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Abstract
The visual attention of pedestrians has been rarely considered in studies of congestion prevention in long-distance pas-
sages. This paper proposes a kinetic theory model of human crowds accounting for visual attention to study congestion
in long-distance passages. The population is divided into visual attention-shifting pedestrians (VAS pedestrians) and nonvi-
sual attention-shifting pedestrians (non-VAS pedestrians). First, the movement characteristics of all pedestrians are ana-
lyzed based on observations and measurements obtained through controlled experiments. Moreover, a pedestrian flow
model accounting for visual attention is built to transform the characteristics of pedestrian movement into a mathemati-
cal model. Finally, validation is done, and the density and the proportion of VAS pedestrians are selected as congestion
warning parameters. Simulations are performed for a subway passage connected to stairs, and the effect of visual atten-
tion, the critical thresholds of congestion warning parameters, and the effects of implementing mitigation measures
immediately after congestion occurs are assessed. The experimental results show that the movement characteristics of
VAS pedestrians and non-VAS pedestrians are different. Simulation results show that the model is effective. Notably,
visual attention has an impact on pedestrian movement, and using the density and the proportion of VAS pedestrians as
early warning indicators is effective for preventing the occurrence of congestion, as demonstrated by the negative corre-
lation between the two critical thresholds. This description of human groups provides quantitative guidelines for crowd
management.
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1. Introduction

Visual attention shift is a common behavior in daily life,

but it can result in the occurrence of accidents. According

to previous research, approximately 25% of car accidents

are caused by driver inattention and this rate is gradually

increasing with the development of smartphones.1

Accidents also may occur among pedestrians. Visual

attention shift slows pedestrian walking speeds in narrow

and long passages (as shown in Figure 1), which may lead

to stampedes and congestion. The frequent occurrence of

safety incidents caused by congestion increases the travel

time cost of pedestrians and can even lead to the loss of

life and property, thus making safety management com-

plex and important. Therefore, determining how to control

congestion considering visual attention-shifting behavior

in long-distance passages is an urgent problem.

Congestion is quite common and has attracted the

attention of many researchers. Specifically, the impacts of

different factors, including the locations of exits,2 the

internal layout of the system,3 short-range collision

avoidance,4 pedestrian age,5 an imbalanced initial layout

of pedestrians,6 and the kinship effect,7 on congestion eva-

cuation have been explored. However, these studies did

not consider the impact of pedestrians’ visual attention-

shifting behavior on congestion. Zhao et al.8 showed that

looking down at your phone, a form of visual attention-

shifting behavior, leads to longer street crossings. A study

in the field of vehicle traffic, similar to the field of pedes-

trian transportation, reached the analogous conclusion that

distracting behavior lengthens the time it takes to cross the

street. According to wave theory,9 the disturbance caused

by a decrease in the speed of individuals in dense crowds
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may lead to the occurrence of congestion accidents.

Therefore, it is necessary to consider pedestrian visual

attention-shifting behavior in studies of congestion.

In congestion research, a suitable mathematical model

that can effectively consider the heterogeneity of visual

attention behavior must be selected. According to the

research scale, dynamic crowd models can be divided into

three types: microscale models,10–16 macroscale mod-

els,17–23 and mesoscale models (kinetic models).24–32

Microscale models are used to analyze and model individ-

ual motion characteristics and they include the social force

model and the cellular automaton model. The social force

model originated from Lewin’s domain theory10 and was

developed based on Helbing’s introduction of Newton’s

mechanical concept. This model is a continuous model for

pedestrian flow movement associated with the superposi-

tion of self-driving forces, exclusion forces, attraction, and

other social forces.11 The cell automaton model considers

a crowd to be composed of discrete cells that evolve in

discrete time and space according to certain movement

rules.12 These models can satisfy the behavioral heteroge-

neity of constraints related to the visual attention state of

pedestrians, but many equations and iterations may be

required to obtain a solution, leading to a high calculation

cost. Macroscale models are based on the mechanical

assumption of continuous media and the microscopic

interactions between pedestrians are ignored; thus, the fea-

tures of pedestrian flows are assessed from a global per-

spective. The most common models are hydrodynamic

models. Hughes assumed that pedestrian flow is a com-

pressible continuous fluid and derived the corresponding

two-dimensional pedestrian flow motion equation based

on the continuity equation.17,18 A macroscale model can-

not describe heterogeneous pedestrian movement because

in the derivation process, the parameters related to hetero-

geneity are averaged. Moreover, a macroscale model

assumes that a crowd is completely continuous, but in

reality, even high-density pedestrian flows have spatial

gaps; therefore, these flows should be modeled as incom-

plete continuous fluids because of the heterogeneity of

individual walking strategies.

Microscale and macroscale models are not suitable for

use in dynamic crowd modeling in this study, but mesos-

cale models can overcome the limitations of these models.

Mesoscale models are used for the analysis and modeling

of local groups and they include particle models based on

kinetic theory. Based on kinetic theory for active particles,

Bellomo and colleagues used stochastic game theory to

describe the interactions of pedestrians and used the bal-

ance among the number of particles associated with differ-

ent microelements to establish a suitable model of

pedestrian movement.24–29 A mesoscale model can reflect

the random uncertainty of crowd movement based on the

relationship between individual motion characteristics at

the microscale and upstream pedestrian flow parameters at

the macroscale. Therefore, heterogeneous requirements

can be taken into account through considering random

uncertainty. Moreover, mesoscale models have the follow-

ing advantages. First, such models closely reflect reality

by treating a crowd as a multiparticle system. Second,

mesoscale models use statistical methods to describe the

state of a crowd and model the evolution of the pedestrian

speed distribution considering individual interactions;

therefore, the closed-loop speed–density relationship does

not need to be introduced in advance. Third, mesoscale

models are multiscale models that can reveal the inherent

trends in crowd dynamics from multiple perspectives and

they require few calculations and provide detailed results.

Based on the above advantages, a particle model based

on kinetic theory is suitable for solving congestion prob-

lems considering visual attention. The first relevant parti-

cle model was derived by Bellomo and colleagues24 and

has been adapted to different systems under consideration,

such as a space with internal obstacles,27 panic cases,26

and evacuation from a complex venue.33 However, visual

attention has not been considered in the studies based on

this model.

In addition, appropriate parameters related to conges-

tion risk are also necessary. At present, research on con-

gestion parameters mainly focuses on density. Zhang

et al.34 established a congestion density prediction model

based on a Markov chain to determine where abnormal

crowds gather in public areas in cities. Bai et al.35 estab-

lished a crowd density detection method based on the con-

gestion mode and a multicolumn convolutional neural

network to facilitate congestion safety evaluation. Teo

et al.36 proposed a wearable electronic device that helps

mitigate such disasters by directing people and thus con-

trolling the density of the crowd. These studies used den-

sity and other related quantities as indicators of

congestion. However, management measures based on

density may reduce the circulation efficiency in channels.

Figure 1. Daily scenario involving pedestrians’ visual attention-
shifting behavior in a long-distance passage.
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Therefore, it is necessary to add new parameters to tradi-

tional models to prevent channel congestion.

In this paper, an active particle model based on kinetic

theory is introduced. Specifically, this model is a mesos-

cale model that can be applied to assess human crowd

dynamics considering visual attention, and new congestion

indicators are proposed to solve the congestion risk pre-

vention and control problem in long-distance passages.

Individuals in a crowd are divided into two types accord-

ing to their visual attention states: visual attention-shifting

pedestrians (VAS pedestrians) and nonvisual attention-

shifting pedestrians (non-VAS pedestrians). The main con-

tributions of this work are as follows:

1. The motion characteristics of VAS and non-VAS

pedestrians are analyzed in long-distance passages

to determine the parameters that should be

included in the crowd dynamics model.

2. We propose a kinetic theory model of human

crowds considering visual attention to investigate

crowd dynamics over long distances. The model

converts the motion characteristics of pedestrians

into mathematical expressions. In addition, the

influence of visual attention on crowd dynamics is

investigated.

3. The density and the proportion of VAS pedestrians

are selected as warning parameters.

The remainder of this paper is organized as follows. In

‘‘Motion characteristics of VAS and non-VAS pedestrians

in long-distance passages’’ section, the motion characteris-

tics of pedestrians are analyzed based on observed and

measured data from a long-distance passage. The details of

the model are given in ‘‘Model description’’ section. In

‘‘Simulations’’ section, the validity of the model is verified

and a scene is simulated to show how to use the above

model to prevent and control congestion problems. In addi-

tion, warning parameters are selected and their threshold

values are tested to provide a numerical basis for manag-

ers. In ‘‘Conclusion and future work’’ section, the content

of this paper is summarized, and some research prospects

are proposed.

2. Motion characteristics of VAS and non-
VAS pedestrians in long-distance
passages

The motion characteristics of pedestrians can provide a

reliable and practical basis for selecting the parameters of

a model. In this paper, the movement characteristics of

VAS and non-VAS pedestrians in long-distance passages

are assessed based on controlled experiments. It is impor-

tant to clarify the definitions of long-distance passages and

shifts in visual attention before analyzing the motion char-

acteristics. The concept of a long-distance passage is

defined as follows.

Definition 2.1. A long-distance passage is a corridor in

which pedestrian motion occurs for at least 10 m. Such

corridors include underground pedestrian passages, sub-

way transfer passages, hallways, and so on.

The definition of a shift in visual attention can be

formed based on the results of previous vehicle traffic

studies. Regan et al.37 suggested that distraction is a form

of negligence for drivers when they shift from an impor-

tant driving task to a competing behavior. When a driver’s

focus deviates from the driving task, the driver is consid-

ered distracted.38,39 Therefore, a shift in visual attention is

defined as follows.

Definition 2.2. A shift in visual attention occurs because of

an event-, activity-, object-, or person-related force that

causes a shift in attention during walking tasks. In such

cases, the information required for pedestrians to safely

complete walking tasks is completely or partially ignored.

2.1. Walking direction
2.1.1. The influence of boundaries. Hughes suggested that

pedestrians seek to minimize their travel time and avoid

high-density areas when formulating walking strategies.18

However, the movement of pedestrians in long-distance

passages, as closed spaces, is influenced by boundaries.

Experiments in open space and long-distance passages

have been conducted to observe the influence of bound-

aries. Notably, open space and artificial long-distance pas-

sages (10 m 3 2 m) were established. Sixteen volunteers

participated in the experiment. Pedestrians wore white hats

to facilitate the identification of their respective locations.

Initially, pedestrians were required to stand outside the

experimental area in a 4 3 4 formation and the exit was

established as a moving target. After the experiment

started, pedestrians moved toward the exit. The experi-

mental process is shown in Figure 2.

In the experiments, the pedestrians moved in different

directions in the two spaces. Pedestrians in the unbounded

space moved toward not only the exit but also toward the

low-density areas on both sides of the main crowd.

However, in the long passage, pedestrians could not move

into low-density areas because of boundary limitations.

Movement direction diagrams of two pedestrians in the

different spaces were created for the same point in time

(t = 20 s) and based on the same initial conditions, as

shown in Figure 3. Notably, the closer to the boundary of

the long passage a pedestrian is (dA . dB ), the greater the

restriction on their walking direction (uA \ uB).

Ma et al. 3



2.1.2. Walking directions associated with different interaction
types. In a high-density environment, pedestrians in vari-

ous visual attention states may be affected by other pedes-

trians in the same or different states. Therefore, some

experiments were conducted to observe the walking

direction choices of pedestrians affected by pedestrians in

various visual attention states. The experimental scene was

set in an artificial long-distance passage (10m3 2m).

Fifteen volunteers participated in the experiment. The ini-

tial queue used in the experiments is shown in Figure 4. It

Figure 2. Snapshots of the experiments (a, b, c) without and (d, e, f) with boundaries. The images were captured at the following
times: (a) t = 0 s, (b) t = 10 s, (c) t = 20 s, (d) t = 0 s, (e) t = 10 s, and (f) t = 20 s.

Figure 3. Walking direction diagrams of pedestrians in spaces without and with boundaries after 20 s.
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is worth noting that there is a space left in front of the

pedestrian who makes decisions regarding the walking

direction to facilitate the possible overtaking behavior of

VAS or non-VAS pedestrians. When the experiment

began, pedestrians walked toward the exit and made walk-

ing direction decisions according to their individual

preferences. The results of the experiments are shown in

Figure 5.

Figure 4 shows that regardless of whether the influencer

is a non-VAS or VAS pedestrian, the pedestrians making

walking direction decisions who are non-VAS pedestrians

all adopt transcendence behaviors (Figures 4(a) and 5(b));

in addition, regardless of whether the influencer is a non-

VAS or VAS pedestrian, pedestrians making walking

direction decisions who are VAS pedestrians all adopt fol-

lowing behaviors (Figure 5(c) and (d)).

In summary, VAS and non-VAS pedestrians choose

their walking directions based on specific characteristics.

For VAS pedestrians, the walking direction is mainly

affected by the exit location, denoted as Vt in Figure 6(a).

For non-VAS pedestrians, their movement direction is

mainly affected by the walls, the exit location Vt, and the

minimum density of pedestrians, denoted as Vr; this move-

ment pattern generally involves two steps. First,

Figure 4. Initial pedestrian placements in the walking direction
for different interaction types.

Figure 5. Snapshots of walking direction experiments for different interaction types. The scenarios include (a) non-VAS and
non-VAS, (b) non-VAS and VAS, (c) VAS and non-VAS, and (d) VAS and VAS interaction types.
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pedestrians will walk toward V 01 according to the exit loca-

tion Vt and the minimum density gradient Vr, and their

degree of influence can be described by the local density

r. If the local pedestrian density r is high, non-VAS

pedestrians will tend to avoid high-density areas; therefore,

Vr . Vt. In contrast, if the density r is low, non-VAS

pedestrians will prefer to move toward the exit, that is, Vr

\ Vt. Second, if the gradient V 01 points to the boundary,

then V 01 needs to be corrected to V1 based on making a

weighted choice between V 01 and Vt and this weight is

given by the shortest length dw from the boundary. The

farther an individual gets from a boundary, the more that

pedestrian will prefer to move toward the exit Vt, as

shown in Figure 6(b).

2.2. Speed

The decision-making process of pedestrians is related in

part to speed behavior, including passing behavior and fol-

lowing behavior. When pedestrians rotate in the direction

they want to move, they will collect some information

about the speed of other pedestrians and general informa-

tion about their surroundings. Then, an individual assesses

the speed relationships between other pedestrians and

themselves according to their cognitive state. Finally, they

decide whether to adjust their own speed decision. If

v . �v, pedestrians are restricted by other people, which

leads to slowing down or even stopping. If v=�v, pedes-
trians will choose to maintain their original speed or

decelerate. In addition, if v \�v, pedestrians will choose to
maintain their original speed or accelerate. The decision to

change or maintain speed mainly depends on the individu-

al’s cognitive state.29 The cognitive state of each person is

different based on the effects of rational consciousness,

analytical reasoning ability, recognition and judgment

ability, memory ability, and so on. That is, the choice of

pedestrians to change or maintain speed is random. If

pedestrians choose to change speed, they need to further

consider factors related to the speed change. Pedestrian

speed changes are determined by their own behavioral

choices,40 the movement state of the surrounding pedes-

trians,26 and the ground slope.41 The influence of these

factors on speed will be explored through experiments in

this section. It is worth noting that there may be obstacles

in the interaction domain that affect pedestrian sight and

pedestrians may not necessarily perceive other people’s

movement information. The specific process is shown in

Figure 7.

2.2.1. VAS deceleration coefficient. The VAS deceleration

coefficient refers to the ratio of the speed of VAS pedes-

trians to the speed of non-VAS pedestrians, denoted as g,

and the value range is [0,1]. This variable reflects the speed

reduction associated with a shift in visual attention.

Experiments were performed in a long horizontal passage

to assess the deceleration coefficient of pedestrians. Thirty-

two pedestrians, including 16 men and 16 women, partici-

pated in the experiment. Each pedestrian was required to

walk twice in the passage, with one scenario involving free

walking and the other involving walking while looking

down at a mobile phone, as shown in Figure 8.

The average speed through the long passage was calcu-

lated as the speed of volunteers in different visual attention

states. Then, the VAS deceleration coefficient for each per-

son was calculated and plotted into a frequency histogram,

as shown in Figure 9. Figure 8 shows that the VAS decel-

eration coefficient is approximately normally distributed.

Hence, the distribution function of the VAS deceleration

coefficient is defined as shown in Equation (1):

f gð Þ= 1

0:07
ffiffiffiffiffiffi
2p
p e �

g�0:63ð Þ2
0:0098

� �
ð1Þ

where f (g) is the probability density function of the VAS

deceleration coefficient.

2.2.2. Variable speed coefficient. The variable speed coeffi-

cient is a correction to the relative speed between pedes-

trians and influencers, denoted as a. This factor is

calculated based on Equation (2):

a=
vt +Dt � vt

Dvt

=
vt+Dt � v

jvt � �vtj
ð2Þ

where vt +Dt is the movement speed at time t+Dt, Vt is

the movement speed at time t, Dvt is the relative speed at

Figure 6. Characteristics of VAS and non-VAS pedestrians
choosing walking directions. (a) VAS pedestrians are only
affected by the exit location Vt. (b) Non-VAS pedestrians are
affected by the exit location Vt, minimum density gradient Vρ,
and boundaries. Choosing a walking direction involves two
steps. First, the vector sum V 01 of Vt and Vρ is calculated. The
second walking direction V1 is then calculated as the vector sum
of V 01 and Vt. The expressions in parentheses give the weights of
different factors.
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time t, vt is the relative speed at time t, and �vt is the speed

of influencers at time t.

In ‘‘Walking direction’’ section, non-VAS pedestrians

were involved in a total of 40 passes of other pedestrians

(obvious variable speed behaviors). Therefore, 0.5 s is

used as the time interval to calculate the movement speed

and the speed variation coefficient a for each pedestrian

according to Equation (2). Then, the average value of the

speed variation coefficient is calculated for each overtak-

ing behavior. A frequency histogram of the variable speed

coefficient is shown in Figure 10 and the corresponding

distribution function is shown in Equation (3):

f að Þ= 1

0:13
ffiffiffiffiffiffi
2p
p e

� a�0:24ð Þ2
0:0338

� �
ð3Þ

where f (a) is the probability density function of the vari-

able speed coefficient.

2.2.3 Slope coefficient. Experiments were performed to test

the effect of ground slope on speed. Considering accidents

and uncertainty, it is necessary to assess the effects of

human physical strength and endurance on the experimen-

tal results. In the experiments, a 10-m-long and 3-m-wide

Figure 7. Pedestrian speed decision-making diagram.

Figure 8. Speed analysis experiments for (a) VAS and
(b) non-VAS pedestrians.

Figure 9. Distribution of the VAS deceleration coefficient for
pedestrians in a long-distance passage.
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ramp was used. During the experiments, volunteers walked

at a chosen walking speed from the starting point to the

end point and then returned to the start point after a full

rest to complete an experimental cycle. The volunteers

were 16 college students, including 8 men and 8 women.

In the experiments, four groups were established according

to the ground slope; notably, a nearly horizontal ramp (7�),
a gently inclined ramp (15�), a moderately inclined ramp

(24�), and an inclined ramp (35�) were used. Each experi-

ment was repeated 3 times. The experimental results are

shown in Figure 11. After curve fitting, the function rela-

tionship between the average speed and the slope when

moving up and down a ramp can be obtained, as shown in

Equation (4) and Equation (5):

vup = � 0:276s+ 1:74 ð4Þ

vdown = � 0:325s+ 2:01 ð5Þ

where vup is the upslope walking speed, vdown is the down-

slope walking speed, and s is the ground slope.

The slope coefficient is the degree of speed reduction

caused by slope changes, denoted as e, and the value range

is [0,1]. If e = 0, the conditions prevent pedestrians from

walking; if e = 1, the conditions do not affect the speed of

pedestrians. The corresponding formulas are given in

Equation (6) and Equation (7):

eup =
vup

vL

=
�0:276s+ 1:74ð Þ

vL

ð6Þ

edown =
vdown

vL

=
�0:325s+ 2:01ð Þ

vL

ð7Þ

where eup is the upslope coefficient, edown is the downslope

coefficient, and vL is the maximum free waking speed of

pedestrians in long-distance horizontal passages.

3. Model description

In this section, based on the movement characteristics of

pedestrians in long-distance passages, a pedestrian flow

evolution equation that considers visual attention using

kinetic theory for active particles29 is proposed. In addi-

tion, the relevant variables of the evolution equation,

including the interaction rate and transition probability

density, are defined.

3.1. Kinetic theory for active particles

The kinetic theory for active particles uses the probability

distribution of pedestrian states at the microscale to repre-

sent the state of the system and a mathematical framework

of dynamic changes is derived through balancing the num-

ber of pedestrians in the basic domain.26

The theory regards pedestrians as active microscopic

particles and a pedestrian’s microscopic state is repre-

sented by time t, position X , and velocity V . In a two-

dimensional space, the velocity V is expressed in polar

coordinates, that is, V = fv, ug, where v represents the

speed and u represents the walking direction. Because the

units of each variable differ, dimensionless and normal-

ized quantities must be obtained. Time t can be standar-

dized according to the critical time tc calculated based on

the ratio of the characteristic length l to the upper limit

speed vl. The components x and y of position X can be

standardized based on the characteristic length l. Speed v

can be standardized based on the upslope speed vup (or

downslope speed vdown).

Because the number of particles can reach millions in

kinetic theory, this value can be approximately regarded as

the total number of pedestrians moving within the selected

velocity range in the established domain. In other words,

velocity is represented by a continuous distribution func-

tion involving fluid particles. However, the number of peo-

ple in a passage will be limited and values will fall outside

the selected velocity range. Therefore, velocity can be dis-

cretized, which is equivalent to a fluid particle only being

able to move at certain velocities. Based on this approach,

it is assumed that a finite number of pedestrian velocities

Figure 10. Distribution of the non-VAS variable speed
coefficient for long-distance passages. Figure 11. Relation between free walking speed and ground

slope.
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are discretized into p speed values and q walking directions

and the corresponding discrete sets are given in Equation

(8) and Equation (9):

Iv = v1 = 0, . . . , vj, . . . vp = 1
� �

, j= 1, . . . , p ð8Þ

Iu = u1 = 0, . . . , um, . . . uq = 2p
� �

, l= 1, . . . , q ð9Þ

where Iv is a set of discrete speeds, Iu is a set of discrete

walking directions, vj is the j th speed, and um is the m th

walking direction.

Pedestrians are divided into different groups and the

number of each group is i= 1, 2, . . . , n; then at time t,

the microstate of the i th group is described by a probabil-

ity distribution, as shown in Equation (10):

fi t,X ,Vð Þ= fi t,X , v, uð Þ=
Xp

j= 1

Xq

l = 1

fi t,Xð Þd v� vj

� �

d u� umð Þ
ð10Þ

where d is the Dikla function.

Under appropriate integrable conditions,

fi(t,X ,V )dXdV represents the number of pedestrians

in the elementary domain in the microscopic state

½X ,X + dX �3 ½V ,V + dV � at time t. The macroscopic

variables of the i th group, such as the local density,

can be obtained from the weight matrix of the

microscopic probability distribution function, as shown in

Equation (11):

ri t,Xð Þ=
Xp

j= 1

Xq

l = 1

fi t,Xð Þ ð11Þ

where ri(t,X ) is the local density of the i th group and is

nondimensionalized based on the maximum density rmax.

To obtain the macrovariables of groups, the sum of vari-

ables must be obtained for each group. As an example, the

average density can be defined as follows:

r t,Xð Þ=
Xn

i= 1

Xp

j= 1

Xq

l = 1

fi t,Xð Þ ð12Þ

where r(t,X ) is the average density.
An interaction corresponds to a decision process by

which an individual sets their dynamic mechanical state

depending on the microstate of the environment and the

distribution function of neighboring particles in the interac-

tion domain.29 Therefore, a mathematical description of

the interaction is necessary to establish a mathematical

framework for pedestrian movement. In ‘‘Motion charac-

teristics of VAS and non-VAS pedestrians in long-distance

passages’’ section, an interaction in a long passage is

defined as a decision-making process involving a change

in motion state based on the personal cognitive state of an

individual after they obtain information about other people

and the walls in the interaction domain. The pedestrians

involved in an interaction process can be divided into three

categories: the affected person before the movement state

change, the influencer, and the affected person after the

movement state change, which are denoted as h, k, and

g, respectively; distribution functions corresponding to

these three types of pedestrians are fi(t,X ,V�), fi(t,X ,V ),
and fi(t,X ,V �). Based on the movement characteristics of

pedestrians in long-distance passages, an interaction is

influenced by the conditions in the objective environment

(other pedestrian motion states and the passage walls in the

interaction domain) and a pedestrian’s subjective initiative

is jointly considered. Generally, the environment where

the pedestrian is located is objective in a specific case and

the subjective initiative of the person influences the degree

of the change in their motion state. That is, in a given

objective environment, the change in a pedestrian’s motion

state is random. The transition probability density repre-

sents the random dynamic characteristics of the micro-

scopic pedestrian state in a long-distance passage.29 In

addition, because the sight of the affected person may be

blocked by external factors, the affected person may not

interact with everyone in the interaction domain. This phe-

nomenon can be described by the interaction rate. Hence,

this article uses the transition probability density and the

interaction rate to describe interactions, and the specific

definitions of interactions are the same as those used in

previous studies.25,29

Definition 3.1. The interaction domain is related to the visi-

bility domain and sensitivity domain, and can be defined

as a sector with radius R and angle Y, denoted as O.

Definition 3.2. The interaction rate is the frequency of

interaction between pedestrian h and pedestrian k in the

interaction domain in a long-distance passage, which is

denoted as hhk ½ f �(X ,V�,V ).

Definition 3.3. Transition probability density is the prob-

ability density of pedestrian h and pedestrian k, who will

become pedestrian g after an interaction in a long-distance

passage, denoted as Ahk½ f �(V� ! V �jV ).
The transition probability density for any pedestrian

must satisfy Equation (13); specifically, the total transition

probability density for the movement state of any pedes-

trian after all possible changes occur in a given objective

environment is equal 1:

ð
Ahk f½ � V� ! V �jVð ÞdV = 1 ð13Þ

The relationships among the above variables are sum-

marized in Figure 12.
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Kinetic theory for active particles follows the law of

conservation of mass and can be used to derive a conti-

nuum equation that describes the state of fluid motion.29

Similarly, pedestrian dynamics at the mesoscale are asso-

ciated with the conservation of the number of pedestrians

and a mathematical framework29 for describing the move-

ment of pedestrian flows can be established. The mathe-

matical framework is shown in Equation (14):

∂t +V � ∂xð Þfi t,X ,Vð Þ=
Xn

k = 1

ð
hik

f½ � X ,V�,Vð ÞAik f½ � V� ! V �jVð Þ
3 fi t,X ,V�ð Þfk t,X ,Vð ÞdV�dV

� fi t,X ,V �ð Þ
Xn

k = 1

ð
hik f½ � X ,V �,Vð Þ t,X ,Vð ÞdV

ð14Þ

3.2. The evolution equation considering visual
attention

The abovementioned mathematical framework is a general

structure describing the dynamic changes in pedestrian

movement in long-distance passages. Visual attention is

introduced as a characteristic of pedestrian movement to

solve the problem of congestion. A crowd is divided into

two groups: non-VAS pedestrians (i = 1) and VAS pedes-

trians (i = 2). The probability distribution of each group is

shown in Equation (15) and Equation (16):

f1 t,X ,Vð Þ= f1 t,X , v, uð Þ, X 2 s, v 2 0, 1½ �,
u 2 �458, 458½ �

ð15Þ

f2 t,X ,Vð Þ= f2 t,X , v, uð Þ, X 2 s, v 2 0, 1½ �,
u 2 �158, 158½ �

ð16Þ

Multiple interaction types occur because of the random-

ness of the walking strategy and they can be divided into

two situations: same-group interactions and different-

group interactions. Thus, four types of interactions can

occur for the two groups, as shown in Table 1.

Based on the interaction types summarized in Table 1,

the evolution Equation (17) used to describe the move-

ment of pedestrian flows in long-distance passages can be

derived from Equation (15) and Equation (16):

∂t +V � ∂xð Þfi t,X ,Vð Þ=
X2
k = 1

ð
hik f½ � X ,V�,Vð Þ

Aik f½ � V� ! V �jVð Þ
3 fi t,X ,V�ð Þfk t,X ,Vð ÞdV�dV � fi t,X ,V �ð Þ
X2
k = 1

ð
hik f½ � X ,V �,Vð Þ t,X ,Vð ÞdV

ð17Þ

3.3. Modeling interaction rate

The interaction rate is related to the relative speed of the

two types of pedestrians in the interaction domain42 and is

given in Equation (18):

h f½ �=h0 V� � Vj j ð18Þ

where h0 is a constant.

The interaction rate is related to not only relative speed

but also visibility. Therefore, the visibility of pedestrians is

considered when constructing the mathematical expression

of the interaction rate, which is given as follows:

h f½ �= th0 V� � Vj j ð19Þ

where t is a coefficient related to visibility and the value

range is [0,1].

Figure 12. Relationship diagram for interaction variables.

Table 1. Interaction classification table.

Affected person h Influencer k Interaction classification

Non-VAS pedestrians non-VAS pedestrians 1� 1
VAS pedestrians VAS pedestrians 2� 2
Non-VAS pedestrians VAS pedestrians 1� 2
VAS pedestrians non-VAS pedestrians 2� 1

VAS: visual attention-shifting pedestrians.
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3.4. Modeling the transition probability density

To construct the formula for the transition probability den-

sity, qualitative assumptions are made regarding micro-

scale motion phenomena and then they are transformed

into mathematical models. The following assumptions are

made based on the information presented in ‘‘Motion char-

acteristics of VAS and non-VAS pedestrians in long-

distance passages’’ section.

Assumption 1. Interactions change the movement state of

pedestrians, including their walking direction and speed.

Assumption 2. The walking direction of a VAS pedestrian

is affected by the destination and the walking direction of

a non-VAS pedestrian is affected by the destination, the

walls of the movement domain, and the minimum density

gradient.

Assumption 3. To adapt to the environment of a new posi-

tion after moving, pedestrians will adjust their speed

according to the local speed. If the local speed is higher

than their original speed, a pedestrian will increase their

speed or maintain their original speed; if the local speed is

equal to their original speed, the pedestrian will reduce

their speed or maintain their original speed; and if the

local speed is lower than their original speed, the pedes-

trian will reduce their speed.

An interaction is a process in which mobile pedestrians

make decisions in a certain order.29 Based on the informa-

tion in ‘‘Motion characteristics of VAS and non-VAS

pedestrians in long-distance passages’’ section, it is

assumed that each pedestrian makes decisions in the fol-

lowing order: (1) the choice of walking direction and (2)

speed adjustment. Factoring the speed transition probabil-

ity density into the functions for the walking direction

transition probability density and the speed transition

probability density can simplify the expression of the

interactions among pedestrians; this expression is given in

Equation (20). It is worth noting that Equation (20) is a

conceptual model, not a mathematical relationship:

A f½ � V� ! Vð Þ=Au f½ � u� ! uð Þ3An f½ � v� ! vð Þ ð20Þ

where A is the transition probability density of pedes-

trians, Au is the transition probability density in the walk-

ing direction, and Ay is the speed transition probability

density.

3.4.1. Modeling the transition probability density in the walking
direction. The speed-direction vector for non-VAS pedes-

trians mainly depends on the exit Vt and the minimum

density gradient Vs, and the weight of each factor is

determined by the transition probability density, which is

calculated as follows:

V 01 cosu01, sinu01ð Þ= 1� rð ÞVt + rVsð Þ
1� rð ÞVt + rVsk k ð21Þ

where V 01 is the direction vector of a non-VAS pedestrian,

u01 is the walking direction of the non-VAS pedestrian, and

Vs = �rr=jjrrjj.
To consider the effects of passage walls, Equation (21)

needs to be revised. When V 01 effectively points to the des-

tination, there is no need to modify u1. When V 01 points to
the wall, it needs to be appropriately corrected based on

the shortest distance dw between the pedestrian and a

boundary. The specific correction formula is shown in

Equation (22):

V1 cosu1, sinu1ð Þ= 1� dð ÞV 01 + dVw ð22Þ

where V 01 is the direction vector of the non-VAS pedestrian

after correction and u1 is the speed-direction vector of the

non-VAS pedestrian after correction.

A VAS pedestrian generally chooses to move in the

direction of the destination Vt; that is, density has little

effect on their choices. Therefore, assuming Vs ffi 0 for a

VAS pedestrian, their walking direction is expressed as

shown in Equation (23):

V2 cosu2, sinu2ð Þ= Vt

Vtk k
ð23Þ

where V2 is the direction vector of the VAS pedestrian and

u2 is the walking direction of the VAS pedestrian.

Accordingly, the walking direction transition probabil-

ity density function is given in Equation (24):

Au f½ � u� ! uð Þ= d u� u�ð Þ ð24Þ

3.4.2. Modeling the speed transition probability
density. According to the information in ‘‘Motion charac-

teristics of VAS and non-VAS pedestrians in long-distance

passages’’ section and Assumption 3, pedestrian speed based

on the different relationships between v� and �v depends on

the VAS deceleration coefficient, relative speed, variable

speed coefficient, and slope coefficient. The formula for a

non-VAS pedestrian can be established as follows:

If v�\�v:

va
1 = v�+ae �v� v�ð Þ ð25Þ

vb
1 = v� ð26Þ

If v�=�v:

vc
1 = v� ð27Þ

vd
1 =aev� ð28Þ
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If v�. �v:

ve
1 = v� � ae v� � �vð Þ ð29Þ

where v� is the original speed of the non-VAS pedestrian;

v1 is the new speed of the non-VAS pedestrian; a is the

acceleration strategy for pedestrians when v�\�v; b is the

pedestrian’s speed preservation strategy when v�\�v; c is

the pedestrian’s speed preservation strategy when v�=�v;
d is the pedestrian’s speed reduction strategy when v�=�v;
and e is the pedestrian’s speed reduction strategy when

04�v \ v�.
The subjective intention of nondistracted particles is

affected by the average velocity in the interaction domain

�v and the slope coefficient e. The average speed in the

interaction domain �v represents the local conditions at the

macrolevel, thus providing important information for

pedestrians regarding how to adjust their speed. When �v is

large, a pedestrian is generally inclined to increase their

speed, and vice versa. The larger e is, the more likely a

pedestrian is to take action, such as increase speed, and

vice versa. For a non-VAS pedestrian represented as a par-

ticle h, the speed transition probability density is expressed

by Equations (30)–(32):

If v�\�v:

Av
1k f½ � v� ! vð Þ= pa

1d v1 � va
1

� �
+ pb

1d v1 � vb
1

� �
ð30Þ

where pa
1 =ae�v and pb

1 = 1� ae�v.
If v�=�v:

Av
1k f½ � v� ! vð Þ= pc

1d v1 � vc
1

� �
+ pd

1d v1 � vd
1

� �
ð31Þ

where pc
1 =ae�v and pd

1 = 1� ae�v.
If v�. �v:

Av
1k f½ � v� ! vð Þ= d v1 � ve

1

� �
ð32Þ

A non-VAS pedestrian is affected by the average speed

of other people in the interaction domain and the slope

coefficient. In addition, VAS pedestrians are limited by

their behaviors. The impact of this behavior on speed can

be described by the VAS deceleration coefficient g.

Therefore, Equation (33) is used to calculate the new

speed of a VAS pedestrian:

v2 = gv1 ð33Þ

where v2 is the new speed of the VAS pedestrian.

The subjective intention of the VAS pedestrian is affected

by the average speed �v in the interaction domain, the slope

coefficient e, and the VAS deceleration coefficient g. The

greater the VAS deceleration coefficient g is, the more

pedestrians are affected by their behavior, and the greater

the tendency to enter the deceleration strategy. For a VAS

pedestrian represented as a particle h, the speed transition

probability density is expressed by Equations (34)-(36):

If v�\�v:

Av
2k f½ � v� ! vð Þ= pa

2d v2 � va
2

� �
+ pb

2d v2 � vb
2

� �
ð34Þ

where pa
2 =ae�v(1� g) and pb

2 = 1� ae�v(1� g).
If v�=�v:

Av
2k f½ � v� ! vð Þ= pc

2d v2 � vc
2

� �
+ pd

2d v2 � vd
2

� �
ð35Þ

where pc
2 =ae�v(1� g) and pd

2 = 1� ae�v(1� g).
If v�. �v:

Av
2k f½ � v� ! vð Þ= d v2 � ve

2

� �
ð36Þ

The speed transition probability density An can be sum-

marized as shown in Table 2 for the classification of differ-

ent interactions.

4. Simulations

This section presents some simulations developed to test

the predictive ability of the model proposed and shows

how to use the model to solve congestion problems

Table 2. Speed transition probability density for different interaction types.

Interaction type Condition Speed transition probability density

1� 1 v * <�v Av
11 f½ � v * → vð Þ= pa

1δ v1 � va
1

� �+ pb
1δ v1 � vb

1

� �
v * =�v Av

11 f½ � v * → vð Þ= pc
1δ v1 � vc

1

� �+ pd
1δ v1 � vd

1

� �
v * >�v Av

11 f½ � v * → vð Þ= δ v1 � ve
1

� �
2� 2 v * <�v Av

22 f½ � v * → vð Þ= pa
2δ v2 � va

2

� �+ pb
2δ v2 � vb

2

� �
v * =�v Av

22 f½ � v * → vð Þ= pc
2δ v2 � vc

2

� �+ pd
2δ v2 � vd

2

� �
v * >�v Av

22 f½ � v * → vð Þ= δ v2 � ve
2

� �
1� 2 v * <�v Av

12 f½ � v * → vð Þ= pa
1δ v1 � va

1

� �+ pb
1δ v1 � vb

1

� �
v * <�v Av

12 f½ � v * → vð Þ= pc
1δ v1 � vc

1

� �+ pd
1δ v1 � vd

1

� �
v * >�v Av

12 f½ � v * → vð Þ= δ v1 � ve
1

� �
2� 1 v * <�v Av

21 f½ � v * → vð Þ= pa
2δ v2 � va

2

� �+ pb
2δ v2 � vb

2

� �
v * =�v Av

21 f½ � v * → vð Þ= pc
2δ v2 � vc

2

� �+ pd
2δ v2 � vd

2

� �
v * >�v Av

21 f½ � v * → vð Þ= δ v2 � ve
2

� �
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according to ‘‘Model description’’ section. The arrange-

ments for this section are as follows: First, we test the

validity of the above model, and then, the effect of visual

attention shift is displayed; finally, the selection and criti-

cal threshold of early warning parameters are shown and

discussed.

4.1. Validation

The validation of the model was verified by comparing

real with simulated pedestrian evacuation diagram for the

same subway tunnel in Beijing. We used video cameras

on the pedestrian movement of the passage to get real

information during the evening rush hour. A 4 m 3 12 m

channel was taken as the research scene due to the limita-

tion of the shooting picture as shown in Figure 13 and

some parts of the image have been specially processed to

protect the privacy of pedestrians. The same size channel

is built on the simulation platform. The 50th percentile of

the maximum shoulder width for Chinese males and

females is 0.432 m and 0.351 m, respectively, and the

50th percentile of chest thickness for Chinese males and

females is 0.212 m and 0.199 m, respectively.43

Considering differences in body shape and the computa-

tional efficiency of the simulation system, the size of each

grid is set to 0.5 m 3 0.25 m, and each grid can only

accommodate one pedestrian. Equation (17) is a hyper-

bolic differential equation. To meet the relevant stability

and convergence requirements, the time step should gener-

ally not be too large and must meet the Courant,

Friedrichs, Lewy (CFL) condition, as shown in Equation

(37). Therefore, the minimum value per unit time obtained

is 0:1 s from Equation (31):

vDt

Dx
4Cmax ð37Þ

where Dt is the time step and Dt = 0:1 s; Dx is the char-

acteristic length of the grid, which is 0:25 m or 0:5 m;

and Cmax is the Kurant number, which is 0:7. In addition,

the slope coefficient of channel is good, which is good for

pedestrians to walk, that is, e= 1. There are no obstacles

that can affect pedestrians’ vision, so h0 = 100%. Each

pedestrian’s initial speed and position is determined by his

or her true instantaneous value.

Figure 13 shows that the population distribution of the

real scene is roughly the same as that of the model simula-

tion scene above. At t = 0 s, the two are the same due to

the initial conditions set. When t = 5 s, the pedestrian dis-

tribution is mostly the same as the actual scene except for

one pedestrian marked by the green circle in the figure.

The position of the pedestrian is obviously different from

Figure 13. Comparisons of (a) real with (b) simulated pedestrian evacuation diagram.
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that in the simulation. This is due to the fact that he is

looking down at his phone during the initial moments and

then he puts it away. In other words, he changed from a

VAS pedestrian to a non-VAS pedestrian during walking.

However, the model in this paper is based on the assump-

tion that pedestrians do not change their visual attention

state during walking, resulting in differences between

actual and simulation scenes. In this experiment, a total of

12 VAS pedestrians were found and only one of them had

changed visual attention state, which had little influence

on the simulation, and this problem should be further con-

sidered in the next work to improve the accuracy of the

model. At t = 10 s, the actual scene and simulated popula-

tion distribution are roughly the same. In conclusion, the

mathematical model can better simulate the crowd move-

ment with visual attention-shifting behavior.

4.2. The impact of visual attention shift on
congestion

This section selects a subway passage connecting stairs as

a simulation scenario because the inconsistent capacity of

the subway passage and the connected facilities causes fre-

quent congestion. To simulate pedestrian movement in a

subway passage connected to stairs, a 6 m 3 20 m two-

dimensional discrete grid system was constructed in the

simulation platform. The grid system is composed of a

6 m 3 18 m long straight passage (A) and a 6 m 3 2 m

staircase with an exit (B), as shown in Figure 14. The size

of each grid is set to 0.5 m 3 0.25 m and each grid can

only accommodate one pedestrian. The minimum value

per unit time obtained is 0:1 s. In the simulation platform,

pedestrians enter the scene randomly and make a one-way

movement from the subway transfer channel to the stairs.

The proportion of distracted VAS pedestrians is denoted

as b and the average density in the subway passage is

denoted as �r. Subway passages and stairs are both types of

traffic facilities and it is assumed that stairs are equivalent

to subway passages with poor environmental movement

conditions. Thus, the movement state changes of pedes-

trians entering stairwell areas can be simulated using the

above model. The speed difference between two pedes-

trians in a long subway passage and on a stairwell is not

large. Therefore, it is assumed that the slope coefficient in

area A is relatively, thus promoting walking; that is,

eA = 1. There is a large difference in pedestrian speed

trends for the two visual attention states in area B and we

adjust the parameters to eB = 0:7 based on the relevant

regulations in the ‘‘Code for Metro Design.’’44 In addition,

assuming that there are no obstacles that can affect pedes-

trian vision, h0 = 100%.

Partial people with visual attention distraction will

aggravate the congestion in the crowd, as shown in Figure

15; notably, the images show areas with no visual attention

shifts (b= 0%) and some visual attention shifts (assume

b= 30%) in the population. The former is called the nor-

mal population and the latter is called the abnormal popu-

lation for the convenience of subsequent description. Ten

seconds later, there is slight congestion near the exit and

the congestion level of the normal population is lower than

that of the abnormal population, but the difference is not

large in the long corridor. Twenty seconds later, the con-

gestion degree of the normal group does not change signif-

icantly, but the congestion level of the abnormal group

significantly increases, and the gap between the congestion

levels of the two groups increases.

These figures provide evidence of how a shift in visual

attention influences the aforementioned patterns and, spe-

cifically, induces zones with high-density concentrations

that, as is known, can generate congestion. ‘‘Motion

characteristics of VAS and non-VAS pedestrians in long-

distance passages’’ section shows that the slow behavior of

VAS pedestrians will result in overtaking behavior by non-

VAS pedestrians. As the number of VAS pedestrians

increases, more people will change their evacuation behavior,

leading to an increase in group disorder and a slower overall

crowd speed, that is, an increased duration of congestion. In

actual evacuation scenarios, the congestion risk degree should

be controlled to avoid stampedes and other accidents.

4.3. Selection and testing of congestion warning
parameters

4.3.1. Selection of congestion warning parameters. A subway

station passage is characterized by multiple facilities in

series and thus includes connections involving long-

distance passages and stairs. The speed of pedestrians can

change significantly at the junctions of facilities. When

pedestrians move to facilities with high slope coefficients,

their speed will increase. However, when pedestrians

move to facilities with low slope coefficients, the crowd

speed will decrease. The slope coefficient is positively cor-

related with shifts in visual attention, as noted in ‘‘Motion

characteristics of VAS and non-VAS pedestrians in long-

distance passages’’ section; therefore, a speed reduction

for a VAS pedestrian will be lower than that for non-VAS

Figure 14. Structure diagram of the subway passage connected
to stairs. A is the long straight passage. B is the staircase exit.
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pedestrians at a junction. Consequently, the greater the

proportion of VAS pedestrians is, the more likely that con-

gestion will occur.

In addition, according to shockwave theory,9 when the

pedestrian density is low, the fluctuations caused by a

speed reduction will dissipate in a very small area due to

the interruption of the pedestrian flow. When the density

of pedestrians is high, the fluctuations caused by the decel-

eration will spread outward and the direction of the fluc-

tuations will be opposite that of pedestrian movement. As

pedestrians move forward, new waves will continue to

form at junctions. This local disturbance will cause the sta-

bility of the system to be unbalanced. In addition, the over-

all speed in passages will be reduced and queue congestion

is prone to occur. Hence, density is related to congestion.

In summary, the density and the proportion of VAS

pedestrians, which are denoted as bcrit and �rcrit, respec-

tively, are used as congestion warning parameters.

Administrators must take measures to prevent the occur-

rence of congestion if the threshold for one of these para-

meters is exceeded.

4.3.2. The critical threshold of bcrit and �rcrit . A numerical

definition of congestion is necessary to test bcrit and �rcrit.

Research shows that when passenger traffic congestion

occurs in escalator areas in railway station buildings,

pedestrians are more sensitive to queue length than queue

time, and queue length expectations can be classified into

A-F levels.45 Therefore, queue length is used as the con-

gestion evaluation standard and the median of grade B

(5.63~13.43 people), 10 people (2.5 m), is assumed to be

reached; thus, managers need to implement intervention

measures.

The critical thresholds for the density and the propor-

tion of VAS pedestrians are tested based on the above stan-

dards and the results are presented in Figure 16. Notably,

the thresholds are negatively correlated and the slope of

the curve exhibits a gradually decreasing trend, which is

consistent with the finding that the higher the density of a

crowd is, the easier it is for local interference to occur due

to shifts in visual attention.9 Equation (38) is obtained by

fitting the curve, which can be used as a quantitative basis

for preventing congestion.

The results shown in Figure 16 can help managers keep

congestion risk within acceptable limits. If a crowd passes

through a constrained area, various monitoring technolo-

gies46 can be used to determine the b and r values in real

time. If both variables exceed critical values, namely,

b ø bcrit and r ø �rcrit, managers need to implement the

necessary measures to reduce risk. Specific control mea-

sures can be formulated from two perspectives based on

reducing the crowd density or the VAS ratio: (1) add safety

officers and broadcast announcements to remind pedes-

trians to change their VAS behaviors, and (2) modify entry

points to reduce the number of people entering the passage.

The former should be preferred because few measures can

be implemented in long subway passages to guarantee the

efficiency of crowd movement:

bcrit = 1:2128e�0:596�rcrit ð38Þ

To intuitively display the changes in the degree of con-

gestion after the corresponding measures are taken, it is

assumed that the initial proportion of VAS pedestrians is

b= 40% and that when t = 20 s, b= 10%, which is

equivalent to a decrease in the proportion of VAS pedes-

trians after management measures are implemented, as

Figure 15. Snapshots of evacuation (a) without and (b) with shifts in visual attention.

Figure 16. The relationship between the proportion of VAS
pedestrians βcrit and the density �ρcrit.
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shown in Figure 17. In the first 20 s, the traffic at the exit

worsens over time. After the measures are taken to reduce

the proportion of pedestrians with shifts in visual attention,

congestion gradually improves. Notably, when the propor-

tion of VAS pedestrians decreases, the congestion level

significantly improves. That is, in addition to density,

using the VAS ratio as a congestion parameter is valid for

managers to deal with evacuation issues.

5. Conclusion and future work

In this paper, a kinetic theory model of human crowd

movement accounting for visual attention is proposed to

solve the problem of congestion in long-distance passages.

To provide a realistic basis for the establishment of the

model, the proposed motion characteristics of VAS and

non-VAS pedestrians are assessed based on investigations

and analyses of movement in subway passages. The crowd

density and the proportion of VAS pedestrians are selected

as early warning parameters that can be used by managers

to prevent congestion before a critical threshold is reached.

The model is finally used to simulate crowd behaviors in a

subway passage connected to stairs. We obtained the fol-

lowing conclusions: (1) The movement characteristics

between VAS pedestrians and non-VAS pedestrians are

different in practical cases; (2) the simulation results sug-

gest that visual attention has an important impact on con-

gestion; and (3) using the crowd density and the proportion

of VAS pedestrians as early warning indicators is effective

for preventing the occurrence of congestion, and the criti-

cal thresholds of these parameters are negatively

correlated.

This model highlights the need to consider visual atten-

tion factors in assessments of crowd dynamics and the

tested critical values of congestion provide a scientific

basis for actual management. Some studies have suggested

that emotions have an impact on pedestrian movement.26,47

People in high-density areas are prone to become irritable

and display other emotions, and congestion may involve

pushing and other actions in long passages. In addition, the

mid-course change of visual attention state mentioned in

the validation section should also be taken into account in

the mathematical model. Therefore, in future work, the

emotions of pedestrians and changes in visual attention

state will be considered in the kinetic theory model of

human crowds to improve the modeling accuracy.
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