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Abstract
Agent-based social simulations are typically described in imperative form. While this facilitates implementation as com-
puter programs, it makes implicit the different assumptions made, both about the functional form and the causal ordering
involved. As a solution to the problem, a probabilistic graphical model, Action Network (AN), is proposed in this paper for
social simulation. Simulation variables are represented by nodes, and causal links by edges. An Action Table is associated
with each node, describing incremental probabilistic actions to be performed in response to fuzzy parental states. AN
offers a graphical causal model that captures the dynamics of a social process. Details of the formalism are presented
along with illustrative examples. Software that implements the formalism is available at http://actionnetwork.epizy.com.
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1. Introduction

The two best known quantitative tools for causal modeling

are probably structural equation modeling (SEM) and

Bayesian network (BN). SEM and BN both lay out cause

and effects in the form of a directed acyclic graph (DAG).

As such, they are at once visually and mathematically

appealing. In fact, SEM is immensely popular especially

in the social sciences, medicine, and psychology, while

BN is the de facto standard where prediction or diagnosis

based on causal inference is required. In a few works, the

two have been reported to be used in tandem, comple-

menting one another to form a powerful causal reasoning

mechanism.

Agent-based social simulation (ABSS) is a causal mod-

eling tool too. However, to date, its development has been

largely apart from SEM and BN. Stark evidence of this is

the lack of a graphical notation for ABSS, its logic usually

expressed algorithmically rather than graphically.

I propose in this paper a representation, Action Network

(AN), that is essentially a probabilistic graphical model

complemented with action, enabling a social simulation to

be built using a graphical representation similar to that in

SEM and BN. Variables are ordered in an AN such that

time and causality are respected. And similar to a BN, a

probability table is associated with each node in an AN.

However, while a probability table in a BN stores the con-

ditional probability of each possible variable value in

response to its parents’ values, an AN stores the

probabilities for each possible action on a variable in

response to the states assumed by its parents. Hence, AN is

action-oriented, as the name suggests.

The AN in Figure 1 serves to illustrate. Clearly, the

Sprinkler model shown is a classical BN example shown

in many introductory books on the topic,1,2 the intention

being to show the structural similarity with a BN.

Associated with the AN, however, is the Action Table

(AT) in Table 1. The + + symbol denotes an increment,

the �� a decrement, and a +� simply means no change.

An action happens probabilistically, the probability value

for which is in the cell to the right of the action indicator.

More on the semantic of AN and how it is different from

SEM and BN is in Section 3.

Why AN? AN offers a graphical notation for ABSS,

deploying a language common to both SEM and BN. A

common language facilitates communication between

researchers, especially social science researchers who may

already be familiar with graph-based representation

through experiences with SEM. Potentially, it can facilitate

model evaluation within an interdisciplinary group (using

High-Performance Cloud Computing Centre, Universiti Teknologi

PETRONAS, Malaysia

Corresponding author:

Nordin Zakaria, High-Performance Cloud Computing Centre, Universiti

Teknologi PETRONAS, Tronoh 31750, Malaysia.

Email: nordinzakaria@utp.edu.my; nordinzakaria@gmail.com

https://doi.org/10.1177/00375497211038759
https://journals.sagepub.com/home/sim
http://crossmark.crossref.org/dialog/?doi=10.1177%2F00375497211038759&domain=pdf&date_stamp=2021-08-19


the methodology proposed by Bharathy and Silverman3

for example).

Furthermore, AN explains more the mechanism4 of a

causal process, compared to BN and SEM. While linear

models in SEM and the probabilistic function in BN encap-

sulate a functional relation between variables, of the form

f (x)= y, AN goes beyond that to explain, albeit fuzzily,

how the function f works internally.

From a social simulation within-field perspective, level-

ing up with BN and SEM where notation is concerned

offers the following advantage: by exposing in graphical

form the variables and causality involved in a simulation,

AN attempts to provide a common language for ABSS.

This is useful given the multitude of ABSS approaches

reported in many different problem domains, each with its

own set of assumptions where functional form and causal

ordering are concerned.

The rest of this paper is organized as follows. Section 2

covers literature of relevance to AN: the nature of causal

relationship, SEM and BN—the graphical cousins of AN,

and on ABSS itself. Section 3 delves into a more detailed

description of AN, and Section 4 provides example appli-

cations of AN. Section 5 summarizes the AN workflow

and provides a further discussion on the proposed

approach, and finally, Section 6 concludes the paper.

2. Literature review
2.1. Causal relationship

A short note on the philosophy of causal reasoning is in

order here, as an AN is a causal model. Aristotle5 considers

a cause to be an answer to the ‘‘why’’ question. A cause

may be explained by referring to the material composition

(of an object of concern), or the form it is meant to be, or

the production process (the efficient cause) or the purpose

or intent (final cause).

Causal reasoning in modern science tends toward effi-

cient causation, best exemplified during the Scientific

Revolution in the work of Isaac Newton, in his proposal of

a Mechanical Universe.6 The philosophy of efficient cau-

sation is exposed in the writing of Hume,7 the relationship

of cause and effect reduced to that of constant conjunc-

tion: All that we see or know is that A is always followed

by B, Thus according to Hume, causal inference is nothing

more than customary expectations, a suggestion that leads

to the positivist/empiricist position8,9 that randomized con-

trolled experiment is the way to study causality.

Later philosophical work10,11 considers probabilistic

cause and effect, and also considers incomplete

knowledge—that effect may be produced by specified

(direct or known causes) and unspecified causes (indirect

causes such as errors and unknown causes). Williamson12

provides a survey of classical work in this regard, and

White6 presents a very readable summary of philosophical

theories of causation, written specifically for the psychol-

ogy community.

A general approach to identifying potential causality is

as follows:13 A correlation must first be established. Next,

it must be established that temporally, the cause comes

before the effect. Finally, it must be ascertained that the

relationship is non-spurious, that is the association between

the two variables is not actually caused by a third extra-

neous variable.

2.2. SEM and BN

Provided causal assumption is obeyed, then both SEM and

BN can be treated as causal modeling tools. Both tools

represent causality as a DAG, each node in the graph rep-

resenting a random variable and the edges between the

nodes the causal linking among the corresponding random

variables.

SEM depicts relationships among observed variables,

the goal being to provide a quantitative test of a theoretical

model hypothesized by the researcher. A researcher could

change or manipulate one variable in the study and

Figure 1. A simple AN.

Table 1. Sprinkler Action Table.

Wet Rain_low Rain_high

Sprinkler_low Sprinkler_high Sprinkler_low Sprinkler_high

Low + – 0.1 + + 0.1 + + 0.1 + + 0.2
High – 0.1 + – 0.05 + – 0.05 + + 0.1
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examine subsequent effects on other variables, thereby

determining cause-and-effect relationships.14 While the

foundation for SEM was laid out in 1904 by Spearman

through his work on the factor model,15 it continues to

serve as the most popular approach to causal analysis in

the social sciences.16 Tarka17 provides a historical account

of SEM development.

BN is a probabilistic graphical model that finds applica-

tions in various areas, examples of which include shipping

accident analysis,18 technology adoption,19 network intru-

sion detection,20 classification,21 software quality con-

trol,22 software engineering decision-making,23 and risk

analysis.24 While BN is not as widespread as SEM in the

social sciences, it has been used for representing and pre-

dicting social/organizational behaviors25 and the social

impact of infrastructural project.26

Causality can be investigated using both SEM and

BN.27 Pearl28 formalizes causal strength as a function of

the probability difference that interventions on a cause

make to the effect. Sprenger29 provides a philosophical

defense of this approach—what was referred to as the

interventionist account of causation. While SEM and BN

can serve the same causal purpose, there are complemen-

tary differences between the two. SEM is not meant for

diagnosis. Furthermore, SEM assumes mainly linear rela-

tionships. BN, however, while suitable for modeling and

diagnosing non-linear relationships, does not differentiate

between a causal and a spurious relationship, and between

a latent construct and its measures (observed variables).30

Gupta and Kim30 propose a two-step approach to use

SEM in tandem with BN. They use SEM first to identify

causal factors and causal relationships, following which a

BN is built to support decision making. A similar approach

is reported by Axelrad et al.20 for the detection of network

threat.

2.3. Social simulation

AN serves to clarify and explain social simulations and to

facilitate discourse within and between disciplines. It is

important therefore to elucidate the main notions in social

simulation, and to establish the role that AN can play in

shaping work in the area.

A social simulation provides a model-based study of

social phenomena.31 More precisely, it is a manifestation32

of the model, represented by a computer program that pro-

vides insights about the system under investigation.

Models, as per Sawyer,31 serve a mediating role between

theory and data, establishing what goes on in the system

that connects its various inputs and outputs.33

An ABSS simulates in a bottom-up manner, each indi-

vidual element in the social process represented by an

agent. In developing a social simulation, a researcher (or

developer) would typically set about to structure his or her

understanding of the social process by laying out the main

constituents of the simulation:34

1. agents;

2. the environment;

3. a mechanism of interaction between the agents;

4. a mechanism of interaction between the agents and

the environment (as in the work by Pan et al.35 for

example).

Different theories and assumptions may go into the def-

inition of these constituents, typically represented in the

form of pseudocodes and computer programs. In these

final forms, however, it is challenging to wangle out the

structural differences and similarities between the ABSSs.

It is hard to compare the different assumptions made amid

the narrations presented. Consider recent ABSS work on

crowd behavior for example, an ABSS area of interest that

involves simulating the behavior of a large number of peo-

ple that congregates at a certain venue. In Lv et al.,36 the

notion of emotion contagion is considered—individuals

are affected by the emotions of adjacent individuals.

Emotions are assumed to affect the individual’s viewpoint.

Trivedi et al.,37 however, focus on panic, and how it is

affected and affects the psychological and physical states

of individuals. The work by Ibrahim et al.38 considers risk-

seeking, risk-averse, and risk-neutral behaviors in individ-

uals; the authors further formulated a game-theoretic beha-

vior selection scheme. In yet another work, Wijermans

et al.39 describe a social-cognitive agent-modeling frame-

work for crowd modeling. In fact, each work comes with

its own set of objectives and assumptions; to infer the

structural differences and similarities between the works,

one would have to plow through the imperative details.

The same observation applies even when considering a

specific aspect of the simulation, for example the inter-

agent interactions, a mechanism governed primarily by

two elements:34 what actions the agents are capable of,

and the mechanisms effectively selecting the actions to be

carried out. Action selection mechanism may be as simple

as a set of basic ‘‘if-then’’ decision rules, but the set of

rules implies a causality that may be difficult to elucidate

in imperative forms. And increasingly, work in ABSS

deploys a more complex mechanism such as BDI (Belief–

Desire–Intention),40,41 a cognitive architecture,42 a game-

theoretic framework,43,44 discrete event system specifica-

tion (DEVS) and its variants,45,46 and diffusion equation.47

It should be noted though that there has already been

work48 expressing BDI in the form of a causal network.

The work however deploys a BN and only concerns the

variables pertaining to an agent’s internal state. The net-

work formalism proposed in this paper covers a broader

scope, encompassing the variables of relevance to the

simulation itself.
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3. Action network

An AN is in essence an action-oriented graph-based causal

model. Nodes represent variables, and directed links the

causal direction. The graph need not be acyclic; cause and

effects may go around in cycles (consider poverty cycle49

for example). Associated with each node is an AT, a table

containing the action and the probability of the action on

the node, due to the values held by the parent nodes. It

describes how a variable can be affected by other

variables.

What happens at each time step is as follows: Consider

a node N , with a value q 2 fq1, ::qng, and with p parents,

Q= fQ1, :::,Qpg. Let the sequence of parent values be

qQ = hqQ1
, :::qQp

i. We associate with each combination of

qQ and q, an action A with a strength s. s describes the

probability or the strength of the causal relation qQ, q! A.

An action need not always happen, even though the causes

are in effect. As with the probabilities in a BN, this number

may be acquired numerically from a dataset or gathered

subjectively from domain experts.

Spatially, we assume that a grid with M 3 M cells is

defined over the simulation domain. An AN, Ai, j, with K

nodes, is attached to each cell ci, j, i, j= 1::M . Nodes may

then be indexed as Ni, j, k where k = 1::K. Each cell repre-

sents a certain locality, an agent or a group of agents. The

variables within an AN do not need to pertain to the cell’s

internal state. In fact, there are three different types of

variables:

1. Local variable: a variable that belongs to a single

cell;

2. Shared variable: a variable that is shared among a

number of neighboring cells;

3. Gobal variable: a variable that is shared among all

cells.

If a parent is a shared variable, then its value qQi
is com-

puted as a weighted average over a window of neighboring

cells. If it is a global variable, then it is shared among all

the cells.

3.1. Causal action

Variables linked together in an AN are assumed to be cor-

related; the parent variable varies together with the child,

in a causally meaningful manner. However, AN does not

assume any knowledge of the concise, functional form of

the correlation. Instead, the correlation is expressed in

fuzzy terms: if a parent is of a certain (fuzzy) category,

then the numerical (crisp) value of a child will, with a cer-

tain probability, increase or decrease or remain unchanged.

An illustrative example is as follows, assuming that

wealth is a parent variable and child-school-performance

is the child. If wealth is high, then child-school-

performance increases (+ + ). Note that child-school-

performance does not become high immediately in the

presence of a high wealth. Things happen incrementally

and subject to a certain probability. At each simulation

iteration, with a certain probability, a high wealth causes

an increase in child-school-performance. But there is no

guarantee that child-school-performance will eventually

work out to be high. It may depend as well on other vari-

ables, say parenting-quality. Poor parenting-quality works

in the opposite manner; it pushes down child-school-per-

formance. The overall outcome depends on the relative

strengths of the causal relations:

� C1: wealth high ! child-school-performance

++
� C2: parenting-quality low ! child-school-perfor-

mance ��

The strength of the causal link—expressed in the form

of a probability, similar to the agent behavior uncertainty

in Nigro et al.50—determines which of the contending

social forces wins. These probabilities are stored in the

AT. If C1 has a probability of 0:4 for example, the rule

applies in only 4 out of 10 instances. It does not always

apply.

But how do we determine such probability value? If we

already have the causal actions, and we have data sets,

then it becomes a problem of maximum likelihood

estimation—finding a distribution for the probabilities that

lead to simulated results matching as close as possible the

given data sets. A metaheuristic framework such as

Genetic Algorithm can be used to perform the estimation,

following the work by Majdi Nasab and Analoui51 for

example; more detailed exposition on this aspect will be a

future work.

3.1.1. Fuzzy rules. Fuzzy logic52 deals with approximate or

uncertain knowledge. As such, it is especially applicable

for social simulation.53,54 In the words of Zadeh himself:

‘‘When I wrote my 1965 paper, I expected that fuzzy set

theory would be applied primarily in the realm of human

sciences.’’55

Hence, variables encoded in an AN are fuzzy linguistic

variables. But instead of evaluating antecedents using

fuzzy logic formalism, a simpler, more operational

approach is adopted here: fuzziness corresponds to the

probability of how a feature is interpreted. For example,

the quality of an essay may be fuzzily high, with a mem-

bership score of 0.6, and fuzzily medium, with a member-

ship score of 0.4. Some examiners may actually grade the

essay as high or some as medium. Out of 10 examiners, 6

may grade it as high, and 4 as medium. Hence, the fuzzy

membership score is used operationally to determine a fre-

quentist probability. In general, if a variable q has value

4 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



qi, where i= 1::n, with membership score fi, then the

probability of actually interpreting the value as qi is

fi=
P

fi.

4. Examples

In this section, I provide two examples of AN applica-

tions; one is a follow-up of the Sprinkler example in

Figure 1, and the other is a social segregation problem, a

problem formulated in the spirit of Schelling’s classical

work.56 The former is a textbook example, ubiquitous in

BN tutorials and textbook chapters, while the latter is a

more involved example, dealing with a complex social

phenomenon that persists especially in multi-ethnic societ-

ies around the world. The examples in this section are

meant to be illustrative though; no effort was made to build

or to verify the examples based on actual empirical data.

4.1. Example 1: wet grass?

The Sprinkler AN in Figure 1 comprises three variables:

(1) Sprinkler, the state of the sprinkler (how much the

sprinkler is in use), (2) Rain, the state of the weather, and

(3) Wet, the wetness of the ground. The variables are each

defined fuzzily as shown in Figure 2.

It may rain, and if it rains, the pavement may be wet. In

a similar way, if the sprinkler is on, the pavement may be

wet. Each of the two causes assumes a certain state with a

certain probability, and the fact that the road may get wet-

ter or drier happens with a probability depending on the

causal states. The AT for Wet is shown in Table 2, a more

comprehensive version of the one in Table 1. Probabilities

for the rules are all 0.5; hence, not shown in the table.

Running the simulation for 60 iterations over a 30 by

30 grid, with random initialization, the evolution of the

Sprinkler, Rain and Wet variables as shown in Figure 3 is

obtained, averaged over the entirety of the grid. As can be

clearly seen in the figure, wetness increases over the simu-

lation duration. A spatial map for Wet is shown in Figure

4. The map defines the final state of the simulation

domain, brighter redness of a particular cell denoting a

higher value.

4.2. Example 2: social segregation

Birds of a flock tend to be together. If the different flocks

are socioeconomically and culturally apart, then the impact

on national cohesion may be politically destabilizing.

Hence, social segregation has drawn consistent attention

from social scientists, especially those working in multi-

ethnic countries (or with a large migrant population).

Why do people segregate? In an early work on the

issue, Schelling56 focuses on segregation due to ‘‘the inter-

play of individual choices that discriminate’’—one’s desire

to be with one’s own group or to avoid those not in the

group. There may be larger forces at work, as noted by

Schelling.56 Segregation may happen due to an organized

action, usually of the political kind, as seen in South Africa

in the apartheid era. Segregation may also happen due to

economic factors. Actually, the lines separating the three

may not be clear.

In the simulation built, a neo-classical economics

framework for segregation is assumed. Individual housing

consumers are distributed across space according to their

ability and willingness to pay for housing and neighbor-

hood attributes. Furthermore, it is assumed that there are

two ethnic groups and that socioeconomic inequality is

defined along ethnic lines—henceforth, the two ethnic

groups are named simply the Rich and the Poor. The simu-

lation domain corresponds to a housing area, split into a

grid, with each cell representing a cluster of housing units,

akin to public housing in Singapore57 for example. At the

start of the simulation, Poor and Rich are randomly dis-

tributed throughout the area.

Figure 2. Fuzzy profile for Rain, Sprinkler, and Wet.

Table 2. A more complete sprinkler Action Table.

Wet Rain low

Sprinkler low Sprinkler medium Sprinkler high

Low + – + – + +
Medium + – + – + +
High + – + – + –

Wet Rain medium

Sprinkler low Sprinkler medium Sprinkler high

Low + + + + + +
Medium + – + – + +
High + – + – + +
Wet Rain high

Sprinkler low Sprinkler medium Sprinkler high

Low + + + + + +
Medium + + + + + +
High + – + – + –
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Translated into an AN, the simulation takes on a form

as shown in Figure 5. The narrative is as follows:

PoorOccupancy locally reflects a tendency for a Poor to

move into (that is to occupy) a cell, affecting a shared

variable PoorPop, the size of the Poor community over

the surrounding cells. PoorPop negatively affects

NeighQuality, another shared variable, one that holds the

neighborhood quality, and this in turn determines the

Price; this sequence of relations is well documented in a

number of works, for example one by Wilson and

Hammer.58 Both NeighQuality and PoorPop affect

RichOccupancy, a Rich’s willingness to stay or to move

in, which in turn affects RichPop. Should the Rich domi-

nate the neighborhood however, then the neighborhood

will take on a more upperclass tone—that is, its quality

increases, leading to price increase.

Snapshots of ATs are shown in Tables 3 and 4, the lat-

ter only showing for high PoorPop values. Here, the fuzzy

profile for each variable is assumed to be as shown in

Figure 6. Furthermore, each rule is set to be at a probabil-

ity of 0.5 (the default, not shown in the ATs).

Running the simulation over a 30 by 30 grid over 60

time steps, the temporal profiles as shown in Figure 7 are

obtained. RichOccupancy keeps dropping throughout the

period, along with NeighQuality and subsequently the

Price. PoorPop drops up to a certain point in time, pre-

sumably due to the initial high price, then picks up when

the price lowers. As per the spatial plot in Figure 8, it

leaves little to the imagination that eventually the residen-

tial area will be largely occupied by the Poor.

The point of a social simulation is to enable in vitro

simulation of society, allowing ‘‘what-if’’ insights.59–61 So

Figure 3. Evolution of sprinkler variable values: Wetness increases over time.

Figure 4. Wetness map: brighter red denotes a higher value
for Wet.

Figure 5. Racial segregation AN.
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suppose for example, that the rules are modified so as to

minimize the decrementation of NeighQuality and

RichOccupancy (by lessening the strength of negative

rules) and to maximize the incrementation (by increasing

the strength of positive rules). The positive and negative

rules to be modified can be identified via a frequency plot,

a plot that shows the frequency of applications for each

rule. The frequency plot for NeighQuality is shown in

Figure 9. The x-axis of the plot corresponds to the indices

of the rules pertaining to NeighQuality.

When the strengths of frequently applied positive/nega-

tive rules are changed, one would expect to see a change

in simulation outcome. A snapshot of the change made is

shown in Table 5. Numbers used for the rule strengths are

arrived at through trial-and-error, guided by the corre-

sponding frequency plot.

Will the Poor now still dominate the area? The out-

come is shown in Figure 10. Both the Rich and the Poor

maintain their numbers throughout the simulation period,

a ‘‘desirable’’ result. To attain this balance however, a

high strength must be accorded to the selected positive

rules—0.9, and a very low strength for the negative

rules—in the range of 0.1. Translated into a real-world

action plan, this would imply a high investment is required

to ensure a balance between the Rich and the Poor ethnic

groups. Alternatively, a disaggregation strategy62 might be

a worthy study, pursued as an extension to the network in

Figure 5.

5. Discussion

In this section, I discuss certain salient points with regard

to the AN approach proposed in this paper. It is useful to

start with a summary of the approach:

Table 3. PoorOccup Action Table.

PoorOccup\Price Low Medium High

Low + + + – –
Medium + + + – –
High + – + – –

Table 4. RichOccupancy Action Table (for high PoorPop).

RichOccupancy PoorPop high

NeighQuality
low

NeighQuality
medium

NeighQuality
high

Low – + + + +
Medium – + – + +
High – – + –

Figure 7. Evolution of race segregation variables: the poor increases with time.

Figure 6. Fuzzy profile—same for each variable in the racial
segregation AN.
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1. Extract variables from the domain of interest;

2. Build a causal graph;

3. Identify the locality of the variables or nodes—

local, shared, or global. If shared, specify

(a) its radius of influence

(b) the form of weighted averaging required

4. Specify the AT for each non-root node. This entails

specification of

(a) actions in response to parental values

(b) the strength of the rule

5. Specify the simulation grid. An AN will be attached

to each grid cell;

6. Run the simulation.

The six salient points I wish to focus on here are as

follows:

1. Granularity of the simulation;

2. Logical structure implicit in AT;

3. Interpretation of fuzzy values in AN;

4. Conservation of quantities in AN;

5. Suggested user flow for AN;

6. What is of concern in AN: factors or actors?

5.1. Simulation granularity

How granular is an AN-based simulation? It is certainly

more granular than both BN and SEM in the sense that it

incorporates processes, a certain dynamism. However,

given its fuzziness, it definitely cannot allow for simula-

tion granular to the point of exact physics. That is, AN can

only be as granular as its fuzziness allows. Programming

or scripting, using a platform such as NetLogo for exam-

ple, would be more appropriate if one requires more exact-

ness and lower level simulation.

However, it is important to note that the deeper the

granularity of a simulation, the more the number of para-

meters required. Furthermore, higher granularity does not

Figure 8. Poverty map: poor neighborhood dominates as can
be seen in the spread of red cells.

Table 5. Alternative RichOccup Action Table.

RichOccupancy PoorPop medium

NeighQuality
low

NeighQuality
medium

NeighQuality
high

Low – + + ;0.9 + +
Medium –;0.1 + – + +
High – –;0.1 + –

Figure 9. Frequency plot for NeighQuality: shows the frequency of applications for each rule (x-axis).
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necessarily mean greater explanatory power. Explanatory

depth—the degree to which an explanation allows us to

understand some phenomenon63—does not necessarily

correlate with granularity.

5.2. Logical structure

Potentially more contentious is the fact that the logical

structure of AN variables is incrementally changed in

response to the states of its parents. In AN, simulation

logic takes the following form: ‘‘If rain is high, then wet-

ness increases.’’ One question is: why not ‘‘If rain

increases, then wetness increases’’?

The latter question denotes a certain level of overpreci-

sion, one that the work here seeks to avoid. It literally

denotes a mathematical function: wetness= f (rain) where
f is some form of a function. Such precision is inappropri-

ate in the simulation of a social entity. A more ‘‘human-

oriented’’ example will further illustrate the point.

What is the difference between the following?

1. happiness= f (money)
2. If money is high, my happiness is high

3. If money is high, my happiness increases

The first statement is a mathematical function that

relates a crisp value for money to that of happiness, an

overprecision as in the case of wetness= f (rain).
Consider now the second statement. ‘‘happiness is

high’’ is a final result. If money is high, then happiness

becomes high. Statement 2 is not a process, though it is

fuzzy in its use of the linguistic value high. It states the fin-

ality of happiness in response to a certain state in money.

Statement 3 is process-oriented; happiness increments

in response to high money. happiness does not necessarily

converge to high. It may or may not reach that stage. One

step forward may be offset by a couple of steps in the

opposite direction. Hence, statement 3, depicting the way

logics are expressed in AN, is more appropriate for social

simulation.

5.3. Fuzzy values versus probabilities in AN

The rules encoded in an AT are in fact fuzzy IF-THEN

rules, distinct but not entirely different from that in a typi-

cal rule-based fuzzy inference system.64–66 The parent

variables are fuzzified, that is its membership in the vari-

ous possible fuzzy sets is determined, and the rules are

evaluated probabilistically on the basis of those fuzzy

values.

A mathematically consistent framework has been

defined for logical operations on fuzzy sets52,64,66—impor-

tant operations include logical and and or. These are oper-

ations that can be applied to determine the outcome of a

rule. But note that in an AT rule, while the antecedent

may involve fuzzy variables, the consequent is a crisp

operation—the incremental change (or no change) in the

numerical value of a variable. Hence, I choose to evaluate

the antecedent in a non-fuzzy way, drawing instead upon

basic probabilistic interpretation.

It does not imply that fuzziness is equated to probabil-

ity here; the two remain as separate, independent concepts.

Fuzziness denotes the uncertainty of a state—neither

entirely here nor there, while probability denotes the likeli-

hood of an event. The event of concern here is the inter-

pretation of a variable—should wealth, for example, be

taken as high or medium? The actual value may be fuzzy,

Figure 10. Evolution of social segregation variables—alternative.
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partially medium and partially high, but whether in a

simulation cycle one takes it as medium or high is a prob-

abilistic affair. It can be either one. Taken in this light, the

fuzzy values of a variable can be mapped in a straightfor-

ward way, as discussed in Section 3.1.1.

5.4. Conservation of quantities

While the simulation in Section 4.2 shows the dynamics

of demographics change due to segregation tendencies, it

is quite unlike the stylized results shown in Schelling’s

work56 or in the many NetLogo examples.67 The reason is

that the simulation shown is not of a closed system, but an

open system where quantities such as RichPop can ‘‘dissi-

pate’’ in or out. In other words, the AN-based simulations

shown in this paper do not conserve quantities.

It is not difficult in essence to extend the AN proposed

here to incorporate conservation of quantities. One can

introduce quantity-conserving operators, ‘‘++=’’ and

‘‘– =’’. ‘‘++=’’ adds to a node variable, and subtracts

the added quantity from a neighboring cell. ‘‘– =’’ would

work in a similar manner. More on quantity-conserving

operators will be explored in a separate paper.

In a sense, an open-system AN is closer to actual social

science studies, one that involves data collected over large

samples and which relies on statistical inferencing. Real

societies are not closed; people come in and out. A closed

system implies a ‘‘toy’’ model, more exact and stylized in

its output, but with no fuzziness. The NetLogo platform67

may be more suitable if such fuzziness is not needed.

5.5. Suggested user workflow

At the start of this paper, I made specific references to two

graphical approaches, SEM and BN, stating that the former

is commonly in use in the social sciences, and the latter

for diagnostic purposes. AN, however, is a social simula-

tion platform; a complete modeling project would proba-

bly benefit from applying all three—SEM, BN and AN—

in tandem.

A modeling project should perhaps start with SEM

modeling to identify the latent variables and establish cor-

relational links. This may be followed by BN modeling to

establish a probabilistic view of the causality. AN may

then follow suit for simulation study.

5.6. Factor or actors

Macy and Willer68 note that ‘‘Sociologists often model

social processes as interactions among variables.’’ and that

ABSS, however, ‘‘models social life as interactions among

adaptive agents,’’ implying that ABSS shifts the focus

from ‘‘factors’’ to ‘‘actors.’’ The problem is that many

sociologists still focus on the factors; in fact, in

performing correlation studies and analyzing the data

using SEM, the focus is primarily on the variables.

The AN presented in this work can be seen as midway

between a factor-based and an actor-based approach to a

computational social science study. A sociologist applying

this approach would still think of the variables first, but

these variables may be associated with individual actors or

with a group of actors or with some global states.

6. Conclusion

A probabilistic graphical model, Action Network (AN),

has been introduced for social simulation. Simulation vari-

ables are represented by nodes, and causal links by edges.

An AT is associated with each node, describing incremen-

tal probabilistic actions to be performed in response to

fuzzy parental states. The software tool that implements

the technique is available at http://actionnetwork.

epizy.com.

AN provides a graphical causal model for ABSS that is

similar to SEM and BN. Furthermore, it provides a power-

ful mechanism for capturing the dynamics of a social pro-

cess. The formalism actually complements SEM and BN,

and should be used together in quantitative social science

research. Future work will elaborate on various aspects of

AN, pertinent among which includes a method for deriv-

ing causal strengths and the incorporation of quantity

conservation.
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