárdenas et al.30 extend the geographical model

described in Zhong et al.16 to incorporate deaths and the

ability for a cell’s recovered populations to become re-

infected.37,38 Davidson and Wainer39 further extend the

model with the ability for a cell’s population to move from

the Susceptible state to an Exposed state before becoming

Infected, developing the SEIRD model presented in section

3 that was used as starting point for the SEAIRD model

framework we propose in this research. When adding the

Exposed state, the rate at which a cell’s population would

move from Susceptible to Exposed remained unchanged.

But, when the population moved from Susceptible to

Exposed, a new value was considered, the incubation rate,

e. The Exposed state is an important addition to the model

as it includes the variable onset in infectiousness seen in

individuals. The model can simulate realistic incubation

period of COVID-19, showing the time it takes for some-

one to be exposed to when they show symptoms. The prob-

lem with this is that not all individuals develop symptoms

after exposure, thus the need for an asymptomatic state.

3. Baseline Cell-DEVS model

The model presented here is an evolution of a simple Cell-

DEVS model first presented in Cárdenas et al.,30 and is

based upon a discrete time SEIRDS CA model.16

3.1. Methodology, software, and hardware

To define the model, we follow the Cell-DEVS formalism.

We first define a Cell-DEVS SEIRD model as an extension

of the model in section 2.3. The model is implemented

using the Cadmium tool, a Cell-DEVS simulator imple-

mented using C++ programing language. The model can

be run in different operating systems including MacOS,

Ubuntu, and Windows. The models presented in this paper

were run on regular desktop and laptop computers with

16 GB RAM and Intel core i7. The simulation results were

available in the order of minutes (between 2 and 10 min

depending on the scenario), and the graphs were automati-

cally generated using Python scripts. The Cell-DEVS

Davidson et al. 9



model definition and implementation presented in this sec-

tion becomes the foundation of SEAIRD and SEVIRDS

models given in later sections.

3.2. Model definition

The SEIRD model includes new features, including a fatality

rate modifier when high levels of infection are present in a

cell’s population, and movement restriction effects that model

public health lockdown policies. Parameters for the model are

also chosen based on known characteristics of COVID-19

before using the model to generate simulation results.

Equation (3) was used to define the local computation

function of the Cell-DEVS model, with direct substitutions

to the fatality rate da(q), and the geographical correlation

factor cij to account for new functionality. To model the

effect of an over-capacity health care system in times of

high levels of infection, above a certain level of cell infec-

tion the baseline fatality rate is multiplied by a constant

factor F (called the fatality rate modifier). The fatality rate

modifier is greater than 1, while the product of F and the

fatality rate does not exceed 100%. Equation (4) defines

this modified fatality rate Fa(q) as a function of the base-

line fatality rate da(q), F, and the cumulative sum of all

Infected
P

Ii, t:

Fa qð Þ= da qð Þ if
P

Ii, t \ hospital capacity threshold
da qð Þ � F if

P
Ii, t ø hospital capacity threshold

�
ð4Þ

Equation (5) shows the cumulative sum of the propor-

tion of population in each of the Infected phases across all

age groups at a given time. Levels of infection within a cell

that cause model parameters to change are also referred to

as infection thresholds, such as the hospital capacity

threshold of Equation (4). Equation (6) can be used to

check whether a cell exceeds a target infection, always

bounded by the range [0,1]:

X
Ii, t =

X
b2A

q2 1, 2, ..., Tif g
½I t

i, b qð Þ� ð5Þ

The concept of infection thresholds is also used to

define movement restrictions. Instead of using a static geo-

graphical correlation factor cij as in Equation (2), new fac-

tors are introduced which decrease the amount of

correlation between cells when the infection thresholds

within each cell are exceeded. This serves to model the

restriction of mobility both within a cell’s own population

and the restriction of mobility between neighboring cells.

An infection correction factor kij is now multiplied with cij

to yield an infection dependent geo-correlation factor gij

as in the following Equation (6):

gij = cij � kij ð6Þ

For each cell, infection thresholds and correlation modi-

fiers are assigned to model each cell’s individual set of

lockdown policies. Each correlation modifier, also known

as a mobility restriction factor, is assigned a hysteresis

value so that mobility restriction policies remain in place

for some time after infections fall below the threshold at

which they were triggered. The nth mobility restriction

policy of cell i (Kn,i) is defined by the three variables:

infection threshold (tn), mobility restriction factor (mn),

and hysteresis factor (hn) in a map relationship as seen in

Equation (7). Cell i’s set of lockdown policies can then be

defined as a set of n mobility restriction policies, as seen

in Equation (8):

Kn, i = tn : (mn, hn)f g ð7Þ

Ki = t1 : (m1, h1), t2 : (m1, h2), . . . , tn : (mn, hn)f g
ð8Þ

Each neighbor pair’s combined set of lockdown poli-

cies (Ki and Kj) are then used to calculate a kij between

two neighboring cells. As individual cells always have a

single lockdown policy in effect (Kn,i), the policy with the

highest infection threshold that has been exceed between

the two cells is selected for their interaction. In other

words, the more restrictive policy in effect between two

cells is always used in their correlation, as demonstrated

by the edge case of a cell with closed borders (mn = 0),

where no infection should cross borders in either direction.

This selection of a single Kn,i for interaction between cells

i and j, demonstrated by Equation (9), yields the mobility

restriction factor Ki,j that is used to calculate the infection

correction factor ki,j. Note that a cell’s interaction with

itself simply selects the Kn,i with the highest infection

threshold in the set Ki that has been exceeded:

Kij = min (Kn, i,Kn, j) ð9Þ

A public health agency recommending mobility restric-

tions is, however, not enough to guarantee that all mem-

bers of the population follow them. The final piece of the

infection correction factor is a variable that describes the

proportion of population that do not follow any mobility

restrictions in effect. The disobedience factor d describes

the portion of a cell’s population that are unaffected by

any Ki,j selected for cell interactions. The infection correc-

tion factor for the interaction between two cells i and j as

used in Equation (6) can be calculated using the disobe-

dience factor and the mobility restriction factor Ki,j

selected for i and j as in Equation (10). The extended

SEIRD Cell-DEVS model simply uses the set of Equation

(3) with the substitutions of gi,j in place of ci,j, and Fa(q)

in place of da(q):

kij = d + 1� dð Þ � Kij

� �
ð10Þ
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The model parameters were defined using known dis-

ease data for COVID-19. The mean incubation rate of

COVID-19 used was 5.4 days following a log-normal dis-

tribution.40 This distribution was used to define both

TE = 14 and the incubation rate e(q). The mean sympto-

matic infection length of COVID-19 was considered to be

10 days, and it was used to develop an infection profile of

TI = 12 days, where the recovery rate g(p) controls the

proportion that recover in each phase of Infected.41 The

virulence and fatality rates of the model were varied to

match infection case data during experimentation.

3.3. Model implementation

The extended model is implemented in Cadmium, defining

atomic cell models of type geographical_cell coupled to

form a cell space. Each geographical cell uses a cell ID

(C), a state object that contains state variables (S), and a

vicinity object that describes the structure of the neighbor-

hood (V). The relationships between the classes involved

can be seen in the UML diagram of Figure 5.

The infection state variables S, E, I, R, and D computed

in the local transition function are discretized per

Equations (11a)–(11e). The precision divider P is used to

discretize each state variable, and the use of square brack-

ets denotes a round operation:

DSt
i, a =

PSt
i, a½ �

P
(a)

DEt
i, a qð Þ= PEt

i, a(q)½ �
P

(b)
with q 2 ½1, 2, . . . , Te�
DIt

i, a qð Þ= PIt
i, a
(q)½ �

P
(c)

with q 2 ½1, 2, . . . , Ti�
DRt

i, a =
PRt

i, a½ �
P

(d)

DDt
i, a =

PDt
i, a½ �

P
(e)
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ð11Þ

The local computation function implemented in the

geographical_cell class is described by the pseudocode of

Table 3. The algorithm begins by allocating a state object

new in line 1, which will be used to store the new values

of cell state variables. Lines 2 through 8 calculate the new

state variables for each age group based on the cell’s cur-

rent state object s and store the result in new. These six

lines implement a cell’s local computation function at a

high level (Equations (3a)–(3g)). The resulting state object

is returned in line 9 to be written as the new cell state.

The method new_exposed() (line 3, Table 3) described

in the local computation function is responsible for calcu-

lating the infective interactions between all neighboring

cells. This method corresponds to Equation (3a) of the

local computation function with the extensions defined in

this section, including the calculation of the infection cor-

rection factor ki,j of Equation (6). The calculation of new

exposures for an age group b of a single cell i can be seen

in the pseudocode in Table 4. The algorithm begins by cal-

culating the movement correction multiplier of cell i, using

the movement correction function which scans the set of

movement restriction factors ki and chooses the most suit-

able factor to apply. The infection correction factor gi is

calculated in line 2 by considering the proportion of dis-

obedience d that will follow the movement restriction pol-

icy and the mobility restriction of the ki selected. In line 3,

the variable infStrength is declared and used to sum how

much infective contact is made with cell i from each of its

neighbors. We then iterate over all neighbors of cell i,

summing the amount of infective contact made with all

neighbors. This is done by first calculating the infection

correction factor of the neighbor cell j, and then choosing

the more restrictive correction factor between i and j to

describe their interaction (lines 5–7).

Next, the algorithm calculates the infective potential of

each age group in neighbor cell j by summing over all

infection phases the proportion of population with phase q

multiplied by their mobility rate (m) and their infectivity

rate (l) (line 11). The total infective weight of the age

group is then calculated in line 14 as a function of the pro-

portion of population in that age group, the infective

Figure 5. Geographical cell model UML class diagrams.
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potential of the age group, the infection correction factor

kij, and the geo-correlation factor cij. The algorithm con-

cludes in lines 17 and 18 by multiplying the Susceptible

population in age group b by the sum of infective strength

of the neighborhood and returning the result.

The baseline model was validated and calibrated using

real-world data of the province of Ontario, Canada, includ-

ing 34 Public Health Units (PHUs), as shown in the map

presented in Figure 6.42 The simulation results were com-

pared to the reported case data in these regions for the

period of 1 January 2020 to 2 February 2021. The case

data used were reported by the Government of Ontario, in

the form of confirmed new cases per date and their result-

ing outcome.43

The SEIRD model predicts the number of active cases

present at any time but does not report the data in the form

of new cases per day. To calibrate and validate the model

results, the confirmed cases were converted to active

infections and cumulative fatalities over time. Each con-

firmed case was assumed to follow the 10 days mean

infection length of COVID-19 when converting case

reports to active cases. Fatal outcomes were still consid-

ered to produce contagious individuals with an active

infection length of 10 days. The geographical boundary

used in defining the cell space for the Ontario PHUs was

provided in Ontario GeoHub.44 The PHUs of Ontario

were placed in five groups based on their location: Central

East, Central West, Southwest, East, and North. A visuali-

zation of the case data over for these groups is shown in

Figure 7. The default experimentation parameters used in

experimentation as well as the specific structure of the

cell state variables can be found at https://github.com/

SimulationEverywhere-Models/Geography-Based-SEIRDS.

We examined the effect of movement restriction policies in

the Toronto PHU in terms of the movement correction fac-

tor’s infection thresholds, hysteresis values, and mobility

multipliers. Without movement restriction policies to limit

infection spread, most of the population in all 34 cells

become rapidly infected in a severe trajectory.

Figure 8 shows simulation data compared to the

reported active cases. This demonstrates an infection

threshold (ki) that is too high, resulting in movement

restrictions that are applied later than what is represented

in the case data. The predicted active infections would

have been more accurate had the infection threshold of the

limiting policy been in effect at half the number of active

infections.

Using an infection threshold 50% lower than the simu-

lation of Figure 9, the movement restriction policy comes

Table 3. Geographical cell local computation function.

Input: none. Output: new state (struct seird)

1: new = seird()
2: for(each age group a in s.age_groups)
3: new.E.at(a) = new_exposed(a,s)
4: new.I.at(a) = new_infected(a,s)
5: new.R.at(a) = new_recovered(a,s)
6: new.D.at(a) = new_dead(a,s)
7: new.S.at(a) = 1 − new.E.at(a) − new.I.at

(a) − new.R.at(a) − new.D.at(a)
8: endfor
9: return new

Table 4. New exposures algorithm.

Input: age segment b, current state si. Output: new exposed

1: μi = movement_correction(Ki, infected_i)
2: gi = d + (1 − d)*μi
3: infStrength = 0
4: for(all neighbors j of cell i)
5: μj = movement_correction(Kj, infected_j)
6: gj = d + (1 − d)*μj
7: gij = min(gi, gj)
8: for (all age groups a in cell j)
9: iSG = 0;
10: for (q in infected phases)
11: iSG += sj.λ(a,q)*sj.μ(a,q)*sj.I(a,q)
12: endfor
13: gij = kij*cij
14: infStrength+ = (Nj.at(a)/Nj)*iSG*gij
15: endfor
16: endfor
17: new_exposed = si.S.at(b)*infStrength
18: return new_exposed

Figure 6. PHUs of Ontario.42
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into effect at a more accurate level of infection, as shown

in Figure 9.

However, these restrictions are lifted too soon at day

170 of the simulation, and a second wave begins while the

case data indicate a continual fall of cases at this time. This

indicates that not enough hysteresis was used in the domi-

nant infection correction factor, and that the hysteresis fac-

tor should be increased such that the number of active cases

will fall to a lower level before movement restrictions are

lifted. A larger hysteresis factor results in a better match of

the Toronto PHU infection, shown in Figure 10.

After these preliminary tests, we conducted a series of

simulations and compared the model results to the known

case data to calibrate the parameters of the model. The

virulence rate and infection correction factors were found

to be the most influential determinants of model accuracy,

which was improved by increasing the virulence rate above

the default level.

While the first wave of the COVID-19 pandemic in

Ontario was the strongest in Toronto, other regions further

away also had significant levels of infection relative to

their total population size, namely, the Ottawa and

Windsor Essex PHUs. A single infection source beginning

in the Toronto cell was insufficient in producing the first

Figure 7. Ontario PHU Case Data from December 2020 to February 2021: (a) Central East; (b) Central West; (c) Southwest; (d)
East; (e) North.

Figure 8. Toronto pandemic, movement restriction factor #1.
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wave infection curves far away from Toronto, so a smaller

amount of infection was added to the initial conditions of

Ottawa and Windsor Essex which also had considerable

levels of first wave infection. Figure 11 shows the results

in the regions surrounding Toronto, Ottawa, and Windsor

Essex.

The simulations in these regions do track the general

shape of the case data, but some predictions significantly

overshoot case estimation. Toronto has the highest overall

accuracy as the model parameters were initially developed

to match Toronto before considering more regions. Every

cell is using the same set of infection correction factors,

which could be a significant source of error because each

region’s population density and human characteristics are

region specific by nature. In fact, in the case of regions

directly adjacent to Toronto, the level of simulation error

is proportional to the population density of each region.

The population density of the Peel PHU is 25% that of

Toronto. Similarly, the population density of York is

11.74% of Toronto, and Durham is 5.46% of Toronto.

Given that Toronto has both the highest population density

and the highest model accuracy, and that Durham has both

Figure 9. Toronto pandemic, movement restriction factor #2. Figure 10. Toronto pandemic, movement restriction factor #3.

Figure 11. Pandemic in (a) Toronto; (b) Peel; (c) York; (d) Durham; (e) Ottawa; (f) Windsor Essex.
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the lowest population density and accuracy, a population

density correction should be investigated in the future.

4. Extending the model: asymptomatic
individuals

The validated baseline models presented in section 3 were

extended to include asymptomatic individuals, and then

incorporated into a geographical SEAIRD model that can

be used for conducting experiments with different popula-

tion scenarios as will be shown in this section. Each model

shares a defined asymptomatic rate where a given propor-

tion of the Exposed population move to either Infected or

Asymptomatic. We use the methodology, software, and

hardware explained in section 3.1.

4.1. Model definition

Our proposed geographical SEAIRD model is based on

Cárdenas et al.30 and Davidson and Wainer39 by adding an

Asymptomatic state (A) as depicted in the diagram in

Figure 12, which shows that a cell’s population starts in a

Susceptible state before becoming exposed. From there,

the Exposed population will move to either Asymptomatic

or Infected. If Asymptomatic, they will eventually become

Recovered, but if an individual is Infected, they can move

to either Recovered or Deceased.

The dotted line in Figure 12 from Recovered to

Susceptible shows how a population can become re-

susceptible after recovery. Each transition is based on their

defined time behavior and described using the delay func-

tion. Exposed, Infected, Asymptomatic, and Recovered

states have a defined set of days that a population can be

within the state described by Te, Ti, Tai, and Tr. Each state

has a defined state transition that occurs at each day within

the state. The days within each state set of days are

described by q = {1, 2, ., Tstate}. For example, At
i, a(q),

describes the proportion of asymptomatic cases for the age

group a in cell i at Asymptomatic state q = {1, 2, ., Tai},

at time t.

Our model uses m unique geographical cells. The pro-

portion of a population’s age group a found in each state

is described by: St
i, a,Et

i, a,At
i, a, I

t
i, a,R

t
i, a, andDt

i, a, where i is

the cell being described at time t. The state transitions are

built using the Cell-DEVS transition and delay functions,

which implement Equations (11a)–(11l). Parameter defini-

tions that vary from the Cell-DEVS SEIRDS model of sec-

tion 3 are given in Table 5 to complement the location

transition function equations.

Figure 12. SEAIRD state diagram.

Table 5. SEAIRD model new definitions.

Parameter Symbol

Asymptomatic population of cell
i in age group a at time t, with phase q

At
i,a(q)

The asymptomatic infection rate ’
The length of the Asymptomatic Infected state Tai

SEAIRD: Susceptible, Exposed, Asymptomatic, Infected, Recovered,

Deceased.
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Equation (12a) is based on Equation (3a), and it is used

to calculate the proportion of newly Exposed population.

This is a result of the Susceptible population in contact

with either the entire Infected population or the

Asymptomatic population of neighboring cells j. The first

sum in the second part of the equation calculates the pro-

portion of a cell’s Susceptible population exposed to an

infectious individual (I) and the second sum, the propor-

tion exposed to an asymptomatic individual (Ai). The

symbol A defines the set of age groups in cell j, where

each age group is represented by b. Each cell’s population

represented by the subscript b, which represents Nj divided

into age groups. As before, each cell is related to its neigh-

bor by a geographical correlation factor cij that describes

the impact each neighboring cell has on a given cell,

including virulence and mobility rates a given cell’s popu-

lation has with its neighbors. Finally, kij defines a correc-

tion factor between cells i and j, applied to the infectious

half of the equation to simulate different behavior for

infectious and asymptomatic populations: we consider that

asymptomatic individuals to be more carefree; thus, they

will expose more individuals. The correction factor kij is

defined using the models disobedience factor d, where

kij = min(ki,kj). The correction for individual cells i and j

is defined as kcell = d + (1 2 d)*mc. The infection cor-

rection factor mc is defined in the model as a function of

the infection threshold (ITH) that triggers a specific mobi-

lity correction factor (cm) and a hysteresis level (H).

Equation (12b) describes how the Exposed population

transitions to the Infected or Asymptomatic state. The

equation defines the Exposed in phase q as equal to the

exposed of the previous day multiplied by 1 2 ea(q 2 1),

where ea (q 2 1) defines the incubation rate for an age

group a for state q 2 1. The incubation rate defines the

probability of the population moving to Infected or

Asymptomatic. Equation (12c) describes the new Infected

population that will occupy day 1. The equation considers

the Exposed population from all phases and all age groups.

As defined above in Equation (12b), a proportion of the

Exposed population moves to Infected or Asymptomatic

depending on the incubation rate ea. The rate at which the

Exposed population becomes either Infected or

Asymptomatic is defined by asymptomatic rate u. Thus,
for the case of new Infected population, the rate is defined

as (1 2 u). Equation (12d) describes the portion of the

Infected population that moves to the next phase. The

infectious population for phase q equals the population of

infectious in the previous phase, q 2 1 minus the popula-

tion who move to either Recovered or Deceased. The por-

tion of the population that moves to the Recovered or

Deceased states is defined by recovery rate g and fatality

rate f , respectively.

Equations (12e)–(12f) define the asymptomatic state

behavior following the same rules described in Equations

(12c) and (12d). Equation (12e) defines the proportion of

the exposed population that moves to the asymptomatic

state (here, the asymptomatic population rate remains as

u). Equation (12f) follows the same rules defined when

asymptomatic cases either move to the next phase q, recov-

ered, or deceased.

Equation (12g) describes the proportion of infectious or

asymptomatic populations that become recovered. The

16 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



equation defines that the total number of recoveries is

equal to the total number of recoveries from the previous

day plus the newly recovered population. The current day

recoveries are calculated by taking the proportion of infec-

tious and asymptomatic infections that move to the recov-

ered phase using rate g. Finally, the equation checks for

the population that is on the final day of either infectious

or asymptomatic, if their population does not move to the

deceased state, they are added to the recovered state.

Equations (12h) and (12j) are used only if re-susceptibility

is not enabled. Once the Recovered population reaches the

final day of recovery, they remain there for the rest of the

simulation time. Equation (12i) is an equation only used

when re-susceptibility is enabled, that is, patients who are

recovered will go through each day of recovery, when they

reach the final day of recovery, the population will move

back into the susceptible population pool where they can

be re-exposed.

Let us consider fa(q) as the fatality rate of infected

phase q for age group a; la(q) their virulence; ma(q) their

mobility rate; ea(q) the incubation rate; ga(q) the recovery

rate and u as the asymptomatic infection rate. As defined

in section 3, cij is the geographical correlation factor

between cells i and j; kij is the correction factor applied to

both cells i and j to model movement restriction and dis-

obedience. Equation (12k) is used to calculate the propor-

tion of Deceased at a time t. The proportion of Deceased

next day is the total of current Deceased plus the sum of

the Infected population that died the day before. New

Deceased is equal to the newly deceased population mov-

ing from the infectious state multiplied by the fatality rate.

The Deceased transition does not consider asymptomatic

infections as they do not lead to deaths. Equation (12l) is a

‘‘special equation’’ needed for the integrity of the model.

Since we know that any given population starts in the sus-

ceptible state (excluding the starting cell), then the popula-

tion that are not in any other state should remain

susceptible.

4.2. Model implementation

The model is implemented as a coupled Cell-DEVS where

the cell space represents a geographical region, and each

cell (of irregular topology) is a district in the city/province.

It relates to its neighboring cells using an irregular topol-

ogy. Each cell consists of a cell ID, a set of state variables,

a model configuration, and neighboring cell’s correlation

factors.

We implemented these equations using the baseline

model in section 3 and included the equations in this sec-

tion. When all the geographical cells are defined, they are

placed into a top level coupled cell model called geogra-

phical_coupled, with configuration as seen in Figure 13.

At runtime, geographical_coupled is initialized using the

cell’s data provided from in a JSON input file (using the

methods described in the top model class cadmium::cell-

devs::cells_coupled \T,C,S,V. ); Figure 13 shows how

this coupled cell model is defined. At the bottom level of

Figure 13, the three structures define the inputs to the geo-

graphical cells.

The SEAIRD structure defined the state variables that

will hold the population as well as the infection correction

factors and the disobedience factor (Figure 14). The simu-

lation configuration structure defines the attributes used to

characterize the disease being modeled including recovery

rates, fatality rates, and asymptomatic rates (Figure 15).

The vicinity structure holds the information that defines

the correlation factors between two cells (geographical_

cell). The three structures are read in at runtime to create

the single parameterized model geographical_cell. The col-

lection of geographical cells and their relationships define

the geographical coupled model.

Each cell contains the relevant information defined in

the SEAIRD configuration file. At runtime, each cell has a

unique population which is divided into described age

groups. Each cell’s population will then be divided into

one of the six states. If modeling the beginning of a pan-

demic, a single cell will hold the initial case(s) and the

remaining cells will be 100% susceptible. At t = 0, the

proportion of a cell’s population in each state is defined in

by the values provided in the SEAIRD structure. Defining

the SEAIRD structure at runtime with user-defined inputs

allows users to choose the point of time they want to start

a model (if they are interested in the middle of a pandemic,

they can tailor the input values to hold the number of indi-

viduals in each state at that time).

In Figure 15, the simulation configuration is declared;

these values are used to change the ways a population

transferred from one state to another. These structures

Figure 13. SEAIRD coupled cell diagram.

Davidson et al. 17



define the geographical_cell atomic model presented

in Figure 13. A geographical_cell atomic model is

defined for each geographical cell in the model, these

cells make up a geographical_coupled model where

each cell is connected by a correlation factor. Finally,

this geographical_coupled model is defined by meth-

ods found in class cadmium::celldevs::cells_coupled

\T,C,S,V . .

4.3. Simulation results

The SEAIRD results presented in this section are gener-

ated using source data from the 34 Ontario PHUs where

the population is generated using census data.45 A config-

uration file is built using a geopackage Geopandas46 to

determine shared boundaries (correlation factor) between

each PHU. Figures 16–19 were created using the graphing

tools in Cárdenas et al.,30 R,47 and Plotly.48 The imple-

mentation of the model is available at https://github.com/

SimulationEverywhere-Models/Geography-Based-SEAI

RDS. The results presented in this section show and

compare the effect the asymptomatic state has when

added to the simulation. The parameters used in this

study are shown in Table 6.

We start with the population of each geographical area.

We then use a vector of values to represent the proportion

of the total population in each age group. Age groups are

an abstract set of values defined by the modeler; in our

case, individuals 0–12, 1319; 20-44; 45–65, and over

65 years old. Disobedience follows the same format as age

groups where the values in the vector represent the propor-

tion of each age group that is disobedient to lockdowns.

These values were estimated using data gathered from.49,50

The asymptomatic rate is the proportion of the exposed

population that become asymptomatic (the rest become

infectious). The virulence rate represents the rate at which

the disease spreads; the value represents the amount of age

groups population in contact with the infected population

per day of the infection. Incubation rate is the proportion

of the exposed population that become infectious or

asymptomatic, defined using a 14-day profile where each

day a proportion of the exposed population will move to

the next state.39 Mobility rates define the freedom of the

population to move (1.0 mobility rating means the

struct seaird {
std::vector<double> age_group_proportions;
std::vector<double> susceptible;
std::vector<std::vector<double>> exposed;
std::vector<std::vector<double>> infected;
std::vector<std::vector<double>> asymptomatic;
std::vector<std::vector<double>> recovered;
std::vector<double> fatalities;     
std::unordered_map<std::string,hysteresis_factor> hysteresis_factors;
double population;
std::vector<double> disobedient; 

Figure 14. SEAIRD configuration code.

struct simulation_config {
int prec_divider;
using phase_rates = std::vector<std::vector<double>>;
phase_rates virulence_rates;
phase_rates incubation_rates;
phase_rates recovery_rates;
phase_rates mobility_rates;
phase_rates fatality_rates;
double asymptomatic_rates;
bool SIIRS_model = true;

};

Figure 15. Simulation configuration.
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population can move freely). Mobility rates are defined for

each age group for each day of the infection; it is assumed

that mobility rates are not restricted at all at the beginning

of the pandemic. Recovery rates define the proportion of

an age group infected population that will recover each

day of the infection. Fatality rates define the proportion of

an age group–infected population that will move to the

deceased state on each day. Infection correction factors

describe the proportion of the population that needs to be

infected before a lockdown is put in place, described in

Equations (7)–(11) where the mobility restriction factor

reduces the mobility of a cell by the given value.

Virulence rates, recovery rates, fatality rates, and infec-

tion correction factors were informed by data gathered at

Public Health Ontario.3 The values were evaluated and

slightly modified; the final values shown in Table 6 pro-

vided the most accurate results in testing.

Figure 16(a) shows the simulation results with 0%

asymptomatic cases. The results show the steady rise of

exposed individuals (orange line), and then 1–14 days

after their exposure, they become infected (red line). The

results show how the initial wave rises and settles in a

little over 350 days with approximately 8% of the

population becoming infected. Next, we studied the effect

of an 80% asymptomatic rate using the same parameters.

Figure 16(b) shows a lower rate of infectious carriers and

a higher rate of asymptomatic carriers.

With this higher rate of asymptomatic carriers, the total

exposed population reaches a higher peak than it had with-

out asymptomatic cases (approximately 110% more expo-

sures occur). This higher exposed count is due to that the

different asymptomatic and infectious carriers have on the

susceptible population. Since the asymptomatic carriers

travel more than the infectious carriers, more of the popu-

lation are exposed to them, causing higher overall infec-

tions. The initial curve rises and settles in approximately

250 days; this is 100 days less than the model with no

asymptomatic infections. This shows that the asympto-

matic carriers expose the susceptible population at a much

higher rate than the model showing no asymptomatic

cases. We can see that approximately 14% of the popula-

tion become asymptomatic carriers with an additional 4%

being infectious carriers. Although in this case, we can see

higher overall rates of infections, the asymptomatic

Figure 16. SEAIRD model (a) 0% Asymptomatic and (b) 80% asymptomatic.

Table 6. Test case configuration.

Parameter Value

Population Varies per cell based on census data32

Age groups [0.216, 0.279, 0.268, 0.193, 0.044]32

Disobedience [0.29, 0.25, 0.23, 0.21, 0.24]33,35

Asymptomatic rate Varies per simulation (see Figures 6–8)
Virulence 0.1 across all states and age groups
Incubation 14-day profile26

Mobility rates 1.0 across all states and age groups
Recovery rates 0.07 across all states and age groups
Fatality rates 0.005 across all states and age groups
Infection correction
factors (lockdown)

0.001:[0.60, 0.0008], 0.005:[0.50, 0.003], 0.01: [0.40, 0.005],
0.03: [0.30, 0.015], 0.08: [0.20, 0.0005], 0.15: [0.1, 0.08], 0.20: [0.01, 0.12]
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infections are less lethal, leading to less deaths and more

recoveries. We see this difference when analyzing a single

neighborhood cell in Figure 17.

Figure 17(a) shows a single cell and how its population

transitions through the states with a 0% asymptomatic rate.

It should be noted the cell is still exposed to its neighbor-

ing cells. When examining the graph at day 133, we can

see a cumulative exposed population of 7.1%, cumulative

infectious population of 5.65%, cumulative fatalities of

0.4%, and since we have no asymptomatic infections, an

asymptomatic infected population of 0%. If we then com-

pare this to a graph showing the curves with an asympto-

matic rate of 80% in Figure 17(b), we can see that at day

133 we have a cumulative exposed population of 27.7%,

cumulative infectious population of 4.7%, cumulative

fatalities of 0.02%, and an asymptomatic population of

19.4%. We can see that the exposed grown to 27.7% from

7.1%. This 20% increase can be accredited to the asymp-

tomatic carriers spreading the disease to the surrounding

neighbors at a higher rate than the infectious population.

We can also see that we have fewer deaths, linked to the

fewer infectious cases.

We can now simulate the effect an ‘‘invisible’’ popula-

tion of disease carriers may have on a pandemic combined

with the advantage of having a model that includes geogra-

phical aspects. If 80% of total COVID-19 cases are asymp-

tomatic and the case counts show 5% of a population are

infected, we can expect that 20% more of the population is

also infected but not showing symptoms and not aware

they are infected. These asymptomatic individuals will be

spreading the disease to the healthy population, causing

rises in the number of exposed individuals, resulting in

more infectious. Although a high asymptomatic rate will

lead to more overall cases, these cases are not as deadly;

asymptomatic cases do not show symptoms, and in the

case of COVID-19, they do not lead to death. If we were

to model a disease where asymptomatic cases could lay

dormant for years and later lead to death, we would see

more interesting fatality results.

5. Rapid prototyping of vaccination effects

The baseline Cell-DEVS model defined in section 3 was

also extended to model the effect of population vaccina-

tion, providing a mechanism for experimentation.

Vaccines decrease the likelihood of infection and death

from SARS-CoV-2, but do not provide full immunity from

the disease. The addition of the vaccinated state makes this

model an SEVIRDS model, where re-susceptibility to dis-

ease is specified by the model’s user. We modeled vacci-

nation using a two-dose schedule like the one seen the

global distribution of mRNA COVID-19 vaccines from

Pfizer or Moderna.51 Three classes of vaccination status

for individuals exist concurrently within this model:

unvaccinated, vaccinated with dose 1 only, and vaccinated

with two doses. Infections in the unvaccinated class of

population are implemented using the Cell-DEVS SEIRD

model defined in section 3, while the other two classes of

vaccinated population are implemented using a modified

version. We used Thomas et al.51 in which the vaccines do

not provide statistically significant immunity to infection

with SARS-CoV-2. Vaccinated populations were modeled

using a modified Susceptible state, having increased resis-

tance to infection and fatality with each sequential dose of

vaccine. The model can be easily extended to include third

or fourth doses.

5.1. SEVIRDS model definition

The three classes of vaccination status are modeled using

concurrent SERID models with a shared Deceased state,

and flow of population from less vaccinated states to more

vaccinated states. Individuals are only considered for vac-

cination if they are not in an Exposed, Infected, or

Figure 17. Single Cell SEAIRD (a) 0% Asymptomatic and (b) 80% Asymptomatic.
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Deceased state. A state diagram for the model’s population

is given in Figure 18, where the bold text indicates the

name of the state, and the text below each name is the

state symbology used in the local computation function’s

equations.

All states that end with the letters ‘‘NV’’ specify the

non-vaccinated population. Similarly, all states that end

with ‘‘V1’’ specify the population that has received only

one dose of vaccine, and all states that end with ‘‘V2’’

specify the population that has received two doses of vac-

cine. Members of the Susceptible_NV and Recovered_NV

states are considered eligible for vaccination, and transi-

tion to state Suscetible_V1 after vaccination according to

the population vaccination rate of dose 1 (va,d1). Members

of the Susceptible_V1 and Recovered_V1 states are also

considered eligible for vaccination, and transition to state

Suscetible_V2 after vaccination according to the popula-

tion vaccination rate of dose 2 (va,d2(q)). The timing of

vaccinations within the states Recovered_NV,

Susceptible_V1, and Recovered_V1 is restricted only to

the later phases of these states so that a minimum recov-

ered time before vaccination, and a minimum second-dose

interval is implemented. Members of the vaccinated states

have increased protection from infectious exposure speci-

fied by immunity rates (ia,d1, ia,d2), and have incubation

rates, recovery rates, and fatality rates that differ from the

non-vaccinated population. When re-susceptibility is

enabled, individuals enter the final phase of susceptibility

in their vaccination class when they become susceptible

again, meaning that in the case of Susceptible_NV and

Susceptible_V1, individuals who enter these states as re-

susceptible are immediately eligible for vaccination. The

parameters that are specific to the vaccinated states and

are new to the SEVIRDS model are given in Table 7. The

parameters that were defined in the base Cell-DEVS

model but now have vaccination status dependency are

given in Table 8.

The equations that govern the Vaccinated states of

dose 1 and dose 2 are given in the set of Equation (13),

which describe these states for a collection of cells

M = {m0, m1, ., mi} at time t. Equations (13a)–(13d)

describe the phases of the Vaccinated_D1 state, and

Equation (13e)–(13g) describe the phases of the

Vaccinated_D2 state. Age group-specific variables are

indexed by the subscript a character, and the cell for

which the equations are applied is specified by the sub-

script i character as previously defined in sections 2, 3,

and 4. The symbol Ei represents the neighbor impact fac-

tor, defined later in Equation (14), and is a variable that

represents the total strength of infectious contact cell i has

with all neighbors. Ei is used to simplify the representation

of the new exposures and performs the same functions

seen in Equations (3a) and (11a) but for the SEVIRS

model. The vaccinated set of Equation (13) assumes that

the length of the Recovered_D1 state is greater than the

Vaccinated_D1 state (Tr,V1 ø Td1).

Equation (13a) defines the new Vaccinated_D1 (q = 1)

with their first dose as the sum of the Susceptible_NV and

Recovered_NV populations that receive their first dose.

Both the Susceptible_NV and Recovered_NV populations

are vaccinated at the age group–specific rate of va,d1,

where the Recovered_NV are only vaccinated after having

been recovered for a minimum of mdvr days. Equation

(13b) defines how the Vaccinated_D1 population advances

Figure 18. SEVIRDS model infection state diagram.
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through the phases of Vaccinated_D1 before they become

eligible to receive their second dose at q = mTd1. It states

that the Vaccinated_D1 population in phases q = 2 to

q \ mTd1 is equal to the Vaccinated_D1 population on

the previous day, minus those that become Exposed_D1

according to their immunity rate ia,V1(q 2 1) and the level

of infectious neighbor contact in Ei. Once the

Vaccinated_D1 populations reach phase q = mTd1, they

are vaccinated at a rate of va,d2(q 2 1), indicated in

Equation (13c), where (1 2 va,d2(q 2 1)) is the proportion

of Vaccinated_D1 that do not receive dose 2 and will

advance to the next phase of Vaccinated_D1. This

equation states that the Vaccinated_D1 populations in all

phases q ø mTd1 are equal to the Vaccinated_D1 popula-

tion of the previous day, minus those that get vaccinated

with dose 2, and those that become exposed. Equation

(13d) defines the Vaccinated_D1 population in the last

phase of Vaccinated_D1, where individuals may enter this

state from either Vaccinated_D1(q = Td1 2 1) or from the

last recovered phase Recovered_D1(Tr,V1). Specifically,

the Vaccinated_D1(Td1) is equal to the Vaccinated_D1

population from the previous phase that do not receive

dose 2, plus the newly re-susceptible population from

RV1t
i, a(Tr,V1) that do not receive dose 2, minus the

Vaccinated_D1 from the previous phase that become

Exposed_D1. The new Vaccinated_D2 population (q = 1)

is defined in Equation (7e) as the sum of all

Vaccinated_D1(Td1) that do not become exposed, the

Vaccinated_D1 population that gets their second dose

early (q ø mTD1), and the Recovered_D1 that gets their

second dose (q ø mdvr). Note that all population mem-

bers in the last phase Vaccinated_D1(Td1) become

Vaccinated_D2(1) or Exposed_D1(1) on the next day.

Equation (7f) states that the Vaccinated_D2 population in

phases q = 2 to q = Td2 2 1 is always equal to the

Vaccinated_D2 of the previous phase that do not become

Exposed_D2. Finally, Equation (7g) defines the population

in the last phase of Vaccinated_D2 (q = Td2) as the sum of

Vaccinated_D2(Td2) and Vaccinated_D2(Td2 2 1) from

the previous day, minus the new Exposures in the popula-

tions from these two phases, plus the re-susceptible enter-

ing Vaccinated_D2(Td2) from the last phase of

Recovered_D2:

Table 7. Vaccinated state-specific parameters.

Parameter Symbol

Number of phases in Vaccinated_D1 state Td1

Number of phases in Vaccinated_D2 state Td2

Minimum number of days Vaccinated_D1 waits before eligible for dose 2 mTd1

Minimum number of days Recovered_NV and Recovered_V1 waits before vaccine eligible mdvr

Vaccination rate for dose 1 va,d1

Vaccination rate for dose 2 per phase va,d2(q)
Immunity rate of Vaccinated_D1 per phase ia,d1(q)
Immunity rate of Vaccinated_D2 per phase ia,d2(q)

Table 9. Geographical cell local computation function
for SEVIRDS model.

Input: none. Output: new state (struct sevird)

1: new_state = sevirds()
2: for(each age group a in current_state.age_groups)
3: ACD[0] = current_state.NVAC.at(a)
4: ACD[1] = current_state.VAC1.at(a)
5: ACD[2] = current_state.VAC2.at(a)
6: compute_vaccinated(ACD)
7: compute_EIRD(ACD)
8: ACD[0].S = 1−ACD.[1]S−ACD.[2]S

− total_EIRD(ACD)
9: new_state.NVAC.at(a) = ACD[0].new

10: new_state.VAC1.at(a) = ACD.[1]new
11: new_state.VAC2.at(a) = ACD.[2]new
12: endfor
13: return new_state;

Table 8. Vaccinated state-specific parameters.

Parameter Non-vaccinated Vaccinated dose 1 Vaccinated dose 2

Incubation rate εa(q) εV1a(q) εV2a(q)
Recovery rates γa(q� 1) γV1a(q� 1) γV2a(q� 1)
Fatality rates Fa(q) FV1a(q) FV2a(q)
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i, a 1ð Þ= va, d1 � St

i, a

� �
+ va, d1 �

PTr

q=mdvr

Rt
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" #
(a)

V1t + 1
i, a qð Þ=V1t
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i, a q� 1ð Þ
� �

� 1� va, d2 q � 1ð Þð Þ � V1t
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� �
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if Tr,V1 ø Td1
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The new exposures in this SEVIRDS model are calcu-

lated as the sum of exposures resulting from all age groups

and classes of vaccination status interacting with the

Susceptible populations: Susceptible_NV, Susceptible_V1,

and Susceptible_V2. The mobility rate per age group,

vaccination status, and the per-cell movement restriction

policies make these population interactions non-heteroge-

neous. The neighbor impact factor Ei used in calculating

new exposures is shown in Equation (14) to simplify the

exposed set of Equation (15), where the symbols used in

the calculation of Ei are defined in the baseline Cell-

DEVS model, with the exception that the mobility rates

(m) and the virulence rate (l) are now vaccination depen-

dent, having a ‘‘V1’’ or ‘‘V2’’ following these symbols for

vaccination states. The calculation of Ei sums the amount

of infective interaction cell i has with the infected of all

age groups in its neighborhood in all three classes. The

calculation of the exposed populations in all three classes

of vaccination status is given in the set of Equation (15).

Equations (15a)–(15c) define the new exposed with phase

q = 1 in the three classes. Equations (15d)–(15f) define

the exposed states for all phases except the first:

Ei =
X

j 2 V
gij

� �
�
X

b2A
aj, b

� �
�

PTi,V1

q= 1

mV1b qð Þ � lb qð Þ � IV1t
j, b qð Þ

� �
+

PTi,V2

q= 1

mV2b qð Þ � lb qð Þ � IV2t
j, b(q)

� �
+

PTi

q= 1

mb qð Þ � lb qð Þ � I t
j, b(q)

� �

2
6666666664

3
7777777775

2
6666666664

3
7777777775

ð14Þ

Equation (15a) states that the new Exposed_NV popu-

lation in age group a is equal to the product of the

Susceptible_NV population and the neighbor impact factor

Ei. Equations (15b) and (15c) perform a similar calcula-

tion for the Exposed_V1 and Exposed_V2 populations,

while incorporating phase-specific immunity rates ia,V1(q)

and ia,V2(q) to model increased protection from vaccina-

tion. The immunity rates are phase-specific as the protec-

tion provided from vaccination increases following

inoculation. Equations (15d)–(15f) describe how the dis-

ease incubates over time and individuals transition to

infected states. The exposed population of any vaccination

status in all phases except the first is equal to exposed of

the previous day and phase multiplied by the incubation

rate of that phase (ea(q)). The remainder of people who

make it to the end phase of an exposed state enter an

infected state on the following day. Equation (15g) defines

the total proportion of population that is in an exposed

state (ET) as the sum of all exposed in all phases from the

Exposed_NV, Exposed_V1, and Exposed_V2 states. The
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Infected, Recovered, and Deceased equations are not

given, as these states are calculated per the baseline Cell-

DEVS model for the three classes of vaccination status,

where each class operates as a unique SEIRDS model:

Et+ 1
i, a 1ð Þ= St

i, a � Ei (a)

EV1t + 1
i, a 1ð Þ=

PTd1

q= 1

V1t
i, a qð Þ

� �
� 1� ia,V1 qð Þð Þ � Ei

h i
(b)

EV2t + 1
i, a 1ð Þ=

PTd2

q= 1

V2t
i, a qð Þ

� �
� 1� ia,V2 qð Þð Þ � Ei

h i
(c)

Et + 1
i, a qð Þ= 1� ea q� 1ð Þð Þ � Et

i, a q� 1ð Þ (d)
with q 2 f2 . . . Teg
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i, a q� 1ð Þ (e)
with q 2 f2 . . . Teg
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i, a q� 1ð Þ (f)
with q 2 f2 . . . Teg

Et + 1
T i, að Þ=

PTe

q= 1

Et + 1
i, a qð Þ

� �
+ EV1t + 1

i, a qð Þ
� �

+ EV2t + 1
i, a qð Þ

� �h i
(g)
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At all times, the Susceptible_NV follows Equation (16),

stating that the sum of all population proportions per age

group is equal to 1. The total proportion of population in

infected states (IT), and recovered states (RT), are calcu-

lated as a sum across the three vaccination classes, follow-

ing the form of Equation (15g):

St+ 1
i, a = 1� V1t + 1

T i, að Þ � V2t+ 1
T i, að Þ � Et+ 1

T i, að Þ � I t+ 1
T i, að Þ

�Rt + 1
T i, að Þ � Dt+ 1

T i, að Þ
ð16Þ

5.2. SEVIRDS model implementation

The SEVIRDS model is implemented using Cadmium as

before, having the same structure as Figure 5, similar state

discretization to Equation (11), and a local computation

function is based on the one in Table 1. The state object of

each geographical cell is now a struct sevirds, containing

all infection state variables. A C++ class AgeData was

developed to calculate the infection state variables per age

group and vaccination status. A single AgeData object is

used to hold the infection state variables S, E, I, R, and D

for a single age group and vaccination status, where three

AgeData objects are used to calculate the struct sevirds

state variables for a single age group. The use the of

AgeData can be seen in Table 9, where the non-vaccinated

states, vaccinated dose 1 states, and vaccinated dose 2

states are stored in AgeData objects (lines 3–5). The vari-

ables new_state (line 1) and current_state are of type

struct sevird, the first being allocated to hold the result of

the local computation function’s call, and the second con-

taining the value of the cell’s state variables before the

local computation function is called. The local computa-

tion function calculates all struct sevirds state variables

one age group at a time (line 2). The set of Equation (13)

is calculated in line 6 using all three AgeData objects of

the current age group. The exposed, infected, recovered,

and deceased state variables are calculated in line 7 using

the three AgeData objects with the exception of

Susceptible_NV. Equation (11) describing the proportion

of Susceptible_NV is calculated in line 8. Lines 9–11 copy

the new AgeData information into the struct sevirds

new_state. Once the calculation is complete for all age

groups, the object new_state is returned to conclude the

local computation function.

5.3. SEVIRDS model simulation results without
re-susceptibility

In the following, we present a simulation based on

Ontario’s population distribution and COVID-19 relevant

data (e.g. virulence rates and recovery rates) gathered at

Public Health Ontario,3 that show the effect of a two-dose

vaccinated population. In Figure 19, we show the results

of the first simulation run, without vaccines and without

re-susceptibility enabled.

The first graph in Figure 19 shows how over 500 days

the population of Ontario moves gradually from

Susceptible to Exposed, then Infected, then either

Recovered or Deceased. Once in Recovered, they do not

return to being Susceptible as re-susceptibility is disabled,

and thus, if the simulation ran for longer, we would see

the Susceptible curve decline to zero, with the Recovered

curve being nearly 100% of the population. The second

graph shows the Exposed and Infected curves, while also

show the Deceased curve. We can see the percentage of

the population being added to each of the respective states

on each day of the simulation, that is, new exposures, new

infections, and new recoveries. For example, the peak for

the Exposed state, which was around day 160, translates to

just above 0.3%, meaning roughly that percentage of the

population moved to the Exposed state on that day. In

other words, whereas Figure 21 show the total population

percentages in each of the states, Figure 20 shows the per-

centage of the population being added to the Exposed,

Infected, and Recovered states, respectively. With respect

to Equations (7)–(9), this graph shows, for each day of the

simulation, the percentages for the different states when

q= 1.

We use these base simulation results to analyze the

effect of different types of immunity for vaccines.

5.3.1. Vaccination with linear increase in immunity rate. We

first analyze the effect of vaccination configuring vaccines

so that the immunity received from each dose increases in

linear fashion respective to each dose. We assume that the
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immunity is uniform across all age groups. As there is no

precise data, we show the simulation results obtained

using Table 10 (since these are rapid prototyping para-

meters, they can be adjusted as soon as new data becomes

available).

When a portion of the population is vaccinated, they

begin with 0.017 immunity (i.e. 1.7%), this increases to

0.036 the following week (i.e. 3.6%), and so on until the

end of the first dose. They are then moved to the second

dose, with 0.1 immunity (i.e. 10%) and this increases

until 0.25 (i.e. 25%), as re-susceptibility is off. These

changes to the configuration produce the results shown

in Figure 21.

As we can see in Figure 21 (top), there are two new

curves, Vaccinated_D1 and Vaccinated_D2, which track

the two susceptible vaccinated states. Exposed_D1,

Exposed_D2, Infected_D1, Infected D2, Recovered_D1,

and Recovered_D2 states are aggregated with their non-

vaccinated equivalents for brevity. The Susceptible curve

represents the Susceptible_NV discussed earlier. This fig-

ure shows how the population moves quickly from

Susceptible_NV to their first dose, then just as quickly to

their second dose, where they mostly remain, although

close to 40% eventually contract COVID-19, with most

moving to the Recovered_V2 state and around 2.5% mov-

ing to the Deceased state. In the bottom part of the figure,

the Exposed and Infected curves are half of what the

respective curves are in the no-vaccine simulation (see

Figure 19), while the Deceased curve rises slower and is

also around 1% lower than in the previous simulation,

demonstrating the protection provided by vaccination.

Figure 22 shows the new exposures, infections, and

recoveries. Compared to the based scenario (Figure 20),

the curves have a similar share, but peaks at a smaller per-

centage. The peak for new daily exposures, in the simula-

tion without vaccines, was nearing 0.35%, and it remained

above 0.3% for a few days, whereas the very slim peak in

this simulation is only nearing 0.175%. Interestingly, the

second ‘‘wave’’ in this simulation appears to rise higher,

proportionally to the whole simulation. That may be

explained because the number of people infected in the

first way was smaller than in the original scenario.

Figure 19. Baseline simulation of SEVIRDS model with vaccination disabled.

Figure 20. Daily new exposed, infected, and recovered for baseline simulation.
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Nonetheless, there is an overall decrease in exposures and

infections per day with a very basic vaccine configuration.

5.3.2. Vaccination with immunity rate decay after linear
increase. This scenario is a complex vaccine simulation

that by includes a linear decay to the immunity received

from the second dose over time. The second-dose state is

short to quickly show what happens when immunity

decreases over time and to demonstrate the configurability

of the model.

This setup works the same as the previous simulation

with a two changes. First, first- and second-dose immunity

rises quicker as shown in Table 11. Second, halfway

through the second-dose state, the immunity begins to

decrease at the same rate that it increased during the first

half of the state.

This configuration produces the simulation results as

shown in Figures 23 and 24. As shown in Figure 23 (top),

with re-susceptibility still disabled, there is no visible

change to the Susceptible_NV, Vaccinated_D1, and

Vaccinated_D2 curves. The changes are evident in bottom

part of the figure where the Exposed and Infected states

still hit the same peak but remains near it much longer

than in the previous simulation. In addition, the deceased

curve rises to 2%, which is still lower than the simulations

without vaccines but around 0.5% higher than with no

decrease in immunity. In Figure 24, we can see that the

daily increases are slightly higher than in the previous

simulation, with the peak being wider and just past 0.2%

Figure 21. Vaccination simulation with linearly increasing immunity rates.

Figure 22. Daily new exposed, infected, and recovered in linear immunity rate.

Table 10. Linear increase immunity rates per week.

First-dose immunity 0.017, 0.036, 0.054, 0.071, 0.089
Second-dose immunity 0.1, 0.12, 0.143, 0.45, 0.161, 0.196, 0.214, 0.232, 0.25
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versus 0.175%. However, it is still just over 0.1% lower

than without vaccines.

5.3.3. Vaccination with immunity rate decay after curved
increase. We show an additional scenario without re-

susceptibility where the immunity rate increases slower

than in the previous scenario but decreases faster. The

immunity rate values can be seen in Table 12.

These configuration parameters produce the results

shown in Figures 25 and 26.

The difference with the previous scenario (section

5.3.2) is that the final phases of Vaccinated_D2 provide

lower immunity rates, resulting in a higher magnitude of

exposures, infections, and recoveries. The value of the

second-dose immunity rate’s final phase is the most

impactful value, as people who reach this remain at the

level of immunity rate unless they become Exposed. The

peak infected in this scenario reaches 2.2% of Ontario’s

total population, versus 2.9% in the case of the base simu-

lation without any vaccinations, and 1.8% in the case of

previous simulation. While the immunity rate profiles of

the Vaccinated_D2 state of this simulation and the previ-

ous simulation (section 5.3.2) are similar, their outcomes

differ greatly because of the difference in the lasting

immunity rate ia,V2(Td2) of Vaccinated_D2.

In Figure 26, we can see how the cases per day peak

and then drop before raising again but are less in magni-

tude than the base scenario. Compared to the previous

simulation scenario, the curves in this graph are very

Figure 23. Vaccination with decaying immunity rate.

Figure 24. Daily new exposed, infected, and recovered with decaying immunity rate.

Table 11. Linear increase immunity rates with decay.

First-dose immunity 0.03, 0.05, 0.075, 0.1, 0.125
Second-dose immunity 0.15, 0.175, 0.2, 0.225, 0.25, 0.22, 0.2, 0.175, 0.15
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similar, having a slightly larger magnitude of infections

because the final phase Vaccinated_D2 immunity rate is

now lower (0.09) than the previous simulation (0.15).

5.4. SEVIRDS model simulation results with
re-susceptibility

We have also studied a base scenario with no vaccination

and re-susceptibility. The configuration is identical to the

base scenario presented in section 5.3, but with re-suscept-

ibility. Re-susceptibility highlights the importance of

vaccines.

Figure 27 shows the simulation results of this new sce-

nario. Compared to the base scenario presented in section

5.3 (Figures 19 and 20), the smaller recovery curve is the

most evident difference, along with the very aggressive

incline on the Deceased curve. As re-susceptibility is

enabled, once recovered population has reached the end of

the recovered state, they become susceptible again, and

this pattern will, in theory, continue like this until all the

population are in the Deceased state. The results in this

simulation do not seem so severe as around 75%–80% of

the population remains either Susceptible or Recovered.

However, analyzing the bottom part of Figure 27, the

Table 12. Curved increase immunity rates with decay.

First-dose immunity 0.003, 0.06, 0.08, 0.093, 0.099
Second-dose immunity 0.1, 0.223, 0.249, 0.243, 0.22, 0.186, 0.146, 0.106, 0.09

Figure 25. Curved increase immunity rate simulation with decaying immunity rate.

Figure 26. Daily new exposed, infected, and recovered with curved increase immunity rate and decay.
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Exposed and Infected curves show no sign of decreasing

over time, they remaining is stable at a 3% rate. What is

more worrying is that the Deceased curve has an increas-

ing trend and has already passed 5% (around 2% higher

than without re-susceptibility).

In Figure 28, we also observe that the Exposed and

Infected curves show little signs of dropping, and it spikes

around 0.05% higher than in the base scenario without re-

susceptibility. The Recovered curve is very close to the

Infected curve, meaning most people recover from

COVID-19 in this simulation. The gap between them rep-

resents the daily portions of the population that are

Deceased, and as this is not zero, eventually, as alluded to

earlier, the whole population would end up in the Deceased

state unless some measures are taken to control the spread.

6. Conclusion

A Cell-DEVS COVID-19 model was defined and simu-

lated to study the spread of infectious disease in

geographical environments. The model defined in this

paper uses a method of geographical CA like that used in

Zhong et al.16 in their simulation of the original SARS

pandemic but considers more factors in the implementa-

tion of movement restriction policies. The model was

simulated using the geography of Ontario, Canada, and

divided the province into geographical cells by PHU. The

methodology of adjusting the model and disease para-

meters was demonstrated, and the accuracy of the model

was improved substantially. Many directions for future

improvements exist including the following:

� Defining region-specific disease characteristics

based on epidemiological data.
� The addition of a different class of cell to represent

the coupling of each cell to the outside world.
� The addition of a population density correction

factor.
� Increasing disobedience or changing the infection

correction factors over time.

Figure 27. Baseline SEVIRDS simulation with re-susceptibility.

Figure 28. Daily new exposed, infected, and recovered for baseline simulation with re-susceptibility.
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We implemented the asymptomatic cases using a basic

infectious/asymptomatic ratio value that can be input by

the user. The asymptomatic carriers expose more individu-

als than their non-asymptomatic counterparts. This is

intended to represent the effect of not taking adequate pre-

cautions due to the absence of awareness. Users can also

input a described group of neighborhoods and run the

model through the neighborhoods, allowing for visualiza-

tion of how a disease might spread through a city, town, or

country. We use a case study where the model’s neighbor-

hoods are defined as the PHUs of Ontario. Our results

show how an asymptomatic set of carriers can lead to shar-

per increases in case counts resulting in a change to the

total numbers of cases that a population would experience.

Our model provides a framework to rapidly prototype dis-

ease spread in their neighborhood where asymptomatic

infections can be considered and incorporated where

necessary.

We presented a model that allows users to create rapid

simulation prototypes to simulate how much of an impact

asymptomatic cases would have on disease case counts.

Another important note about the model, although it has

been built around the COVID-19 pandemic, it can be used

for any other disease. This can be done in a quick, efficient

manner. If users have the relevant information for a dis-

ease along with the asymptomatic rate at which a disease

transmits, they can simply change the parameters and re-

run the model. The model also gives the users the ability

to efficiently adapt the geographical level that the model is

being run on.

Future work will focus on deeper analysis of the models

to investigate the influence of different model parameters

in the transmission of the disease. For example, we will

investigate how is connectedness correlated with transmis-

sion or how does the number of spatial units impact the

robustness of the model.

Future adaptations plan to incorporate asymptomatic

disease transmission rates (modified virulence rates),

asymptomatic rates by age group, a more accurate suscep-

tible to exposed transition and new compartments to repre-

sent individuals who are vaccinated, and therefore less

susceptible to the disease. The model can be easily adapted

to simulate variants of concern by tuning the test case con-

figuration data found in Table 1. In future adaptations, var-

iants of concern will be addressed in a formal manner

allowing for the simulation of single and multiple variants

of concern.
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