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Abstract
Disease modelers have been modeling progression of diseases for several decades using such tools as Markov models or
microsimulation. However, they need to address a serious challenge; many models they create are not reproducible.
Moreover, there is no proper practice that ensures reproducible models, since modelers rely on loose guidelines that
change periodically, rather than well-defined machine-readable standards. The Systems Biology Markup Language (SBML) is
one such standard that allows exchange of models between different software tools. Recently, the SBML Arrays package
has been developed, which extends the standard to allow handling simulation of populations. This paper demonstrates
through several abstract examples how microsimulation disease models can be encoded using the SBML Arrays package,
enabling reproducible disease modeling.

Keywords
Disease modeling, microsimulation, reproducibility, SBML, arrays package

1 Introduction

Disease models attempt to explain phenomena observed by

clinical trials and follow-up of patient populations through

time. These phenomena include complications of chronic

diseases such as diabetes1 and cardiovascular diseases,2

infectious diseases such as Ebola3 and HIV,4 or even men-

tal health conditions.5 Beyond complications, models can

also include economic aspects, such as costs or quality-of-

life-related health utility scores. Models describe these

phenomena using mathematical and statistical equations or

other programmatic constructs.

In the past, differential equations have been used, which

are still dominant in the infectious disease domain.3

However, other disease models have used state transitions

mechanisms. Markov cohort models have been prevalent in

the past,5 but modern disease models tend to use microsimu-

lation,1 where simulation considers each individual in the

population separately. Some infectious disease models are

also moving in the direction of individual-based simulation.6

Individualization of computation makes models more

flexible, but also more complex to understand. Therefore,

clarity in model publication and transparency are essential.

However, modeling practices in the field lack support for

reproducibility. Publication of models’ source codes is

rare.7–10 The norm is still publication of descriptive-only

models in papers in which they appear, and only rarely do

authors attempt to publish in such a way that their work

can be reproduced. However, publishing models within a

paper does not allow full reproducibility, as numeric exam-

ples provided in papers have insufficient precision and are

prone to misinterpretation (see, for example, Hayes et al.1).

The Mount Hood Diabetes Challenge highlighted this

reproducibility problem.11 The challenge in 2016 revolved

around reproducing models from two published papers. A

number of modeling teams around the world attempted to

reproduce these published models, and were unsuccessful.

This is conclusive proof that a new method for model

reproducibility is needed, since models that cannot be

reproduced are perceived to be non-credible.

To date, disease modelers have been trying to improve

their model publication methods by publishing guidelines.

Yet a better solution is to provide modeling tools that are

reproducible to allow model exchange. This is exactly

what the Systems Biology Markup Language (SBML)12
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and associated languages, such as PharmML13 and its

counterpart Model Description Language (MDL),14 are

designed for. This paper continues the first attempt to

reproduce disease models in such modeling languages that

started with Smith et al.,15 which demonstrated how a dis-

ease model can be reproduced in three languages: SBML,

PharmML, and MIcro Simulation Tool (MIST).16 When

the first paper was written, SBML capabilities lacked a

definition of more complex models using microsimulation.

As SBML is a community-driven standard, there are

biannual meetings about how SBML can be improved.17

Recently, the community talked about how to represent

agent-based models in SBML at the COMBINE 2017

meeting, but such representation has not reached a consen-

sus. Nonetheless, SBML has evolved, with the recent

introduction of the SBML Arrays draft package specifica-

tion, which can handle more complex models using micro-

simulation. This paper demonstrates this through a few

abstract disease modeling examples that can now be

implemented using SBML Arrays.

2 SBML Arrays

SBML is a standard representation that primarily targets

chemical reaction networks. However, SBML has strong dis-

crete event support in its core constructs, which allows the

representation of a wide range of models other than chemical

reaction networks in the form of Boolean networks,18 Petri

nets,19 and Markov chains,20 among others. In addition,

SBML has support for package extensions that enhance the

standard even further with new constructs beyond the core

constructs.21–23 In particular, the SBML Arrays package

enables the instantiation of a specified number of identical

model objects, facilitating the representation of popula-

tions.24 SBML Arrays has been implemented within the

C/C++ library of SBML, called libSBML,25 and the Java

library of SBML, called JSBML.26 The JSBML library also

supports validation and flattening of arrays.

Using SBML’s discrete event support coupled with

arrays, SBML can be used to represent microsimulation

disease models. Disease models in SBML are probabilistic

models that use arrays of parameters to encode each

Figure 1. State transition diagram of a simple Markov model.
The model uses two disease states, alive and dead, where the
dead state terminates simulation. The yearly probability of
transition between alive and dead states is 0.05.
Initial conditions: 100 people start in alive and none in dead.

Output: Number of people in each state for years 1–10.

Table 1. SBML events for Example 1.

Trigger Assignments

0 InstructionNumber ½d0�= 0 Time½d0�=Time½d0�+ 1
InstructionNumber ½d0�= 0:1

1 InstructionNumber ½d0�= 0:1 InstructionNumber ½d0�= 0:2

2 InstructionNumber ½d0�= 0:2 ^Dead½d0�= 0 ^ Time½d0�< 10 InstructionNumber ½d0�= 1

3 InstructionNumber ½d0�= 1 Random½d0�= uniform(0,1)
InstructionNumber ½d0�= 1:5

4 InstructionNumber ½d0�= 1:5 ^ Alive½d0�
= 1 ^ Random½d0�≥ 0 ^ Random½d0�< (0+ 0:05)

Alive½d0�= 0
Dead½d0�= 1
InstructionNumber ½d0�= 0

5 InstructionNumber ½d0�= 1:5 ^ Alive½d0�
= 1 ^ Random½d0�≥ (0+ 0:05) ^ Random½d0�< 1

InstructionNumber ½d0�= 0

Figure 2. State transition diagram of a three-state Markov
model. There are three disease states: healthy, sick, and dead,
where the dead state is terminal. The yearly transition
probabilities are: healthy to dead, 0.01; healthy to sick, 0.2; sick
to healthy, 0.1; sick to dead, 0.3.
Initial conditions: Healthy = 100; sick = 0; dead = 0.

Output: Number of people in each state for years 1–10.
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individual, where each index in the array represents a sin-

gle person. Each possible state for an individual (healthy,

sick, dead, etc.) is created as an array of parameters, where

each parameter is treated as a Boolean variable. SBML

events are used to transition states for each individual.

Those events are not part of the model to be transported;

they are used as an implementation mechanism to describe

the desired model in SBML.

3 Disease modeling examples

To illustrate the requirements for disease models, the fol-

lowing sections present several abstract examples that

are successfully implemented using SBML coupled with

the SBML Arrays package. We start with the same exam-

ples given in Smith et al.15 and add microsimulation

components to those that were not originally modeled by

those discrete time Markov models. We then add two

more examples that are impossible to model without

SBML Arrays. Important nuances are discussed for each

example.

Table 2. SBML events for Example 2.

Trigger Assignments

0 InstructionNumber½d0�= 0 Time½d0�=Time½d0�+ 1
InstructionNumber½d0�= 0:1

1 InstructionNumber½d0�= 0:1 InstructionNumber½d0�= 0:2

2 InstructionNumber½d0�= 0:2 ^Dead½d0�= 0 ^ Time½d0�< 10 InstructionNumber½d0�= 1

3 InstructionNumber½d0�= 1 Random½d0�= uniform(0,1)
InstructionNumber½d0�= 1:5

4 InstructionNumber½d0�= 1:5 ^ Healthy½d0�= 1
= 1 ^ Random½d0�≥ 0 ^ Random½d0�< (0+ 0:01)

Healthy½d0�= 0
Dead½d0�= 1
InstructionNumber½d0�= 0

5 InstructionNumber½d0�= 1:5 ^ Healthy½d0�= 1
= 1 ^ Random½d0�≥ (0+ 0:01) ^ Random½d0�< (0+ 0:01)+ 0:2

Healthy½d0�= 0
Sick½d0�= 1
InstructionNumber½d0�= 0

6 InstructionNumber½d0�= 1:5 ^ Healthy½d0�
= 1 ^ Random½d0�≥ (0+ 0:01)+ 0:2 ^ Random½d0�< 1

InstructionNumber½d0�= 0

7 InstructionNumber½d0�= 1 Random½d0�= uniform(0,1)
InstructionNumber½d0�= 1:5

8 InstructionNumber½d0�= 1:5 ^ Sick½d0�= 1
= 1 ^ Random½d0�≥ 0 ^ Random½d0�< (0+ 0:1)

Sick½d0�= 0
Healthy½d0�= 1
InstructionNumber½d0�= 0

9 InstructionNumber½d0�= 1:5 ^ Sick½d0�= 1
= 1 ^ Random½d0�≥ (0+ 0:1) ^ Random½d0�< (0+ 0:1)+ 0:3

Sick½d0�= 0
Dead½d0�= 1
InstructionNumber½d0�= 0

10 InstructionNumber½d0�= 1:5 ^ Sick½d0�
= 1 ^ Random½d0�≥ (0+ 0:1)+ 0:3 ^ Random½d0�< 1

InstructionNumber½d0�= 0

Figure 3. State transition diagram of a simple Markov model.
There are three disease states: healthy, sick, and dead, where
the dead state is terminal. The yearly transition probabilities are:
healthy to dead, 0.01; healthy to sick, 0.2 for male and 0.1 for
female; sick to healthy, 0.1; sick to dead, 0.3. The transition
probability now depends on the cohort (men or women) and
can be expressed as a function of a Boolean covariate, ‘‘male’’.
Initial conditions: Healthy = (50 men, 50 women); sick = (0, 0); dead =

(0, 0).

Output: Number of men and women in each disease state for years 1–10.
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3.1 Example 1: Simple example

The first simple example (depicted in Figure 1) can be

modeled as a cohort model, as demonstrated before in

Smith et al.,15 where the number of individuals in each

state is counted for each time step. However, this paper

implements it using microsimulation where each individ-

ual is processed through the model using Monte Carlo

simulation with the probability defined. SBML Arrays

defines an array of individuals, where each can be either

alive or dead. Unlike cohort models, where simulation

continues for each time step until the end, microsimulation

models can stop for individuals who reach a terminal state.

In all simulations in this paper, this would be represented

by the dead state. This mechanism is used in disease mod-

els to shorten simulation time and to indicate non-existence

of a record for a human being in years after death, effec-

tively diminishing cohort size.

This entire simulation is implemented as SBML events,

as can be seen in Table 1. SBML events are triggered if

Table 3. SBML events for Example 3.

Trigger Assignments

0 InstructionNumber½d0�= 0 Time½d0�=Time½d0�+ 1
InstructionNumber½d0�= 0:1

1 InstructionNumber½d0�= 0:1 InstructionNumber½d0�= 0:2

2 InstructionNumber½d0�= 0:2 ^ Dead½d0�= 0 ^ Time½d0�< 10 InstructionNumber½d0�= 1

3 InstructionNumber½d0�= 1 Random½d0�= uniform(0,1)
InstructionNumber½d0�= 1:5

4 InstructionNumber½d0�= 1:5 ^ Healthy½d0�= 1
= 1 ^ Random½d0�≥ 0 ^ Random½d0�< (0+ 0:01)

Healthy½d0�= 0
Dead½d0�= 1
InstructionNumber½d0�= 0

5 InstructionNumber½d0�= 1:5 ^ Healthy½d0�
= 1= 1 ^ Random½d0�≥ (0+ 0:01) ^ Random½d0�
< (0+ 0:01)+ 0:1 * (1+Male½d0�)

Healthy½d0�= 0
Sick½d0�= 1
InstructionNumber½d0�= 0

6 InstructionNumber½d0�= 1:5 ^ Healthy½d0�= 1 ^ Random½d0�
≥ (0+ 0:01)+ 0:1 * (1+Male½d0�) ^ Random½d0�< 1

InstructionNumber½d0�= 0

7 InstructionNumber½d0�= 1 Random½d0�= uniform(0,1)
InstructionNumber½d0�= 1:5

8 InstructionNumber½d0�= 1:5 ^ Sick½d0�= 1
= 1 ^ Random½d0�≥ 0 ^ Random½d0�< (0+ 0:1)

Sick½d0�= 0
Healthy½d0�= 1
InstructionNumber½d0�= 0

9 InstructionNumber½d0�= 1:5 ^ Sick½d0�= 1= 1 ^ Random½d0�
≥ (0+ 0:1) ^ Random½d0�< (0+ 0:1)+ 0:3

Sick½d0�= 0
Dead½d0�= 1
InstructionNumber½d0�= 0

10 InstructionNumber½d0�= 1:5 ^ Sick½d0�
= 1 ^ Random½d0�≥ (0+ 0:1)+ 0:3 ^ Random½d0�< 1

InstructionNumber½d0�= 0

Figure 4. State transition model dependent on changing
parameters. There are three disease states: healthy, sick, and
dead, where the dead state is terminal. The yearly transition
probabilities are: healthy to dead, age/1000; healthy to sick,
according to function F1 depending on age and male parameters;
sick to healthy, 0.1; sick to dead, according to function F2
depending on age and male parameters.
Pre-transition rules: Age increased by 1 each cycle.
Initial conditions: Healthy = (50 men, 50 women with age =1, 2, .,

50 for each individual); sick = (0, 0); dead = (0, 0).

Output: Number of men and women in each disease state for years

1–10 and their ages in each state.
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their trigger condition is previously false and then evaluate

to true during simulation. This SBML mechanism is used

to create a sequence of time steps that guides simulation.

The InstructionNumber parameter helps SBML to control

the firing sequence of events and specific events compet-

ing in time. This competition of events is an important

SBML element and is not related to the model being

implemented. Therefore, the addition of the

InstructionNumber parameter forces discrete times for the

sequence of occurrences. Also note that the model time

and SBML implementation time are different. In this

example, there is a header of events enumerated #0, #1, #2

that start each time step in the simulation. Event #0

advances the time parameter. Event #1 provides a point

where the user can take a snapshot of the data to represent

the state of the system in the time step. Event #2 is used for

termination. The last three events represent transitions.

Namely, Event #3 generates a random number and stores it

in the random variable. Event #4 tests whether the drawn ran-

dom number matches the transition criteria and, if so, updates

the states and increases the instruction count to progress the

simulation. Event #5 is a counter event for event #4 that is

triggered if event #4 does not happen. It is essential to

advance the simulation by setting the InstructionNumber.

Table 4. SBML events for Example 4.

Trigger Assignments

0 InstructionNumber½d0�= 0 Time½d0�=Time½d0�+ 1
InstructionNumber½d0�= 0:1

1 InstructionNumber½d0�= 0:1 InstructionNumber½d0�= 0:2

2 InstructionNumber½d0�= 0:2 ^Dead½d0�= 0 ^ Time½d0�< 10 InstructionNumber½d0�= 1

3 InstructionNumber½d0�= 1 Random½d0�= uniform(0,1)
InstructionNumber½d0�= 1:5

4 InstructionNumber½d0�= 1:5 ^ 1 Age½d0�=Age½d0�+ 1
InstructionNumber½d0�= 2

5 InstructionNumber½d0�= 1:5 ^ 0 InstructionNumber½d0�= 2

6 InstructionNumber½d0�= 2 Random½d0�= uniform(0,1)
InstructionNumber½d0�= 2:5

7 InstructionNumber½d0�= 2:5 ^ Healthy½d0�= 1 ^ Random½d0�
≥ 0 ^ Random½d0�< ð0+ Age½d0�

1000 Þ
Random½d0�= uniform(0,1)
InstructionNumber½d0�= 1:5

8 InstructionNumber½d0�= 2:5 ^ Healthy½d0�= 1 ^ Random½d0�
≥ ð0+ Age½d0�

1000 Þ ^ Random½d0�< ð0+ Age½d0�
1000 Þ+min(0:8,0:1 * (1+Male½d0�)+ 0:01 *Age½d0�)

Sick½d0�= 1
Healthy½d0�= 0
InstructionNumber½d0�= 0

9 InstructionNumber½d0�= 2:5 ^ Healthy½d0�= 1 ^ Random½d0�
≥ ð0+ Age½d0�

1000 Þ+min(0:8,0:1 * (1+Male½d0�)+ 0:01 *Age½d0�) ^ Random½d0�< 1

InstructionNumber½d0�= 0

10 InstructionNumber½d0�= 2 Random½d0�= uniform(0,1)
InstructionNumber½d0�= 2:5

11 InstructionNumber½d0�= 2:5 ^ Sick½d0�
= 1 ^ Random½d0�≥ 0 ^ Random½d0�< (0+ 0:1)

Sick½d0�= 0
Healthy½d0�= 1
InstructionNumber½d0�= 0

12 InstructionNumber½d0�= 2:5 ^ Sick½d0�= 1 ^ Random½d0�
≥ (0+ 0:1) ^ Random½d0�< (0+ 0:1)
+min(0:9,0:2 *Male½d0�+ 0:01 *Age½d0�)

Sick½d0�= 1
Healthy½d0�= 0
InstructionNumber½d0�= 0

13 InstructionNumber½d0�= 2:5 ^ Sick½d0�= 1 ^ Random½d0�
≥ (0+ 0:1)+min(0:9,0:2 *Male½d0�+ 0:01 *Age½d0�) ^ Random½d0�< 1

InstructionNumber½d0�= 0

Watanabe et al. 5



Table 5. SBML events for Example 5.

Trigger Assignments

0 InstructionNumber½d0�= 0 Time½d0�=Time½d0�+ 1
InstructionNumber½d0�= 0:1

1 InstructionNumber½d0�= 0:1 InstructionNumber½d0�= 0:2

2 InstructionNumber½d0�= 0:2 ^ Dead½d0�= 0 ^ Time½d0�< 10 InstructionNumber½d0�= 1

3 InstructionNumber½d0�= 1 Random½d0�= uniform(0,1)
InstructionNumber½d0�= 1:5

4 InstructionNumber½d0�= 1:5 ^ 1 Age½d0�=Age½d0�+ 1
InstructionNumber½d0�= 2

5 InstructionNumber½d0�= 1:5 ^ 0 InstructionNumber½d0�= 2

6 InstructionNumber½d0�= 2 Random½d0�= uniform(0,1)
InstructionNumber½d0�= 2:5

7 InstructionNumber½d0�= 2:5 ^ 1 InstructionNumber½d0�= 3

BP½d0�= BP½d0�+ Age½d0�
10

8 InstructionNumber½d0�= 2:5 ^ 0 InstructionNumber½d0�= 3

9 InstructionNumber½d0�= 3 Random½d0�= uniform(0,1)
InstructionNumber½d0�= 3:5

10 InstructionNumber½d0�= 3:5 ^ Healthy½d0�
= 1 ^ Random½d0�≥ 0 ^ Random½d0�< ð0+ Age½d0�

1000 Þ
Healthy½d0�= 0
Dead½d0�= 1
InstructionNumber½d0�= 4

11 InstructionNumber½d0�= 3:5 ^ Healthy½d0�= 1 ^ Random½d0�≥
ð0+ Age½d0�

1000 Þ ^ Random½d0�< ð0+ Age½d0�
1000 Þ

+minð0:8,0:1 * (1+Male½d0�)+ 0:01 *Age½d0�+ ðBP½d0��120100 Þ
2
Þ

Sick½d0�= 1
Healthy½d0�= 0
InstructionNumber½d0�= 4

12 InstructionNumber½d0�= 3:5 ^ Healthy½d0�= 1 ^ Random½d0�
≥ ð0+ Age½d0�

1000 Þ+minð0:8,0:1 * (1+Male½d0�)+ 0:01 *Age½d0�
+ ðBP½d0��120

100
Þ
2
Þ ^ Random½d0�< 1

InstructionNumber½d0�= 4

13 InstructionNumber½d0�= 3 Random½d0�= uniform(0,1)
InstructionNumber½d0�= 3:5

14 InstructionNumber½d0�= 3:5 ^ Sick½d0�
= 1 ^ Random½d0�≥ 0 ^ Random½d0�< (0+ 0:1)

Sick½d0�= 0
Healthy½d0�= 1
InstructionNumber½d0�= 4

15 InstructionNumber½d0�= 3:5 ^ Sick½d0�
= 1 ^ Random½d0�≥ (0+ 0:1) ^ Random½d0�
< (0+ 0:1)+min(0:9,0:2 *Male½d0�+ 0:01 *Age½d0�)

Sick½d0�= 0
Dead½d0�= 1
InstructionNumber½d0�= 4

16 InstructionNumber½d0�= 3:5 ^ Sick½d0�= 1 ^ Random½d0�< (0+ 0:1)
+min(0:9,0:2 *Male½d0�+ 0:01 *Age½d0�Þ ^ Random½d0�< 1

InstructionNumber½d0�= 4

17 InstructionNumber½d0�= 4 Random½d0�= uniform(0,1)
InstructionNumber½d0�= 4:5

18 InstructionNumber½d0�= 4:5 ^ 1 Treatment½d0�=Age½d0�+ 1
InstructionNumber½d0�= 5

19 InstructionNumber½d0�= 4:5 ^ 0 InstructionNumber½d0�= 5

(continued)
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Unless set, the simulation would not continue, since there

would not be another event for the individual, which is how

event #3 terminates simulation. Alternatively, termination

can happen if the simulation time limit is reached. Future

examples follow this structure. The models shown here are

generated using the SBML Arrays package, which automati-

cally generates any arbitrary number of individual copies,

which is 100 for the examples shown.

3.2 Example 2: Three-state Markov model

The next example (depicted in Figure 2) is a simple exten-

sion of the first one. This example demonstrates how new

transitions are added by introducing more events. Table 2

represents the events implemented to run this simulation.

Events #0–#2 form a simulation header. Events #3–#6 rep-

resent transitions originating from the healthy state while

events #7–#10 represent transitions originating from the

sick state. Each state has three events, since there are two

transitions emanating from each event and therefore three

competing options must be checked: taking the first transi-

tion, taking the second transition, or not taking any transi-

tion. Our simulation generates a random variable and

stores it in the random parameter. The three events after-

ward check the three different possible options using the

random parameter and transition thresholds. This structure

is used in all the remaining examples.

Table 5. Continued

Trigger Assignments

20 InstructionNumber½d0�= 5 Random½d0�= uniform(0,1)
InstructionNumber½d0�= 5:5

21 InstructionNumber½d0�= 5:5 ^ 1 BP½d0�= BP½d0� � Treatment½d0� * 10
InstructionNumber½d0�= 6

22 InstructionNumber½d0�= 5:5 ^ 0 InstructionNumber½d0�= 6

23 InstructionNumber½d0�= 6 InstructionNumber½d0�= 6

24 InstructionNumber½d0�= 6:5 ^ 1 CostThisYear½d0�=Age½d0�+Treatment½d0� * 10
InstructionNumber½d0�= 7

25 InstructionNumber½d0�= 6:5 ^ 0 InstructionNumber½d0�= 7

26 InstructionNumber½d0�= 7 InstructionNumber½d0�= 7:5

27 InstructionNumber½d0�= 7:5 ^ 1 Cost½d0�=Cost½d0�+CostThisYear½d0�
InstructionNumber½d0�= 0

28 InstructionNumber½d0�= 7:5 ^ 0 InstructionNumber½d0�= 0

Figure 5. State transition diagram with functions of age, male,
and blood pressure (BP). There are three disease states: healthy,
sick, and dead, where the dead state is terminal. The yearly
transition probabilities are: healthy to dead, age/1000; healthy to
sick, according to function F1 depending on age, male, and blood
pressure parameters; sick to healthy, 0.1; sick to dead, according
to function F2 depending on age and male parameters.
Pre-transition rules: Age increased by 1 and blood pressure
by age/10 each simulation cycle.
Post-transition rules: Treatment= BP> 140, becomes 1
when blood pressure crosses the 140 threshold;
BP=BP� Treatment * 10, indicating a drop of 10 once
treatment is applied; Cost This Year=Age+Treatment * 10,
cost depends on age and whether treatment was taken;
Cost=Cost+Cost This Year, accumulates cost over time.
Initial conditions: Healthy = (50 men, 50 women with age = 1, 2, .,

50 for each individual); blood pressure =120; sick = (0,0); dead = (0,0).

Output: Number of men and women in each disease state for years 1–

10 and their ages and costs in each state. A stratified report by sex and

age (up to 30 and above 30) is produced.

Watanabe et al. 7
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Figure 6. Continued

8 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



Healthy female
Healthy male
Sick female
Sick male
Dead female
Dead male

1086420
Time

0

10

20

30

40

50

R
es
ul
t

iBioSim Results 1 Repetition for Example 4

Age female
Age male

1086420
Time

16

18

20

22

24

26

28

R
es
ul
t

iBioSim Results 1 Repetition for Example 4

Healthy young female
Healthy old female
Healthy young male
Healthy old male
Sick young female
Sick old female
Sick young male
Sick old male
Dead young female
Dead old female
Dead young male
Dead old male

1086420
Time

0

5

10

15

20

25

30

R
es
ul
t

iBioSim Results 1 Repetition for Example 5

Healthy female
Healthy male
Sick female
Sick male
Dead female
Dead male

1086420
Time

0

10

20

30

40

50

R
es
ul
t

MIST Results 1 Repetition for Example 4

Age female
Age male

1086420
Time

20

22

24

26

28

R
es
ul
t

MIST Results 1 Repetition for Example 4

Healthy young female
Healthy old female
Healthy young male
Healthy old male
Sick young female
Sick old female
Sick young male
Sick old male
Dead young female
Dead old female
Dead young male
Dead old male

1086420
Time

0

5

10

15

20

25

30

R
es
ul
t

MIST Results 1 Repetition for Example 5

Figure 6. Continued
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3.3 Example 3: Stratified Markov model

This example (depicted in Figure 3) starts introducing

microsimulation concepts, since a parameter governs the

transition probability. In this example, men become sick

with higher probability than women and therefore simula-

tion should show a higher sickness and death rate among

men. This example is still simple enough to implement as

two separate cohort models, as can be seen in Table 3. The

transition probabilities are controlled by the male parameter,

which is used in event #5 and in the counter event #6. Other

than that, this example is similar to the previous example.

Yet microsimulation becomes more significant and challen-

ging when individuals have more characteristics. This is

explored further in the next example.

3.4 Example 4: State transition model dependent
on changing parameters

This example (depicted in Figure 4) can no longer be

implemented using Markov cohort models, owing to the

yearly change in age and the stratification by male and

age of the transition probabilities. This example captures

the heterogeneity of the population by describing each

individual’s behavior. SBML Arrays allows for the defini-

tion of distinct individuals. Table 4 presents the event sets

for this example. SBML events play a crucial role by

increasing the age every year before transition probabil-

ities are calculated. The new element in this model is the

change of age before determining transitions in each simu-

lation timestep. This can be seen in instructions 3 to 5,
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Figure 6. Results comparison between MISTand iBioSim for one run.
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Figure 7. Continued
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which behave in a similar way to transitions—note that

some of the code is redundant and can be replaced by one

event, since event #5 never fires. However, this example

maintains this code structure for compatibility and future

extendibility. Once again, our method uses Instruction

Number to guide the model during simulation, such that

state transitions are considered at each simulation time

step only after InstructionNumber reaches a value of 2.

Despite the complexity of this example, it is not yet

representative of the full range of phenomena we wish to

model that include treatment and cost. The next example

shows how this is accomplished.

3.5 Example 5: State transition model with
treatment and costs

This example (depicted in Figure 5) adds blood pressure

as another parameter that increases yearly at different

rates. Once blood pressure is above a threshold, treatment

is administered that reduces it back closer to previous val-

ues. Moreover, costs include elements of age and treat-

ment. Even this relatively simple example is complex

enough to show why individual modeling is needed, hence

making SBML Arrays essential. Table 5 shows the event

scheme implementation in SBML. Notice that in this

example there are a number of post-transition rules
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Figure 7. Results comparison between MISTand iBioSim for 10 runs.
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implemented as event triplets: events #3–#5 handle age

increment in pre-transition, events #6–#8 handle blood

pressure pre-transition update, events #17–#19 determine

whether treatment is administered post-transition, events

#20–#22 adjust blood pressure according to treatment for

next timestep post-treatment calculation, events #23–#25

calculate yearly cost that includes treatment cost, and

finally events #26–#28 accumulate total cost. The impor-

tant elements of this simulation are the pre-transition rules

and post-transition rules. Each of those rule sets needs to

be executed in sequential order during simulation. SBML

events allow for timing of these using the

InstructionCounter.

4 Results

The examples described in the previous section are imple-

mented as a combination of the Python programming lan-

guage and SBML files to define the models and then

simulated using iBioSim, which supports SBML Arrays.

Since these examples are not intuitive, a reference is

needed to provide some comparison of results. The MIcro

Simulation Tool (MIST) is used to implement the same

examples. Since MIST is particularly designed for disease

modeling, comparable results provide sufficient support

for the claim that SBML Arrays is suitable for creating

reproducible disease models. Figures 6, 7, and 8 present
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Figure 8. Results comparison between MISTand iBioSim for 100 runs.
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the results of simulation using MIST compared with

SBML Arrays implemented in iBioSim. Since this is a

random simulation, the results should not match exactly

using a single run of the simulation. Figure 6 shows that

this is the case, yet the results are comparable enough to

indicate a similar simulation. To verify that the models are

indeed identical, the models are executed 10 times and

results are averaged, as shown in Figure 7. The average

results of 100 repetitions are shown in Figure 8. The plots

show clear convergence as more repetitions are added.

To provide additional support, we conducted statistical

analysis of results for each example in a similar way. The

models were executed using MIST, which includes utili-

ties to run simulations multiple times and extract statistics

from multiple simulations. These statistics include mean,

standard deviation, minimum, and maximum of results

reported for different numbers of repetitions. The same

models were executed using iBioSim and statistics were

extracted using a dedicated script that was written for this

paper. Finally a Python script collected the results and

generated the graphics presented in the figures in this

paper. All scripts are provided in the GitHub repository.

Statistical analysis results are provided for each example:

Example 1 (Figure 9), Example 2 (Figure 10), Example 3
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Figure 9. Statistical analysis for Example 1.
STD: standard deviation.
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Figure 10. Statistical analysis for Example 2.
STD: standard deviation.
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Figure 11. Statistical analysis for men in Example 3.
STD: standard deviation.
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Figure 12. Statistical analysis for women in Example 3.
STD: standard deviation.
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Figure 13. Continued
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(Figures 11 and 12), Example 4 (Figures 13 and 14), and

Example 5 (Figures 15, 16, 17, and 18). In these analyses,

the vertical axis represents the absolute difference between

MIST and iBioSim results. The left column shows the

mean as circles and the standard deviation as squares for

each year in simulation. The right column shows the aver-

age difference of all years and the horizontal axis repre-

sents repetitions. The convergence of the model results is

clearly seen from these statistics for most plots, where the

differences in both the mean and standard deviation are

reduced by adding iterations. There are several outliers

where the mean does not follow this trend, such as in

Example 3 (healthy, male, 10 repetitions, mean), yet even

in those cases, the standard deviation statistic improves or

stays similar, implying convergence. In Example 5, there

are three cases where standard deviation does not improve

for 100 repetitions: ‘‘dead, young, male’’ and ‘‘age, old,

female’’, and ‘‘cost, old, female’’. However, in these

examples, the mean statistic improves and, considering

that Example 5 is highly stratified, has some relatively rare

events, as well as somewhat volatile changes in age, so it

is quite reasonable and expected. Therefore, we conclude

that the examples are reproduced properly between tools

as clearly seen in Figure 8.

To support this reproducibility, the models, example

code, and results for both implementations are available at

https://github.com/Jacob-Barhak/DiseaseModelsSBML.

This repository includes detailed instructions for replica-

tion of the results in this paper in both MIST and iBioSim,

as well as Python code, to assist SBML creation and addi-

tional statistical analysis. Although the results were

generated using MIST and iBioSim, it is important to

remember that this paper promotes SBML with arrays as a

transfer mechanism between systems rather than focusing

on a specific system. In addition, all of the examples have

been uploaded to the BioModels database.27 The models

used in this paper have been assigned the following

identifiers: MODEL1803120002, MODEL1803120003,

MODEL1803120004, MODEL1803120005, and

MODEL1803120006 for Example 1, Example 2, Example

3, Example 4, and Example 5, respectively.

5 Discussion

The long-term goal of this effort of implementing disease

modeling examples in SBML is to eventually allow the

conversion of MIST examples to SBML using the SBML

Arrays package. The provided examples pave the way in

this direction.

These examples do not cover all possible modeling ele-

ments used in epidemiological modeling, such as infec-

tious disease modeling, discrete event simulation, or

population generation. Only the very basic essential build-

ing block elements, which are regularly used to model

chronic disease progression at the individual level, are pre-

sented here. These examples are sufficient to support such

tasks as life-expectancy estimation and cost-effectiveness

analysis, which are core uses of disease models. Future

work will include adding more elements such as handling

event states and splitting and joining disease processes and

other elements supported by MIST with the intention of

promoting SBML Arrays as part of the SBML standard. In
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Figure 13. Statistical analysis for men in Example 4.
STD: standard deviation.
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this work, the model transport is partially manual since

MIST did not write the SBML code that was transported

to iBioSim. Future work will address automation of this

mechanism. This work is intended to establish the feasibil-

ity of SBML Arrays as a model transport mechanism. It is

only a step toward adoption by SBML editors into the

SBML standard, which already provides SBML Arrays

specification and tools toward such a goal.

The SBML standard is widely adopted and is very active

within the Multi-Scale Modeling community,28 which tries

to address different types of modeling that traverse scales,

from cells to organs to populations. When modeling many

types of systems at different scales, it is essential to have

many modeling capabilities. SBML has 280 reported sys-

tems that support it as well as an established development

process and specifications, and there are two annual meet-

ings for users. This makes it an established infrastructure

for modeling transport mechanism. Therefore enriching

SBML to support microsimulation may make it an attrac-

tive candidate for adoption for modelers who need to sup-

port many modeling systems.

Many modeling systems support microsimulation, as

mentioned in a recent review by Sorensen et al.29

However, we are aware of very few other similar

approaches to allow model representation toward transport

between systems. PharmML13 is a close candidate that

was already addressed by Smith et al.15 and, since it works

together with the human readable MDL,14 we consider

them together. Although PharmML has elements that

address individual modeling and shows promise, it is far

from the SBML level of adoption, as easily demonstrated

by the large variety and number of SBML models in pub-

lished in biomodels.net. Another effort worth mentioning

toward supporting communicating models is the ODD

(overview, design concepts, and details) protocol30 used to

describe agent-based models. However, this protocol,

although helpful to convey models to human beings, is not

a model transport mechanism that allows transporting

models between computing systems. If we move beyond

biomedical models, another known modeling standard is the

Discrete Event System Specification (DEVS), which was

introduced about four decades ago. DEVS allows formalism

of a model as a set of states and transitions and, just like

SBML, it has many extensions to the basic formulation and

many implementations in different computing languages.

The DEVS basic formulation is very simple, as can be seen

in Tendeloo and Vangheluwe,31 and the authors see poten-

tial in this formulation, which supports parallelism32 that

invites future exploration, yet despite its popularity, it is not

widely used by biomedical communities. However, recent

work connecting DEVS and SBML27 shows promise and

contributes to the approach presented in this paper.

SBML will not replace existing modeling systems that

model in a large variety of tools and languages; instead, it

presents a common reproducible standard that commu-

nities may choose to adopt. This paper may influence such

adoption by presenting reproducible examples that others

can follow.

Note that reproducibility has many facets. Different

implementations of the models with different tools may
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Figure 14. Statistical analysis for women in Example 4.
STD: standard deviation.
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generate different results. Even if two different tools are

provided the same random numbers, the sequence to drive

the stochastic model may generate different outcomes

using different tools. Therefore, asking for the exact same

output files generated by two systems is not practical.

However, we do expect that the same tools, after receiving

the SBML file, will be able to internally repeat the same

results, given the same random seed and therefore be

deterministic. We also expect that repetition of the same

model simulations on different systems have to converge

toward the same statistical solution, as was demonstrated.

In this paper, we made an effort to include all possible

information to allow reproduction of our results, including

attaching code and describing computing system

environment, as well as archiving the output of the sys-

tems. However, the core idea is that we can represent the

same model in SBML, which will allow future exchange

between systems.

The ability to transport models between systems may

encourage other modelers to adopt the ideas and follow

these examples to create other microsimulation models in

SBML. We aim toward chronic disease modelers, yet hope

that this will eventually assist infectious disease modelers

who often use variations of SIR (susceptible, infectious,

recovered) models and their extensions.3 An example of a

SIR model implemented in SBML can be found in http://

www.ebi.ac.uk/biomodels-main/MODEL1009230000.

However, it does not use utilize SBML Arrays; this may
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Figure 15. Statistical analysis for the average age of living men and the numbers of healthy, dead, and sick men in Example 5.
STD: standard deviation.
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open opportunities in the future to model interactions at

the individual level.

Once disease models are implemented in SBML, a mul-

titude of software tool options are produced for disease

modelers; this may have considerable impact in the field

(in particular, a significant impact on model reproducibil-

ity). When model reproducibility is no longer an issue,

model credibility will certainly increase.

6 Reproducibility information

The following tools were used to generate the results in

this paper: MIST Version 0.92.2.0 using Python 2.7.14,

Anaconda2-5.0.1 (64 bit) running on a Windows 10 (64

bit) machine; SBML files were generated using libsbml

experimental version 5.16.0 for Python 2.7 64 bit running

on a Windows 10 (64 bit) machine; SBML files were

imported to iBioSim Version 3.0.0—freely available for

download at http://www.async.ece.utah.edu/ibiosim—run

ning on macOS Sierra. Model files and results can be

obtained from the following GitHub repository: https://

github.com/Jacob-Barhak/DiseaseModelsSBML.
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Figure 18. Statistical analysis for blood pressure, cost, and cost this year for women in Example 5.
STD: standard deviation.
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