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Abstract
In this paper we develop an approach to modeling and simulating the process of infection transmission among individuals
and the effectiveness of protective counter-measures. We base our approach on pedestrian dynamics and we implement
it as an extension of the Vadere simulation framework. In order to enable a convenient simulation process for a variety
of scenarios, we allow the user to interact with the simulated virtual environment (VE) during run time, for example, by
dynamically opening/closing doors for room ventilation and moving/stopping agents for re-positioning their locations.
We calibrate and evaluate our approach on a real-life case study—simulating COVID-19 infection transmission in two
kinds of scenarios: large-scale (such as the city of Münster, Germany) and small-scale (such as the most common indoor
environments—classrooms, restaurants, etc.). By using the tunable parameters of our modeling approach, we can simu-
late and predict the effectiveness of specific anti-COVID protective measures, such as social distancing, wearing masks,
self-isolation, schools closing, etc.
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1. Motivation and introduction

When an infectious disease is new, decision-makers (e.g.,

public health authorities, hospitals, and especially munici-

palities) try to answer the two most important questions:

how does the infection spread, and what measures are nec-

essary and effective to mitigate it? For example, SARS-

CoV-2 often starts locally, but it spreads quickly and glob-

ally. This makes mitigating the virus very challenging for

governments: they must determine the proper guidelines

to be applied in time to reduce the spread of the virus.

Unfortunately, lack of reliable data often prevents

effective anti-infection measures. The number of people

infected is difficult to determine on a daily basis, as symp-

toms do not occur until a few days after infection. In addi-

tion, infection statistics are not available early on in a

pandemic, so it is difficult to know how many people have

become infected and how many people are already

immune to the disease.

Modeling and simulation are useful approaches to

answering the questions about the spread of infectious dis-

eases. By adapting the models to a specific infection dis-

ease and the conditions of the environment (generally by

tunable parameters), the actual situations and

developments can be described and analyzed.

Furthermore, computer simulation can offer viable means

for hypothesis testing, evaluating best- and worst-case sce-

narios, and assessing the effect of different measures on

outbreaks of disease.

Traditional models for describing the dynamics of dis-

ease development divide the population into several cate-

gories: Susceptible (S), Exposed (E), Infected (I), and

Recovered (R). This leads to four classes of pandemic

models: SI, SIS, SIR, and SEIR.1,2 A major problem with

traditional models, especially for predicting the virus trans-

mission, is that they are static. Usually, they contain fixed

values for several parameters, while ignoring other key

parameters. Important limitations are for example: (a) the

contact duration among individuals is considered constant;

(b) social distancing between individuals is neglected; and
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(c) the isolation of infected persons is not taken into

account: they are viewed as still infectious. These restric-

tions strongly limit these models’ ability to represent real-

life pandemic scenarios.

In this paper, we aim at improving the simulation of

infection transmission, by developing a modeling and

simulation approach based on pedestrian dynamics. The

goal of our approach is to be able to model and simulate

potential guidelines for dealing with pandemics that can

be defined by governments and municipalities.

Our use case in the paper is the COVID-19 pandemic

in Germany. In particular, we evaluate our modeling and

simulation approach regarding the most important pro-

tective measures that restrict contacts between people3,4:

(a) closing restaurants, bars, discos, pubs, and similar

facilities; (b) social distancing, hygiene rules, and wear-

ing masks; and (c) closing schools, universities, etc.

The practical benefit of our modeling and simulation

approach is that it can predict the likelihood of an infected

individual transmitting the infection to others in the most

common environments (e.g., restaurants), and to elucidate

to what degree closing schools, social distancing guide-

lines, and wearing masks can help to limit the spread of

the virus.

We make the following novel contributions in this

paper:

1. We introduce the new concept of behaviors, in

particular we model the infection transmission

behavior in the Susceptible-Infected-Recovered

(SIR)-form and we implement it on top of the

agent-based Vadere simulation framework.5

2. We simulate social distancing, self-isolation, con-

tacts restriction and using masks, and we test the

influence of these protective measures in different

scenarios.

3. We model infected people’s speaking volume and

its influence on spreading of viral particles. This

allows us to investigate the effectiveness of con-

trolling individuals’ speaking behavior (in particu-

lar, singing) for limiting virus spread.

4. We substantially improve the level of user interac-

tivity in our simulation environment: we allow the

user to change the state of the simulated environ-

ment during simulation run time, for example,

change room ventilation by opening/closing doors,

moving/stopping agents, etc. Thus, we can simu-

late various scenarios in real time.

5. We extend the interactivity possibilities of the

topography creator in the Vadere framework: in

particular, we allow the user to add a city map and

scale it in the GUI, in order to visualize large-scale

scenarios in addition to small-scale scenarios.

6. Our simulation produces three kinds of output for

experts and decision makers: (a) the effective

reproduction factor Reff
0 (t) provides information

about the usefulness of protective measures and

their combinations; (b) the pandemic curve for

each scenario visualizes the pandemic situation

development; (c) the probability of infection trans-

mission PR(t) helps to find a useful strategy in a

particular environment.

We validate and evaluate our approach in extensive

experiments on virtual environments (VEs) of different

scale: large-scale—city of Münster in Germany in 40 sce-

narios, and small-scale—offices, classrooms, restaurants,

and large buildings (e.g., concert halls) in 60 different

scenarios.

In the remainder of the paper, the related work is dis-

cussed in the next Section 2. We describe our concept of

behaviors in Section 3 where we model the infection trans-

mission and protective measures, and their implementation

in the Vadere framework. In Section 4, we introduce and

implement simulation interactivity in VEs. In Section 5,

we evaluate our approach by running experiments on dif-

ferent SARS-CoV-2 transmission scenarios that confirm

the adequacy and precision of the results predicted by

simulation as compared with real-life pandemic curves.

We summarize our findings in Section 6.

2. Related work

The availability of accurate information early in the devel-

opment of a pandemic is important for epidemiological

modeling, that is, representing the possible interactions

between misinformation spread and disease outcomes.6–8

Despite advances in understanding previous pandemics

(influenza, SARS, etc.), simulating the spread of the new-

est SARS-CoV-2 virus remains challenging. In reference,9

effective strategies for controlling the spread of misinfor-

mation among individuals during an influenza pandemic

were proposed in order to reduce communicable disease

burdens in future diseases.

However, since the start of the COVID-19 pandemic,

the available data has been and are still noisy and uncer-

tain. In addition to limited and unbalanced global data, the

reporting standards for new infections have not been stan-

dardized yet, resulting in statistical errors, particularly in

underdeveloped regions and countries. One of the most

important ways to overcome this challenge is to develop

sophisticated, user-interactive, adaptable, and simple-to-

use simulation models that can accept changes smoothly

and with minimal effort.

Mathematical models of airborne disease infection

transmission in indoor environments are often based on

the classic work of Wells10 and Riley et al.11 These models

have been used to describe the spread of airborne patho-

gens such as tuberculosis, measles, influenza, H1N1, and
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recently SARS-CoV-2.12–16 Such models reflect a situation

in which one or more infected individuals stay in the same

room with other individuals who are susceptible to infec-

tion, and predict the probability of a susceptible individual

becoming infected. However, these models rely on a few

simple assumptions, for example, that virus particles are

distributed uniformly in the environment; they also ignore

the dynamics of movements between individuals, which

has a significant impact on the probability of infection

transmission.

Paper17 improves the Wells-Riley model by introducing

a distance proximity to quantify the impact of social dis-

tancing on the probability of infection. However, this

method does not take into account the location of infected

persons, nor does it consider the changing distance

between the infected and susceptible persons in the room

over time. This prevents the analysis of individuals’

dynamic behavior in the room, which has a direct impact

on analyzing the effectiveness of in-door protective mea-

sures, for example, social distancing.

In another attempt to overcome the previous limita-

tions, the authors in Guo et al.16 calculate the spatial distri-

bution of infection probability based on a single airflow

calculation in a room, taking into account that the loca-

tions of infected individuals are statically distributed in the

room with different position arrangements. However, this

method is unsuitable for scenarios involving crowding in a

small space; it also ignores the effect of the most common

protective measures, such as the use of masks, which has a

direct impact on the probability of infection transmission.

The probability of infection is determined by the exposure

of a susceptible individual to an infected individual, which

is determined by the dynamics of individual movements

and proximity to each other in a room.

The mathematical model developed by RAND Corp.18

combines information from epidemiology, economics, and

a qualitative regulatory analysis to assess the effects of var-

ious protective measures. However, it ignores the effect of

room ventilation and the infected person’s speaking vol-

ume on the probability of infection transmission. Taking

all these influencing factors into account when selecting

model parameters remains a challenge for mathematical

modeling.19

Paper20 presents a discrete-event mathematical model

that explores how virus transmission occurs in indoor

environments. The replication machinery of the SARS-

CoV-2 based on Discrete EVent Specifications (DEVS) is

described in Ayadi et al.21 Such models require an addi-

tional effort to design a VE with a complex system of

rooms and doors—using external tools, for example,

Autodesk—and are thus limited to simulating small-scale

scenarios. Agent-based simulations allow for considering

control-sensitive parameters in order to estimate their

effects on infections, in particular on reproduction number,

transmission rate, and pandemic control after

implementing certain protective measures. In Gomez

et al.,22 a city-scale, agent-based approach simulates the

transmission dynamics of SARS-CoV-2 with implemented

social distancing to represent this measure’s effectiveness

in mitigating the spread of the virus. However, no simula-

tions have been conducted to determine how global inter-

ventions, environmental factors, and other relevant

policies and measures influence the dynamics of the

COVID-19 pandemic. Paper23 reports the effectiveness of

isolation, social distancing, and school closures with dif-

ferent levels of compliance, but it does not consider the

effectiveness of wearing masks as a globally applied mea-

sure and the impact of an infected individual’s speaking

volume on spreading virus particles in a room. New

approaches are developed by governmental bodies to

understand the virus behavior and its attack mechanisms,

including the use of high-performance computing in

CityCOVID by Argonne National Lab24 and the proprie-

tary framework by MITRE Corp.25

We aim at improving the previous approaches as fol-

lows. We combine simulation of infection transmission

behavior at the city scale and at the small indoor VE scale

among individuals. Our approach allows the user to antici-

pate the effectiveness of various levels of compliance with

globally applied protective measures such as social distan-

cing, self-isolation, school closures, wearing masks, and

controlling speaking volume. Last but not least, the user

can interact with the VE and change the state of interac-

tive elements, such as opening a door in a closed room to

allow agents to exit outdoors or ventilating the room, both

of which have a direct impact on the probability of at least

one individual being infected.

3. Modeling infection transmission
behavior and protective measures

We present our approach to modeling the disease spread

as an extension of the Vadere simulation framework.5 The

original Vadere framework models walking behavior of

people (agents) using various locomotion models that were

calibrated and validated against empirical real-life obser-

vations.26,27 Dynamic agent behavior is simulated in a 2D

plane by means of the topography visualizer for various

locomotion models.

A topography in our simulation approach is a combina-

tion of the following five kinds of simulation elements:

1. Agents have circular shapes and move with particu-

lar acceleration or slow-down from a source to the

target according to a particular locomotion model.

2. Obstacles can be drawn by the user as particular

geometric shapes; the agents try to avoid them.

Obstacles can also be walls of a VE structure, for

example, a building.
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3. Sources are areas in which agents exist individually

or in a group. Instead of creating agents in a source

area, the user can also position them at a particular

place.

4. Targets are areas that agents may attempt to reach.

5. Target changers are areas where an agent’s target

is changed if the agent passes through such an area.

Figure 1 shows how we extend the Vadere framework. The

original Vadere has two layers (boxes with dashed borders

and an orange background) that control the dynamic of

agents’ movements: the locomotion model layer and the

decision making layer. However, they do not provide

agents with personal behaviors such as health status (e.g.,

susceptible, infected, or recovered in pandemics).

In our approach, to simulate the disease spread, we

introduce three new layers (boxes with solid borders and a

green background): the behavior layer, the input para-

meters layer, and the output parameters layer. The beha-

vior layer implements a general concept of agent behavior

which models an individual’s behavior, for example, walk-

ing, stopping, or infection transmission behaviors. In the

behavior layer, we model the infection transmission beha-

vior on top of the locomotion models that control agents’

movement.

Each layer contains one or several components.

Component (a) implements our infection transmission

model that captures the continuous spread of a pandemic

in a SIR form.

In the input parameters layer in Figure 1, component

(b) provides the model definition in the JavaScript Object

Notation (JSON) format28 that allows the behavior to be

compatible with the selected locomotion model, which in

this paper is the Optimal Steps Model (OSM),26 as shown

in Listing 1.

Component (c) refers to the module of the protective

measures that provides the input parameters to our infec-

tion model. In the output parameters layer in Figure 1,

components (d), (e), and (f) refer to the classes that pro-

vide the simulation outputs, namely: the effective repro-

duction number Reff
0 (t) that is used for assessing the

effectiveness of protective measures, the pandemic curve

at run time of simulation to visualize the pandemic situa-

tion, and the probability of infection transmission PR(t),
correspondingly.

Table 1 represents the input parameters of our model;

some of them are provided by the user while others (like

l) are pre-computed as explained in subsection 5.3.

Figure 1. UML component diagram: our infection transmission model on top of the Vadere framework and its parameters.

Listing 1. JSON code definition of infection transmission
behavior using OSM model.

{
‘‘mainModel’’ : ‘‘org.vadere.simulator.models.

osm.OptimalStepsModel’’,
‘‘attributesModel’’ : { ...
‘‘org.vadere.state.attributes.models.

AttributesOSM’’ : { ...
‘‘behaviors’’ : [ ‘‘org.vadere.simulator.

control.behavior.InfectionBehavior’’ ]},
...

}
}
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Table 2 represents the output parameters of our model;

they are computed as the result of simulation.

In the following, we describe our simulation that relies

both on the OSM model and Vadere’s decision-making

layer responsible for avoiding collisions of agents.

3.1. Modeling infection transmission

Figure 2 shows the state diagram of our infection transmis-

sion model: it is of the SIR type. At the first simulation

step, the population is divided in two classes—susceptible

and infected—based on the parameters (percentages)

defined by the user. At next steps, susceptible agents may

become infected if infection transmission conditions are

met or they remain susceptible until the end of the simula-

tion. Infected agents can recover and become immune

after the average recovery duration. Recovered agents

remain immune for the immunity duration (parameter in

Table 1). Then their status is changed back to susceptible,

and they can become infected again.

In our approach, in each time step t, an infected individ-

ual i can modify his infectious radius ri, t + 1, according to

the infection rate l (explained in subsection 5.3) and to

the individual protective measures such as wearing a

Table 1. Input parameters of our infection transmission model.

Parameter Definition

Agent’s radius ri radius (physical) of agent i
Infectious radius ri,t+ 1 of agent i at time t+ 1 infected agent radius used in Equation (1) for computing infection transmission
Infection rate l number of infected agents in the environment population pre-computed as in

subsection 5.3, used to initialize our model
Average duration of immunity time during which a recovered agent cannot be infected again
Average duration of infection transmission time spent by a susceptible agent spent in infectious radius (in min)
Average recovery duration g time it takes for infected agent to recover (in days)
Initial infection percentage percentage of infected agents in the population at simulation start
Physical distance D distance between the centers of any two agents (in meters)
Duration of contact T time of contact between two agents
Group size G number of agents per group
Self-isolation percentage qpercent percentage of infected agents to be isolated until simulation end
Self-isolation start time time after which the infected agents are self-isolated (in days)
Basic reproduction number R0 initialized average number of persons who become infected

Table 2. Output parameters of our infection transmission model.

Parameter Definition

Effective reproduction number Reff
0 (t) number of persons infected by an infectious individual in time t

Probability of infection transmission PR(t) probability that at least one susceptible person becomes infected during contact time t

Figure 2. State diagram of our infection transmission model.
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mask, controlling one’s speaking volume, and following

the social distancing guidelines, as described in the next

subsection.

Whenever a susceptible agent (S) has contact with an

infected agent (I) for an average duration of time T (such

as talking to each other) or remains within the agent’s

infectious radius without direct contact for a time interval

t, the probability of the susceptible agent (S) changing his

status to infected (I) increases as defined by Equations 5

and 6.

The infectious radius ri, t+ 1 is computed as follows:

ri, t + 1 = ri +V=M , ð1Þ

where V is the speaking volume: when the speaking vol-

ume increases, the virus particles spread for longer dis-

tances, resulting in an increase in the infectious radius. M

is the mask type: the higher a mask’s protection level, the

shorter the distance virus particles can spread. V and M

are discussed in more detail in the next subsection.

Additionally, the status of an infected agent (I) can be

changed to recovered (R) after this agent either (a) spends

the average duration of recovery time g and remains

immune until the end of simulation (in this paper, g = 14

days), or (b) is removed from the simulation by the user.

When the status of an agent changes to recovered (R), the

agent becomes immune for the immunity duration.

Listing 2 shows the definition of infection transmis-

sion behavior and its attributes expressed in the JSON

format.

3.2. Modeling protective measures

In the following, we explain how we model three kinds of

protective measures: social distancing, self-isolation, and

wearing a mask of particular type. In addition, we model

controlling individual’s speaking volume that can be effec-

tive to limit the virus spreading, and room ventilation.

1) Social distancing: We consider three kinds of risk

scenarios regarding social distancing: high-,

medium-, and low-risk scenarios. The relevant

parameters that determine social distancing

(defined in Table 1) are described with values in

Table 3 as follows:

� Physical distance D: If the distance between two

agents is smaller than the sum of their radii then

they overlap; such overlap indicates a contact

between individuals, which may include hand-shak-

ing, sneezing, kissing, etc.

� Duration of contact T : We keep track of how long a

susceptible agent stays in contact with an infected

agent. The probability of transmission obviously

increases for longer contact times.

� Grouping G: Several agents can gather in a group

and interact in it.29 The size of a group is tunable,

and the group may be either stationary or moving.

2) Self-isolation: It is a widely used protective

measure—persons exposed to COVID-19 isolate

themselves for some time in order to find out if

they have become infectious.30 Isolated agents in

our model do not spread infection as they are

modeled as having no infectious radius during

isolation.

We define the self-isolation rate of infected agents as a

user-defined percentage qpercent (Table 1) of infected

agents that are isolated on a daily basis. The start time of

isolation is defined by the corresponding parameter in

Table 1.

3) Wearing face masks M : In certain situations, espe-

cially in close quarters and when a distance of at

least 1.5 meters from others cannot be safely

Listing 2. JSON code of the infection transmission behavior.

{
‘‘mainModel’’ : ‘‘org.vadere.simulator.models.

osm.OptimalStepsModel’’,
‘‘attributesModel’’ : { ...
‘‘org.vadere.state.attributes.models.

AttributesOSM’’ : { ...
‘‘behaviors’’ : [ ‘‘org.vadere.simulator.

control.behavior.InfectionBehavior’’ ]
},

‘‘org.vadere.state.attributes.models.
infection.AttributesInfectionBehavior’’
: {

‘‘minInfectionDistance’’ : 0.0,
‘‘immunityDurationInDays’’ : 30,
‘‘durationToTransmitInSteps’’ : 1,
‘‘recoveryDurationInDays’’ : 14,
‘‘infectionPercentage’’ : 5.0
‘‘selfisolationStartTimeInDays’’ : 3,

‘‘selfIsolationPercentage’’ : 20
}, ...

}
}

Table 3. Parameters of social distancing: risk levels.

Parameter Social distancing risk levels

High Medium Low

D (meters) 0.5–1 1.1–2 2.1–3
T (min) 15 5 2
G (members/group) 5 3 –
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maintained, individuals should wear a mouth-nose

cover or a surgical mask.

In our model, we set three options for wearing masks with

empirically estimated corresponding protection values.

First, agents can wear FFP2 masks with a protection per-

centage of at least 94%31; we denote this by the protection

value 3. Second, agents may choose to wear surgical masks

with a protection percentage of at least 74%,32 which is

denoted by the protection value 2. Finally, agents may

choose not to wear masks; in this case the protection per-

centage is 0%, and this is denoted by the protection value 1.

4) Controlling one’s speaking volume V : We set five

levels of volume when an infected agent speaks to

a susceptible agent: silence has a value of 2, whis-

pering a value of 3, talking a value of 4, speaking

loudly a value of 5, and yelling has a value of 6.

We choose these values to express how the speak-

ing volume can affect the infectious radius. For

example, based on Equation (1), if an infected

agent with a radius of ri = 0:2 m is yelling

(V = 6) and does not wear a mask (M = 1), the

infectious radius increases to a value of

ri, t + 1 = 6:2 m, which is an average value for tra-

veling small particles with viral content in indoor

environments as reported in Setti et al..33

5) Room ventilation: We model the ability to venti-

late a room by allowing the user to open/close the

room’s door interactively during simulation time—

we discuss this in detail in the next section.

Figure 3 shows an UML class diagram of our infection

transmission model, where a particular Simulation sce-

nario always contains:

� A particular locomotion model (in our simulations

we use OSM as the main model). The MainModel

class has a list of sub-models (e.g.,

CentriodGroupModel is an OSM sub-model

managing the locomotion of groups of agents).

� A list of behaviors (e.g., Infection behavior). We

implement class InfectionBehavior for the

agents of PedestrianBehavior; method

apply(List\Pedestrians.) changes the

status of some agents from susceptible to infected

and from infected to recovered. This change is done

by method Model.update() without affecting

the agents’ locomotion.

� A Topography that contains one Pedestrian

(agent) or more. Each agent has its own

InfectionHistory, a status (e.g., susceptible,

infected, or recovered), and Pedestrian
ProtectiveMeasures such as MaskType and

PedestrianSpeakingVolume.

4. Interactivity of simulation

We aim at substantially enhancing the level of interactivity

in the simulation process of infection transmission. Our

interactive simulation approach offers the following advan-

tages: (a) the user can actively modify the parameter val-

ues and characteristics of the VE (e.g., buildings and

Figure 3. Infection transmission model: UML class diagram.
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rooms) during the simulation; and (b) the user can examine

the outcomes of the experiments in real time, and can

interactively re-formulate and re-simulate scenarios of

interest. This enables the user to interact with the simula-

tion environment in real time in order to explore alterna-

tive strategies in the simulation process.

4.1. Modeling interactive door elements

In our simulation system built as an extended version of

the Vadere framework, we design a new interactive door

element: the user can change the state of a door from

closed to open and vice versa during the simulation run

time by a mouse double-click, thus affecting the behavior

of agents.

Opening and closing a door allows air to flow between

the rooms separated by that door.3,34,35 According to

experts’ opinion, opening and closing a door for a few

minutes every hour provides a minimal level of room ven-

tilation. In our model, this ventilation reduces the infection

radius of the infected individual by a ventilation factor.

The ventilation factor’s value is inversely proportional to

the ventilation duration and ranges from 0.1 to 1. For

example, if the infection radius is 5m prior to room venti-

lation, then after 10 min of ventilation the infection radius

is multiplied by 0.1 to become 0:5m.

In addition to ventilation, opening a closed door allows

the agents to exit to a specific target outside. This reduces

the current occupancy of a room, and, as a result, this also

reduces the probability of an agent becoming infected.

Figure 4(a) shows an example of a simple topography

consisting of two rooms separated by a wall with two inter-

active doors. Agents are created at sources S1 and S2 in

the left room and they move to the target T in the right

room through doors D1 and D2. Agents navigate to the tar-

get through the nearest open door. For example, agents cre-

ated in S1 pass through D1 to the target, because D1 is

closer to them than D2.

The figure illustrates different combinations of the

doors’ states and their effect on agents’ trajectories:

� Figure 4(a): D1 and D2 are open.

� Figure 4(b): D1 is open, while D2 is closed

interactively.

� Figure 4(c): D2 is open, while D1 is closed

interactively.

� Figure 4(d): D2 is open, while D1 is closed interac-

tively as in Figure 4(c); the difference to the previ-

ous scenario is that D1 is closed after two agents

have already passed through it, so the other agents

have to change their paths to the nearest open door.

The whole topography configuration is specified using the

standard open format JSON. Listing 3 illustrates how doors

are specified as JSON code, with the following attributes:

position (x, y), geometrical dimensions (width, height),

geometrical shape (type), identification number (id), and

current state (state).

4.2. Interactive change of agent’s state

In our simulation system, we add a new capability that

allows the user to change the state of any selected agent

(a)

(b)

(c)

(d)

Figure 4. Opening and closing interactive doors by the user:
(a) the two doors D1 and D2 are open, (b) D1 is open, and D2
is closed, (c) D1 is closed, and D2 is open, and (d) D1 is closed
after two agents have passed through it; D2 is open.

Listing 3. JSON representation of an interactive door.

‘‘doors’’ : {
‘‘shape’’ : {
‘‘x’’ : 18,
‘‘y’’ : 2,
‘‘width’’ : 1.0,
‘‘height’’ : 1.5,
‘‘type’’ : ‘‘RECTANGLE’’ },
‘‘id’’ : 1,

‘‘state’’ : ‘‘CLOSED’’, }
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from moving to non-moving by clicking the mouse. This

allows the user to simulate agents in both situations, stop-

ping and moving, like in real life.

Figure 5 shows an example with agent 3 who is stopped

by the user during the simulation (by a mouse click); after

that, because the stopped agent is located in the paths of

agents 1 and 2, these agents try to avoid agent 3 as an

obstacle. The black arrows represent the deviation of agent

1 and 2’s trajectories. We also add a new feature that

allows the user, by a mouse double-click on a selected

agent, to change that agent’s status from susceptible to

infected and vice versa. Thus, the user can dynamically

redistribute the infected agents to the desired locations.

Figure 6 shows another example: two agents for whom

the user changes their status from susceptible to infected

by mouse-click, while the other three agents remain

susceptible.

Figure 7 shows the UML interaction diagram that repre-

sents user interactions with the VE.

The user can interrupt an element (e.g., a door) in the

topography visualizer to change the state of that element.

Our new interactive element manager module periodically

checks whether the element is interactive (i.e., its state

may or may not be changed). If it is interactive, the update

notification is sent to the element in the VE.

While the locomotion OSM regularly updates all

agents’ next step positions, agents have to know the cur-

rent state of doors, the locations of other agents (both

moving and standing), and obstacles. For that, OSM must

check the state of the interactive elements in the VE in

order to avoid possible collisions. After the user has chan-

ged the environment interactively, we can estimate the

probability of infection transmission, as illustrated by the

experiments in the next section.

5. Experimental evaluation

We evaluate our simulation approach using the following

two kinds of scenarios:

� Large-scale scenarios: study the spread of COVID-

19 among 300, 000 inhabitants in the city of

Münster. At the scenarios’ end, we aim to obtain

the effective reproduction number Reff
0 (t) and the

pandemic curve.

� Small-scale scenarios: estimate the probability of

infection transmission among at most 50 people in

Figure 6. The user changes the status of two agents to
infected.

Figure 5. Agent 3 is stopped interactively by the user.

Figure 7. UML sequence diagram representing user’s interactions with the simulation environment.
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the common kinds of indoor environments. For each

scenario, we aim at obtaining the probability that at

least one individual will be infected.

Our simulations based on the model and implementation

described above are performed on a computer with a CPU

Ryzen Threadripper 2970 WX, 24 cores/48 threads, and

128 GB of memory. On this computer, it takes approxi-

mately 4 h to simulate the large-scale spread of the

COVID-19 pandemic for 30 days using the time step of

2 min. We run small-scale scenarios on the same com-

puter as large-scale scenarios. It takes about an hour to

simulate a small-scale scenario of 4 h duration.

5.1. Time steps of simulation

To simulate large- and small-scale scenarios with different

time resolution levels, we change the values of the simula-

tion step, simulation time, and the ratio of real-time to

simulation-time parameters in our simulation system. We

define the virtual time in our simulations at two resolution

levels:

1) In the 40 large-scale scenarios, the assumed dura-

tion of one time step is 2 min, which is the

minimum duration of contact in low-risk scenarios

as specified in Table 3.

2) In the 60 small-scale scenarios, we decrease the

duration of the time step to one second. One minute

of loud speaking without wearing a mask can gen-

erate thousands of oral droplets per second, which

can remain airborne for more than 8 min.36 As a

result, these droplets are more likely to be inhaled

by individuals, resulting in new infections. In order

to precisely monitor the changes in the probability

of infection transmission along simulation time, we

define the duration of one time step as 1 s.

5.2. Simulation scenarios

We create our simulation scenarios as follows:

1) Large-scale scenarios of COVID-19 are built for

the city of Münster in Germany. For setting para-

meter values and for the model validation, we use

the reported data provided by the European Green

Capitals37 and the official city website.38

Figure 8 shows the geographic map of the city of Münster

in the topography creator of our simulation system. . The

figure also shows the plans of two particular buildings in

Figure 8. Geographic map of the city of Münster, with two particular buildings (a) and (b).

336 Simulation: Transactions of the Society for Modeling and Simulation International 99(4)



the city: (a) the ‘‘castle’’ which is the administrative build-

ing of the University of Münster, and (b) the St. Paulus

cathedral.

We simulate the real-life scenario: the city inhabitants

perform a wide variety of daily activities while walking or

sitting in different indoor environments. Daily activities

include attending classroom lessons, working, shopping,

or remaining isolated in homes or hospitals after they have

become infected.

While moving from their source areas to their destina-

tion areas, agents may pass through target changer ele-

ments which redirect them to other intermediate targets

inside the simulated VE. This ensures that agents are mov-

ing for the specified amount of time per day, after which

the target changer elements redirect them to their final des-

tinations (exit doors).

In this paper, we focus on agent behavior in indoor

environments, rather than on large-scale movements as

usually considered in frameworks based on GIS

(Geographic Information Systems). In particular, we do

not include trip patterns for agents in our scenarios, such

as moving from one environment to another environment

via transportation or other methods of travel (e.g., buses,

cars, and trains).

Our simulation should evaluate if and how particular

VEs prevent or facilitate the transmission of virus. We

simulate the behavior of the whole 300, 000 population of

Münster38 in different VEs, including: 19 schools with

altogether 57,000 pupils, 20–30 pupils per classroom, the

University of Münster with 45,000 students, 16 worship

places with 200 to 400 people per church, 50 working

places with altogether 159,000 employees, and 15 central

places such as malls, with 500 to 1500 people per place.

Each of these VEs includes several rooms with connecting

doors and corridors.

According to our model described above, we distin-

guish three classes in the city population: susceptible,

infected, and removed, which change with time.

Susceptible agents may become infected; removed agents

either have recovered, are isolated, or died because of the

virus.

2) Small-scale scenarios are studied in common

indoor VEs: we estimate the probability of infec-

tion transmission from an infected individual to

susceptible individuals in the most common VEs.

This probability is affected by individuals’ move-

ments in the VE, their activities with each other,

and room ventilation.

Figure 9(a)–(d) show the layout of four typical example

VEs with customized activities and duration of contacts,

as follows:

� Figure 9(a): an office VE, with three employees

working at desks for 4 h and two individuals

moving.

� Figure 9(b): a classroom VE, with 12 students at

their desks, interacting with a teacher in an 1-h

lesson.

� Figure 9(c): a restaurant VE in which every family

sits at a separate dinner table. In our experiments,

the number of members of the family is assumed to

vary from two to five; they stay for approximately

1–2 h for dinner.

� Figure 9(d): a concert hall VE, with 44 people

attending a concert with three additional individuals

as performers. The duration of the concert is 2 h.

Figure 10 shows an example of how our newly implemen-

ted options in the extended Vadere framework (choosing

(a) (b)

(c) (d)

Figure 9. Examples: four kinds of simulation environments: (a)
office, (b) classroom, (c) restaurant, and (d) hall.

Figure 10. Example: parameters for a simulation scenario.

Abadeer et al. 337



the type of mask and adjusting the volume of the speaker)

are used for creating and simulating a particular scenario:

an office with five employees who work silently and wear

FFP2 masks.

To study infection transmission in a broad variety of

common environments, we run 60 different scenarios with

various intervention options. In these scenarios, we study

different situations with VE ventilation, which is performed

by opening/closing doors regularly and with agents’ speak-

ing volumes ranging from silence to yelling. We report the

results of these experiments in Section 5.4.2.

5.3. Simulation parameters

As important examples of simulation parameters, we dis-

cuss here the infection rate l, basic reproduction number

R0, effective reproduction number Reff
0 (t), average duration

of infection transmission t, and probability of infection

transmission PR(t), as follows:

1) Infection rate l: Figure 11 plots the daily numbers

of infections in Münster after the first reported case

(March 1, 2020) till day 50 (April 19, 2020) based

on actual reported data taken from.39

We utilize the logarithmic scale for expressing the rate of

growth for non-linear functions, with the infection rate l

as example.40 The natural logarithmic scale is preferred,

as a model’s parameters can then be interpreted as approx-

imate proportional differences. For example, for rate

l= 0:4, a difference of 1 in the x-axis corresponds to a

difference ’40% in the y-axis.41

Figure 12 depicts our estimate of the infection rate l

that utilizes the natural logarithm scale of the cumulative

numbers of infected cases on the y-axis. We observe that

the rate changes after day 20; we use the least-squares fit-

ting method to observe the initial growth phase (from day

0 to 20), and we use the observed value to initialize our

simulation model. As a result, the fitted line increases by

one step in the y-axis every 2.5 days (the x-axis is in days),

or about 1/2.5 per day; that is, the infection rate is 0.4 per

day (40%). So, we can estimate the slope value using

Microsoft Excel as follows:

y= 0:4003x� 0:6631, ð2Þ

where the coefficient of x indicates the infection rate.

We estimate the accuracy of fitting by using the deter-

mination coefficient R2 from statistics, where the value of

1.0 indicates a perfect fit; our estimate calculated using

Excel is R2 = 0:96.

2) Basic reproduction number R0: we initialize the

critical parameter R0 which is the average number

of people who obtain infection from an infectious

individual: the larger the R0, the higher is the con-

tagion level. For example, R0 = 5 means that each

infectious individual transmits infection to five

persons on average. If R0 . 1 then the infection

level is increasing, otherwise decreasing. The value

of R0 is affected by both the environment and the

acceptance level of protection measures by the

population.42

We initialize the value of the basic reproduction number

R0 based on the estimation proposed in paper43 as follows:

R0 = 1+ lP, ð3Þ

where P is the average time in which a person can infect

others, and l is the rate of infection. As the estimation for

P may not include isolation or hospitalization period, esti-

mates of this time may differ, usually between 2 and 14

days.44,45

In order to estimate the value of R0 to be used as an ini-

tial value in our simulations, we take P= 5 days (which is

a tunable parameter) as an assumed value in our simula-

tions. Additionally, we use the infection rate l= 0:4,

Figure 11. Daily infection numbers in Münster, March 1 to
April 19, 2020. Figure 12. Natural logarithmic curve fitting to estimate the

infection rate for Münster, Germany.
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which was the infection rate during the first 20 days in

Münster (estimated in Figure 12). Thus, using Equation

(3), we calculate the value R0 = 3 for the pandemic devel-

opment in Münster.

3) Effective reproductive number Reff
0 (t): is computed

at each time step t by simulating each infectious

person and counting how many of them have

infected others, and then computing how many of

them will infect others altogether in a particular

period of time. We then average to Save, and we

compute the effective reproductive number Reff
0 (t)

as follows:

Reff
0 (t)=R0 � Save, ð4Þ

where R0 is the basic reproduction number, and Save is the

average number of agents infected by each infectious

agent.

4) The average duration of infection transmission t:

we empirically choose three values for the input

parameter of the infection transmission duration

based on the simulated risk level: 15 min for low-

risk scenarios, 10 min for medium-risk scenarios,

and 5 min for high-risk scenarios. These values

can be tuned to simulate infection transmission of

other virus variants like, for example, Delta or

Omicron mutations. For example, in low-risk sce-

narios, if a susceptible agent contacts an infected

agent for an average of T = 2 min and maintains a

distance of 2.1 to 3 meters from the infected agent

while remaining within his infectious radius for

t = 15 min, the probability of a susceptible agent

becoming infected is high as expressed by

Equations (5) and (6).

5) Probability of infection transmission PR(t): this

probability depends on the type of contact activity

among people. We set three categories of para-

meters to describe the various kinds of activities

among people as follows:

1. Individual parameters, such as the volume of

speech and the type of mask that each person

wears.

2. Environmental parameters, such as the area where

the individuals reside.

3. Inter-relational parameters, such as social distance

and the duration of contact time between

individuals.

This classification helps to assess the risk of contact. For

example, COVID-19 is a disease with high contact-conta-

giousness: even a single exposure to a coughing individual

who is infected with COVID-19 in an office without wear-

ing a mask for a time of 30 min usually leads to infecting

susceptible individuals.

We calculate the risk of infection transmission to a sus-

ceptible agent within the infection radius as follows:

R(t)= 1� e(k=t), ð5Þ

where k is a constant parameter (in our experiments we

empirically estimate it to be -1.6), and t is the average

duration time in minutes required to transmit the infection.

For instance, if the susceptible individuals do not wear

masks, the infected individual is talking, and the average

continuous time required to transmit the infection is

t= 15 min, then the resulting risk of contact is R(t)’0:10.
Summarizing, we compute the probability PR(t) of a

susceptible individual becoming infected through an

infected individual in a room as follows:

PR(t)= 1� (1� R(t))S�H , ð6Þ

where S is the number of susceptible individuals in a

room, and H is the current history (in min) of each suscep-

tible individual being within the infection radius. For

example, if R(t)’0:10, the number of susceptible individ-

uals in the room S = 5, and one of them has a current his-

tory of being in the infectious radius of an infected agent

for H = 40 min, then the probability of this susceptible

individual becoming infected is PR(t)’99%

5.4. Simulation results

In the following, we report our simulation results for the

large-scale and small-scale scenarios.

5.4.1. Large-scale: COVID-19 scenarios in the city of
Münster. Our experiments simulate the spread of virus in

40 large-scale scenarios, from the worst to the best, based

on how well the protective measures are followed by the

population. In the worst scenario, we assume that 90% of

people do not accept social distancing, infected cases are

not isolated, and schools are not closed. In the best sce-

nario, 90% of people follow social distancing, 90% of

infected persons are isolated, and schools are closed. At

the end of each scenario (150 days after the first case of

infection), we evaluate the effective reproduction number

that indicates the pandemic spread. Those scenarios that

lead to Reff
0 (t)\ 1 can be viewed as recommended as they

limit or reduce the infection spread in the population.

Table 4 shows the resulting Reff
0 (t) for our scenarios.

The first column represents the percentages of population

following high-, medium-, and low-risk social distancing

guidelines. In these scenarios, neither self-isolation nor

school closure are applied.
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In order to provide pandemic curves for our simulation

scenarios during simulation run time, we customize the

XChart plotting library.46 Because the curve reflects the

infection status at the time of simulation run, it is continu-

ously in progress: every simulation step contributes to the

curve, and at the end of the simulation we have a complete

curve. The x-axis represents time, while the y-axis repre-

sents the cumulative number of infections.

Figure 13 presents the results of simulating the high-risk

scenarios regarding social distancing for the city of

Münster. The scenarios represent different percentages of

the population following the social distancing guidelines

(from 10% to 90%). In the high-risk social distancing sce-

nario, the physical distance between people ranges from

0:5m to 1m for the average contact time of 15 min, and

individuals are composed in groups of five members. We

observe in Figure 13 that, 34 days after the first infection,

approximately 37, 680 people are infected when 90% of the

population behave according to the social distancing rules.

Figure 14 shows our experimental results for the sce-

nario of medium-risk distancing; the distance between

Table 4. Resulting Reff
0 (t) for scenarios with high-, medium-, and

low-risk social distancing.

Social distancing (%) Reff
0 (t)

High Medium Low

10 3.00 2.38 2.30
20 2.92 2.30 2.21
30 2.89 2.23 2.15
40 2.81 2.18 1.96
50 2.74 2.11 1.91
60 2.67 2.07 1.82
70 2.55 2.01 1.75
80 2.49 1.97 1.65
90 2.41 1.94 1.50

Figure 13. High-risk scenarios of pandemic development.

Figure 14. Medium-risk scenarios of pandemic development.
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individuals is between 1:1m and 2m for average contact

time of 5 min while persons are in groups of three people.

We observe that the infections number is decreasing to

16, 094 on day 34 after the first infection if 90% of people

follow the distancing rules.

Figure 15 depicts the outcomes of the low-risk scenar-

ios, if the percentage of people following guidelines

increases from 10% to 90%. We observe that if 90% of

people participate in the measures for low risk then the

infections number decreases to 5280 on day 34.

Our simulation experiments show that, although the

low-risk scenarios help reduce the infections number, they

alone cannot strongly delay or flatten the infection peak.

In our next experiment, we model scenarios with self-

isolation of infected persons as a single measure, without

social distancing and school closure, with the results pre-

sented in Table 5. The results show that the higher the per-

centage of isolated infected people, the lower the values of

Reff
0 (t) and, as a result, the lower the infection transmission.

Figure 16 presents the simulation results when self-

isolation rules are followed by 10% to 90% of population.

We observe that self-isolation delays the peak of infection

by 5–10 days for each 10% increase in the population frac-

tion practicing self-isolation. On day 3 of infection (start

of self-isolation = 3), agents are isolated for an average

value period of 14 days until they recover (average dura-

tion of recovery g = 14). We observe that self-isolation at

90% is quite helpful in reducing the peak to about 5320

people and flattening the pandemic curve. However, it

alone does not suffice to stop the pandemic.

Table 6 summarizes combined best scenarios with self-

isolation and low-risk distancing. We can see that com-

bined protection measures and the highest degree of

accepting them achieve together the best reduction in the

infection rate and flattening the pandemic curve.

Figure 17 shows that self-isolation and low-risk distan-

cing followed by 90% of people reduce the infection peak

to 2100 cases.

In reality, schools in Münster were closed on day 43

after the first infection case.39,47 We experiment with

school closing in three scenarios, where 0% indicates full

attendance, 50% indicates that half of the students attend

school in the morning shift, and 100% indicates full clo-

sure of schools; we compare our simulation results to the

reported real-life curve for Münster in Figure 17. This

comparison confirms that the reported curve for Münster is

close to our simulation curve obtained for the 100% school

closing scenario until day 58. After partial re-opening of

schools on day 55, the infection number increases in the

reported real-life curve, which is very near to our simula-

tion curve for the scenario with 50% school closure.

Finally, we simulate the 0% school closure case and we

forecast infections till day 150. We observe that school clo-

sure, self-isolation, and distancing together result in flatten-

ing the curve and strongly slow down the infection spread.

Figure 15. Low-risk scenarios of pandemic development.

Table 5. Reff
0 (t) results of self-isolation scenarios.

Self-isolation (%) Reff
0 (t)

10 2.26
20 2.13
30 2.04
40 1.99
50 1.93
60 1.82
70 1.71
80 1.69
90 1.66
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5.4.2. Small-scale: Indoor scenarios for COVID-19. As a result

of simulating small-scale scenarios, we report the esti-

mated probability of infection to at least one person pres-

ent in one environment with an infected person.

Table 7 shows the probability PR(t) of infection trans-

mission when people use FFP2 masks. The changes in the

results are based on the change in the speaker’s volume

(SV) – from silence to yelling – and the change in VEs.

For instance, simulation shows that in a restaurant, when

people are talking, the probability of at least one individ-

ual becoming infected after 100 min is 94%.

Table 8 shows how the probability of an individual

becoming infected changes when people wear surgical

masks.

Table 9 shows the probability of infection transmission

when people do not wear masks.

One major way to reduce the probability of infection

transmission is to increase room ventilation. The recom-

mended airflow rate in indoor environments is 8–10 L/s

per person in meeting rooms and classrooms.48 We simu-

late room ventilation by interactively opening and closing

room doors on a regular basis.

Figure 18(a)–(d) show the effect of ventilating the four

kinds of VEs on the probability of infection transmission.

Figure 16. Effect of self-isolation from 10% to 90%.

Table 6. Results for combined self-isolation and low-risk.

Social distancing Self-isolation (%) School
closures (%)

Reff
0 (t)

Low-risk

90% 90 0 1.08
90% 90 50 0.91
90% 90 100 0.51

Figure 17. Effect of school closures.
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We select one simulation run for each VE from Table 8 in

which individuals wear surgical masks and speak with

each other at the talking level. The risk of infection before

ventilation ranges from 97% to 99%, as shown in Table 8.

Yet, after ventilation, the probability drops to a range of

0% to 6.5%, as shown in: Figure 18(a) for the office VE,

Figure 18(b) for the classroom VE, Figure 18(c) for the

restaurant VE, and Figure 18(d) for the hall VE.

5.5. Limitations of our approach

Our simulation model and its current implementation have

a number of limitations. First, currently we model only

three possible health states for agents, namely: susceptible,

infected, and recovered. We do not consider other possible

states, for example exposed and hospitalized. Second, we

assume that infection transmission does not occur in open

air but only in buildings and rooms. Additionally, we do

not model agents’ trips in the outdoors, such as moving

from home to work and back home, and we do not include

transportation and traveling in our consideration. Because

of this restriction, our simulation model would be not suit-

able for other kinds of pandemics that are developed pri-

marily due to the infection transmission in open air.

Fourth, our scenarios do not simulate multiple virus muta-

tions with different infection rates simultaneously.

A further restriction of our model is that we assume

for simplicity that infection is only possible within the

infectious radius of an infected individual. In reality,

aerosols are divided into two types: large droplets that

fall to the ground and surfaces based on the atmospheric

conditions of the room, and small droplets that remain

Table 7. Probability estimations of infection transmission when
individuals wear FFP2 masks.

Mask type: FFP2

VE SV Infection
time (m)

Infected
no.

PR(t)
(%)

Office Silent 120 1 1
Whispering 110 1 1
Talking 90 1 60
Loud 30 1 84
Yelling 30 3 98

Classroom Silent 120 1 1
Whispering 110 1 1
Talking 50 1 98
Loud 30 1 98
Yelling 30 3 98

Restaurant Silent 120 1 84
Whispering 110 1 90
Talking 100 1 94
Loud 50 1 96
Yelling 40 7 97

Hall Silent 100 1 10
Whispering 50 7 99
Talking 30 7 99
Loud 30 10 99
Yelling 30 17 99

Table 8. Probability estimations of infection transmission when
individuals wear surgical masks.

Mask type: Surgical mask

VE SV Infection
time (m)

Infected
no.

PR(t) (%)

Office Silent 120 1 2
Whispering 90 1 84
Talking 70 1 98
Loud 50 3 99
Yelling 20 3 97

Classroom Silent 120 1 1
Whispering 100 1 1
Talking 80 1 97
Loud 60 3 97
Yelling 30 3 98

Restaurant Silent 100 1 94
Whispering 60 1 94
Talking 50 1 99
Loud 30 3 99
Yelling 30 5 99

Hall Silent 100 1 50
Whispering 80 6 98
Talking 60 8 99
Loud 40 18 98
Yelling 30 18 99

Table 9. Probability estimations of infection transmission when
individuals do not wear masks.

Mask type: without masks

VE SV Infection
time (m)

Infected
no.

PR(t) (%)

Office Silent 40 3 96
Whispering 45 4 94
Talking 35 4 96
Loud 30 4 99
Yelling 20 4 99

Classroom Silent 50 3 98
Whispering 50 4 98
Talking 30 8 98
Loud 20 11 98
Yelling 20 12 98

Restaurant Silent 70 3 98
Whispering 60 10 97
Talking 40 19 94
Loud 30 24 99
Yelling 30 25 99

Hall Silent 70 17 98
Whispering 50 29 98
Talking 30 44 98
Loud 30 49 98
Yelling 20 49 99
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suspended in the air for extended periods of time49 and

can move over longer distances. The primary mode of

infection transmission is via breathing airborne droplets.

Additionally, infection transmission through large dro-

plets often happens by direct contact, such as shaking

hands with an infected individual or touching the door

handle and then rubbing eyes.50 These droplets are

thought to spread widely with varying densities and pose

a risk to everyone in a small or moderately sized indoor

room. Therefore, it is possible that the transmitted air-

borne particles will spread in areas beyond our calcu-

lated infection radius, thus additionally affecting the

number of infected individuals.

In future work, we plan to address the restrictions and

weaknesses of our modeling and simulation approach.

6. Conclusion

In this paper, we introduce and implement a novel model

of infection/virus transmission in the SIR format, and we

apply it to simulate the recent COVID-19 pandemic. We

develop a new concept of behaviors based on pedestrian

dynamics and we implement it by extending the existing

Vadere simulation framework. In our simulation system,

we greatly enhance the Vadere’s level of user interactivity

in the process of simulation. This allows the user to control

by mouse-clicks the state of the agents (stationary/moving

and susceptible/infected) and to add new interactive ele-

ments, for example, doors that can be opened/closed inter-

actively during simulation.

We evaluate our approach in a series of extensive simu-

lation experiments for the city of Münster in Germany,

which has a population of approximately 300, 000 people.

We conduct simulation experiments for high-, medium-,

and low-risk distancing scenarios, together with school

closure and self-isolation. Our experimental results show

that early social distancing, self-isolation and school clo-

sures are keys to fighting the COVID-19 pandemic and

that individual behavior, like following rules/regulations,

is essential in controlling the spread of infection. We also

show that no single protective measure can significantly

prevent infection, but rather a combination of several mea-

sures should be applied. We further model and simulate

the infection behavior and assess the efficacy of wearing

masks and controlling speaking volume in most common

indoor VEs (classroom, office, hall, and restaurant). By

comparing our numerous simulation results with the real-

life reported pandemic data for both city of Münster and

indoor environments, we confirm the adequacy of our

modeling and simulation approach.
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Figure 18. Four probability estimation plots for small-scale scenarios: (a) office, (b) classroom, (c) restaurant, and (d) hall.
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44. Böhmer MM, Buchholz U, Corman VM, et al. Investigation

of a COVID-19 outbreak in Germany resulting from a single

travel-associated primary case: a case series. Lancet Infect

Dis 2020; 20(8): P920–P928.

45. Sanche S, Lin YT, Xu C, et al. Early release-high contagious-

ness and rapid spread of severe acute respiratory syndrome

coronavirus 2. Emerg Infect Dis 2020; 26(7): 1470–1477.

46. XChart. XChart, 2020. https://knowm.org/open-source/

XChart/, (accessed 30 May 2022)

47. Coronavirus (in German): Erste Infektion in Münster,

https://www.allesmuenster.de/coronavirus-erste-infektion-in-

muenster/ (2020, accessed 30 May 2020).

48. Olesen BW. Indoor environmental input parameters for the

design and assessment of energy performance of buildings.

REHVA J 2015; 52: 17–23.

49. Morgenstern J. Aerosols, droplets, and airborne spread:

Everything you could possibly want to know. First10EM

blog 2020; 6.

50. Stadnytskyi V, Bax CE, Bax A, et al. The airborne lifetime

of small speech droplets and their potential importance in

SARSCoV-2 transmission. Proc Natl Acad Sci 2020;

117(22): 11875–11877.

Author biographies

Mina Abadeer is a PhD candidate at the University of

Münster in Germany since 2018. He received his MSc in

Computer Engineering from the Arab Academy for

Science, Technology, and Maritime Transport in Egypt,

and he worked as a Research Assistant at the American

University in Cairo (Egypt). His research interests include

emergency evacuation and epidemic simulation, computer

networking, and cloud computing.

Sameh Magharious is a Computer Engineering

(B.Sc.) Principal Engineer at Dell EMC (USA), where

he focuses on designing and developing internet-scale

cloud services. He was also a member of Microsoft’s

Office Core Engineering group, where he worked on

storage infrastructure and sync/collaboration features

for Office 365. His research focuses on computer simu-

lation and distributed systems.

Sergei Gorlatch is Full Professor of Computer Science

at the University of Münster (Germany) since 2003.

Earlier he was Associate Professor at the Technical

University of Berlin, Assistant Professor at the

University of Passau, and Humboldt Research Fellow at

the Technical University of Munich. Prof. Gorlatch has

more than 200 peer-reviewed publications in renowned

international journals and conferences. He holds MSc

degree from Kiev Shevchenko University, PhD degree

from Glushkov Institute of Cybernetics (Ukraine), and

Habilitation degree from the University of Passau

(Germany). His research interests include parallel and

distributed programming, formal methods, and

networking.

346 Simulation: Transactions of the Society for Modeling and Simulation International 99(4)


