
Methodology

Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

1–11

� The Author(s) 2022

DOI: 10.1177/00375497221132566

journals.sagepub.com/home/sim

Race conditions and data partitioning:
risks posed by common errors to
reproducible parallel simulations

James Nutaro and Ozgur Ozmen

Abstract
When parallel algorithms for simulation were introduced in the 1970s, their development and use interested only
experts in parallel computation. This circumstance changed as multi-core processors became commonplace, putting a
parallel computer into the hands of every modeler. A natural outcome is growing interest in parallel simulation among
persons not intimately familiar with parallel computing. At the same time, parallel simulation tools continue to be devel-
oped with the implicit assumption that the modeler is knowledgeable about parallel programming. The unintended con-
sequence is a rapidly growing number of users of parallel simulation tools that are unlikely to recognize when the
interaction of race conditions, partitioning strategies, and simultaneous action in their simulation models make results
non-reproducible, thereby calling into question the validity of conclusions drawn from the simulation data. We illustrate
the potential dangers of exposing parallel algorithms to users who are not experts in parallel computation with example
models constructed using existing parallel simulation tools. By doing so, we hope to refocus tool developers on usability,
even if this new focus incurs loss of some performance.

Keywords
Parallel simulation, agent based, discrete event, reproducibility

1. Introduction

A principle of software design is separation of concerns, a

term introduced by Dijkstra in 1974.1 When discussing

software for simulation, this concept manifests as a clear

distinction between the model and its simulator. This

separation recognizes that there are two distinct types of

expertise needed to build a simulation model. The first is

computational and mathematical: numerical methods,

event schedulers, Lamport logical clocks, and so forth. The

second is the domain of interest: epidemiology, psychol-

ogy, electric circuits, and so forth. Simulation packages

that separate model and simulator permit experts in the

domain of interest to use the simulation tool without being

experts in computation.

Simulation packages for the parallel execution of dis-

crete event and agent-based models (ABMs) frequently

violate this principle, to the detriment of repeatability and,

potentially, the validity of a simulation model. The prob-

lem of creating reproducible simulations has many

facets.2–5 Here, we focus on the challenge of creating the

software that embodies a simulation model6–9 with a par-

ticular emphasis on the difficulties of creating correct par-

allel programs.

The parallel programming errors discussed here are not

new, and technical solutions to these problems are well

known. However, these solutions are not trivial. It is our

position that the correct, parallel execution of a simulator

is predicated on the design of its algorithms by an expert

in parallel processing. Our modelers cannot be expected to

have this expertise and so a separation of concerns is indis-

pensable. Nonetheless, it has been our experience that the

risks of violating this principle are often overlooked or, if

acknowledged, are understated.

Historically, this separation of concerns has not been

essential because parallel computers were relatively rare,

and so expertise in parallel computation typically coin-

cided with access to a parallel computer. This has changed

over the past two decades. Now, parallel computers are

Computational Sciences and Engineering Division, Oak Ridge National

Laboratory, USA

Corresponding author:

James Nutaro, Computational Sciences and Engineering Division, Oak

Ridge National Laboratory, 1 Bethel Valley Road, M.S. 6085, P.O. Box

2008, Oak Ridge, TN 37831, USA.

Email: nutarojj@ornl.gov

https://doi.org/10.1177/00375497221132566
https://journals.sagepub.com/home/sim
http://crossmark.crossref.org/dialog/?doi=10.1177%2F00375497221132566&domain=pdf&date_stamp=2022-11-19


available to every modeler, but it does not follow that

every modeler is an expert in parallel computing.

It has been demonstrated that the rudiments of parallel

computing can be effectively taught to novice program-

mers;10 and the brief survey therein, also.11 Nonetheless,

the complex parallel algorithms needed to resolve repeat-

ability problems in many types of parallel simulations are

not learned in a rudimentary course. For example, solu-

tions to the problem of repeatably ordering simultaneous

events in a parallel discrete event simulation involve the

use of causality preserving logical clocks, a topic intro-

duced only in advanced textbooks on parallel

algorithms.12,13

The inherent difficulties of parallel algorithms ensure

that most modelers are, essentially, sequential program-

mers except where powerful abstractions hide the com-

plexities of a parallel computer. However, parallel

simulation tools have historically emphasized performance

and scale, and for this purpose frequently expose complex

algorithmic machinery to the end user. The relatively new

circumstance of complex parallel algorithms in the hands

of sequential modelers poses new risks to model validity,

which stem from the increasing likelihood that software

for parallel simulation will be applied incorrectly.

The difficulties of programming parallel simulations

are concretely demonstrated by reproducibility challenges

that have come to light in prominent simulation programs

from several domains of science and engineering, includ-

ing computational fluid dynamics, traffic simulations,

nuclear engineering,14–20 and in various parallel simula-

tion tools.14,15,21

While systematic studies of reproducibility are some-

times published for widely used simulation tools, such as

those cited here, similar studies for models built and used

by individuals or small teams are difficult to find.

Nonetheless, if widely used simulations and simulation

tools can exhibit unexpected non-reproducibility, it is rea-

sonable to assume that these issues exist in other, less

scrutinized parallel simulations.

At first glance, these reported issues are surprising.

Simulation verification is expected to be part of the model

development; hence, it is expected that any source of irre-

producibility will be found and fixed. This view under-

states the difficulties of creating defect-free simulations22

and, in the context of simulation libraries, the consequent

importance of striving to avoid the possibility of defects

arising from incorrect use.

This point is illustrated by Boehm and Basili23 for soft-

ware systems in general as follows:

About 80 percent of the defects come from 20 percent of the

modules, and about half the modules are defect free. Studies

from different environments over many years have shown,

with amazing consistency, that between 60 and 90 percent of

the defects arise from 20 percent of the modules ... Obviously,

then, identifying the characteristics of error-prone modules in

a particular environment can prove worthwhile. A variety of

context-dependent factors contribute to error-proneness. Some

factors usually contribute to error-proneness regardless of con-

text, however, including the level of data coupling and cohe-

sion, size, complexity, and the amount of change to reused

code. (Emphasis added).

It is our position that complexity, as seen from the

modeler’s perspective, is a characteristic of parallel simu-

lation tools that make their use error prone. Hence, we

suggest that the likelihood of errors leading to irreproduci-

bility in parallel simulations can be reduced by reducing

the complexity of the simulation tool as experienced by

the modeler. That is, by separating the concerns of the

modeler and the parallel programmer.

Solutions to the problem of reproducibility in parallel

simulation programs are well known to experts in parallel

simulation, but not necessarily to less experienced simula-

tion programmers. A modeler that is experienced in paral-

lel computing addresses the problems posed by parallel

simulation in one of two ways. On one hand, the order in

which a set of actions are applied is unimportant to the out-

come; in this case, the computational overhead of impos-

ing an order can be avoided without risk. Rao et al.24

explore a version of this technique by discarding time syn-

chronization to create a very fast queuing simulation, but

their simulation requires an understanding of parallel com-

putation to argue for its correct preservation of the model’s

statistical properties.

On the other hand, if the ordering of actions is signifi-

cant, then specific mechanisms are put in place to enforce

a proper order or to systematically explore alternative

orderings.25–29 This can involve complicated algorithms

that require extensive knowledge and experience in paral-

lel computation to apply correctly. Unfortunately, these

solutions can entail a reduction of performance, and so

they are often not included in the simulation package’s

default mode of operation.

Appeal to expertise is a satisfactory solution when

experts are the primary users of parallel simulation tools,

but it has become untenable for the increasingly diverse

group of modelers interested in parallel simulation. To

demonstrate some of the risks posed by an appeal to exper-

tise when such expertise may be unavailable, we examine

simple models that offer concrete examples of how validity

can be undermined by errors unique to parallel computing.

To avoid these risks, we propose that parallel simulation

packages be designed to ensure repeatability by default,

and that options to disable this property be exposed with

suitable cautions to the user.

From the variety of errors that can appear in parallel

simulation, we choose to illustrate two types that appear to

be most prevalent and are unique to parallel programs: race

conditions and incorrect partitioning. Discussions of these

2 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



errors, particularly in the context of new parallel program-

mers, are abundant.14–20

A race condition is an error that causes the ordering of

actions to be a consequence of how threads and processes

are scheduled rather than the logic of the simulation

model. If left unresolved, race conditions in a simulation

program can make it infeasible to both reproduce a single

simulation execution and as well as recreate statistical dis-

tributions constructed from numerous simulation execu-

tions. This problem can appear even when parameter

settings, experimental design, and executable software are

identical to what was used before. Rather, any change in

the computational environment, such as a change in the

computer’s workload, an operating system update, or

changed hardware is sufficient to alter the statistical prop-

erties of a parallel simulation model. Logical errors in the

parts of a parallel program that perform partitioning and

data exchange are another common problem. A study by

Pederson30 found that the tasks of data decomposition and

function decomposition collectively constituted 25% of

errors made by graduate students studying parallel com-

puting in a one-semester course. In a parallel simulation

program, these tasks involve distributing the model state—

agents in an ABM and logical processes in a discrete event

model—to threads and processes, and coordinating the

exchange of data between the distributed agents or logical

processes. A pernicious manifestation of these errors is

that different results are obtained when the computational

workload is distributed on a larger computer, even if any

particular distribution of the workload yields a single

result.

It is illuminating to compare the prevalent approach to

parallel simulation with that of modeling and simulation

techniques developed for real-time applications. Both pur-

suits are primarily concerned with creating a specific

sequence of events in time. Parallel simulation, with its

origins in high performance computing, seeks to do this as

quickly and at as large a scale as possible. Modeling and

simulation tools for the development of real-time systems

are concerned with ensuring that simulation results reflect

the target environment, striving for repeatability as an aide

to debugging and performance analysis.31,32

The dissimilarity of emphasis in these two domains is

noteworthy as both are vitally concerned with the ordering

of events and their location in time. On one hand, in simu-

lation tools and modeling methods used to develop real-

time applications, we find an explicit concern with both

the correctness of the application, as explored via simula-

tion and, as a by product, an insistence that the simulation

itself have predictable properties. At the same time, paral-

lel simulation tools—and particularly discrete event and

agent-based tools—accept the possibility of unpredictable

behavior with the expectation that a knowledgeable user

will recognize the circumstances in which surprises can

occur and have the skills needed to apply appropriate

safeguards.

Our aim is to challenge this dissimilarity of expectation

regarding the guarantees offered by a parallel simulation

tool to the modeler. This challenge has two dimensions.

The first has been to highlight the role that expertise in par-

allel computation has traditionally played in the successful

use of parallel simulation tools, and to emphasize that this

type of experience is becoming increasingly uncommon

among the users of parallel simulation tools. This is a

result of the combined effects of universal access to paral-

lel computers and the growing importance of simulation to

all fields of science and engineering.

The second aspect of our challenge is to show that even

simple models may offer traps to the inexperienced paral-

lel programmer. By falling into such a trap, the simulation

model may become invalid by virtue of having outcomes

dominated by computational artifacts. Worse, these invalid

outcomes may manifest in skewed statistics rather than an

obvious bug, and therefore be exceptionally difficult to

detect. Our demonstrations illustrate the reproducibility

problem at two levels: (1) L1: Deterministic, identical

computation and (2) L2: Non-deterministic, identical com-

putation.7 These are the most commonly sought reproduci-

bility levels, which demand repeatability for exact results

(L1: deterministic) and statistical aggregations of results

(L2: non-deterministic).

2. Race conditions

When a race condition is present in a parallel program,

then the order of actions subject to the race condition is

determined by the collective behaviors of the computa-

tional infrastructure: the operating system scheduler, com-

munication network, memory caches, and so forth.

Therefore, we should expect that the statistics of a simula-

tion model containing a race condition will reflect the

behavior of the computer system in some measure. For

instance, suppose some aspect of our model concerns two

outcomes A and B, and that our model assigns a probabil-

ity p to A and 1� p to B. Further assume that a race con-

dition in our parallel simulation model will choose A with

probability q and B with probability 1� q.

Because a race condition does not always lead to an

error, we will obtain some number of samples N due to

the race condition and some number M due to the actual

statistics of the model. An analysis of the data obtained

will indicate that outcome A occurs with probability:

p̂=
qN + pM

N +M

As N +M becomes very large, N=(N +M) converges to
a parameter a and:

Nutaro and Ozmen 3



p̂=aq+(1� a)p

The parameters a and q are artifacts of the computing

system. They will depend on the number of processors and

cores being used, design choices made by the operating

system programmers, the computer’s workload at the time

the experiments are run, and other factors outside the con-

trol of the modeler. Consequently, we should not be sur-

prised if our simulation results deviate from what would be

obtained if the race condition was eliminated. Moreover,

the deviation will change with the computational environ-

ment so that separate analysis using the same model may

generate data that support conflicting conclusions.

A simple simulation model illustrates this effect.

Consider the following ABM, which is implemented using

C++ and OpenMP. This model has four agents, each

with a single-state variable. At each time step, the state of

agent i+ 1 is adopted by agent i. The space wraps around

so that each agent has two neighbors. The intended order

of execution for the agents is 1, 2, 3, and then, 4 and this

behavior is realized by the simulator’s single-threaded

execution.

If this simulation is executed using a single thread, the

output is a translation of the initial state from left to right

with the initial state reappearing at time 2.

0 1 0 1 0
1 0 1 0 1
2 1 0 1 0

If the simulation is executed using two threads, we obtain

the same result every time the program is run, but this out-

come is due to luck rather than design. It happens that agents

0 and 1 are assigned to the first thread, and agents 2 and 3 to

the second thread. Because agents 2 and 3 need more time

to perform their calculations, agents 0 and 1 perform their

assignments to x and y first. A happenstance of scheduling

means that the calculations happen in the correct order.

If the simulation is executed using three threads, a dif-

ferent result is obtained. Nonetheless, this new result is

consistent for all executions that use three threads.

0 1 0 1 0
1 0 1 1 1
2 1 1 0 1

Once again, the outcome is a product of how agents are

assigned to threads. The first thread is assigned agents 0

and 3, the second thread gets agent 1, and the third thread

gets agent 2. As a result, the agents are updated in a differ-

ent order with a different outcome. The outcome is persis-

tent because large differences in the usleep times prevent a

race between fetching x in one thread and assigning x in

another.

Yet another result is obtained using four threads. In this

case, each agent is assigned to its own thread. The interac-

tion of the schedule and agent computations (here repre-

sented by usleep) ensures that the result is consistent

across executions with four threads, and consistently dif-

ferent from executions using fewer threads.

0 1 0 1 0
1 0 1 1 0
2 1 1 0 1

#include < iostream >

#include < unistd.h >

using namespace std;

int main() {
// Four agents and their initial states
int agent[4] = { 1, 0, 1, 0 };
// Take three steps in time
for (int t = 0; t < 3; t + +) {
// Print the current time
cout < < t;
// This clause instructs the compiler
// to execute the for loop iterations
// in separate threads. The assignment
// of loops to threads is determined by
// the compiler, which will ensure the
// iterates are divided as evenly as
// possible among the available
// threads.
#pragma omp parallel for \
ordered schedule(static,1)

// Update the agents in order
for (int i = 0; i < 4; i + +) {
// Input and output variables
int x, y;
// Do some work. This simulates a
// calculation, database access,
// or some other activity where
// the effort is a function of
// the agent identity.
usleep(100*(3-i));
// The agent output for the current
// step
y = agent[i];
// The agent input for the current step

(continued)

x = agent((i + 1)%3]
// Print the output for the agents
// in order
#pragma omp ordered {
cout < < ‘‘‘‘ < < y;

}
// Assign a new state to the agent
agent[i] = x;

}
// New line for the next time step
cout < < endl;

}
}

4 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



The variety of results produced by the ABM are not

due to an error or design flaw in OpenMP. Rather, they

are the consequence of incorrectly using the parallel com-

puting features that OpenMP offers. Indeed, this is the

simplest possible case of statistical error introduced by a

race condition. With two threads, we have p̂= 1 and the

correct solution is always arrived at. With three or more

threads, p̂= 0 and an incorrect solution is always pro-

duced. It so happens that our OpenMP implementation

makes a consistent assignment of agents to threads, but

this need not be the case. Should these assignments vary

from run to run, then p̂ will reflect the frequency of assign-

ments that yield a flawed result.

To demonstrate a model containing a race condition

with p̂ far from 0 and 1, we use the Rensselaer’s

Optimistic Simulation System (ROSS) parallel discrete

event simulation tool.33 As with the OpenMP example, the

error in this model is due to our incorrect use of this (com-

plex) parallel simulation tool and not some intrinsic fault

of the tool itself. Nonetheless, to recognize and resolve the

error requires some expertise in parallel computation.

This model has 100 logical processes. The state of each

logical process comprises the number of events that it has

executed, and a binary variable indicating which group of

logical processes caused the execution of its most recent

event. This variable takes a value of 0, if the most recent

event was received from logical processes with identifier

less than or equal to 50 and a value of 1 for a logical pro-

cess with identifiers greater than 50.

Each logical process begins by scheduling an event for

itself at time 1. For logical processes 1–99, this event gen-

erates a new event with time stamp 2 that is sent to logical

process 0. Hence, logical process 0 will have 99 simulta-

neous events to execute at time 2. The result reported by

this model is the state of logical process 0.

When this model is simulated using ROSS’s sequential

and parallel conservative algorithms, the simulation algo-

rithm produces the same result each time. However, a race

condition inherent in the handling of simultaneous events

prevents us from obtaining the same solution in each par-

allel run using ROSS’s optimistic algorithm. An analyst

examining the data produced by the distinct simulation

algorithms would conclude there are at least two models:

one deterministic and the other stochastic.

Now suppose an analyst is supplied with five datasets

produced in turn by executing a 1000 replications of the

model using 2, 5, 10, 20, and 50 computational processes

and the optimistic simulation procedure. In each case, our

analyst computes the probability of obtaining a 1 from the

simulation model. The result of this calculation is shown

in Table 1. Because the means are very far apart in most

cases, the exceptions being one and two computational

processes, it is necessary to conclude there are five distinct

models: one deterministic and four distinct, stochastic

models.

The role of p̂ in this example is clear. For the sequential

execution and with two computation processes, p̂= 1 and

the behavior is determined entirely by the logic of our

model. For five computational processes, p̂= 0:611; for
10 p̂= 0:708, and so forth. In a larger model with more

complicated behaviors, a novice parallel programmer may

be unaware of the role played by the hardware and operat-

ing system in setting p̂ and, even more so, its degree of

impact.

3. Incorrect partitioning

To demonstrate the types of errors that can be introduced

by improper partitioning of a simulation model, we con-

struct several ABMs using the Repast HPC simulation

tool.34,35 The errors introduced when partitioning the

model are due to an improper use of boundary cells in

Repast HPC and its impact on the order of agent execu-

tion. As before, to recognize and correct the error requires

a non-trivial understanding of parallel computation.

3.1. One-dimensional ABM

In this one-dimensional model, the agents are arranged in a

line. The state of an agent is 0 or 1, and each agent can see

the state of the agent to its right. At each time tick, each

agent copies the adjacent agent’s state before updating its

own.

In a sequential simulation, agent updates happen in a

fixed order so that agent 1 acts first, then agent 2, and so

on. Figure 1 presents the sequential execution of this

model for four time ticks. Upon reaching time tick 4, agent

1 goes first, copies zero from agent 2, and all agent states

remain at 0 for the rest of simulation time.

Our distributed memory implementation of this model

realized with Repast HPC operates differently from the

sequentially executing simulation, and yields different

results depending on how the agents are assigned to com-

putational processes. Specifically, the parallel algorithm

creates what is called a grid projection with four cells,

assigning one agent to each cell, and then distributing the

cells among the available computational processes. In

Repast HPC, the cell acts as a container, analogous to a

physical space, in which an agent resides.

Table 1. Probability of producing one.

Processes Probability of 1 95% confidence interval

1,2 1 0
5 0.611 0.0308
10 0.708 0.0288
20 0.665 0.0299
50 0.577 0.0312

Nutaro and Ozmen 5



The state of a cell, and hence the state of the agents

residing in that cell, are replicated across computational

processes prior to executing a time tick. These replica-

tions are called buffer zones, and we add a one cell buf-

fer zone between adjacent computational processes. The

buffer zone causes a copy of the agent to the right to be

available when executing the next time tick. Figure 2

shows the progress of this simulation over four time

ticks when we use four computational processes for its

execution.

The outcome is different from what is obtained with

the sequentially executing model. At time tick 4, the agent

in cell 4 has a copy of the agent in cell 1 (with state 1) and

copies that state. The source of the discrepancy is the

simultaneous updating of the agents using a copy of the

state of the neighbor at the previous time tick. Those cop-

ies have no place in the sequentially executing model, are

not a part of our original conception of the model, and so

this is an artifact of the parallel algorithm.

To describe the impact of this type of parallel execution

with Repast HPC better, we demonstrate two instances of

the four-agent model distributed to two computational pro-

cesses. This is done by creating two cells, each cell having

two agents, and the adjacent cell in the neighboring com-

putational process is copied at the beginning of each time

tick. In one version of this simulation, the agents in each

cell execute in turn from left to right and in the other from

right to left. In both cases, the agents in each computa-

tional process are updated using copies of the adjacent cell

state at the previous time tick.

Both cases are shown in Figure 3 where diamonds indi-

cate the agents that update first in each time tick. The

result for the left to right ordering is the same as the four

computational process execution in Figure 2. This is shown

on the left-hand side of the figure. On the right, we observe

the effect of a change in the update order.

3.2. Two-dimensional ABM

Now we construct a more typical model using Repast HPC

by placing agents onto a two-dimensional grid. In this

model, at each time tick, each agent observes its Von-

Neumann neighborhood and changes its own state to the

binary sum of its neighbors; i.e., 1 + 1 = 0, 0 + 1 = 1

+ 0 = 1, and 0 + 0 = 0. There is no random element in

the summation process, and so an identical result should be

obtained each time the simulation is run. In Figure 4, red

cells show the Von-Neumann neighborhood. All agents

start with a state of 1 and the model is executed for two

time ticks.

Figure 1. Expected deterministic outcome from the 1D model.

Figure 2. Parallel simulation with four computational
processes in Repast HPC.

Figure 3. Parallelization with two processes in Repast HPC.

6 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



First, we consider a case where the initial conditions

and order of agent updates is fixed for each computational

process. When using multiple computational processes to

execute this model, the grid is vertically divided into equal

portions as in the Repast example with a single cell bound-

ary at each computational process. Agents are updated in

an order starting from the leftmost cell with the smallest

index at each computational process. The model is run for

two time ticks.

Figure 5 shows the mean and variance of agent states at

the end of a simulation. Note that these calculations are at

deterministic (L1) level and there is no need for replica-

tions. The variability in the results originate from the pop-

ulation of agents. The plot shows a clear change in mean

and variance as the number of computational processes is

increased, which indicates a qualitatively and quantita-

tively different result for each simulation. As before, this

is an artifact of the boundary cells and the order of agent

updates. These features have no place in the model as it

was conceived for the sequentially executing simulator;

they are an artifact of how we have used the parallel simu-

lation features of Repast HPC.

3.3. ABM with shuffling

So far, we demonstrated the artifacts of the partitioning on

models with deterministic order of agent execution.

However, when an ABM is implemented, the modeler is

often indifferent to the order of agent updates, leaving the

specific choice of ordering up to the underlying simulation

procedure. In some tools, the scheduler scrambler rando-

mizes the order of agent activation, and this may be the

default choice for the simulator.36 In a sequential simula-

tion, when the model is run many times, the individual

samples obtained using randomly selected update orders

yield a genuine mean for the model. However, this is not

necessarily true in a parallel simulation that does not

explicitly address the question of agent order.

To demonstrate this, we let Repast HPC reshuffle the

update order of our agents at each time tick for the model

in Figure 4. This stochasticity means that the update order

does not necessarily start from the leftmost agent and there

is a different update order for each time tick. We ran 100

replications of the model on 1, 2, 4, 5, 8, 10, 20, and 40

computational processes using a fixed set of random num-

ber seeds for the scheduler. Each replication is run for two

time ticks.

Figure 6 shows the mean and variance of the agent

states for each case. These results represent stochastic

(L2) level reproducibility. While 8 and 20 computational

processes give statistically similar results, the case with 10

differs significantly. This clearly indicates that the statis-

tics of the simulation output depend very strongly on the

parallel computer.

To further illustrate the impact of the parallel computer

on the simulation output, we compare the data for each

case using a Wilcoxon test37 in which the null hypothesis

is that the data are generated by the sequentially executing

model; that is, our intended model. The sequential and

parallel models differ with very high confidence for the

Figure 5. Error bars of agent states when the fixed model is
run on different numbers of processes.

Figure 4. Initial state of a larger grid including 160 agents.

Figure 6. Error bars of agent states for 100 replications when
the shuffled model is run on different numbers of processes.

Nutaro and Ozmen 7



executions with 20 and 40 computational processes, and

are only tentatively similar in other cases. The Wilcoxon

test is summarized in Table 2.

4. Conclusions and recommendations

The challenges to reproducibility that we have illustrated

here are well known, and methods for ensuring reproduci-

bility are likewise mature and widely employed by mode-

lers with experience in parallel computing. For this reason,

it has historically been true that strong guarantees of

repeatability in parallel simulation tools were considered

unimportant. The end user, presumed to be a skilled paral-

lel programmer, would identify and resolve repeatability

issues as needed without being hampered by the computa-

tional burden of a generalized solution that was unneces-

sary for the problem at hand.

This appeal to expertise has become impractical for the

majority of users of parallel simulation tools. For a novice

parallel programmer to use these solutions effectively, they

must be intrinsic to parallel simulation tools and not an

addition introduced as needed by the modeler. Toward this

end, we offer a simple categorization of known solutions

and examples within each category.

Solutions to the repeatability problem can be categor-

ized into two bins. The solutions in the first bin violate

Dijkstra’s principle of separating concerns by conflating

the model and parallel simulation algorithm. These solu-

tions should be avoided. Solutions in the second bin

respect Dijkstra’s principle of separating concerns by

separating the model and parallel simulation algorithm.

Solutions in this bin should be preferred.

Solutions in the first bin are are specific to a tool and

are characterized by some exposure of the modeler to the

solution mechanism. Although offering greater opportuni-

ties to optimize for performance, these solutions burden

the modeler with parallel computing concerns and thereby

violate the principle of separating concerns. Indeed, if

separation of concerns is indispensable to avoiding errors,

then solutions in this bin are really not solutions at all.

Two examples will illustrate this bin.

Our first example is Repast HPC and its ValueLayers

feature. By using this feature, the simulation algorithm

ensures that all agent states calculated at time tick t+ 1 use

output values written to the value layer matrix at the end of

time tick t. If this feature is used for our stochastic Repast

model, then a consistent result is obtained regardless of

how the model is partitioned among processes. However,

this is not the default simulation approach. It must be delib-

erately chosen by the modeler, thereby exposing the mode-

ler to the risk of non-reproducible results.

Our second example is the capability in ROSS for the

modeler to define a type that represents time. It is possible

to define a multi-dimensional form of time in such a way

that a unique ordering of events emerges. Examples of this

appear in WarpIV38 and several other parallel discrete

event simulation tools.13 A generalized form of this con-

cept is super-dense time as it appears in simulations of

hybrid dynamic and discrete event systems.39 Correct use

of these solution techniques within ROSS would require

the modeler to have a working understanding of these

forms of simulation time, thereby exposing the modeler to

the risk of non-reproducible results.

In the second bin of solutions are simulation tools offer-

ing a model specification framework that is mathemati-

cally well-defined and may be correctly realized in

software by a variety of means.40–43 This approach is ana-

logous to the distinction between models specified with

differential equations and the numerical methods used to

solve those equations. A concise, well-defined boundary

between the model and its simulator satisfies the principle

of separating concerns. Two examples from this bin are

the Model of Computation approach pioneered by Edward

Lee44,45 and the Discrete Event System Specification

(DEVS) introduced by Bernard Zeigler et al.40

Lee describes a model of computation as ‘‘the set of

laws of physics that govern the interaction of components

in the model. If the model is describing a mechanical sys-

tem, then the model of computation may literally be the

laws of physics. More commonly, however, it is a set of

rules that are more abstract, and provide a framework

within which a designer builds models. A set of rules that

govern the interaction of components is called the seman-

tics of the model of computation.’’

The modeler need only be concerned with these seman-

tics, and simulation tools realizing the semantics will pro-

duce the same results even though their software

implementations may be different. For complicated mod-

els, several distinct models of computation may be com-

posed. Like individual model components, a composite

may be understood and used by the modeler without

knowledge of how the composition is realized in software

by the underlying simulation tool.

Table 2. Wilcoxon test of agent states for different numbers
of computational processes against results from a sequentially
executing simulation.

Wilcoxon test p-value Parallel and
sequential simulations
are the same?
(significance level 5%)

1 Process vs 2 Processes 0.8493 Accept
1 Process vs 4 Processes 0.7628 Accept
1 Process vs 5 Processes 0.1726 Accept
1 Process vs 8 Processes 0.2273 Accept
1 Process vs 10 Processes 0.0517 Accept
1 Process vs 20 Processes 0.0189 Reject
1 Process vs 40 Processes < 2.2e–16 Reject

8 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



The DEVS approach also offers semantics for model

construction that are invariant with respect to how the

simulation tool is implemented. In broad outlines, DEVS

differs from the Model of Computation approach by seek-

ing generality rather than specificity; a single semantics

universally applied rather than a composition of specia-

lized semantics.

There are many simulation tools that implement the

DEVS semantics,46,47 and these disparate tools demon-

strate the reproducibility can be achieved within a tool and

across tools when used to implement the same model. For

example, benchmark models are reproduced precisely

across simulator implementations to compare perfor-

mance48 and it is feasible to reuse component models

across simulator implementations.49 Moreover, these

reproducible results extend naturally to DEVS tools imple-

mented using parallel discrete event simulation algo-

rithms; e.g., see the simulation algorithms presented in the

study by Nutaro.50,51

Despite the availability of parallel simulation packages

that incorporate solutions in the second bin, these pre-

sently constitute a small part of the parallel simulation

landscape. In our view, this situation is a legacy of the his-

torical emphasis on speed and scale in parallel simulation

rather than usability. Indeed, the expertise needed to apply

parallel discrete event simulation was recognized very

early in that field’s history as a barrier to its adoption by

practitioners.52

Now, powerful parallel computers are readily available

and it is natural for every modeler to want to use a parallel

computer to speed up their increasingly sophisticated mod-

els. At the same time, the difficulty of correctly program-

ming a parallel computer creates new risks that discoveries

made via simulation studies will not be reproducible, and

so not meaningfully contribute to the advancement of sci-

ence and technology. It is impractical to require modelers

that use a parallel computer to also master the intricacies

of parallel simulation. Instead, tool builders who are

experts in parallel simulation must strive to create environ-

ments that limit or eliminate these risks for the modeler,

whose expertise lies in the domain of study rather than the

technology of parallel simulation.

5. Code repositories

Source codes for the ROSS and Repast HPC models are

available in the repositories below:

� https://ozi@code.ornl.gov/ozi/parallelSIMDemos.git

Please contact Ozgur Ozmen (ozmeno@ornl.gov) if you

have difficulties connecting to the repository or need to be

granted access privileges to it. Users from outside of Oak

Ridge National Laboratory (ORNL) can connect to the

repository by creating an XCAMS account (https://xcam-

s.ornl.gov) and logging in with that account on https://

code.ornl.gov.

� https://github.com/cengover/parallelABMs.git

Acknowledgements

This manuscript has been authored by UT-Battelle, LLC under

Contract No. DE-AC05-00OR22725 with the U.S. Department of

Energy. The United States Government retains and the publisher,

by accepting the article for publication, acknowledges that the

United States Government retains a non-exclusive, paid-up, irre-

vocable, world-wide license to publish or reproduce the published

form of the manuscript, or allow others to do so, for United States

Government purposes. The Department of Energy will provide

public access to these results of federally sponsored research in

accordance with the DOE Public Access Plan (http://energy.gov/

downloads/doe-public-access-plan).

Funding

The author(s) disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article:

Research sponsored by the Laboratory Directed Research and

Development Program of Oak Ridge National Laboratory

(ORNL), managed by UT-Battelle, LLC for the U. S. Department

of Energy under Contract No. DE-AC05-00OR22725.

ORCID iDs

James Nutaro https://orcid.org/0000-0001-7360-2836

Ozgur Ozmen https://orcid.org/0000-0002-5806-0116

References

1. Dijkstra EW. Selected writings on computing: a personal per-

spective. Berlin: Springer, 1982.

2. Yilmaz L. Reproducibility in M&S research: issues, strategies

and implications for model development environments. J Exp

Theoret Artif Intell 2012; 24: 457–474.

3. Yilmaz L, Taylor S, Fujimoto R, et al. Panel: the future of

research in modeling & simulation. In: Proceedings of the

2014 winter simulation conference, Savannah, GA, 7–10

December 2014, pp. 2797–2811. Piscataway, NJ: IEEE.

4. Donkin E, Dennis P, Ustalakov A, et al. Replicating complex

agent based models, a formidable task. Environ Model

Software 2017; 92: 142–151.

5. Uhrmacher AM, Brailsford S, Liu J, et al. Reproducible

research in discrete event simulation: a must or rather a

maybe. In: Proceedings of the 2016 winter simulation confer-

ence (WSC ’16), Washington, DC, 11–14 December 2016, pp.

1301–1315. New York: IEEE.

6. Fitzpatrick BG. Issues in reproducible simulation research.

Bull Math Biol 2019; 81: 1–6.

7. Dalle O. On reproducibility and traceability of simulations.

In: Proceedings of the 2012 winter simulation conference

(WSC), 2012, pp. 1–12, https://hal.inria.fr/hal-00782834/

document

Nutaro and Ozmen 9



8. Galán JM, Izquierdo LR, Izquierdo SS, et al. Errors and arte-

facts in agent-based modelling. J Artif Soc Soc Simul 2009;

12: 1.

9. Wilensky U and Rand W. Making models match: replicating

an agent-based model. J Artif Soc Soc Simul 2007; 10: 2.

10. Conte DJ, de Souza PSL, Martins G, et al. Teaching parallel

programming for beginners in computer science. In: 2020

IEEE frontiers in education conference (FIE), 2020, pp.

https://aic-atlas.s3.eu-north-1.amazonaws.com/projects/e729

9991-eb2b-4764-a849-4909e01fb07d/documents/iQ2aDCsh

OAsjNsFHMLYOizMKALLtTBTQCVB17SIh.pdf 1–9.

11. Blandin N, Colglazier C, O’Hare J, et al. Parallel python for

agent-based modeling at a global scale. In: Proceedings of

the 2017 international conference of the computational

social science society of the Americas, Santa Fe, NM,

October 19–22, 2017, pp. 1–7. New York: Association for

Computing Machinery.

12. Garg VK. Principles of distributed systems, vol. 3144.

Berlin: Springer, 2012.

13. Ronngren R and Liljenstam M. On event ordering in parallel

discrete event simulation. In: Proceedings thirteenth work-

shop on parallel and distributed simulation (PADS 99) (Cat.

No. PR00155), Atlanta, GA, 1–4 May 1999, pp. 38–45. New

York: IEEE.

14. Keum S, Grover R Jr, Gao J, et al. Effect of parallel comput-

ing environment on the solution consistency of CFD simula-

tions -focused on IC engines. Engineering 2017; 9: 824–847.

15. Nheili R, Langlois P and Denis C. First improvements

toward a reproducible Telemac-2D. In: Proceedings of the

XXIIIrd TELEMAC-MASCARET user conference, Paris, 11–

13 October 2016, pp. 227–235. New York: IEEE.

16. Hill DRC. Repeatability, reproducibility, computer science

and high performance computing: stochastic simulations can

be reproducible too. In: 2019 international conference on

high performance computing simulation (HPCS), Dublin,

15–19 July 2019; pp. 322–323. New York: IEEE.

17. Diethelm K. The limits of reproducibility in numerical simu-

lation. Comput Sci Eng 2011; 14: 64–72.

18. Hill DR. Parallel random numbers, simulation, and reprodu-

cible research. Comput Sci Eng 2015; 17: 66–71.

19. Avery C. Scalable, repeatable, and contention-free paralleli-

zation of traffic simulation. Cambridge, MA: Massachusetts

Institute of Technology, 2018.

20. Reuillon R, Hill DR, El Bitar Z, et al. Rigorous distribution

of stochastic simulations using the DistMe toolkit. IEEE

Trans Nuclear Sci 2008; 55: 595–603.

21. Maigne L, Hill D, Calvat P, et al. Parallelization of Monte

Carlo simulations and submission to a grid environment.

Parallel Process Lett 2004; 14: 177–196.

22. Robinson S. Simulation model verification and validation:

increasing the users’ confidence. In: Proceedings of the 29th

conference on winter simulation (WSC ’97), 1997, p. 5359.

New York: IEEE, https://www.informs-sim.org/wsc97pa-

pers/0053.PDF

23. Boehm B and Basili VR. Software defect reduction top 10

list. Computer 2001; 34: 135137.

24. Rao DM, Thondugulam NV, Radhakrishnan R, et al.

Unsynchronized parallel discrete event simulation. In:

Proceedings of the 30th conference on winter simulation,

1998, pp. 1563–1570. Los Alamitos, CA: IEEE. https://cite-

seerx.ist.psu.edu/viewdoc/download?doi=10.1.1.73.8404

&rep=rep1&type=pdf

25. Peschlow P and Martini P. Efficient analysis of simultaneous

events in distributed simulation. In: 11th IEEE international

symposium on distributed simulation and real-time applica-

tions (DS-RT 2007), Chania, 22–26 October 2007, pp. 244–

251. Piscataway, NJ: IEEE.

26. Barz C, Gopffarth R, Martini P, et al. A new framework for

the analysis of simultaneous events. In: Proceedings of sum-

mer computer simulation conference, 2003, pp. 306–313.

San Diego, CA: Society for Computer Simulation, https://

citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.496.104

4&rep=rep1&type=pdf

27. Nutaro J and Sarjoughian H. Design of distributed simulation

environments: a unified system-theoretic and logical pro-

cesses approach. Simulation 2004; 80: 577–589.

28. Fujimoto RM. Parallel and distributed simulation systems.

Hoboken, NJ: John Wiley & Sons, 2000.

29. Chow ACH and Zeigler BP. Parallel DEVS: a parallel hier-

archical modular modeling formalism. In: Proceedings of

winter simulation conference, 1994, pp. 716–722, http://

www.bgc-jena.mpg.de/~twutz/devsbridge/pub/chow96_paral

lelDEVS.pdf

30. Pedersen JB. Classification of programming errors in parallel

message passing systems. In: Communicating process archi-

tectures, 2006, pp. 363–376, http://www.egr.unlv.edu/~matt/

publications/pdf/CPA-2006.pdf

31. Niyonkuru D and Wainer G. A DEVS-based engine

for building digital quadruplets. Simulation 2021; 97:

485–506.

32. Samuel KG, Bouare NDM, Maı̈ga O, et al. A DEVS-based

pivotal modeling formalism and its verification and valida-

tion framework. Simulation 2020; 96: 969–992.

33. Carothers CD, Bauer D and Pearce S. ROSS: a high-perfor-

mance, low-memory, modular Time Warp system. J Parallel

Distribut Comput 2002; 62: 1648–1669.

34. Collier N and North M. Repast HPC: a platform for large-

scale agent-based modeling. Large-Scale Comput 2012; 10:

81–109.

35. Collier N and North M. Parallel agent-based simulation with

Repast for high performance computing. Simulation 2013;

89: 1215–1235.

36. North MJ and Macal CM. Product design patterns for agent-

based modeling. In: Proceedings of the 2011 winter simula-

tion conference (WSC), Phoenix, AZ, 11–14 December 2011,

pp. 3082–3093. New York: IEEE.

37. Wilcoxon F. Individual comparisons by ranking methods.

Biometrics Bull 1945; 1: 80–83.

38. Steinman JS. The WarpIV simulation kernel. In: Workshop

on principles of advanced and distributed simulation

(PADS’05), 2005, pp. 161–170, https://citeseerx.ist.psu.edu/

viewdoc/download?doi=10.1.1.516.9749&rep=rep1&type=

pdf

39. Nutaro J. Toward a theory of superdense time in simulation

models. ACM Trans Model Comput Simul 2020; 30(3):

3379489.

40. Zeigler B, Muzy A and Kofman E. Theory of modeling and

simulation. 3rd ed. London: Academic Press, 2019.

10 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



41. Grimm V, Railsback SF, Vincenot CE, et al. The ODD pro-

tocol for describing agent-based and other simulation mod-

els: a second update to improve clarity, replication, and

structural realism. Journal of Artificial Societies and Social

Simulation 2020; 23: 7.

42. Brooks C, Lee EA and Tripakis S. Exploring models of

computation with Ptolemy II. In: 2010 IEEE/ACM/IFIP

international conference on hardware/software co-design

and system synthesis (CODES+ ISSS), 2010, pp. 331–332,

https://ptolemy.berkeley.edu/projects/chess/pubs/712/

PTutorialHandout.pdf

43. Lee EA and Zheng H. Operational semantics of hybrid sys-

tems. In: Morari M and Thiele L (eds) Proceedings of the 8th

international workshop on hybrid systems: computation and

control, HSCC 2005. Berlin; Heidelberg: Springer, 2005, pp.

25–53.

44. Lee EA. Overview of the Ptolemy project. Berkeley, CA:

EECS Department, University of California, Berkeley, 1998.

45. Ptolemaeus C (ed.). System design, modeling, and simulation

using Ptolemy II, 2014, http://ptolemy.org/books/Systems

46. Franceschini R, Bisgambiglia PA, Touraille L, et al. A sur-

vey of modelling and simulation software frameworks using

Discrete Event System Specification. In: Neykova R and Ng

N (eds) 2014 Imperial College Computing Student

Workshop. Vol. 43 of Open Access Series in Informatics

(OASICS). Wadern: Schloss Dagstuhl–Leibniz-Zentrum

Fuer Informatik, 2014, pp. 40–49.

47. Van Tendeloo Y and Vangheluwe H. An evaluation of

DEVS simulation tools. Simulation 2017; 93: 103121.

48. Risco-Martn JL, Mittal S, Fabero J, et al. Reconsidering the

performance of DEVS modeling and simulation environ-

ments using the DEVStone benchmark. Simulation 2017; 93:

459–476.

49. Wutzler T and Sarjoughian HS. Interoperability among par-

allel DEVS simulators and models implemented in multiple

programming languages. Simulation 2007; 83: 473–490.

50. Nutaro JJ. Building software for simulation: theory and algo-
rithms with applications in C+ + . Hoboken, NJ: John
Wiley & Son, 2011.

51. Nutaro JJ. On constructing optimistic simulation algorithms
for the discrete event system specification. ACM Trans
Model Comput Simul 2009; 19: 1.

52. Fujimoto RM. Feature article parallel discrete event simula-
tion: will the field survive? INFORMS J Comput 1993; 5:
213–230.

Author biographies

James Nutaro is a Distinguished Research and
Development Scientist in the Computational Sciences and
Engineering Division of Oak Ridge National Laboratories,
where he leads the Computational Systems Engineering &
Cybernetics group. Dr Nutaro is engaged in research con-
cerning discrete event and hybrid dynamic systems, mod-
eling and simulation methods, and their applications to
problems in systems engineering. He holds a PhD in
Computer Engineering from the University of Arizona.
His email address is nutarojj@ornl.gov.

Ozgur Ozmen is a Research and Development Staff in
the Computational Sciences and Engineering division of
the Oak Ridge National laboratory. He holds an Industrial
Engineering degree from Yildiz Technical University in
Istanbul, Master of Engineering Management degree from
Galatasaray University, MISE, and PhD Degrees (both in
Industrial and Systems Engineering) from Auburn
University. He is a model agnostic interdisciplinary engi-
neer who applied Modeling and Simulation, optimization,
and Machine learning to wide variety of domains such as
Energy systems, Operational Research, and Healthcare.

Nutaro and Ozmen 11


