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Abstract
Barrett’s esophagus (BE) is a benign condition of the distal esophagus that initiates a multistage pathway to esophageal
adenocarcinoma (EAC). Short of frequent intrusive (and costly) surveillance, effective screening for neoplasia in BE popu-
lations is yet to be established since progressors are rare and virtually undetectable without routine biopsies, which
often sample only a small portion of the BE tissue. As a result, reliable estimation of the true prevalence of dysplasia in a
BE population and evidence-based optimization of screening for at-risk individuals is challenging. Data-driven microsimu-
lations, i.e., model-generated instances of disease history in a predefined virtual population, have found utility in the EAC
screening literature as low-overhead alternatives to real-world hypothesis testing of optimal interventions for dysplasia.
Despite the successes, computational limitations, paucity of knowledge and data on Barrett’s dysplasia, and the complex-
ities of disease progression as a multiscale multiphysics process have hindered the treatment of disease progression in
BE as a spatial process. Agent-based modeling of nucleation and proliferation processes in dysplasia warrants exploration
in this context as an approximation that operates at a trade-off between computational tractability and precise represen-
tation of the composition and physics of the substrate (tissue). In this study, we describe spatially resolved simulations of
premalignant progression toward EAC in a coarse-grained model of Barrett’s tissue that resolves the metaplastic tissue
at a length scale of 0.42 mm (~3300 crypts/mm2). The model is calibrated to reproduce historical high-grade dysplasia
prevalence when model-generated patients are screened using the Seattle protocol.
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1. Introduction

The puzzling growth in incidences of esophageal adeno-

carcinoma (EAC) in western populations is a significant

public health challenge that can be mitigated in part with

better neoplasia screening strategies for at-risk individu-

als.1,2 However, it is impractical to perform statistically

significant comparisons of screening strategies, and this

has seriously hindered improvements in the rate of early

detection. To overcome this challenge, a simulation model

that captures the process by which EAC emerges can be

used to create large numbers of synthetic tissues (patients),

and the effectiveness of competing detection strategies can

be compared in reference to this virtual population. The

primary aim of such a model is to accurately reproduce

the physical distribution over time of cell types that are

detected via biopsies.

A prominent pathway to EAC is believed to be the

emergence of neoplasia in Barrett’s esophagus (BE), a

precursory metaplastic alteration of the esophageal lining

where epithelial squamous cells are replaced with mucus-

secreting columnar cells,3 possibly due to chronic reflux

damage.4 Premalignant growth in the metaplastic tissue

presents in the form of low-grade dysplasia or high-grade

dysplasia (HGD). The latter is considered a significant
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marker for progression toward EAC, hence a primary tar-

get for screening.

Preventive screening for EAC has proved challenging,

in part, because, within the interval that the disease is

believed to be still curable, increasingly advanced prema-

lignant stages require increasingly invasive procedures to

detect. BE—estimated to affect 5.6% of the adult US pop-

ulation alone5—is symptomatically silent and requires

endoscopies for detection. Individuals diagnosed with BE

are regularly surveilled via repeated biopsies of the meta-

plastic tissue to enable early detection of neoplasia, the

yield of which is subject to the efficiency of the biopsy

protocols. Therefore, our posterior knowledge on the inci-

dence of advanced disease stages, particularly HGD, is

subject to uncertainties stemming from who is selected to

receive an endoscopy and how efficiently can we detect

signs of malignant mutations in metaplastic tissue. These

uncertainties occur on distinct levels of abstraction within

the problem, highlighting its multiscale nature.

A data-driven state-transition model, EAC Model

(EACMo), has been used in epidemiology to amend miss-

ing or scarce population-level observational data.1,5,6

EACMo has been used to address the HGD screening

problem. However, the model is a state-transition model,

which does not provide tissue-level details of premalignant

growth. A potential remedy is to complement state-

transition population models with tissue-level simulations

of premalignant growth. Grid-bound individual-based

models are particularly well-suited for this due to their bal-

ancing of simplicity with diverse dynamical output. The

primary focus of this study is to show how such a model

can be constructed and deployed at scale to address the

screening problem outlined above.

Specifically, we show how a spatially resolved model

for the BE to EAC pathway can be constructed using the

discrete event system specification (DEVS,7 see Wainer8

for other grid models). This formulation of the model

allows for fast simulations to produce sizable populations

of virtual tissues. We use this synthetic population to eval-

uate the Seattle biopsy protocol,9 the current standard (rec-

ommended) protocol for detection of neoplasia in Barrett’s

patients, and calibrate the model parameters toward histor-

ical HGD prevalence and missed malignancy rates.

2. Methods
2.1. Three-dimensional agent-based model

Agent-based models typically describe the rule-based evolu-

tion of objects (i.e., agents) through a set of predefined states

over time. In our implementation, objects are groups of adja-

cent cells that constitute a segment of crypt-structured tissue.

The states of the model correspond to different health states

of individual tissue segments, and these segments are assem-

bled to construct the esophageal tissue. The esophagus is

modeled as an annulus with inner diameter r0 and thickness

‘, and is discretized into a regular grid of cubic tissue seg-

ments with side length d and crypt density h.

The model follows each tissue segment through the nat-

ural history as:

normal �! BE �!m1
dysplasia �!m2

cancer ð1Þ

where m1 and m2 are the mutation rates associated with

each irreversible transition. The instant of mutation for a

tissue segment is determined by sampling from an expo-

nential distribution with the appropriate mean. The muta-

tion rates are calculated as follows:

mi =
1

kihd2
ð2Þ

where ki is a parameter to be calibrated.

In addition to these random mutations, a tissue segment

can change state in response to invasions from adjacent

segments of cancerous or dysplastic tissue. The process of

cell duplication and spreading is characterized by a prolif-

eration rate, m�. This value is calculated as:

m�= k�d
2 ð3Þ

where k� is to be calibrated. Cancer can spread in three

dimensions, but the spread of dysplasia is restricted to two

dimensions on the epithelium. Each proliferation event

affects a single neighbor selected at random.

A historical study shows that metaplastic tissue seg-

ments occur at some point between the ages 20 (minimum

age) and 50 in most patients.10 For our study, we begin the

simulation of a tissue with onset of BE at age tBE that is

drawn for each patient from a real dataset. At time tBE, a

transition from normal to BE occurs. The initial length of

the BE tissue, LBE, is drawn from a bimodal Gaussian dis-

tribution to reflect a distinction between short- and long-

segment BE. Long-segment BE is assigned to 25% of the

population and short segment BE to the remainder. Similar

to BE onset age, we incorporated death from natural causes

in the model. For each tissue (patient), death age is drawn

from real mortality rates for the 1960 cohort. A summary

of the model parameters is presented in Table 1.

Individual tissue segments are described by event-

driven state transition systems called atomic models in the

parlance of the DEVS modeling formalism. Atomic mod-

els interact by exchanging events. A complete description

of the DEVS modeling technique and its simulation proce-

dures can be found in Zeigler et al.11 and Nutaro.12 Our

model is built using ADEVS (a discrete event system

simulator), which is an implementation in C++of the

DEVS modeling constructs and simulation algorithm.12 In

this implementation, the tissue segments are maintained in

a future event list. At each iteration of the

simulator, ADEVS selects the imminent tissue segments
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from this list, executes its output function by which events

are sent to neighboring segments, and then executes the

segment’s state transition function to update state variables

in the imminent segment (Source code for the simulation

model is available in the article’s supplementary

materials).

If the event at an imminent tissue segment is a muta-

tion, then the state of the segment is updated appropri-

ately, the new time of the next event for the segment

determined, and then it is reinserted into the future event

list. Otherwise, the event is a proliferation. In this case, a

destination segment is selected and the state of that seg-

ment updated accordingly. Then new times of next event

are determined for the pair of segments and these are rein-

serted into the future event list.

This approach has two benefits over a typical agent-

based model that steps through time in fixed increments,

examining each agent at each step. First, time is continu-

ous in the discrete event model as next event times are

selected from the real numbers. This avoids truncation

errors that frequently occur in time-stepped simulations of

agent-based models13,14 when continuous distributions are

used (such as exponentially distributed mutation occur-

rences in our model). The second benefit is that computa-

tional effort at each iteration of the simulation algorithm is

restricted to the imminent tissue segments and their neigh-

bors. This allows for the multi-year growth of malignant

tissues to be simulated very rapidly.

2.2. Interpretation of mi and m�
Note that the mutation rates mi do not correspond to rates

of somatic mutations of individual epithelial stem cells,

but a group of cells constituting a BE crypt. We created

this coarse-grained model because it is computationally

impractical to simulate individual cells of the esophagus.

For instance, m1 characterizes the transition from Barrett’s

esophagus to the onset of dysplasia, i.e., the emergence of

proliferative dysplastic foci. This process can be further

subdivided into (1) (potentially multiple) rate-limiting

initiation steps on the scale of individual stem cells, (2)

the turnover of a BE crypt into a dysplastic one, and (3)

the turnover of a tissue segment due to the transformation

of its constituent crypts. Similarly, m� agglomerates prolif-

eration mechanisms (e.g., crypt fission) below the length

scale of an individual tissue segment. In this sense, these

rates represent the aggregation of smaller-scale mutation

and proliferation mechanisms on a length scale equal to d.

2.3. Screening via simulated biopsies

We use the tissues generated by the simulation runs to

mimic the process of screening BE tissues for HGD. The

current recommended procedure for HGD screening is the

Seattle biopsy protocol9 where 5 mm 3 3 mm jumbo

biopsies are extracted from the surface of the metaplastic

tissue every 1–2 cm, making up four-quadrant biopsies

(also called a band) in total. The samples are then sur-

veilled by a pathologist for signs of neoplasia. To account

for the potential inefficiency in this step, we adopt the

biopsy sensitivity measure from a previous study.15 A

detection threshold, fdet is defined in terms of the frac-

tional area in a single jumbo biopsy covered by neoplastic

tissue (nf ) as follows:

fdet =(1� nf )3 100 ð4Þ

Table 1. Calibration targets, calibration algorithm values, and the associated model rates.

Parameter Value Reference

D0:05 0.008 O’Conner et al.25

D0:50 0.033 Sharma et al.24

D0:95 0.075 Weston et al.23

M0:05 0.57 Peters et al.26

M0:50 0.35 Falk et al.27

M0:95 0.12 Cameron and Carpenter28

δ 0.42 mm Assumed
η 3300 cells/mm2 Curtius et al.15

r0 24 mm (quarter diameter) Assumed
‘ 4 mm (width of three pennies) Assumed
k1 1.2405 × 10− 8 year/cell Calibrated
k2 4.0060 × 10− 8 year/cell Calibrated
k * 0.2103 year Calibrated
LBE long Mean 6.4 cm, SD 3.1 cm Assumed
LBE short Mean 1.4 cm, SD 0.7 cm Assumed
Age of biopsy 60 Assumed
Samples (biopsy) 100 Algorithm
Simulation replications 500 Algorithm
Generations 500 Algorithm

Ozmen et al. 3



Note that fdet encompasses all contributing sources of

uncertainty during the biopsy process including the human

factors, the number of samples that are actually tested, and

so forth. In practice, adherence to the standard sampling

protocol itself is imperfect.16 To address this, we repeated

the simulated biopsies, slightly varying different aspects

of the process as follows.

Sampling is started at a randomly chosen location

between 1 and 2 cm above the base of the metaplastic tis-

sue. To mimic imperfect placement of jumbo samples, we

uniformly perturb the gap between four-quadrant jumbo

biopsies on the same band by U(26.72,6.72) mm that cor-

responds to 616 tissue segments. On the length of esopha-

gus, we move randomly in 1–2 cm increments and sample

another four-quadrant jumbo biopsies. Similarly, the loca-

tion of the jumbo biopsy on the y-axis is also uniformly

perturbed by U(23.36,3.36) mm that corresponds to 68

tissue segments. To account for first-order uncertainty, the

process is repeated 100 times, each representing an inde-

pendent surveillance of the Barrett’s tissue, from which

mean detection and false negative rates are calculated.

The outputs of this procedure are the mean prevalence

of HGD as a function of the sensitivity of the biopsy proto-

col within the test population and the mean malignancy

rate that is missed by the biopsy protocol. Cross-validating

these curves with historically reported values for preva-

lence and missed malignancy forms the basis for an inverse

problem to determine the model parameters k1, k2, and k�
as described in the following section.

2.4. Model calibration

Model calibration is a process to find the optimal para-

meters that realize the desired outputs from a simulation

model17–19 (for calibration with adaptive optimization

techniques). Our goal here is to find the model parameters

at which the simulation model will output historical HGD

prevalence and missed malignancy rates. We use the parti-

cle swarm optimization (PSO) algorithm20,21 to calibrate

our model. PSO is a population-based meta-heuristic that

was developed based on analogies drawn from collective

behavior of animals and sociopsychology.22 It conceptua-

lizes a search in the space of possible solutions as the

motion of a population of particles that each instantiate a

unique solution (i.e., position). Each particle explores the

space over time guided by local information, as well as a

global drift toward where the swarm has found the most

promising solution up to that point in time.

The process is formalized using a motion operator that

updates a given particle’s position at each iteration (eqv.

generation). Explicitly, the future position, xi(t), of the ith

particle is a function of its current position, xi(t � 1), its
current velocity, vi(t � 1), its best preceding position in

terms of fitness, pi, and the best preceding position, pg,

globally within the swarm up to that generation. The future

positions and velocities are obtained as:

vi, t = vi, t�1 +u1(pi � xi, t�1)+u2(pg � xi, t�1) ð5Þ

xi = xi, t�1 + vi, t�1 ð6Þ

where u1 and u2 are scalar drift terms. In our case, the

solution space is a subset of R3 containing plausible val-

ues for k1, k2, and k�.
Fitness, which is distance from an optimal parameter

choice, is the difference between the simulation outputs

and historical data. For the first measure of fitness, we

adopt an upper bound,23 middle point,24 and lower bound25

for HGD prevalence from different studies as HGD preva-

lence; see Equations (7)–(9). These three equations are the

mean Euclidean distances between the calculated preva-

lence values Ps and targets Ds for different sensitivity val-

ues s. The second measure of fitness is an upper bound,26 a

middle point,27 and a lower bound28 for missed malig-

nancy; see Equations (10)–(12). These equations are the

mean Euclidean distances between the calculated missed

malignancy values Qs and targets Ms for different sensitiv-

ity values s. Both measures of fitness have penalty values

when the rates exceed ground truth rates at the lower and

upper bounds as:

f 0:051 (x)= jP0:05 � D0:05jð Þ2, ifD0:054P0:05

100000, otherwise

�
ð7Þ

f 0:501 (x)= jP0:50 � D0:50j
� �2 ð8Þ

f 0:951 (x)= jP0:95 � D0:95jð Þ2, if P0:954D0:95

100000, otherwise

�
ð9Þ

f 0:052 (x)= jQ0:05 � D0:05jð Þ2, ifQ0:05 4D0:05

100000, otherwise

�
ð10Þ

f 0:502 (x)= jQ0:50 � D0:50j
� �2 ð11Þ

f 0:952 (x)= jQ0:95 � D0:95jð Þ2, if D0:95 4Q0:95

100000, otherwise

�
ð12Þ

The fitness function we calibrate toward is the mean of all

aforementioned cost values, specifically

min
x

1

6

X2
n= 1

X0:95
i= 0:05
step0:45

f m
n (x)

0
B@

1
CA ð13Þ

Note that we fit only toward sensitivities of s = 0.05,

0.50, and 0.95, which were found sufficient to generate the

desired curves. The algorithm does not guarantee a global

optimum but improves over generations with the goal of

reaching an acceptable solution. Starting with a population

of solutions, the fitness value of each particle is calculated.

Then, the particle with the best fitness value is recorded
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and all particles move to their next position. The search is

terminated once a certain number of generations or speci-

fied fitness value has been reached. Please see supporting

materials for details of the optimization run and its perfor-

mance. The fitted values and the parameters of the model

and the calibration algorithm are presented in Table 1.

3. Results

Figure 1 illustrates the simulated evolution of the epithe-

lial surface over time for one test case. These simulated

tissues are leveraged to sample biopsies. Figure 2 illus-

trates the biopsy process via the spatially perturbed Seattle

protocol that was used in the calibration and the analysis

(one sample).

Although the mutation rates are uniform in parameter

space, the invasion mechanism generates multifocal neo-

plastic growth with different sizes and shapes. Another

strength of the model compared to other tumor growth

models29 is to mimic three-dimensional (3D) tissue struc-

ture and allow neoplastic growth deeper into the tissue in

different shapes (not only circular). Figure 3 illustrates the

depth of cancer invasion (tissue segments) that are not on

the surface of esophagus. The invasion mechanism in the

model allows more realistic representation of neoplastic

growth such as invasion in the tissue and re-surfacing at

non-adjacent segments.

The probability of HGD detection as a function of

biopsy sensitivity is reproduced in Figure 4(a) at age 60

for 500 replications. The shape and boundaries of the

Figure 1. Sample model outputs. The progression from onset of (a) high-grade dysplasia to (b) onset and (c) growth of epithelial
carcinoma. The surface of Barrett’s tissue has been flattened into a rectangle.

Figure 2. Biopsy sampling based on Seattle protocol on
epithelial surface. The sampling shows missed jumbo biopsies
and a biopsy sample that overlapped with HGD segments.

Ozmen et al. 5



curve are consistent with the results from the analysis in

the study by Curtius et al.15 These rates were estimated to

evaluate the sensitivity of the biopsy protocol. Figure 4(b)

presents the probability of missed malignancy. Missed

malignancy is calculated by counting the number of cases

that included cancer and remained undetected after the

biopsy. It is also presented against the biopsy sensitivity.

The predicted ranges are aligned with studies of HGD

patients who remained undetected after biopsies.26–31 The

predicted probability of missed malignancy falls well

within the range from literature for all biopsy sensitivity

values and exhibits a better fit than the analysis in the pre-

vious study.15

To further validate the calibrated model, it is run for

100,000 replications to generate 100,000 synthetic tissues

until age 100, using the fitted parameters (see Table 1).

Figure 5 represents onset age and death age distributions

that are drawn from real datasets for the 1960 cohort.

Onset age distributes similar to that by Rubenstein et al.10

in which majority of the population exhibits BE formation

by age 50. Death distribution exhibits infant mortalities

and positive skewness as expected. Figure 6 represents

time intervals from BE to dysplasia and from dysplasia to

cancer for first occurrences.

Both dysplasia and cancer exhibit Gaussian distribu-

tions. This is due to the invasion mechanism of dysplasia

and cancer and summations of multiple exponential time

intervals of dysplasia cells to become cancer. Figure 7 pre-

sents distributions of ages when first dysplasia (left) and

cancer (right) cells are formed. Distribution of dysplasia

Figure 3. Sample model outputs representing cells deeper in the tissue. (a) Surface of a progressed case and (b) layers of tissues
showing that neoplastic growth progressed deeper into the tissue.

Figure 4. Modeled probabilities. (a) High-grade dysplasia (HGD) detection as a function of the biopsy sensitivity using the Seattle
biopsy protocol and (b) modeled probability of missed malignancy when Seattle protocol is used.

6 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



Figure 5. Onset age distribution and death age distribution. (a) Onset age distribution is presented for 81,852 tissues who had BE
before age 84 and (b) death age distribution is presented for 99,982 tissues who died before age 100.

Figure 6. Distributions of time intervals between disease progressions. (a) Distribution of the time between BE and dysplasia
occurrences for 38,130 tissues, who had at least one dysplasia segment. (b) Distribution of the time between dysplasia and cancer
occurrences for 7027 patients, who had cancer.

Figure 7. Age distributions of (a) dysplasia and (b) cancer.

Ozmen et al. 7



age peaks around 55–60 and cancer peaks in the interval of

age 80–84 (as expected by Mathieu et al.32), which further

validates the capability of the model generating realistic

emerging patterns that are neither inputted nor calibrated.

Also, it means that the rates that are calibrated are realistic

and generated historical cancer onset age distribution.

4. Conclusion

We have leveraged prior work on a two-dimensional (2D),

time-stepped, multi-scale model15 to create a 3D discrete

event model of the growth of esophogeal cancer. The pro-

posed approach has two benefits over typical agent-based

models: (1) time is continuous in the discrete event model,

thereby avoiding truncation errors that frequently occur in

time-stepped simulations of agent-based models13 using

continuous distributions, and (2) computational effort at

each iteration of the simulation algorithm is restricted to

active tissue segments, thereby allowing the multi-year

growth of malignant tissues to be simulated very rapidly.

The model also provides information concerning the 3D

spatial progression of the disease that was not considered

before. Consequently, it can simulate the invasion of can-

cer into deep tissues, which creates more realistic segments

of EAC when compared to the previous work.15

Probability distributions of onset age and death age are

taken from data available in the extant literature that are

set at the initialization stage. We calibrated the model’s

other parameters so as to reproduce historical rates of

HGD prevalence and missed malignancy rates by incor-

porating screening of individual patients directly in the

simulations. The calibrated scenario is validated against

the HGD prevalence versus biopsy sensitivity and missed

malignancy rate versus biopsy sensitivity curves that are

previously presented in literature.15 The predicted prob-

ability of missed malignancy falls well within the range

from literature for all biopsy sensitivity values and exhi-

bits a better fit than the analysis in the previous study.15

Furthermore, time intervals between progressions in the

population are realistic and validated by the findings in the

literature. Specifically, cancer age peaks around the age

80–84 years,32 which is an emerging pattern that is neither

inputted nor calibrated.

In addition, the optimization routine is designed to work

on parallel computing platforms and benefits from multi-

core parallelization to facilitate model calibration in a fea-

sible amount of time. The results of the speed test are pro-

mising from the point of view of expanding the existing

model toward more realistic simulations (see supplemental

materials). Initially, the scalability analysis showed almost

linear decrease in runtime with the number of cores uti-

lized. However, due to significant input/output (I/O) opera-

tions required to read and write simulation outputs, there is

a diminishing return of the number of compute cores

leveraged. Most of the parallelization benefits are gained

from parallel execution of simulation experiments.

Although the model exhibits good validation against the

historical dynamics, one possible extension to the model

would be to study the variation of detection for different

BE lengths, grid sizes, and tissue areas. The dynamics in

the results rely on the assumed data in Table 1 that are

based on expert opinions. Those assumptions can be

relaxed by exploring different distributions. Another addi-

tion to strengthen the model is to adopt different biopsy

sensitivity definitions other than the one derived from the

study by Curtius et al.15 Nonetheless, the model demon-

strated that the simulated tissues can be used to evaluate

the efficiency of existing biopsy protocols. Moreover, the

model is not limited to the Seattle protocol and alternative

biopsy protocols can potentially be introduced. A simple

revision of the PSO implementation would enable us to

evaluate alternative biopsy protocols that maximize the

detection rate and minimize the false negative rate while

using fewer jumbo biopsies than Seattle protocol does. In

conclusion, this study provides a tool that can serve as a

test-bed to design alternative biopsy protocols and evaluate

their efficiency.
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13. Özmen Ö, Nutaro JJ, Pullum LL, et al. Analyzing the impact

of modeling choices and assumptions in compartmental epi-

demiological models. Simulation 2016; 92(5): 459–472.

14. Nutaro J, Ozmen O and Schryver J. Disaggregation and

refinement of system dynamics models via agent-based mod-

eling. In: Proceedings of the 2014 summer simulation multi-

conference. Society for Computer Simulation International,

p. 11, https://dl.acm.org/doi/10.5555/2685617.2685628

15. Curtius K, Hazelton WD, Jeon J, et al. A multiscale model

evaluates screening for neoplasia in Barrett’s esophagus.

PLoS Comput Biol 2015; 11(5): e1004272.

16. Spechler SJ, Sharma P, Souza RF, et al. American gastroen-

terological association technical review on the management

of Barrett’s esophagus. Gastroenterology 2011; 140(3):

e18–e52.
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