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Abstract
Crowd dynamics have constituted a hotspot of research in recent times, particularly in areas where developmental prog-
ress has taken place in crowd evacuation for ensuring human safety. In high-density crowd events which happen fre-
quently, panic or an emergency can lead to an increase in congestion which may cause disastrous incidents. Crowd
control planning via simulation of people’s movement and behavior can promote safe departures from a space, despite
threatening circumstances. Up until now, the evolution of distinctive types of crowd behavior towards cooperative flow
remains unexplored. Hence, in this paper, we investigate the impact of potential crowd behavior, namely best-response,
risk-seeking, risk-averse, and risk-neutral agents in achieving cooperation during evacuation and its connection with eva-
cuation time using a game-theoretic evacuation simulation model. We analyze the crowd evacuation of a rectangular
room with either a single-door or multiple exits in a continuous space. Simulation results show that mutual cooperation
during evacuation can be realized when the agents’ population is dominated by risk-averse agents. The results also
demonstrate that the risk-seeking agents tend toward aggressiveness by opting for a defector strategy regardless of the
local crowd densities, while other crowd behavior shows cooperation under high local crowd density.
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1. Introduction

It is expected that 55% of the population of the world liv-

ing in urban areas today will increase to 68% by 2050.1

This urbanization will unite people or crowd together in

many occasions. Indeed, there are numerous positive

effects when people assemble socially, and this demon-

strates the fascinating constructive power in a well-

organized structure.2 On the contrary, there are also a few

negative aftereffects should the density of people become

too high. Examples are sudden evacuation, increased

crime, serious traffic setback, and pollution. Moreover,

densely occupied areas might also lead to stampedes in

circumstances where people are trying to move forcefully

away from the congested area because of the crowd’s

proximity and constant interaction.

Studies have been done to model secure and effective

evacuation of mass gatherings such as the Hajj pilgrimage

as proposed by Owaidah et al.,3 where two Hajj rituals,

Tawaf and Sayee, are simulated jointly using discrete eva-

cuation simulation, and large festivals as by Ronchi et al.,4

where evacuation modeling of large-scale music festival

using Pathfinder is presented. This includes everyday

pedestrian public sites such as shopping complexes and

underground subways. Evacuations can be planned, but

emergency situations which may cause calamities can

arise either due to crowd dynamics or external factors such

as incidents of violence, collapse of buildings, tsunamis,5,6

and unexpected fire accidents. It is reported by Keith and

Still7 that the total number of deaths due to several crowd

disaster incidents that happened around the world from
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2010 to 2018 amounted to more than 1700 persons and

those crowd disasters occurred mainly due to crowd stam-

pedes where a panicked crowd rushes away to escape from

the threat. For instance, Table 1 shows several crowd dis-

asters that occurred during the Hajj season, mainly due to

the crowd stampeding.

The simulation of evacuation requires the capability to

model individual decisions and behaviour10 throughout the

escape process such as during a stampede,11 which is

strongly affected by the surroundings12 such as fires,13–15

smoke conditions,16 and earthquakes17,18. The understand-

ing of human behaviors can minimize the chances of

crowd calamities19 and lead to an effective evacuation. It

is evident that the behavior of a crowd is deep-seated and

could be altered by external aspects such as clogging, nar-

row paths, counter flow, and congestion. Nonetheless,

accurate modeling and simulation of the crowd behavior

might produce an optimum evacuation time and a more

secure progression. Besides that, it is important to analyze

the behavior of the crowd to maintain safe and improved

evacuation flow during congregations. Thus, the overarch-

ing aim of this paper is to depict how certain evolutionary

optimized crowd behavior can lead to the cooperation that

could ultimately enhance the overall evacuation process

and quicken the required evacuation time.

This article is organized as follows. Section 2 presents

related work that addresses research gaps pertaining to

potential evolutionary crowd behavior during the evacua-

tion process. Section 3 describes the agent’s cost function,

crowd strategies, and crowd behavior associated in a

game-theoretic evacuation model, while, section 4 presents

the evacuation simulations setup. Next, section 5 discusses

the impact of crowd behavior under different conflict costs

on the evolution of crowd strategies, cooperative flow and

evacuation time. Finally, the potential findings of this

research are highlighted in the conclusion section.

2. Related works

Microscopic method is one of the best choices for model-

ing and examining crowd behavior as the behavior and

mobility of the entire population of the area would be

affected by the behavior of each agent. Cellular automata

(CA),20 lattice gas,21 social force,22 and game theory-23

based evacuation simulation models are illustrations of

microscopic models that are computationally efficient and

able to support large parameter spaces for simulation. The

general drawbacks are that models are not fully realistic

because these models are in discrete space and most of

them simulate the crowd movement via probability theory.

Furthermore, these models generally assume that all

agents have the same size. This seems to be unpractical

since in real-world evacuation scenarios, generally evacu-

ating agents are in different sizes. Meanwhile, the social

force simulation model is for simulation in continuous

space, and it is also able to model the size of each agent.

A few examples of the social force model to study the eva-

cuation process are for example the model by Chen et al.24

where the authors studied the impact of intersecting angles

during evacuation using a social force model,25 presented

a mechanism using a social force model to study agents’

responses during building evacuation caused by seismic

event, while26 presented the impact of information trans-

mission during evacuation process using a social force

model. Even though social force can be used to study dif-

ferent aspects of evacuation process and modeling agents’

behavior, the underlying presumption that all of the agents

have the same properties might be improbable27 since a

crowd is commonly composed of diverse types of individ-

uals.28 These limitations can be addressed by hybridizing

the social force and game-theoretic models.

In addition, to be able to imitate evacuation scenarios

accurately, choices, and preferences of individual types of

agents must be contemplated, as the consequences of the

unpredictable nature of dynamic behavior of the crowd

might lead to hazardous situations. Choices made by

involved players (agents) are evaluated by the mathemati-

cal models which are modeled using game theory

approach.29,30 Game theory could be employed for

appraising the results of the dynamic behavior of the

whole crowd. This is because, game-theoretic evacuation

simulation enables agents to consider all possible options

Table 1. Crowd disaster during Hajj.8,9

Date Place Deaths Reason

2/7/1990 Pedestrian tunnel 1426 Overcrowded
23/5/1994 Al-Jamarat 270 Stampede
15/4/1997 Tent city at Mina 340 Overcrowded
9/4/1998 Jamarat Bridge > 118 Stampede
5/3/2001 Jamarat Bridge 35 Stampede
11/2/2003 Mina 14 Stampede
1/2/2004 Jamarat Bridge 251 Stampede
1/1/2006 Jamarat Bridge 346 Stampede
24/9/2015 Mina 769 Stampede
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before selecting the best strategy which suits their own

principles. In order to analyze the crowd dynamics

entailed in microscopic models, the game-theoretic eva-

cuation model is evidently proven to be impactful.31,32

Accordingly, in recent years, a large number of researches

have suggested to model crowd behavior during evacua-

tion process using game theory.33 Related research of eva-

cuation modeling and simulation which implements

different aspects of game theory such as a spatial game in

describing risky agents is proposed by Pärnänen,10 game

theory cost function modeled using distance to the exit

and number of agents is proposed by Tian et al.,33 game

theory for room evacuation via lattice gas scheme can be

found in Bouzat and Kuperman’s study,34 game theory via

a CA environment to study patient and impatient agents

are presented by Heliövaara et al.,35 von Schantz and

Ehtamo,36 while game theory to study the effect of obsta-

cle removal during evacuation is presented by Lin and

Wong.37

In modeling and simulating evacuation scenarios, it is

essential to take account of the crowd’s behavior and

diverse emergency scenarios as pointed out by Wirz

et al.38 Examples of several recent research works on

diverse emergency evacuation scenarios are featured such

as in metro station,13 terminal apron,39 training school,40

and also during dense crowd.41 Xie et al.13 proposed a sta-

bilized coupled model of agent behavior and computa-

tional fluid dynamics model for effectiveness investigation

of the fire evacuation in a metro station. The results indi-

cated that the interaction between fire and humans has

direct impact on the evacuation based on the fire location

and the density. Meanwhile, Guolei et al.39 developed a

model-based fuzzy multiple attribute decision-making

framework for evaluation of the passenger service quality

and recognizing an optimal layout of the terminal apron.

The proposed work was effective in solving the rezoning

of the Roll-on/Roll-off/Passenger (Ro-Pax) terminal apron

and the results showed that rational traffic organization

and refined arrangement in the terminal apron can reduce

the traffic hazards effectively. Xie et al.40 developed a fine

grid cellular CA model to describe the pedestrian beha-

viors specifically adult–child behaviors and movement in

the corridor during after-class periods at training

schools. Hesham and Wainer41 proposed a model based on

centroidal particle dynamics considering the pedestrians’

close-range interactions in dense crowds. This method

reproduced several phenomena at the microscopic level of

emergent crowd evacuation. Although there is plenty of

research on crowd behaviors during emergency scenarios,

the study on evolutionary optimized behaviors among

crowds during the evacuation process, and their efficiency,

is yet to be explored deeply.

During a typical evacuation scenario, evacuees tend to

cooperate with or defect from other evacuees in order to

move toward the preferred path. The evacuees’ behavior

and their preferred speed tends to affect the evacuation

process, generating bottlenecks. Cooperative flow during

evacuation is believed to quicken the egress time34–36

while the higher the number of defectors (aggressive or

hawkish agents) in the crowd, the slower the time taken

for egress. This condition is also known as the faster-is-

slower effect which is the result of higher numbers of con-

flicts when more defectors move straight for the exit. This

produces a clogging condition near the exit42,43 which

delays the time for people to be entirely away from the

scene. Therefore, faster time of evacuation is achieved

once cooperation among the agents is accomplished. Up

until now, the relation of certain potential crowd behavior

and its evolution toward cooperative flow has remained

little studied. Thus, in this paper, we aim to explore the

impact of evolution of potential crowd behavior in achiev-

ing cooperation during evacuation and faster evacuation

times. Studying the impact on these potential behaviors in

an emergency will enhance the evacuees’ decision-making

abilities during on-site emergency evacuation. The main

contribution of this paper is simulation of evacuation sce-

narios using a game-theoretic approach by incorporating

evolution of certain potential crowd behaviors, viz. risk-

seeking, risk-averse, risk-neutral, and best-response, with

their potential strategies, namely cooperator, defector, eva-

luator, and retaliator and how their evolution during the

evacuation process can lead to cooperative flow and hence

achieve fast evacuation.

3. Model definition

In this work, the evacuation process in a single-door rec-

tangular room of size L 3 W with a door length of 1 m is

analyzed. We consider a continuous space and continuous

time where the agents’ movement toward the exit is mod-

eled by the social force model.44 The social force model

governs the movement of the agents through social forces

which are a measure of the internal motivations for the

agents to move in a certain direction. Here, we utilized the

social force model as proposed by Helbing and Molnár.45

Then, how agents choose their strategies and its conse-

quences to the evacuation process is modeled based on

game theory approach. Details of the combined social

force model and game-theoretic approach in updating

agents’ strategies are sketched in Figure 1. As depicted in

the flowchart in Figure 1, when the interaction or conflicts

among evacuees occur, which is normally during bottle-

necks, clogging, narrow path, or congestion, how the evac-

uees view the significance of the evacuation scenario and

the utility they will receive on updating their strategies is

known as the agent’s cost function, and it is modeled using

game theory.

In most of the literature pertaining to an agent’s cost

function using a game-theoretic approach, the cost

Mohd Ibrahim et al. 3



function that describes the evacuation game is assumed to

be constant. In Shi and Wang’s30 and Zheng and

Cheng’s31 studies, the cost functions are assumed to be

constant values as described in Tables 2 and 3, respec-

tively. For the cost function in Table 3, the result accounts

only for the row-agent and for others with identical inter-

action. Here in Shi and Wang’s study,30 b refers to perfect

benefit of the game, while c refers to labor cost in the

game. Shi and Wang30 introduced a new parameter

r = c=(2b� c) and the effect of the agents’ cost function

toward evacuation is tested by altering values of the para-

meter r. Meanwhile in Heliövaara et al.’s35 and von

Schantz and Ehtamo’s studies,36 the cost function depends

only on the estimated evacuation time (Tij), since To (time

needed for agents before beginning to play the game) and

TASET (available safe egress time) are set to be constant

values as shown in Table 4. In Table 4, the results account

only for the row-agent and for others with identical inter-

action. Parameters To refers to the time needed for agents

before beginning to play the game, Tij refers to the esti-

mated evacuation time, while TASET refers to the available

safe egress time. Here, the authors neglect the conflict cost

and conflicting neighboring agents in determining the

agents’ cost function where in reality, the agents’ cost

function depends also on these parameters. Meanwhile, in

Bouzat and Kuperman’s study,34 conflicting neighboring

agents are included as shown in Table 5. In this table, C

refers to cooperator(s), D refers to defector(s), P is a pun-

ishment to the defectors, n refers to the total number of

competing agents, while m refers to the number of coop-

erators in the competing agents. In this work, the authors

have neglected the importance of dynamic changes of

escape time during evacuation scenarios. The aforemen-

tioned problems were solved by Ibrahim et al.;46 however,

Ibrahim et al.46 focused only on the behavior of crowds

that can lead to crowd disaster, while this research aims to

investigate how evolution of certain crowd behavior could

lead to cooperative flow which will lead to fast and safe

evacuation.

Details of the evacuation simulation model using a

game-theoretic approach are as follows. Here, the egress

operation is perceived as an evacuation game played with

the aim to decrease the egress time. The estimated time of

evacuation (Ti) for each agent is defined as

Ti =
di

v(r, t)k k

where di is the distance of an agent to the exit and

jjv(r, t)jj=
P

j vj=n is an agent’s local speed in which vj

Table 2. Payoff table as by Zheng and Cheng;31‘‘polite’’
indicating agent will remain still by allowing others to exit,
‘‘normal’’ referring to agent escape in order, while ‘‘vying’’
indicating agent is competing to move.

Player 1/player 2 Polite Normal Vying

Polite 0, 0 0, b 0, b
Normal b, 0 b/2, b/2 0, b
Vying b, 0 b, 0 − c, − c

Figure 1. The proposed process flow of the integration of a
social force model and a game-theoretic approach in updating
agents’ strategies.

Table 3. Payoff table as by Shi and Wang.30

Player 1/player 2 C D

C b–c/2 b–c
D b 0

Table 4. Payoff table as by Heliövaara et al.,35 von Schantz and
Ehtamo.36

Player 1/player 2 Impatient Patient

Impatient T0
Tij�TASET + T0

− 1
Patient 1 0
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is the agent’s speed at (t), and n is the number of agents

within distance less than 80 cm around the center location

(r) of ith agent at time (t).

In circumstances where more than a single agent tries

to move in a similar direction at the same time, conflict is

bound to happen. Only one agent will be able to move

whenever a conflict occurs. Interaction among agents with

their nearest neighbors occurs in each time step. The

neighboring agents as suggested by Mohd Ibrahim et al.47

are considered here as conflicting agents where the win-

ners of the conflicts and also the agents who are unin-

volved in conflicts with their neighboring agents are able

to move.

The winner can outdistance other agents and reduce his

or her approximated evacuation time by Dt. By doing so,

the winner can reach to the preferred position and gain the

utility. At the same time, the loser(s) approximated time of

evacuation will increase by the same number Dt and they

will linger at the existing location losing the utility. This

will result the reduction of the cost of each winner agent to

a utility which will be Du(Ti(ic)) and for the loser(s) agent

the cost will identically increase. The simulation halts once

all the agents have evacuated.

The distance di between the agent and the exit eventu-

ally gets decreased by d which is described as

Dd = v(r, t)k k3 Dt, for each step taken by the agent.

Here, jjv(r, t)jj is the mean speed of the agents around the

central position r of the ith agent at time t. Moreover, Dt

is assumed to be a constant value of 0:8 s as proposed by

Mohd Ibrahim et al.47 The estimated evacuation time of

conflicting agents for each step is Du(Ti(ic))=Dd=vi,

where vi refers to the agent’s desired speed. Whenever

there is a vacant space, the winning agent will choose this

as the desired speed to move there.46

Here, an n agents 3 4 strategies symmetric egress

game is considered where the strategies are cooperator (C),

defector (D), evaluator (E), and retaliator (R). Cooperator

will never fight for the intended position. In contrast,

defector will be impatient in moving to a preferred spot.

Evaluator will appraise the opponent in terms of size. If

Figure 2. n × 4 evacuation game theory tree diagram (L: number of large defector opponent(s) to current agent i, EQ: number of
equal defector opponent(s) to current agent i, x: number of neighboring defector(s) to current agent i, y: number of neighboring
cooperator(s) to current agent i, sm refers to strategy of current agent i as indicated in the bracket.

Table 5. Payoff table as by Bouzat and Kuperman.34

Player 1/competing agents (n–1)C, 0D mC, (n–1 m)D

C 1/n 0
D 1/P 1

n�mð Þ n�m�1ð ÞP
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the opponent is huge in size, the evaluator will act as a

cooperator, whereas if the opponent is at most equal in

size, it will act as a defector, while retaliator defects only

when the adversary acts as defector. In general, when two

retaliators meet, both will act as cooperators. When there

is conflict among defectors and cooperators, the defectors

will try and push to move. When the defectors try and push

among themselves in order to move, inevitably it will

result in a little time delay td which is considered as con-

flict cost. Details of the n 3 4 evacuation game46 are

sketched in the game theory tree diagram in Figure 2 and

summarized as in below.

The n 3 4 evacuation game is based on different num-

bers of defectors and cooperators, and there will be three

cases. In the first case, the number of defectors (ndef ) is
greater than one and the number of cooperators (ncoop) is
greater than or equal to zero. This case has three distinct

sub-cases. In the first sub-case, the number of large defec-

tors is one so, he or she will be able to move while the rest

of the defector(s) and all the cooperators will remain at the

same location. Payoff for the large defector, defectors, and

cooperators are respectively: Du(Ti(ic))� td ,

�Du(Ti(ic))� td , and �Du(Ti(ic)). In the second sub-case,

the number of large defectors is greater than 1 so, one of

the large defectors will be able to move while the rest of

the defector(s) and all the cooperators will remain at the

same location. Payoff for the large defector (Lndef
-number

of large defector(s)), defectors, and cooperators are respec-

tively: (Du(Ti(ic))=Lndef
)� td , �Du(Ti(ic))� td , and

�Du(Ti(ic)). In the final sub-case, the number of large

defectors is 0, so one of the defectors will be able to move

while the rest of the defector(s) and all the cooperators

will remain at the same location. Payoff for the defectors

and cooperators are respectively: ((Du(Ti(ic)))=ndef ) � td

and �Du(Ti(ic)). In the second case, the number of defec-

tors is one and the number of cooperators is greater than

or equal to 1. So, the single defector will be able to move

while all the cooperators will remain at the same location.

Payoff for the defectors and cooperators are respectively:

Du(Ti(ic)) and �Du(Ti(ic)): In the final case, the number of

defectors is zero, and the number of cooperators is greater

than 1. So, there is no winner and loser, the payoff is set

as if all were cooperators, as the conflicting agents will

move together with the crowd based on the social force

model, and the payoff for the cooperators is

(Du(Ti(ic)))=ncoop.

Besides that, four types of agent behavior viz., risk-

seeking, risk-averse, risk-neutral, and best-response46,47

are examined. Different types of agents have the same cost

function but may have different preferences or strategies.

These different strategies of the agents are owing to the

different risk attitude of the agent types. The details of

these behaviors as follows:

� Risk-seeking or risk-loving can be recognized as

the particular approach of agents where they try to

achieve maximum utility under ambiguous scenar-

ios anticipating quick evacuation. It is a maximax

approach in game theory.
� Risk-averse stands for the behavior of the agents in

circumstances in which they look for the best out of

the worst results. It is a maximin approach in game

theory.
� Risk-neutral behavior refers to agents who prefer to

opt for conservative selection during unpredictable

scenarios where only a very small amount of infor-

mation is known about the inclination of other

opponents. It is a minimax regret approach in game

theory.
� Best-response behavior indicates the capability of

agents to react by observing other agents’ strategies

in their surrounding during previous instances.

An agent will choose either to be cooperator, defector, eva-

luator, or retaliator based on his or her behavior. In each

simulation, an agents’ behavior is fixed, while the other

three behaviors were randomly selected. For example, if

the number of risk-seeking agents is fixed at 20 agents, the

remaining 180 agents will be chosen randomly from the

remaining possible behaviors.

4. Simulation

We simulate different features of human escape behavior

in crowded environments with a single exit, including, but

Figure 3. Evacuation simulation at the beginning with 200
agents at random positions (red: defector, green: cooperator,
blue: evaluator, and cyan: retaliator).
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not limited to, discotheques, stadia, lecture halls or rooms

in general and other event areas. The scope of this section

is set to examine the crowd escape behavior in environ-

ments with a single exit because the critical conditions

during emergency scenarios may arise due to the crowding

and movement at vulnerable locations such as at exit

doors, gates, and passages.48 Bottleneck frequently occurs

at the point when hindrances cause disturbances or when

the space limits the flow. Critical conditions for the crowd

could happen when a densely packed crowd moves

through the bottleneck. This is because of the high pres-

sure that spreads among the crowd. Furthermore, agents

also could fall due to the forces that spread among the

crowd.48 We choose a room size for the evaluations. The

results do not depend on the room size, as long as there

are enough agents of different types in the room. For the

simulations, the evacuation process in a single-door rec-

tangular room of size 18 m 3 17 m with a door length

1 m is as shown in Figure 3 with initial 200 agents that

are randomly located.

Simulations are performed in accordance with a hetero-

geneous population where risk-seeking, risk-averse, risk-

neutral, and best-response agents are merged together to

enable us to examine the effect against egress aspects. For

improved comprehension of crowd dynamics and the time

of egress, the average strategies achieved by the crowd

during equilibrium state are examined for different time

delays as a result of conflicts, by repeating the simulations

with different random frequencies of cooperators, defec-

tors, evaluators, and retaliators placed at random initial

locations for 10 runs.

The average values are examined for the time frame of

15s to 70% of total evacuation time since, during these

intervals, the crowd is in equilibrium state where they

form an arch-like blocking near the exit as shown in

Figure 4. For each simulation type, the type of one of the

agents’ behavior is fixed while the other three behaviors

are selected at random.

5. Results and discussion

First, the effect of different proportions of specific crowd

behavior toward mean crowd strategies is investigated for

different conflict time delays td as displayed in Figures 5

and 6. First, for best-response agents, when td is 0.5 s, it is

observed that preferred strategies for agents in the

crowd are to become evaluator and defector as shown in

Figure 5(a). Although percentages of retaliator and coop-

erator strategy increase twofold when the proportion of the

best-response agents is increased from 0% to 100%, it is

still less compared to the percentages of evaluators and

defectors. In contrast, when td is increased to 1.2 s, the

result is totally different from the previous case where the

cooperator strategy has become the preferred strategy

which is about two-thirds of possible crowd strategies no

matter what are the different proportions of best-response

agents. The retaliator strategy has become the least pre-

ferred strategy where its percentage is about 1%–3% only

as shown in Figure 6(a).

For risk-averse agents, when td is 0.5 s, the result is

quite similar to the best-response agents’ result in

Figure 5(a) except that the percentage of retaliator strategy

has increased to threefold when the proportion of risk-

averse agents increased from 0% to 100% as shown in

Figure 5(b). However, when td is increased to 1.2 s, the

cooperator strategy has become dominant and it is

approaching full mutual cooperation when the proportion

of risk-averse agents is 100% as displayed in Figure 6(b).

For risk-neutral agents, when td is 0.5 s (Figure 5(c)), it is

observed that the percentages of evaluator and defector

strategy increase and the percentages of retaliator and

cooperator strategy decrease whenever the proportion of

risk-neutral agents is increased. In contrast, when td is

increased to 1.2 s (Figure 6(c)), the cooperator strategy

has become the dominant strategy similar to the risk-

averse agents’ result in Figure 6(b). Then, for risk-seeking

agents (Figure 5(d)), when td is 0.5 s, the result is quite

similar to the risk-neutral agents’ result in Figure 5(c).

When td is increased to 1.2 s, unlike other strategies, the

cooperator strategy decreases in frequency, while evalua-

tor and defector strategies increase whenever the propor-

tion of risk-seeking agents is increased, as shown in

Figure 6(d).

Typical results pertaining to the evolution of these stra-

tegies, viz. cooperator, defector, evaluator, and retaliator

are shown in Figures 7–10. High local crowd density will

lead to increase in crowd forces,49 thus will increase the

time delay td , while low local crowd density will require

less time delay td . Therefore, we assume that td = 1.2 s

corresponds to high local crowd density while td = 0.5 s

Figure 4. Examples of equilibrium configuration for all best-
response agents (red: defector, green: cooperator, blue:
evaluator, cyan: retaliator): (a) td = 0.5 s and (b) td = 1.2 s.
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corresponds to low crowd density. As observed from these

results, both in low- and high-density cases, about half of

the best-response agents prefer to be cooperators,

while another half prefers to be evaluators and defectors

(Figure 7). For risk-averse and risk-neutral agents, in the

high-density case, about all of them prefer the cooperate

strategy. However, risk-averse agents evolve quite fast to

become a cooperator compared to risk-neutral agents

(Figures 8(b) and 9(b)).

In the low-density case, half of the risk-averse agents

prefer to be cooperators, while most of the risk-neutral

agents prefer to be evaluators and defectors (Figures 8(a)

and 9(a)). It also can be observed that risk-seeking agents

prefer the defect strategy irrespective of the local crowd

densities (Figure 10).

Next, the effect of crowd behavior toward the percent-

age of patient agents during evacuation is examined. Here,

patient agents have an overall cooperative strategy which

includes cooperator strategy and also cooperator strategy

embedded in evaluator and retaliator. This study will assist

us in better understanding how mutual cooperation is

achieved by crowds during evacuation. Figure 7(a) indi-

cates that when the conflict time delay td is quite low at

0.5 s, about less than 15% of the crowd prefers the coop-

erator strategy. Moreover, mutual defection is nearly

achieved when the distribution of the risk-seeking agents

and risk-neutral agents are 100% each.

Conversely, cooperative strategy is increasing when td

is increased to 1.2 s except in the case of risk-seeking

agents (Figure 11(b)). To be more precise, for risk-averse

and risk-neutral agents, whenever their proportions are

increased, the percentages of cooperative strategy increase

as well. Mutual cooperation is nearly achieved in the case

of risk-averse agents when their proportion is 100%. For

best-response agents, a cooperative strategy is used in

more than half of all cases. Meanwhile, percentages of

cooperative strategy decrease whenever the proportion of

risk-seeking agents is increased. Mutual defection is nearly

achieved when the proportion of the risk-seeking agents is

100%. The result in Figure 11 shows that risk-seeking

Figure 5. Achieved mean crowd strategy percentages for different proportions of fixed crowd behavior. For instance, subfigure
(a) shows the effect of different proportions of best-response agents toward mean crowd strategies. Parameter used: td = 0.5 s:
(a) best-response agents, (b) risk-averse agents, (c) risk-neutral agents, and (d) risk-seeking agents.
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agents are inclined toward a defector strategy regardless of

the amount of conflict time delays, while other crowd

behavior shows a cooperative strategy when there is an

increase in conflict time.

Next, the effect of crowd behavior on mean escape time

is studied. The final result for this simulation is shown in

Figure 12. From the simulation result in Figure 12(a),

Figure 6. Achieved mean crowd strategy percentages for different proportions of the fixed crowd behavior. For instance, subfigure
(a) shows the effect of different proportions of best-response agents toward mean crowd strategies. Parameter used: td = 1.2 s:
(a) best-response agents, (b) risk-averse agents, (c) risk-neutral agents, and (d) risk-seeking agents.

Figure 7. Evolution of strategies of the crowd in an evacuation simulation for all best-response agents (red: defector, blue:
evaluator, green: cooperator, cyan: retaliator): (a) td = 0.5 s and (b) td = 1.2 s.
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Figure 8. Evolution of strategies of the crowd in an evacuation simulation for with all risk-averse agents (red: defector, blue:
evaluator, green: cooperator, cyan: retaliator): (a) td = 0.5 s and (b) td = 1.2 s.

Figure 9. Evolution of strategies of the crowd in an evacuation simulation for all risk-neutral agents (red: defector, blue: evaluator,
green: cooperator, cyan: retaliator): (a) td = 0.5 s and (b) td = 1.2 s.

Figure 10. Evolution of strategies of the crowd in an evacuation simulation for all risk-seeking agents (red: defector, blue: evaluator,
green: cooperator, cyan: retaliator): (a) td = 0.5 s and (b) td = 1.2 s.
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which is for a conflict time delay of 0.5 s, the average

escape time for all types of agents is almost similar where

this average escape time is quite high. This is due to the

majority of the crowd preferring a defector strategy as

shown in Figure 11(a), and this led to a pushy behavior

among the crowd. The combined result of Figures 11(a)

and 12(a) indicates that the larger the number of impatient

agents (which means total defector strategy including

defector strategy in evaluator and retaliator strategy as

well), the slower the egress time.

This scenario is referred to as the faster-is-slower effect,

which happens due to the increased number of conflicts

when more defectors tend to move straight toward the exit.

This results in a clogging effect near the exit.46,47 This

clogging slows down the total escape time. Figure 12(b)

indicates that when td is increased to 1.2 s, average escape

time tends to be faster whenever the proportion of best-

response, risk-averse, and risk-neutral agents is increased.

The average escape time tends to be fastest when the risk-

averse agents’ population increases. In contrast, when the

risk-seeking agents’ population increases, the average

escape time becomes slower and this indicates the faster-

is-slower effect even though risk-seeking agents look for

gaining maximum utility in order to achieve fast evacua-

tion. In a nutshell, it can be inferred that faster evacuation

time occurs once mutual cooperation among agents is

achieved, which happens when agents’ population is domi-

nated by risk-averse agents.

Finally, as the average escape time is the fastest and

mutual cooperation is achieved when the population is full

of risk-averse agents, we further simulated multi-exit eva-

cuation scenarios to study the evacuation flow when the

population is full of risk-averse agents. Here, exit choice is

randomly selected, as this paper mainly focuses on the

effect of evolution of behavior in achieving mutual cooper-

ation during the evacuation process. Figure 13 shows some

examples of the evacuation scenarios at different time

steps. Figure 13(a) is a simulation of the experimental

Figure 11. The effect of different proportions of crowd behavior toward the mean of overall patient agents: (a) td = 0.5 s and
(b) td = 1.2 s.

Figure 12. The effect of different proportions of crowd behavior toward mean escape time: (a) td = 0.5 s and (b) td = 1.2 s.
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evacuation by Heliövaara et al.50 that was conducted in a

corridor with two exits located asymmetrically. Our multi-

exit evacuation simulation in Figure 13(a) is in agreement

with the experimental evacuation by Heliövaara et al.50

where our simulated agents behaved very similar to the

participants by Heliövaara et al.50 in which they move

cooperatively by not pushing other agents around them and

so they are able to exit the door more efficiently. Figure

13(b) shows multi-exit simulation in a single large room,

while Figure 13(c) shows evacuation simulation in two

sequential rooms. To conclude, our simulation of multi-

exit evacuation scenarios with the crowd population full of

risk-averse agents shows smooth evacuation flow as

mutual cooperation is favored by all agents. This smooth

evacuation flow will lead to minimal evacuation time as

shown in Figure 12.

6. Conclusion

This paper aims to depict how the evolution of certain

crowd behavior can lead to cooperation during the evacua-

tion process. In order to achieve this aim, we have simu-

lated evacuation scenarios in continuous space using the

game-theoretic and social force model and studied the

effect of evolution of risk-seeking, risk-averse, risk-neu-

tral, and best-response agents’ behavior in achieving

mutual cooperation flow and faster evacuation time. The

findings of this paper can be summarized as follows:

� For the case of low density which is when the con-

flict time delay is 0.5 s, this paper found that the

preferred strategies for the crowd are to become

defectors.

Figure 13. Examples of multi-exit simulations at different time steps: (a) evacuation simulation of 54 agents similar to the
experimental evacuation study done by Heliövaara et al.,50 (b) evacuation simulation of 100 agents, and (c) evacuation simulation of
100 agents in two sequential rooms.
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� For the case of high density which is when the con-

flict time delay is 1.2 s:

8 For risk-averse and risk-neutral agents, when-

ever their proportions are increased, the propor-

tion of cooperator strategy is increased as well.

8 Mutual cooperation is nearly achieved when

agents’ population is full of risk-averse agents.

8 The average escape time tends to be fastest when

the risk-averse agents’ population gets increased.
� Based on the simulation results, the proposed eva-

cuation model is able to confirm the faster-is-

slower effect: that the larger the number of impati-

ent agents, the slower the egress time.

We hope that these findings provide insight into important

factors that can improve evacuation. There is a relation-

ship between evacuation efficiency and the architectural

design of the building, stairs, and floors that should be

investigated. In complex buildings, the evacuation effi-

ciency for the simulation of crowd evacuation while con-

sidering complex architectural design of the building (e.g.

shape, stairs, rooms, floors, and exits) remains a challenge

and needs further research. Besides that future work could

focus on the refinement of the types of agents, using

results from psychology. Our simulations show that game-

theoretic approaches could play a significant role toward

building sophisticated evacuation models. We have

demonstrated the feasibility of the proposed approach for

the typical case of a simple one-room model and have

shown that it is easy to extend the multi-agent simulations

for a given building geometry.
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