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Abstract
Decisions about modeling and simulation (M&S) of real-world systems need to be evaluated prior to implementation.
Discrete Event, System Dynamics, and Agent Based are three different modeling and simulation approaches widely
applied to enhance decision-making of M&S of these systems. Combining and/or integrating these methods can provide
solutions to a plethora of systems’ problems. However, current solutions and frameworks do not provide guidance for
selecting and deploying M&S models. Hence, the aim of this work is to present a generic modeling framework for com-
bining and/or integrating Discrete Event, System Dynamics, and Agent Based simulation approaches. The framework is
termed multi-paradigm modeling framework (MPMF). In this paper, we describe the research methodology that was fol-
lowed for the development of MPMF, the different phases of MPMF, and the generic relationships of forming and deploy-
ing multi-paradigm simulation models. Then we evaluate the framework by using it for the implementation of a universal
task analysis simulation model (UTASiMo). The MPMF provided guidance on what methods need to be incorporated into
the UTASiMo models, what information is exchanged among those models, and how these models are connected and
interact with each other.
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1. Introduction

The need to evaluate decisions in real-world systems prior

to implementation is well recognized in the literature.1–4

Modeling and simulation (M&S) methods and, more spe-

cifically, Discrete Event (DE), System Dynamics (SD),

and Agent Based (AB) approaches are widely applied as

decision support tools to provide solutions to a plethora of

system problems.5–8

Most real-world problems refer to both continuous and

discrete structures at the same time.9 In such situations,

applying only discrete modeling approaches can signifi-

cantly increase a model’s complexity, while using only

continuous approaches fails to represent individuality.10

Moreover, traditional stand-alone M&S approaches can

face serious challenges to represent the overall multidi-

mensional nature of a system as a ‘‘whole’’7, 11 and often

emphasize more on a particular level of abstraction by

tackling a specific set of modeling questions.12 On the

other hand, a multi-paradigm M&S approach allows the

generation of simulations that may be interoperable and

can capture interactions among elements at different

abstraction levels by addressing a larger range of modeling

questions and representing a variety of problem situations

and applications.13 They also provide the modeler with a

broader flexibility to represent more complex problems9

and reduce the amount of computational effort required to

obtain acceptable solutions.14 Therefore, the necessity to

model real-world systems considering a ‘‘holistic view’’ is

becoming an essential factor in the design, analysis, and

implementation of real-world systems.8, 11, 15, 16

Efforts of the M&S community to expand the existing

M&S approaches in order to advance reusability, intero-

perability, and composability of real-world systems are
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limited to their own technical domains or remain isolated

solutions.17 Therefore, integrating and/or combining

different M&S approaches12, 18, 19 has been viewed as a

response to current challenges in managing, designing,

and evaluating systems in various domains, such as in

socio-technical systems, cyber-physical systems,20

business,21–24 and healthcare organizations.4, 25–29

1.1. A brief review of hybrid simulation solutions

Within the initial design and development of simulation

models for real-world systems, analysts should consider

the selection of appropriate simulation methods.

Understanding and making decisions on what methods

should be used at an initial stage of development can pro-

vide insight into the design of the simulation models (sin-

gle-method, hybrid, or multi-paradigm architecture) and

assist in selecting the appropriate simulation software.

To model real-world systems over time, the integration

and/or combination of multiple simulation models is often

useful as it can help capture the complexity of the real sys-

tem and provide a more comprehensive and holistic view

of the system under investigation.30 Using two or more

components of different M&S categories that are compo-

sable in order to construct a model that supports the under-

lying M&S effort results in hybrid simulation.9 There is a

considerable literature on hybrid simulation solutions and

the integrated deployment between two methods: DE and

SD,18, 22, 23, 28 SD and AB,21, 31–33, 61 and DE and AB.34–35

Several types of frameworks have also been proposed when

dealing with hybrid simulation models. The work of

Petropoulakis and Giacomini36 focuses on combining DE

simulation (i.e., for transportation activities) and continuous

simulation aspects (i.e., ordering rate) into a supply-chain

system model. Rabelo et al.37 suggested a framework where

SD and DE are integrated and used to model and simulate

how local production decisions affect the global market.

Venkateswaran and Son22 described a framework where SD

is used to model the management of a facility inventory,

while shop-floor operations are simulated using DE. They

applied SD for high-level aggregate functions and DE for

lower-level individualized functions. Zulkepli, Eldabi, and

Mustafee38 suggested a hybrid SD–DE approach to model

large systems in healthcare. Barros39 proposed Hybrid Flow

System Specification (HYFLOW) as a universal formalism

for the representation of hybrid systems. Tolk, Page, and

Mittal40 provided an initial review on hybrid simulation for

cyber-physical systems to help establish a better foundation

for cyber-physical support by simulation methods and appli-

cations. Brailsford et al.41 presented the results of a review

of the hybrid simulation literature using a novel life-cycle

based framework. This conceptual framework provides the

structure for a set of good practice guidelines for modelers

and authors. Although several hybrid M&S applications

have been proposed and deployed in various domains, only

a few published reports have been detected in the literature

regarding the integrated deployment of the three aforemen-

tioned M&S paradigms concurrently (MPM deployment).

Djitog et al.29 developed a model-driven framework for

multi-paradigm M&S of healthcare systems. More recently,

models produced by the three M&S approaches together are

also presented in the literature.7, 12, 27,42,43 However, these

multi-paradigm simulation studies do not always establish a

relevant conceptual framework prior to the model imple-

mentation and do not justify the reasons for using each par-

ticular M&S paradigm.12, 44, 45

The importance of justifying the need to integrate and/

or combine M&S approaches to form hybrid and multi-

paradigm simulation models prior to the model develop-

ment has been mentioned before.18, 19, 28 Therefore, there

is a need for a multi-paradigm framework that will provide

guidance on how to combine and integrate the three M&S

paradigms.

1.2. Current work

To the best of our knowledge, no reported frameworks

have been identified to provide guidance on how to com-

bine and/or integrate DE, SD, and AB approaches to form

multi-paradigm simulation models. The literature46, 47 sug-

gests that an alignment should exist among the object,

problem, or system (‘‘What’’), the purpose (‘‘Why’’), and

the methodology (‘‘How’’) when combining different

simulation methods. A key challenge is also how to model

the exchange of information among different models.29

Thus, the multi-paradigm modeling and simulation

(MPMS) framework aims to fill the identified gaps and

provides a generic guideline on how to tackle the simula-

tion of real-world systems by answering the following

research questions:

� Q1. Why and when does a real-world system

require multi-paradigm M&S?
� Q2. What are the interaction points among DE, SD,

and AB M&S?
� Q3. How do AB, DE, and SD interact with each

other to exchange information?

In order to overcome these challenges and provide gui-

dance that will allow inclusive M&S of a real-world sys-

tem, a generic modeling framework for applying MPMS

has been developed.48, 49 The framework provides gui-

dance on how to combine more than two simulation para-

digms to form multi-paradigm models. However,

composability will be addressed and discussed in future

work.

The term ‘‘paradigm’’ refers to the simulation approach

that can be used to generate the behavior of the system
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represented.29 Accordingly, we use the term ‘‘multi-para-

digm’’ to refer to all the possible combinations that can be

used to construct models that are composed of more than

two M&S methods.7, 34, 50 In this research, we use the term

multi-paradigm modeling, or MPM, to define the combina-

tion and/or integration of three or more M&S methods.

The major contributions of this paper include: (1) a

modeling framework that guides the user/modeler through

the development of a multi-paradigm simulation model;

(2) generic relationships of forming multi-paradigm simu-

lation models; and (3) the implementation of a universal

task analysis simulation model (UTASiMo) following the

MPM framework as a guideline.

The remainder of the paper is organized as follows.

Section 2 provides an overview of the phases of the MPM

framework that lead to the implementation of a MPM

model. Section 3 includes the conceptual modeling phase,

an algorithm that recommends appropriate M&S meth-

od(s) based on user-selected criteria for user-defined objec-

tive(s), as well as the generic relationships that can be

formed among DE, SD, and AB models when deploying

multi-method simulation models. Sections 4–7 present

how the framework is applied for the conceptual modeling,

implementation, and evaluation for the development of a

UTASiMo. Finally, in section 8 we discuss future work

and conclusions.

2. Overview of the multi-paradigm
modeling framework (MPMF)

This section provides a brief overview of the MPMF. The

different abstraction levels of the framework, the modeling

concepts, and the constructs are described using Unified

Modeling Language (UML). UML helps to illustrate the

actions that a user performs in order to achieve a goal

while interacting with a system. The framework is exam-

ined from both a high-level view as well as from an inter-

nal view. The latter approach presents the MPMF

architecture in more detail and describes how the different

model components interact.

Figure 1 depicts a high-level activity diagram of the

phases of the framework. The framework is divided into

four main phases. Phase 1 includes the conceptual model-

ing steps that the user has to follow during the M&S study

prior to the actual model implementation. During Phase 1,

the user has to define the problem, decompose the M&S

study’s objectives to sub-objectives, define the scope and

constraints of the study, and follow an algorithm to select

M&S method(s) for the model implementation.

Additionally, the user examines Q1, Q2, and Q3.

Phase 2 is the development process of the actual MPM

model construction. This phase includes the development

activities of the MPM study: the implementation of the

results and model(s) suggested by the Phase 1’s algorithm;

the programming of the model(s); and the execution and

calibration of the computer-generated (CG) model(s).

Phase 3 consists of the verification and validation

(V&V) process. This phase takes place after the execution

of the simulation and before the documentation of results

to ensure credibility of the simulation study and the pro-

duced results. The relationship between Phase 2 and Phase

3 is iterative and frequent updates to the model may occur.

Finally, Phase 4 includes the preparation of the simula-

tion report, the documentation of the results, and examina-

tion of future improvements.

3. Phase 1: Conceptual modeling of the
MPM model

This section describes the conceptual modeling steps of

the MPMF, which is composed of the activities illustrated

in Figure 2. The framework integrates steps from a typical

M&S methodology for implementing a single-method

model1, 51 with steps from a methodology for combining

DE and SD models.28, 44 The novel components in the

framework include: steps for the integration of AB mod-

els; an algorithm that helps the user select appropriate

M&S methods; steps for the identification of interaction

points; and types of interaction for all three methods.

3.1. Define problem

The first step the user needs to perform is to explicitly

define the main problem and its surrounding environment.

The challenge to define a problem well and agree upon

specifications due to diverse opinions of the team52 has

been tackled in soft-systems methodology as proposed by

Figure 1. High-level view of MPMF.
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Checkland.53 Appropriate time and effort must be invested

on understanding and clearly defining the problem before

starting to seek solutions.

3.2. Identify objective(s) ‘‘O’’ and decompose them
into sub-objectives ‘‘oi’’

The next step is to identify the objectives of the M&S

study by following the third principle of modeling,

known as ‘‘divide and conquer’’54 or as ‘‘decomposition

of the main purpose.’’55 According to the third modeling

principle,54 the user has to decompose the overall objec-

tive ‘‘O’’ of the study into sub-objectives ‘‘oi.’’

The decomposition of the overall objective into smaller

objectives assists in considering each of the stakeholders’

problem formulations and in selecting the appropriate

M&S method within a real-world systems context that

may require a MPM approach to analysis.

If the overall objective ‘‘O’’ cannot be decomposed to

smaller sub-objectives ‘‘oi,’’ the user follows three parallel

activities (Figure 3): ‘‘Identify Assumptions and

Constraints,’’ ‘‘Identify M&S Scope,’’ and ‘‘Select M&S

Method(s).’’ Otherwise, the user decomposes ‘‘O’’ into

‘‘oi’’ and conducts the three parallel activities for each

‘‘oi.’’ The objectives and sub-objective are defined prior

to the selection of M&S method, or prior to possible revi-

sions of current deployed simulations.56, 57 Moreover, the

identification of constraints and assumptions, M&S scope

and M&S method should be conducted concurrently.

3.2.1. Identify constraints and assumptions. Following the

decomposition of the main objective into sub-objectives,

the user is directed to the identification of the assumptions

and constraints under which the MPM study is performed.

The defined assumptions and constraints play an essential

role for the successful V&V of the simulation model.

Constraints may include environmental conditions that

can restrict the possibilities of particular actions’ occur-

rence, or specific attributes that may need to be satisfied

for the execution of specific actions.51 If some of the

objectives cannot be adequately achieved and/or con-

straints are violated while developing the scope, then the

expectations of the study can be reduced and/or constraints

may need to be turned off. Therefore, we strongly recom-

mend that the user considers frequent feedback from the

problem owners in regard to the modeling assumptions

and rational of the model, timeline of the MPM study,

access to applicable data, cost constraints, and other con-

strains associated with activities that depend on time,

available resources, and/or conditions.

3.2.2. Identify M&S scope. The identification of the M&S

scope helps to achieve the objectives without violating the

given constrains and assumptions. Therefore, the user/

modeler needs to clearly define the aspects that will be

included in the M&S study for each sub-objective. The

M&S scope is also very significant as it builds a strong

bridge of communication between the problem owner and

the modeler and it provides all the necessary information,

clarifications, and expectations of both parties. Figure 4

presents the activity ‘‘Identify Scope,’’ which is composed

Figure 2. Activity diagram of internal view of MPMF.

Figure 3. High-level view of Phase 1 of MPMF.
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of five parallel activities that the modeler has to define for

each of the DE, SD, and AB model(s).

The sub-activities of ‘‘Identify Scope’’ are the

following:

� Define content and form of results: Content and

form of results may vary from low (basic statistics)

to high detail. For example, if an inclusive anima-

tion or very detailed statistics are expected for the

simulation study, the time and effort engaged to

implement a project may be considerably affected.51

� Define boundaries: Four boundaries need to be

defined: beginning, ending, upper, and lower

boundaries (Figure 5). The beginning boundary is

associated with the inputs that activate the model to

start. The ending boundary is associated with the

outputs of the simulated model. The upper bound-

ary specifies the inputs that enter the model during

the simulation execution time. The lower boundary

specifies the outputs that exit the model during the

simulation execution time.
� Define level of detail: The level of detail is defined

by the level of required output precision and it is

associated with factors such as: ‘‘detail’’ and

‘‘dynamic complexity’’; size of the model; and

time to develop and validate the model.51 Detail

complexity is the type of high combinatorial com-

plexity among various variables and attributes,

while dynamic complexity is related with the inter-

action variables of the agents and their environment

over time.3, 58 Figure 6 illustrates how the level of

detail impacts a model’s development time. The

more details a modeler adds in a model, the more

the development time increases.
� Define degree of accuracy: The degree of accuracy

corresponds to the validity of data being employed.

At this point, the user collects, prepares, and vali-

dates the input data before he/she starts the model

development. The type of the collected data may

be numeric or logic.51Numeric data define quanti-

tative information according to the elements being

modeled, such as costs, batch sizes, inter-arrival

times, waiting times, and service times. Logic data

describe the workflow of a model and capture

information, such as model objects and their beha-

viors, policy rules, prioritization of processes, and

assignment of resources.
� Define type of experimentation: The type of experi-

mentation specifies the type of analysis that will be

conducted.51 For example, the user may conduct the

analysis of capacity, sensitivity, decision response,

comparison, optimization, and visualization.

3.3. Selection of M&S method(s)

In this activity, the modeler is prompted to select the M&S

method(s) that best satisfy the decomposed sub-objectives oi

based on the problem, system, and methodology perspectives.

The problem perspective refers to the understanding of the

‘‘nature, scope, and different aspects of the problem.’’44 The

system perspective refers to ‘‘real world context under inves-

tigation.’’44 The methodology perspective refers to ‘‘philoso-

phical assumptions, technical capabilities, limitations and

inherent characteristics of the modelling method.’’44

Definition 1: A criterion ci2C is a reference point for

the selection among the three M&S methods. Each cri-

terion may be satisfied by up to three relevant variables

of interest (VoIij). Each criterion is defined as in

Equation (1):

ci 2 C where ci
1, if selected

0, otherwise

�
ð1Þ

Figure 4. ‘‘Identify Scope’’ activity.

Figure 5. The four boundaries (beginning, ending, upper, and
lower).

Figure 6. Impact of level of detail in terms of development
time.
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Definition 2: A variable of interest (VoIij) represents

the value associated with a criterion ci and a j M&S

method. Each VoI is defined as in Equation (2):

8oi 2 O,VoIij=ci,where j M&S method DE, SD,ABð Þ ð2Þ

Definition 3: A weight wij is a numerical value

assigned to a VoIij for a selected criterion ci and a j

M&S method. The value of a weight can range from 0

to 10: wij = 0, ., 10. Users can assign weights to each

variable of interest based on the importance of the

associated criterion, with 0 denoting the lowest impor-

tance and 10 the highest importance. The level of

importance can be determined after communication

with the stakeholders.

At this point, the framework aims to guide the user to

select among the j most appropriate M&S method(s) based

on the provided user input, where j = 1, 2, 3. An algorithm

is applied to help the modeler select M&S method(s) for

the model implementation as follows:

1. The modeler selects k number of criteria ci2C
(see Definition 1) that best fit the problem, system,

and methodology perspectives of a particular

objective oi.

2. The modeler is called to assign numerical weights wij

for each VoIij of k selected criteria ci (see Definitions

2 and 3). This needs to be done in order to quantify

the relative importance of each VoIij and provide a

rational basis for the decisions being made.

3. All methods for each sub-objective are ranked

from the best one to the worst one based on

Equation (3), with best being the higher-scored

method and worst the lower-scored method:

scoremethod =max
X3
j= 1

Xk

i= 1

wij
�VoIij

� �
ð3Þ

4. The framework returns the higher-scored method

for each sub-objective oi.

The above steps of how the user/modeler interacts with

the MPMF for the selected criteria ci of an individual objec-

tive oi are described by the UML sequence diagram of

Figure 7. Table 1 provides a partial list of three alternative

criteria considering the problem, system, and methodology

perspectives for selecting among DE, SD, and AB M&S.

Once the M&S methods are selected for each sub-

objective, the framework continues as follows:

� If all ‘‘oi’’ are described by a single M&S method,

the conceptual modeling ends and the framework

continues with Phases 2, 3, and 4.
� If the sub-objectives are satisfied by different M&S

methods, then the framework continues with the

rest of the MPMF activities that are included in

Phase 1 (sections 3.3 and 3.4) and the user is called

to identify the interaction points for all ‘‘oi.’’

In the latter case, investigation of Q1 (‘‘When and why

is MPM required?’’) takes place, while Q2 (‘‘What are the

interaction points?’’) and Q3 (‘‘How do AB, DE, and SD

interact with each other over time to exchange informa-

tion?’’) will be investigated following the activities of sec-

tions 3.3 and 3.4.

Table 1. Sample list of MPMF criteria based on problem, system, and methodology perspectives.

Problem perspective

Criteria Discrete Event System Dynamics Agent Based

Scope level Operational tactical Strategic Any level
Situation Queues Flows Rules
Required resolution Detailed level Aggregated level More detailed level

System perspective

Criteria Discrete Event System Dynamics Agent Based

Abstraction level Meso–micro level Meso–macro level Any abstraction level
System process Discrete Continuous System process
Control Holding (queues) Stock – rates Control

Methodology perspective

Criteria Discrete Event System Dynamics Agent Based

Modeling approach Process centric Top-down Bottom-up
Object Entity Feedback Agent
Time Discrete Continuous Discrete

6 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



In contrast to Chahal’s hybrid framework,44 which sug-

gests starting the development of the models before the

identification of the interaction points and the mapping of

their relationships, the MPM framework first conceptua-

lizes the identification of interaction points and the type of

information exchange between inputs/outputs (I/O) of the

proposed models and then continues with the development

of the actual models. The reason for altering this order is

that we found it more practical to justify and conceptualize

first how the modeling approaches can be connected and

then implement the hybrid simulation. Furthermore,

Chahal’s framework44 focuses on the integration of DE

and SD methods only in the healthcare domain, while the

MPMF considers the integration of DE, SD, and AB

Figure 7. Selection of M&S method.
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modeling approaches for the development of simulation

models in various domains.

3.4. Identify interaction points

The interaction points are defined as the pairs of I/O infor-

mation exchange of data between different models.44 The

interaction points result from mapping the boundaries of

the models that need to communicate. The mapping among

DE, SD, and AB takes place prior to the development of a

MPM model (answering Q2). The user/modeler is called to

identify the interaction points, which consist of I/O data of

DE, SD, and AB models and their corresponding variables

that are properly ‘‘captured by’’ or ‘‘influenced by’’ each

M&S approach, as illustrated in Figure 8.

3.5. For each pair of mapped interaction points
define relationship type

This activity describes the type of interaction for each pair

of mapped interaction points (answering Q3) that the user

needs to define. In order to identify how AB, DE, and SD

models interact with each other to exchange information,

all the relationships among pairs of interaction points need

to be well-defined. Table 2 describes the different types of

interaction relationships that can be formed among DE,

SD, and AB models. Chahal defined and proposed three

generic types of relationships that can be formed between

DE and SD interaction points: ‘‘direct replacement of vari-

ables,’’ ‘‘aggregation/disaggregation,’’ and ‘‘causal’’ rela-

tionships.44 The present work further expands the generic

relationships between the interaction points of information

exchange to include AB as the number of relationships

increases when AB is included. AB refers to a set of inter-

action rules for entities that produce complex behavior.

More specifically, AB interactions can involve state

changes, inject, adding or removing objects or entities,

transfer entities, control flow statements, trigger events,

and state-chart control relationships. Therefore, we define

two main categories and their subcategories to describe

relationships of interaction points that involve information

exchange among DE, SD, and AB. These two categories

are the ‘‘value assignment’’ relationships (type A) and the

‘‘impact statements’’ relationships (type B).

As value assignment relationships, we define the rela-

tionships that include mathematical formulations and

replacement of values between equivalent variables. This

category consists of the three subcategories that were

adapted by Chahal.44

� The ‘‘direct replacement of values of variables’’

(type A.1) corresponds to interaction points that

represent equivalent variables of information

exchange in both models.
� The ‘‘aggregation/disaggregation’’ (type A.2) cor-

responds to interaction points that seize values of

information exchange that need to be aggregated

(accumulated) or disaggregated from the one model

to equivalent values of the other model.
� ‘‘Causal relationships’’ (type A.3) correspond to

interaction points that are described by explicitly

mathematical relationships.

As impact statement relationships, we define relation-

ships that cannot be expressed using value assignment rela-

tionships, but they are related to more abstract concepts.

Each of the impact statement relationships may contain

one or more, or combination, of value assignment relation-

ships. Such impact statement relationships can be:

� ‘‘Add/Remove/Inject/Transfer agents or entities’’

(type B.1).
� ‘‘Control flow relationships’’ (type B.2), which cor-

respond to ‘‘if,’’ ‘‘for,’’ and ‘‘while’’ statements

and define the flow of a particular logic.
� ‘‘Trigger Event relationships’’ (type B.3), which

can be of a different type, such as timeout, message,

condition, rate, and arrival.

Figure 8. Variables ‘‘captured by’’ or ‘‘influenced by’’ DE, SD, and AB approaches.
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� ‘‘State-chart control’’ (type B.4) corresponds to the

state that may control the flow among two models,

update variables from other models, or trigger any

other type of relationship.

For better understanding of how these relationships

work in practice, a healthcare multi-method M&S example

was developed using AnyLogic59 simulation software. In

this example, the three M&S methods were combined for

simulating patients who arrive in a clinic and wait to

receive treatment. If the waiting time is greater than a spe-

cific threshold, then the patient leaves the clinic for another

healthcare provider.

In this case, DE captures the patient’s flow of the treat-

ment process. When a patient arrives at the clinic, he/she

waits in the queue for his/her turn to receive treatment or

not and then exits the clinic. AB represents the decision-

making logic of each patient when he/she waits for treat-

ment or when he/she decides to leave the clinic. Finally,

the SD model estimates cost and profitability loss for those

patients that abandoned the clinic due to long waiting

times. Figure 9 illustrates the deployment of all the three

M&S methods together.

During the simulation run time the DE model triggers

the timeout event ‘‘Update_not_treated_number’’ (B.3

Table 2. Types of relationship for interaction points.

Category Types of relationship Expressions Examples

A. Value
Assignment

A.1 Direct replacement Value of AB variable = Value of SD or
DE variable and vice versa of, or all
possible combinations

The value of SD variable
‘‘number_of_not_
treated_patients_per_day’’ = the value
of
DE variable ‘‘number_of_not_treated_
patients’’ (Figure 10)

A.2 Aggregation/
disaggregation

VarAB = Aggregated (equivalent
variables or vectors in SD or DE)
VarAB = Diseggregated (equivalent
variables or vectors in SD or DE)
The same expressions apply for all pair
combinations

The SD rate of ‘‘arrivals_per_day’’ is
disaggregated and passed to the DE
entry
point variable in the form of inter-
arrival
time (Figure 11)

A.3 Causal relationships VarAB = Math_Function (VarDE or SD)
The same expressions apply for all pair
combinations

‘‘LossDueToLongWaitingTime’’ =
‘‘number_
of_not_treated_patents_per_
day’’*‘‘lost_profit_
per_patient_not_treated’’ (Figure 14)

B. Impact
statements

B.1 Add/remove/
inject agents or entities

objectDE.inject(objectAB);
objectAB.remove_objects(objectDE/SD);
objectAB.add_objects(objectDE/SD);
The same expressions apply for
all pair combinations

The DE model adds entities to the AB
population (patients) (Figure 12)
The AB model removes entities from
the DE process (Figure 13)

B.2 Control flow If, for, and while statements The interaction between AB and DE is
controlled by an if statement
(Figure 13)

B.3 Trigger event The trigger type of the event can be:
message, timeout, condition, rate, and
arrival

Recurring event of timeout trigger
type
called ‘‘Update_not_treated_
number ‘‘(Figure 10)

B.4 State-chart control
(combined with any of
the previous types of
relationship)

VarDE or SD = function
(statechart.isStateActive(stateAB))

the AB state-chart state ‘‘LeaveClinic’’
is activated and executes a function
(Figure 14)

Figure 9. Deployment of DE, SD, and AB approaches.
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type), which, in turn, directly replaces the value of the SD

variable ‘‘number_of_not_treated_patients_per_day’’ with

its equivalent variable ‘‘number_of_not_treated_patients’’

that is calculated by the DE model (A.1 type). Figure 10

illustrates these types of relationships for the interaction

between the DE and the SD models. In both models, the

related interaction points represent variables whose values

are equivalent to each other.

Another type of relationship that takes place when SD

and DE models interact is the disaggregation (A.2 type).

More specifically, the SD rate of ‘‘arrivals_per_day’’ is

disaggregated and passed to the DE entry point variable in

the form of inter-arrival time (Figure 11). This type of rela-

tionship is type of disaggregation because the arrivals per

day break down to smaller time intervals between each

arrival.

During the simulation interaction between the AB and

DE models, the DE model adds entities to the AB popula-

tion (patients). This ‘‘add entity’’ relationship type (B.1

type) is illustrated in Figure 12.

Figure 13 illustrates two types of relationship for inter-

action between AB and DE models. During the simulation

run time, the AB Control flow (B.2 type) changes the pro-

cess flow for the corresponding entity. More specifically,

the AB transition removes (B.1 type) the corresponding

entities, which can be either in the ‘‘WaitingInLine’’ or in

the ‘‘Normal_Treatment’’ stage of the DE process.

Then the AB transition transfers the corresponding entities

into the ‘‘enter’’ object to exit the clinic.

Finally, during the interaction between AB and SD

models, the SD variable ‘‘LossDueToLongWaitingTime’’

is controlled (B.4 type) by the AB state of ‘‘LeaveClinic.’’

When the AB state-chart state ‘‘LeaveClinic’’ is activated,

the SD variable ‘‘LossDueToLongWaitingTime’’ is expli-

citly described by the mathematical expression (A.3 type)Figure 11. A.2 type of relationship during SD–DE interaction.

Figure 12. B.1 type of relationship during AB–DE interaction.

Figure 13. Combination of B.1 and B.2 type of relationships during AB–DE interaction.

Figure 10. Combination of A.1 and B.3 type of relationships during SD–DE interaction.
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‘‘number_of_not_treated_patents_per_day’’ multiplied by

‘‘lost_profit_per_patient_not_treated.’’Figure 14 illustrates

these two types of relationship.

Table 2 summarizes the two main relationship cate-

gories, the different types of relationships, and an expres-

sion example for each type.

Sections 4 to 7 present the steps that were followed

when the MPMF was applied for the design, development,

and evaluation of a universal task analysis simulation

model (UTASiMo).

4. Following the MPMF methodology for
the design, development, and
evaluation of a universal task analysis
simulation modeling tool – Phase 1:
Conceptual modeling

Prior to the development of UTASiMo that deploys DE,

AB, and SD models,60 we followed the MPMF framework49

as a guideline to justify the reasons for using each particular

M&S method, as well as to conceptualize the identification

of interaction points and the type of information exchange

between inputs/outputs of the proposed models. Based on

the user-defined objectives, assumptions, and selection of

criteria, the framework suggested the development of a

model consisting of three M&S methods. More specifically,

we provide the methodology that was followed by applying

the steps defined in section 3.

4.1. Define problem

Task analysis is a set of methods used in a work environ-

ment to evaluate human performance (i.e., task execution

times, workload, human errors, etc.). The purpose of this

study is to develop a simulation tool for task analysis that

simulates human performance and predicts the level of

human error and workload that human operators experi-

ence in order to meet the demanded task execution times.

More specifically, the task analysis tool should be able to:

(a) analyze task sequences and estimate task execution

times; (b) take into account the human operator’s charac-

teristics to estimate workload; and (c) consider task- and

human operator-related properties to predict human error

probabilities. Human error and workload depend upon the

skills and experience of each human operator as well as

the nature of the task (i.e., action or diagnosis tasks).

4.2. Identify overall objective ‘‘O’’ and decompose it
into sub-objectives ‘‘oi’’

The overall objective is to develop a tool that predicts

human error and workload that human operators experi-

ence in order to meet the demanded task execution times

in a work environment. The overall objective of the model

UTASiMo is to be capable of simulating tasks and scenar-

ios performed by human operators, while considering task

execution times and workload for operators with different

skills/characteristics and assessing human error based on

the skills of the operator and the dynamics of the task

within a dynamic environment.

The overall objective is then decomposed to the follow-

ing three sub-objectives:

� o1: Provide quantitative prediction of human error,

which is influenced by the dynamics of the task and

the properties of the operator over time.
� o2: Analyze a task network based on the task

sequence, priorities, operator’s skills, and events to

estimate task execution times.
� o3: Create a human operator model to capture

variability in operator characteristics, indicate how

the operators perform the tasks, and estimate utili-

zation/workload.

4.2.1. Identify constraints and assumptions. As we mentioned

earlier, assumptions are essential when creating a simula-

tion model as it is not feasible to include all the possible

events that will occur in reality. Therefore, during this

Figure 14. Combination of A.3 and B.4 type of relationship during SD–AB interaction.
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system analysis, the following modeling constraints and

assumptions are taken into consideration:

� Each primary task can be performed by a single

human operator.
� Each human operator is assigned primary tasks in a

sequence.
� All task execution times are assumed to follow tri-

angular distribution.
� Human error is influenced by eight main factors.
� The default walking speed for a human operator is

1.5 m/sec.

4.2.2. Identify M&S scope. The M&S scope is to develop a

tool capable of automating the modeling process and simu-

lating individuals performing tasks in various domains in

order to estimate task execution times, utilization/work-

load and human error probabilities. The main purpose is to

eliminate the need of programming and modeling efforts

for generating task-based simulation models.

� Define content and form of results

The content and form of results of this study require a

high level of detail, including statistical I/O data analysis

and visualization of the process through animation, graphs,

and detailed statistics of the performance measurements

such as average task execution time and average workload

of human operators.

� Define boundaries

The next step is to define the boundaries and, more spe-

cifically, the beginning, ending, upper, and lower I/O data

of information exchange, as well as the performance mea-

surements that were considered for the V&V of the system.

The beginning boundary data were used as input to calcu-

late the performance measures (outputs). Table 3 illustrates

the upper and lower I/O data information exchange among

the three sub-objectives, the beginning boundary data,

and the ending boundary data.

� Level of detail, degree of accuracy, and type of

experimentation

The experimentation type of this study includes the

visualization of the system and validation of the

UTASiMo-generated models. Table 4 illustrates the identi-

fication of logic and numeric data.

4.2.3. Selection of M&S method(s). In this section, we run

the MPMF framework by selecting criteria that fit the

problem, system, and methodology perspective of each

objective and assign their numerical weights based on their

relevant importance, as described in section 3.3. Then, the

additive functions are ranked from best to worst and the

framework returns the higher-scored method for each sub-

objective. Table 5 illustrates a partial list of selected

Table 3. Upper and lower boundaries I/O data.

oi Sub-objective o1 Sub-objective o2 Sub-objective o3

Beginning boundary inputs Nominal human error
probability; Working conditions;
Design quality

Task name; Task ID; Task
location; Number of subtasks;
Task complexity; Skill factor;
Priority; Critical time

Operator ID; Operator role;
Operator location; Speed;
Skills; Assigned task list

Ending boundary outputs Total probability of human error Total time in system; Mean time
to perform task; Percentage of
total time allocated to each task

Total utilization/ workload

Upper boundary inputs Operator ID; Task ID;
Workload; Available time to
complete task; Skills (operator);
Task complexity

Operator ID; Skills (operator);
Operator’s internal state

Task location; Task ID;
Probability of human error

Lower boundary outputs Probability of human error Task duration; Task complexity;
Task location

Utilization/ workload; Skills
(operator); Task execution
time; Internal state

Table 4. Logic and numeric data.

Logic data Numeric data

Task name Workload/utilization Task ID
Operator role Operator’s speed Operator ID
Operator’s
internal state

Task complexity Operator location

Assigned
tasks list

Nominal human
error probability

Task location

Human error Available time to
complete task

Priority Number of subtasks
Critical time Task skill factor
Duration Operator’s skills
Task execution time
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criteria for each objective and assigned weights and sum-

marizes the returned higher-scored M&S method for each

of the three defined sub-objectives.

Here, it is important to capture the dynamic complexity

between various variables affecting human performance

(human error, workload, task execution times, skills, and

experience) and analyze the way different variables influ-

ence human performance over time. For sub-objective o1,

the framework recommended SD as more appropriate to

capture the dynamics of the environment that influence

human error over time. The role of the SD model is to cap-

ture the causal relationships of factors affecting human

error, use them to assess the overall simulated system’s

human error probability, and provide a quantitative basis

to the simulated system’s evaluation.62 For sub-objective

o2, the framework recommended DE to capture the tem-

poral aspects of tasks, and for sub-objective o3, the frame-

work recommended AB to capture the human

heterogeneity, behavior, and actions.63

4.3. Identify interaction points

After selecting the M&S methods, the interaction points

that describe variables of I/O information exchange among

the different objectives need to be identified. In this case,

we have three sub-objectives that are captured and influ-

enced by three sub-models. These sub-models complement

each other and form a MPM model capable of offering

realistic perspective and useful insights. The mapping

among DE, SD, and AB sub-models consists of input and

output data of information exchange. Inputs and outputs of

each model are paired with the inputs and outputs of the

other models within the same perspective.

For the UTASiMo tool, the following types of interac-

tion points and types of relationships are identified for each

of the three interactions between pairs of objectives, based

on section 3.5:

� Interaction points between AB and DE models:

8 The operators (OperatorID (AB)) should be

placed in a task network (OperatorID (DE)).

8 Each operator should be assigned a list of tasks

(AssignedTaskList (AB)) in the task network

(TaskID (DE)).

8 The operator should move to a specific task

location in the task network to complete a task

(Task Location (DE) – Task Location (AB)).

8 Each operator should complete a task based

on a set of skills. Therefore, the task comple-

tion time in the DE model (Task Completion

Time (DE)) will be affected by the skills of

each operator in the AB model (Operator’s

Skills (AB)).

8 The operator’s workload is defined as the per-

centage of time that the human operator is busy.

Therefore, the workload of the operator in the

Table 5. Selection of M&S methods.

Criterion VoIs Selection for
sub-objective o1

Weight
w1

Selection for
sub-objective o2

Weight
w2

Selection for
sub-objective o3

Weight
w3

Scope level Operational X 5
Strategic 5 X
Any X 2

Situation Queues X 7
Flows 7 X
Rules X 7

System process Discrete X 8
Continuous 8 X
Discrete/Continuous X 5

Modeling approach Process centric X 7
Top-down 5 X
Bottom-up X 5

Object Entity X 8
Feedback 8 X
Agent X 10

Control Holdings X 10
Stocks 10 X
Transition
mechanisms

X 10

Time Discrete X X 8
Continuous 8 X 8

M&S method
selection

System
Dynamics

Discrete
Event

Agent
Based
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AB model (Workload (AB)) will be affected by

the duration of each task (Task Duration (DE)).
� Interaction points between AB and SD models:

8 Humans may make mistakes that could lead to

failure to perform a task correctly. Therefore,

the human error model (Human Error (SD))

should be part of the operator (Agent (AB))

8 Operator’s workload (Workload (AB)) is one of

the factors that may lead to human error and

should be linked to the workload factor in the

SD model (Workload (SD)).

8 Operator’s skills (Skills (AB)) is also one of the

factors that affects human error and should be

linked to the skill factor in the SD model (Skills

(SD)).
� Interaction points between DE and SD models:

8 Task complexity (Task_Complexity (DE)) is

one of the factors that affects human error and

should be linked to the task complexity factor

in the SD model (Task_Complexity (SD)).

8 The available time left to complete a task (esti-

mated duration of task (DE) – actual task com-

pletion time (DE)) also affects human error and

should be linked to the available time factor in

the SD model (Available_Time (SD)).

Table 6 summarizes the identified interaction types for

each pair of interaction points. The types of relationship

were identified based on section 3.5.

5. Phase 2: M&S development process

After completing the conceptual modeling phase of the

UTASiMo task analysis tool, we move to the development

process of it. The MPM model was implemented using

AnyLogic software and consisted of three sub-models that

interact with each other: a DE (Figure 15), a SD (Figure

16), and an AB (Figure 17) sub-model.

After selecting methods and identifying the interaction

points, as described in sections 4.2.3 and 4.3, the DE

Table 6. Type of interaction point and type of relationship.

Interaction point Type of relationship

Interaction points between AB
and DE models

OperatorID (AB) – OperatorID
(DE)

A.1 Direct replacement

Task Completion Time (DE) –
Operator’s Skills (AB)

A.3 Causal relationship
The task completion time in the DE model is
calculated based on a function that takes into
account the skills of each operator in the AB
model.

Workload (AB) – Task Duration
(DE)

A.3 Causal relationship
The workload in the AB model is calculated
based on a function that takes into account the
estimated duration of each task in the DE model.

AssignedTaskList (AB) – TaskID
(DE)

A.2 Control flow
While there are tasks in the operator’s list to be
completed, the AB model transfers the
execution of the task with specific TaskID to the
DE model.

Task Location (DE) – Task
Location (AB)

A.1 Direct replacement

Interaction points between AB
and SD models

Workload_(AB) – Workload
(SD)

A.1 Direct replacement

Skills (AB) – Skills (SD) A.1 Direct replacement
Human Error (SD) – Agent (AB) B.4. State-chart control

The AB state-chart transfers control to SD
model to calculate error.

Interaction points between SD
and DE models

Task Complexity_(DE) – Task
Complexity_(SD)

A.1 Direct replacement

Task Completion Time (DE) and
Estimated Duration (DE) –
Available_Time (SD)

A.3 Causal relationship
The available time in the SD model is calculated
based on a function that takes into account the
task completion time of each task and the
estimated duration in the DE model. If Task
Completion Time (DE) > Estimated Duration
(DE), then the Available_Time factor in the SD
model is 5 (High), which increases the
probability of error.
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simulation model was implemented as a network, where

each node is a primitive task (discrete activity), such as a

decision, perception, and/or physical activity. Nodes in the

network have dependencies between them and form com-

pound tasks. Task structure properties represented in the

model are task ID, task name, number of subtasks, task

location, task complexity, task skill factor, priority, dura-

tion, and critical time. The DE model is also responsible

for collecting statistics in regard to the defined measure-

ments of performance.

The human operators and their behaviors were imple-

mented using hybrid SD–AB architecture. The hybrid

architecture was suggested by the interaction point

(Human Error (SD) – Agent (AB)) in section 4.3. Human

operators were modeled as agents using a state-chart with

three states (Figure 17)63:

� The state of Perception is an event-handler trig-

gered by ‘‘receiveEvent’’ to check the environment

for any event. Events can be either user-defined

(i.e., alarm, stairs) or can be retrieved from the

model (i.e., number of tasks to be executed, next

task location, etc.).
� The state of Adaptation includes a list of actions

linked to their corresponding events. Each event

may be linked to one or more actions. The agent

selects the appropriate action based on the trigger-

ing event and the information gathered from the

environment.
� The state of Action includes the execution of a task

or other event-triggered action.

The SD model that represents the human error contains

eight main factors, four of which are interaction points and

exchange data between the SD and the AB and DE models:

workload, skills, available time, and task complexity. The

SD model is depicted in Figure 16.

Overall, this multi-paradigm simulation model

exchanges information through the paired DE–SD, AB–

SD, and DE–AB interaction variables (Table 6). The

detailed description of the M&S development process of

the task analysis tool is not within the scope of this paper.

More information about the development process can be

found elsewhere.60, 62–65

6. Phase 3: Verification and validation
(V&V) of MPM model

Phase 3 provides information concerning the design as

well as the V&V of the MPMF, using real-world data.

More specifically, a MPM model of a power plant was

produced using the UTASiMo tool to determine which

system design produces the lowest average total time,

workload, and human errors. The model was verified and

validated using various techniques. First, the model was

successfully tested for one human operator in order to ver-

ify the total task execution time. The model was verified

and validated by observing the animation of the simulation

output. Validation also included comparison of the simu-

lated system behavior with the behavior of the real system.

Figure 18 and Figure 19 show the animation of the model

and the simulation results, accordingly. More information

about the V&V process and documentation of results can

be found elsewhere.60, 62–64

7. Phase 4: Discussion of results

The overall objective of this study was to provide a

description of the MPMF framework and illustrate how it

can be followed as a guideline to develop multi-paradigm

simulation models utilizing different components. These

Figure 15. DE model of UTASiMo.

Figure 16. SD model of UTASiMo.

Figure 17. AB model of UTASiMo.63
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components must be logically consistent, share common

properties and behaviors, and be composable.9

In this case study, we showed how each component in

the overall MPM model highlights a different aspect of the

solution. The SD model helps to identify the factors that

affect human error. These factors are then further evalu-

ated in more detail using DE, which results in the

identification of critical tasks (i.e., the tasks where an error

is more likely to occur). Finally, the use of AB allows the

modeling and evaluation of individual behavior on the task

execution. However, the composability of the different

components of the MPM model will be further investi-

gated in future research.

Overall, the MPMF framework provided guidelines

focused in the development of the conceptual modeling

process. The framework was found helpful because it

offers the option to combine and/or integrate three M&S

methods, while other frameworks provide guidelines for

one or combination of two M&S methods. The problem,

system, and methodology perspective criteria of the frame-

work aided the user to understand when and why each

M&S method is more suitable. The criteria assisted the

user to conceptualize and include aspects that would be

impractical or even impossible to be captured by one or

two M&S methods. Finally, the MPMF framework helped

the user on how to connect the different models and for-

mulate relationships between the interaction points.

Figure 19. UTASiMo’s simulation results.

Figure 18. UTASiMo’s animation output.63
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8. Conclusions and future work

In this paper, a novel multi-paradigm modeling and simu-

lation framework (MPMF) has been described. The MPMF

provides guidance on how to design and develop a multi-

paradigm model that addresses real-world systems’ prob-

lems. The use of the framework provides an effective

approach for capturing the necessary information from a

problem, system, and methodology perspective and for

using it to integrate and/or combine different methods in

such a way that benefits the design and implementation of

the MPM simulation model.

The steps of the MPMF framework were explained and

applied to a real case study for the development of

UTASiMo. More specifically, the framework provided gui-

dance on: (1) selecting the appropriate methods to be incor-

porated into the UTASiMo models; (2) defining what

information will be exchanged among those models; and (3)

deciding how the different models should be connected and

interact with each other. This case study was presented to

demonstrate the steps involved in the multi-paradigm model

creation of a real-world system and to validate the MPM

framework. The framework has also been successfully

applied for the development of a multi-paradigm simulation

model for an autonomous face recognition robotic system66

as well as within the entertainment industry.

In general, the MPM models may be found useful when

different M&S approaches need to be combined and/or

integrated, as well as for future reusability. For example,

one can enhance, reconfigure, and apply a pre-existing ver-

ified and valid module that has been used in a past MPM

study to conduct another simulation study, since these

models have been developed to communicate and interact

with other models.

Our future work will also focus on applying the frame-

work in different domains that require a MPM approach,

as well as in the development of a decision support tool

based on the MPMF framework.
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work for multi-paradigm modeling and holistic simulation of

healthcare systems. Simulation 2018; 94(3): 235–257.

30. Martinez-Moyano IJ and Macal CM. A primer for hybrid

modeling and simulation. In: Roeder T, Frazier P,

Szechtman R, and Zhou E (eds) Proceedings of the 2016

winter simulation conference, Washington, DC, 2016, pp.

133–147. Washington, DC: IEEE Press.

31. Scholl HJ. Agent-based and system dynamics modeling: A

call for cross study and joint research. In: IEEE proceedings

of the 34th annual Hawaii international conference on

system sciences, Maui, HI, 2001, pp. 8. Washington, DC:

IEEE Press.

32. Phelan SE. Using integrated top-down and bottom-up

dynamic modeling for triangulation and interdisciplinary

theory integration. In: Scholl HJ and Phelan SE (eds) The

22nd international conference of the System Dynamics

Society, Oxford, 25–29 July 2004. Albany, NY: System

Dynamics Society.

33. Swinerd C and McNaught KR. Design classes for hybrid

simulation involving agent-based and system dynamics mod-

els. Sim Model Pract Theory 2012; 25: 118–133.

34. Mingers J and Brocklesby J. Multimethodology: Towards a

framework for mixing methodologies. Omega 1997; 25(5):

489–509.

35. Dubiel B and Tsimhoni O. Integrating agent based modeling

into a discrete event simulation. In: Kuhl M and Steiger N

(eds) Proceedings of the winter simulation conference,

Orlando, FL, 2005; pp. 1029–1037. Piscataway, NJ: IEEE.

36. Petropoulakis L and Giacomini L. A hybrid simulation sys-

tem for manufacturing processes. Integr Manu Sys 1997;

8(4): 189–194.

37. Rabelo L, Helal M, Jones A and Min HS. Enterprise simula-

tion: A hybrid system approach. Int J Comp Integr Manu

2005; 18(6): 498–508.

38. Zulkepli J, Eldabi T and Mustafee N. Hybrid simulation for

modelling large systems: An example of integrated care

model. In: Laroque C, Himmelspach J and Pasupathy R (eds)

Proceedings of the winter simulation conference, Berlin,

2012, pp. 1–12. Piscataway, NJ: IEEE.

39. Barros FJ. Towards a universal formalism for modeling &

simulation. In: 2017 winter simulation conference (WSC),

Las Vegas, NV, 2017, pp. 750–761. Piscataway, NJ: IEEE.

40. Tolk A, Page E and Mittal S. Hybrid simulation for cyber

physical systems: State of the art and a literature review. In:

Proceedings of ANSS, Baltimore, ML, 2018, p. 10. Society

for Computer Simulation International.

41. Brailsford S, Eldabi T, Kunc M, Mustafee N and Osorio AF.

Hybrid simulation modelling in operational research: A

state-of-the-art review. Euro J Op Res 2018. in press.

42. Glazner C. Understanding enterprise behavior using hybrid

simulation of enterprise architecture. PhD Thesis,

Engineering Systems Division, Massachusetts Institute of

Technology, Cambridge, MA, 2009.

43. Ross W, Ulieru M and Gorod A. A multi-paradigm modeling

and simulation approach for systems of systems engineering:

A case study. In: Cook S, Ireland V, Gorod A, Ferris T and

Do Q (eds) Proceeding of the IEEE 9 international confer-

ence on system of systems engineering. Stamford Grand,

Glenelg, Adelade, SA, 2014, pp. 183–188. Washington, DC:

IEEE.

44. Chahal K. A generic framework for hybrid simulation in

healthcare. PhD Dissertation, Brunel University School of

Information Systems, UK, 2010.

45. Balaban MA. Toward a theory of multi-method modeling

and simulation approach. PhD Dissertation, Old Dominion

University, Norfolk, VA, 2015.

46. Lorenz T and Jost A. Towards an orientation framework in

multi-paradigm modeling. In: Proceedings of the 24th inter-

national conference of the System Dynamics Society,

Nijmegen, The Netherlands, 23–27 July 2006, pp. 1–18.

Albany, NY: System Dynamics Society.

47. Pidd M. Computer simulation in management science. 5th

ed. John Wiley and Sons Ltd, 2004.

48. Mykoniatis K and Karwowski W. A Generic framework for

multi-method modeling and simulation in complex systems.

18 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



In: IEEE SSCI 2014 dissertation consortium, Orlando,

Florida, 9–12 December 2014. Washington, DC: IEEE.

49. Mykoniatis K. A generic framework for multi-method model-

ing and simulation of complex systems using Discrete Event,

System Dynamics, and Agent Based approaches. PhD

Dissertation, University of Central Florida Orlando, Florida,

2015.

50. Balaban M, Hester P and Diallo S. Towards a theory of

multi-method M&S approach: Part I. In: Tolk A, Yilmaz L,

Diallo SY and Ryzhov IO (eds) Winter simulation confer-

ence, Savannah, GA, 2014, pp. 1652–1663. Piscataway, NJ:

IEEE.

51. Harrington HJ and Tumay K. Simulation modeling methods:

To reduce risks and increase performance. New York:

McGraw-Hill, 2000, pp. 1–3, 379.

52. Vennix J. Group model-building: Tackling messy problems.

Sys Dynamics Rev 1999; 15(4): 379–401.

53. Checkland P. Soft systems methodology: A thirty-year retro-

spective. Sys Res Behavioral Sci 2000; 17: S11–S58.

54. Pidd M. Tools for thinking. 2nd ed. John Wiley & Sons,

2003.

55. Powell SG. The teacher’s forum: Six key modelling heuris-

tics. Interfaces 1995; 25(4): 114–125.

56. Robinson S. Conceptual modeling for simulation: Issues and

research requirements. In: Lawson B, Liu J, Perrone F and

Fred Wieland F (eds) Proceedings of the 38th conference on

winter simulation, Monterey, CA, 2006, pp. 792–800.

Piscataway, NJ: IEEE.

57. Robinson S. Conceptual modelling for simulation. Part II: a

framework for conceptual modelling. J Op Res Soc 2008;

59(3): 291–304.

58. Sterman JD. Learning in and about complex systems. Sys

Dynam Rev 1994; 10(23): 291–330.

59. XJ Technologies Company Ltd, AnyLogic, https://www.any

logic.com/ (n.d., accessed February 2019).

60. Angelopoulou A. A simulation-based task analysis using

agent-based, discrete event and system dynamics simulation.

PhD Dissertation, University of Central Florida, Orlando,

Florida, 2015.

61. Akbas AS, Mykoniatis K, Angelopoulou A and Karwowski

W. A model-based approach to modeling a hybrid simulation

platform (work in progress). In: Proceedings of the sympo-

sium on theory of modeling and simulation-DEVS

integrative. Tampa, FL, 13 April 2014, pp. 1–6. San Diego,

CA: Society for Computer Simulation International.

62. Angelopoulou A and Mykoniatis K. The system dynamics

architecture of UTASiMo: A simulation-based task analysis

tool to predict human error probability. In: IEEE CogSima

2017, pp. 1–13. Savannah, GA, Washington, DC: IEEE.

63. Angelopoulou A and Mykoniatis K. UTASiMo: A

simulation-based tool for task analysis. Simulation 2018;

94(1): 43–54.

64. Angelopoulou A, Mykoniatis K and Karwowski W. A frame-

work for simulation based task analysis. IEEE CogSima

2015, Orlando, Florida, 2015, pp. 77–81. Washington, DC:

IEEE Press.

65. Angelopoulou A and Karwowski W. Universal task model

for simulating human system integration processes. In: IEEE

SSCI 2014 dissertation consortium, Orlando, Florida, 9–12

December 2014. Washington, DC: IEEE.

66. Mykoniatis K, Angelopoulou A, Soyler-Akbas A and

Hancock PA. Multi-method modeling and simulation of a

face detection robotic system. In: 2016 annual IEEE systems

conference (SysCon), 2016, pp. 1–6. Washington, DC: IEEE

Press.

Author biographies

Dr Konstantinos Mykoniatis holds a PhD and a MSc

degree in modeling and simulation from University of

Central Florida, and a BE degree in production engineer-

ing and management from Technical University of Crete.

His research interests are in the areas of multi-paradigm

modeling and simulation of complex and/or adaptive

socio-technical systems and smart services, virtual and

augmented reality, operations research, internet of things,

and robotics technology.

Dr Anastasia Angelopoulou received her PhD in mod-

eling and simulation from the University of Central

Florida in 2015. She also holds a BSc degree in electronic

and computer engineering from Technical University of

Crete. Her research areas include modeling and simula-

tion, simulation games, human factors, high performance

computing, and simulation of p2p energy trading systems.

Mykoniatis and Angelopoulou 19

https://www.anylogic.com/

