
Methodology

Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

1–19

� The Author(s) 2018

DOI: 10.1177/0037549718765080

journals.sagepub.com/home/sim

A multi-target compiler for
CML-DEVS

Maximiliano Cristiá1, Diego A. Hollmann2 and Claudia Frydman3

Abstract
Discrete Event System Specification (DEVS) is a modular and hierarchical formalism for system modeling and simulation.
DEVS models can be mathematically described; simulation is performed by tools called concrete simulators. Concerning
atomic DEVS models, each concrete simulator has its own input language which is, essentially, a general-purpose pro-
gramming language (such as Java or C++). Hence, once engineers have written the mathematical model, they need to
manually translate it into the input language of the concrete simulator of their choice. In this paper we present a multi-
target compiler for atomic DEVS models written in CML-DEVS, a mathematics-based DEVS modeling language. This
multi-target compiler is able to compile a CML-DEVS model to the input languages of the PowerDEVS and DEVS-Suite
concrete simulators. In this way, the CML-DEVS compiler frees engineers from the manual translation of their mathe-
matical models. In fact, the same mathematical model can be simulated on both simulators by simply recompiling the
model. The CML-DEVS multi-target compiler can be easily extended to produce code for other concrete simulators.

Keywords
Atomic model, CML-DEVS, compiler, DEVS

1. Introduction

Discrete Event System Specification (DEVS)1 is perhaps

the most general and used modeling and simulation

(M&S) formalism. When using DEVS, a system is mod-

eled by giving its structure, through a coupled DEVS

model, and its behavior, through one or more atomic

DEVS models, which are composed in intermediate

coupled models that at some point form the final coupled

model. Simulation of these models is performed by tools

called concrete simulators (for instance, DEVS-C++,2

DEVSim++,3 CD++,4 PowerDEVS,5 JDEVS,6 DEVS-

Suite,7 LSIS-DME8). Usually a concrete simulator pro-

vides to its users: (1) a way to compose atomic or coupled

models into coupled models; and (2) a programming lan-

guage to program atomic models, which in general is the

same programming language as the concrete simulator.

Giving the structure of a coupled DEVS model is rather

easy as tools frequently rest on some sophisticated graphi-

cal user interface (GUI) that allows engineers to graphi-

cally compose their atomic and coupled models. Indeed,

these tools allow engineers not in the habit of program-

ming to compose their models as they learned in text-

books. DEVS atomic models should also be described in

the standard language of mathematics by using equations,

functions, sets, etc. However, when engineers want to

simulate these atomic models they need to program them

in the input language of a concrete simulator, which means

writing code in Java or C++ or another general-purpose

programming language. Otherwise, they need to ask a pro-

grammer to do this. Furthermore, if they want to experi-

ment with different concrete simulators they need to re-

implement their models for each of them. The process of

translating the mathematical model to the input language

of a concrete simulator may induce errors that would ren-

der the simulation activity not as accurate as it should be.

For these reasons, we developed CML-DEVS,9 a DEVS

specification language based on standard mathematics and

inspired in formal notations such as Z,10 B,11 and TLA+,12

which are used by the software engineering community.

CML-DEVS models may be used to abstractly describe

DEVS atomic models, which can later be composed as

done by each concrete simulator. In the context of CML-

1Universidad Nacional de Rosario and CIFASIS, Rosario, Argentina
2CIFASIS-CONICET, Rosario, Argentina
3Aix Marseille Université, CNRS, ENSAM, Université de Toulon, LSIS

UMR 7296,13397, France

Corresponding author:

Maximiliano Cristitá, Universidad Nacional de Rosario and CIFASIS,

Pellegrini 250, (2000) Rosario, Argentina.

Email: cristia@cifasis-conicet.gov.ar

https://doi.dox.org/10.1177/0037549718765080
https://journals.sagepub.com/home/sim
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0037549718765080&domain=pdf&date_stamp=2018-04-13


DEVS, abstract model and CML-DEVS specification

denote a model described in the language of mathematics

and logic. One of the objectives we had in mind when

designing CML-DEVS was that it should be possible to

automatically translate any CML-DEVS model into the

input languages of the main concrete simulators.

In this paper we present a multi-target compiler for

CML-DEVS models. That is, we present a program that

reads a CML-DEVS specification and generates a program

in the input language of a concrete DEVS simulator. In

turn, this program generated by the CML-DEVS compiler

can be compiled as indicated by the concrete simulator in

order to simulate it. Therefore, the combination of CML-

DEVS and its multi-target compiler relieves engineers of

the error-prone, difficult task of translating their abstract

models into concrete models. CML-DEVS and its multi-

target compiler let engineers think in terms of mathematics

and use several different concrete simulators to simulate

the same model.

In this first version, the compiler produces

PowerDEVS5 and DEVS-Suite7,13 code – that is, essen-

tially C++ and Java code, respectively. However, we show

how it can be extended to produce concrete models for

other tools. In effect, by following standard compiler

design techniques, our CML-DEVS compiler provides the

functionality for parsing, type checking, abstract syntax

tree (AST) construction, etc. of CML-DEVS code in such

a way that producing object code for different concrete

simulators is a rather easy task. The tool presented in this

paper is a proof-of-concept, not a production tool. As such,

it can be improved in many ways, although it features the

basic structure and functionality of more advanced tools.

With this tool, we aim at showing the DEVS community

an alternative, complementary technology for modeling

atomic DEVS models. In spite of this, we encourage the

DEVS community to experiment with the current version

of the compiler as it provides a new way of writing DEVS

atomic models.

The CML-DEVS compiler can be freely downloaded,

modified, and extended. It can be found at www.cifasis-

conicet.gov.ar/hollmann/projects/CML-DEVS.

The paper is structured as follows. In Section 2 we

introduce, by means of a classroom example, the CML-

DEVS specification language, assuming the reader is

familiar with DEVS (otherwise refer to the work of

Zeigler et al.
1

). The CML-DEVS multi-target compiler is

described in Section 3, where we comment on key design

decisions that guided us toward its implementation. An

empirical evaluation of the compiler is presented in

Section 4. This evaluation consists of collecting 14 atomic

DEVS models, writing them in CML-DEVS, and compil-

ing them to PowerDEVS and DEVS-Suite input languages

with the CML-DEVS compiler. Integration of the CML-

DEVS approach with existing DEVS tools is discussed in

Section 5. Similar and related works are described in

Section 6. Finally, we give our conclusions in Section 7.

The Appendix contains further technical information refer-

enced throughout the paper.

2. Introduction to CML-DEVS

CML-DEVS has been discussed in detail elsewhere.9 Here

we will show its main features by means of an example.

We want to focus on the fact that writing CML-DEVS

code is equivalent to what software engineers do when

writing formal specifications in formal notations such as

B.11 In other words, we claim that CML-DEVS captures

the mathematics used to write atomic models as in DEVS

textbooks or as in the classroom in such a manner that

tools can be built to process this language. Another ana-

logy that might apply is that CML-DEVS is to DEVS what

LaTeX is to mathematics. In this sense, mathematicians

do not find writing math formulas with LaTeX particularly

annoying, although it requires some learning.

Figure 1 shows an atomic DEVS model written as in

DEVS textbooks or in DEVS courses,1,13–20 while Figure

2 shows a pretty-printing of the CML-DEVS source code

shown in Figure 3, corresponding to the model in Figure

1. What the model in Figure 1 represents is, at this point,

not really important. Instead, we want to emphasize the

fact that Figure 1 is a mathematical, abstract, simulator-

independent description of a DEVS atomic model. In other

words, we claim that people in the DEVS community

would agree in that Figure 1 represents a typical textbook

or classroom description of a DEVS atomic model.

In turn, note that Figure 2 is, essentially, a mathemati-

cal formula much like the one shown in Figure 1. It rests

on equations, functions, and set theory, with no influence

whatsoever from a general-purpose programming

language.

On the other hand, the CML-DEVS source code of

Figure 3 is aligned with the way specifications in formal

notations such as Z, B, and TLA+ are written. We think

the code is self-explanatory and respects the way

Figure 1. A typical textbook or classroom atomic DEVS model.

2 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



engineers write their abstract models. Consider the follow-

ing observations:

1. CML-DEVS is based on logic, set theory, equa-

tions, and function definitions.

2. There are no side effects as it is a declarative lan-

guage enjoying referential transparency.21

3. This source code can be generated by, for example,

a formula editor featuring a rich GUI.

4. Pretty-printing (Figure 2) could be done by a sim-

ple translation tool producing LaTeX or XML

code.

5. It is independent of any concrete DEVS simulator,

relieving users of the task of learning several pro-

gramming languages.

3. The design of the multi-target
CML-DEVS compiler

In this section we describe the main features and design of

the CML-DEVS multi-target compiler (or compiler for

short). The description is somewhat detailed as we intend

it to help the DEVS community to either implement simi-

lar tools or improve the one described in this paper. Some

of the design decisions we show here were made for

quickly providing a working tool for the DEVS commu-

nity. In Section 3.2 we discuss the pros and cons of the

present approach.

The CML-DEVS compiler is a Java program based on a

standard one-pass compiler design and on the ANTLR par-

ser generator.22 Figure 4 shows a descriptive block dia-

gram of the structure of the compiler. It is multi-target as it

is conceived to generate code for different concrete simula-

tors from the same CML-DEVS model, as we explain in

Section 3.1. In this first version, though, it generates only

Figure 2. Pretty-printing of the CML-DEVS source code
shown in Figure 3.

Figure 3. CML-DEVS code of the atomic model pretty-printed
in Figure 2.

Cristiá et al. 3



PowerDEVS5 and DEVS-Suite7,13 code, which are essen-

tially C++ and Java code, respectively. As we have said,

this tool is a proof-of-concept whose main goal is to

demonstrate the feasibility of the CML-DEVS approach.

Then, we believe that the ‘‘multi-target’’ feature is demon-

strated by generating code for more than one simulator and

by showing that each new code generator can be easily

implemented (see Section 3.1). Today, the CML-DEVS

compiler is less than 20 KLOC (thousands of lines of

code), including comments (15 KLOC of pure Java code).

The CML-DEVS grammar informed by Hollmann

et al.9 was written in the grammar language supported by

ANTLR. In this way, ANTLR generated the lexical analy-

zer (scanner) and the syntax and semantic analyzer (par-

ser). These two functional components are implemented

by a collection of Java classes automatically generated by

ANTLR.

The main function of the parser is to generate an AST

of the CML-DEVS model. This AST is a central data

structure as it organizes the model being compiled as a

tree structure. The AST has a node for each terminal and

non-terminal defined in the grammar that is being used in

the model, where its children are the tokens that build it.

For example, in the CML-DEVS code of Figure 3, ta is

represented as a node whose only child is the defcases
structure which, in turn, has four children, one for each

case sentence. Hence, there is a Java class for each token

defined in the grammar. However, these classes provide

only syntactic information. ANTLR organizes these

classes according to the Composite design pattern,23 which

allows uniform access to the structure. In particular, an

object structure adhering to a Composite can be analyzed

by implementing the Visitor design pattern.23 This combi-

nation of design patterns facilitates the implementation of

several key functions of the compiler.

Attempting to generate target (object) code from this

AST is quite complex as the AST does not contain seman-

tic information – for instance, it is not possible to know

the type of each expression. For this reason, as shown in

Figure 4, we decided to augment the AST with semantic

information. In this way code generation (Section 3.1)

becomes simpler.

ANTLR automatically generates a template1 Visitor

interface (CMLDEVSVisitor) specifically tailored to

analyzing the AST generated during the parsing phase (see

Figure 15 in the Appendix). Currently, the CML-DEVS

compiler implements this interface with a set of classes

headed by CMLDEVSBaseVisitor, whose function is to

generate another AST containing semantic information

about the model (i.e., the augmented AST). The heirs of

CMLDEVSBaseVisitor create the nodes of the augmen-

ted AST. In this way, it can be said that the implementation

of CMLDEVSBaseVisitor represents the intermediate

code generator.

The AST generated by CMLDEVSBaseVisitor is

organized as a Composite design pattern headed by the

Figure 4. Descriptive block diagram of the CML-DEVS multi-target compiler.

4 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



CMLDEVSData interface (see Figure 16 in the Appendix).

Each node in the augmented AST is an heir of

CMLDEVSData containing information such as the

semantic role played by each syntax element and the type

of expressions. For example, in the augmented AST, the

ta node of the AST mentioned above contains information

indicating what is the definition part and the condition part

of each case sentence, what is the type of each variable

participating in them, etc. This semantic information is

stored in the heirs of CMLDEVSData. In this way, it can

be said that the augmented AST is an intermediate

language.

3.1. Code generation

Carefully designing the code-generation phase (see Figure

4) is important in the CML-DEVS compiler as we intend

it to be a multi-target compiler. The main design decision

is to postpone code generation as much as possible. In this

way, code generators do not need to implement other func-

tions as they are provided by previous phases. Then, new

code generators are small, simple, and easy to add.

When calling the CML-DEVS compiler, users must

pass a parameter telling it what simulator language the

compilation should produce. This parameter is used intern-

ally to instantiate the proper code generator. In the CML-

DEVS compiler, each code generator has three main

responsibilities:

� produce object code respecting the syntax and con-

ventions of each concrete simulator;
� distribute the final code in files according to the

requirements set by each concrete simulator – for

example, PowerDEVS requires three files for an

atomic model (ModelName.pds, ModelName.
h, and ModelName.cpp), while DEVS-Suite7,13

requires only one (ModelName.java); and
� substitute reserved words of the target language

used in the CML-DEVS specification. For example,

class is a reserved word in C++, Java, etc., but is

not in CML-DEVS. Therefore, engineers may use

class in their CML-DEVS specifications as a

name for variables, constants, etc., but when the

compiler generates code for a concrete simulator

whose input language is based on an object-oriented

language, this word must be replaced because other-

wise the generated model will not compile. We dis-

carded the possibility of reserving more words at

the CML-DEVS level because this would mean col-

lecting the reserved words of all possible input lan-

guages of concrete simulators.

Each of these responsibilities is assigned to different

classes, which have to be carefully created as they are

related to each other. Creating families of related objects

is the purpose of the Abstract Factory design pattern.23

Hence, the CML-DEVS compiler defines Target
LanguageFactory, an interface for instantiating

objects that depend on the target language (see Figure 17

in the Appendix).

Target code generation (i.e., the first responsibility

listed above) is organized according to the Visitor design

pattern.23 This Visitor visits the Composite that structures

the augmented AST headed by CMLDEVSData and prints

the final code. Hence, the CML-DEVS compiler defines

the Printer interface such that each of its implementa-

tions will print object code corresponding to each sentence

of the intermediate language. An excerpt of Printer’s

Figure 5. Part of Printer’s interface.

Cristiá et al. 5



interface is shown in Figure 5. Note that there are methods

to print each terminal and non-terminal of the intermediate

language. In this sense, the classes implementing this

interface are known as pretty-printers or printers. In fact,

these printers use StringTemplate technology to produce

the final code. StringTemplate is a Java template engine

for generating source code developed by ANTLR’s

designer.24

Therefore, implementing the code generator for

PowerDEVS (respectively DEVS-Suite) implies providing,

among others, an heir of TargetLanguageFactory,
called PowerDEVSFactory (DEVSSuiteFactory),
and an implementation of Printer, called Printer

PowerDEVS (PrinterDEVSSuite). We will focus on

PrinterPowerDEVS as PrinterDEVS Suite is very

similar, and printers are the most interesting components

of code generation. Implementing PrinterPowerDEVS
entails defining a StringTemplate template and implement-

ing some of its methods by calling StringTemplate. Figure

6 shows code snippets of the implementation of three

methods of PrinterPower DEVS, and Figure 7 shows

an excerpt of the template. As can be seen, the template

consists of the basic structure of the code to be generated

with placeholders that are replaced each time the template

is used. The replacement can be done with a library pro-

vided by StringTemplate. The placeholders are replaced

with the actual data taken from the augmented AST. For

example, in the second sentence of print(), in Figure 6,

stHeader is the instantiation of the template shown in

Figure 7. Then, this sentence replaces parameter S of

headerFile with the result of print(atomic.
getState()), whose implementation can also be seen

in Figure 6.

Hence, implementing a new code generator entails

repeating the implementation schema followed for the

implementation of the PowerDEVS and DEVS-Suite code

generators. That is, defining an heir of Target
LanguageFactory and an implementation of

Printer and implementing it using StringTemplate.

That is, it would be convenient (although not mandatory)

to define a new template considering the peculiarities of

the input language of the concrete simulator. As a matter

of fact, the implementation of the methods shown in

Figure 6. Snippets of PrinterPowerDEVS’s implementation.

Figure 7. Excerpt of the StringTemplate template used to
generate PowerDEVS code.

6 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



Figure 5 for the DEVS-Suite simulator are almost identical

to those of PowerDEVS. This means that the effort of

implementing a new code generator is alleviated not only

by the general design of the compiler, but also by the fact

that existing code generators can be used as the base to

implement new ones.

Given that creating object code by printing can be bad in

terms of performance, this technique can be changed or

improved in the future by tool developers. This technique

was chosen because it is one of the simplest forms of code

generation, thus allowing rapid prototyping of the compiler.

The code corresponding to the PowerDEVS and DEVS-

Suite code generators is about 1 KLOC each. This shows

that the effort of implementing new code generators (see

Figure 4) is marginal with respect to the total effort (recall

that currently the CML-DEVS compiler is about 20

KLOC), as is otherwise expected if proven compiler tech-

niques are followed. In turn, this suggests that the idea of

defining a specification language for atomic DEVS models

and designing a multi-target compiler for it, was right.

3.2. Discussion

In this section we discuss the advantages and disadvan-

tages of using the CML-DEVS approach (i.e., the CML-

DEVS language plus its multi-target compiler). CML-

DEVS provides a mathematics-oriented specification lan-

guage for describing atomic DEVS models. This is aligned

with the way DEVS models are presented in courses and

textbooks. Instead, using a general-purpose programming

language demands engineers not only to be experts in the

problem domain, but also to be programmers. The CML-

DEVS compiler complements the specification language

by generating code for (potentially) many concrete simula-

tors. This allows engineers to write an abstract model once

while being able to simulate it on many different simula-

tors. CML-DEVS is expressive enough to specify all

DEVS atomic models.9

However, the approach is not free of limitations and

disadvantages. Engineers need to learn a new language

(i.e., CML-DEVS). This can be reduced to a minimum if a

formula editor is implemented. Nevertheless, either engi-

neers learn CML-DEVS or they learn to program in the

input language of a concrete simulator – in turn this is

sometimes not the case because engineers already know

how to program. Learning CML-DEVS has the advantage

that they can use different concrete simulators easily. The

code generated by the CML-DEVS compiler may be inef-

ficient compared to the code programmed by an expert on

a particular concrete simulator. Another issue with our

approach is that changes in the design of a concrete simu-

lator (e.g., its input language) could require changes in the

CML-DEVS compiler. However, the design of the compi-

ler would limit these modifications to specific modules (in

general to the code-generation modules).

4. Empirical evaluation

In this section we present the results of an empirical eva-

luation of the CML-DEVS compiler. The empirical eva-

luation aims at showing that: (1) mathematically described

atomic DEVS models can be written in CML-DEVS sim-

ply by adhering to its syntax conventions; (2) the compiler

can produce concrete models for PowerDEVS and DEVS-

Suite from the same CML-DEVS model; (3) the resulting

concrete models are syntactically more complex than the

CML-DEVS models; and (4) compilation times are

reasonable.

The results of this empirical evaluation are summarized

in Table 1; Table 2 in the Appendix gives a brief informal

description of each atomic model.

In Table 1, column T indicates whether the CML-

DEVS specification was written from a mathematical

description (D) or from the source code of an atomic

PowerDEVS (C) or DEVS-Suite (J) model. Hence, as can

be seen from the table, we collected a sample of 10 mathe-

matically described atomic DEVS models plus 4 concrete

models (ConstGen, HInt, BinaryCounter, and Generator).

All 14 models were taken from third-party resources such

as books, websites, and courses, and cover a wide range of

applications, origins, and authors, thus representing a rea-

sonable sample – that is, these models were not proposed

by us, which would have biased the evaluation. In effect,

we have collected models from six different sources and

authorships. The sources include Cellier and Kofman’s

book on continuous system simulation; the PowerDEVS

library of atomic models; Professor Vangheluwe’s class

notes for his course ‘‘Modelling of Software-Intensive

Systems’’ given at McGill University; Professor Wainer’s

repository on CD++models, which includes models writ-

ten by students who took his courses ‘‘Simulation of

Discrete Event Systems’’ given at Buenos Aires

University and ‘‘Methodological Aspects of Modeling and

Simulation’’ taught at Carleton University; the technical

report from Zeigler and Sarjoughian on M&S describing

DEVS-Suite; and a model described by Professor Wainer

in one of his class presentations. That is, there are models

written by experts and students as well. Next, we have

translated the models from the mathematical descriptions

used by their authors into CML-DEVS specifications; in

the case of the four concrete models we wrote their CML-

DEVS specifications from informal descriptions. In doing

so, we tried to follow the mathematical structure suggested

by each author. We believe this supports claim (1) men-

tioned above. That is, atomic DEVS models can be easily

written in CML-DEVS.

Then, we used the CML-DEVS compiler to compile to

PowerDEVS and DEVS-Suite each of the 14 DEVS

atomic models. The concrete models produced by the

CML-DEVS compiler can be simulated by the correspond-

ing concrete simulator. In particular, models ConstGen,

Cristiá et al. 7



Table 1. Atomic DEVS models used for the evaluation of the CML-DEVS compiler.

Model Source T Size (bytes) Time (s)

CML-DEVS PowerDEVS DEVS-Suite

1 ACCtrlUnit Wainer’s sample of DEVS models14 D 2422 4245 4946 2
2 ACTempProp Wainer’s sample of DEVS models14 D 1311 2903 3669 2
3 CoolUnit Wainer’s sample of DEVS models14 D 746 2178 2692 2
4 ATMVerif Wainer’s sample of DEVS models16 D 961 2584 2991 2
5 BilliardBall Zeigler and Sarjoughian13 D 735 2389 2945 1
6 BinaryCounter Zeigler and Sarjoughian13 J 631 2104 2557 2
7 Constant PowerDEVS model library C 335 1415 1800 1
8 ElevatorDoor Wainer’s sample of DEVS models17 D 1440 3262 3964 2
9 ElevatorEngine Wainer’s sample of DEVS models17 D 1755 3464 4323 2
10 Generator Zeigler and Sarjoughian13 J 384 1491 1861 1
11 HInt Cellier and Kofman18 C 1196 2771 3312 1
12 TrafficLights Vangheluwe’s class notes15 D 1051 2713 3388 1
13 Server Wainer’s course material19 D 799 2372 3046 2
14 Switch Zeigler and Sarjoughian13 D 1045 2810 3453 2

Column T indicates whether the CML-DEVS specification was written from a mathematical description (D) or from the source code of an atomic

PowerDEVS (C) or DEVS-Suite (J) model.

Figure 8. PowerDEVS (C++) implementation of HInt as given
by Cellier and Kofman.

Figure 9. PowerDEVS (C++) implementation of HInt resulting
from compiling the CML-DEVS model of Figure 10.

8 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



HInt, BinaryCounter, and Generator allow us to compare

the code generated by the CML-DEVS compiler with

respect to the code written by PowerDEVS and DEVS-

Suite expert users. In order to keep the presentation con-

cise, we include here the analysis of model HInt, but simi-

lar conclusions can be drawn from the other three models.

Model HInt is a hysteretic quantized integrator which is

used in continuous system simulation, as defined by

Cellier and Kofman.18 Figure 8 lists the PowerDEVS code

of HInt as proposed by Cellier and Kofman.18 The result

of compiling the CML-DEVS code is shown in Figure 9,

while the code itself is shown in Figure 10. As can be

seen, both PowerDEVS programs are similar in size, struc-

ture, and functionality. Furthermore, in Figure 11 we can

see the results of using both implementations (i.e., Figures

8 and 9) as part of a PowerDEVS simulation. It is obvious

that both programs yield the same results, which is an

indication that the compilation of the CML-DEVS specifi-

cation behaves the same as the original model.

Given that all 14 CML-DEVS models and the CML-

DEVS compiler are publicly available,2 we believe the

above results support claim (2) mentioned at the beginning

of this section.

In Table 1, columns CML-DEVS, PowerDEVS, and

DEVS-Suite show, respectively, the size in bytes of the

CML-DEVS specification and the PowerDEVS and

DEVS-Suite source code resulting from compiling the spe-

cification with the CML-DEVS compiler. The column

Time is the approximate compilation time (of both

PowerDEVS and DEVS-Suite as differences are negligi-

ble). The compilation times shown in the table are approx-

imate and rounded; they are measured from the command-

line shell by simply taking the system time before and

after compilation. The platform used for these tests is the

following: AMD AthlonTM 7850 Dual-Core Processor

CPU at 1.40 GHz with 4 Gb of main memory, running

Linux Kubuntu 14.04 (Trusty Tahr) of 64-bit with kernel

3.16.0-67-generic; the CML-DEVS compiler uses Java

1.7, ANTLR 4.5, and StringTemplate 4.0.8.

As Table 1 shows, compilation times are acceptable

given that by using the compiler engineers will obtain the

concrete models from the mathematical description in a

few seconds. Note that programming these models would

take much longer. It is also clear that the sizes of the com-

piled models are higher than the CML-DEVS specifica-

tions. This is an indication of how CML-DEVS abstracts

away syntactic details that otherwise need to be considered

if the input languages of concrete simulators are used. The

CML-DEVS compiler fills in these details for the engineer.

Figure 10. CML-DEVS source code for Cellier and Kofman’s HInt.

Figure 11. Plot of the curves obtained by simulating the model given in Figure 8(a) and Figure 9(b).

Cristiá et al. 9



As another example of the code generated by the CML-

DEVS compiler, Figure 13 lists the result of compiling the

TrafficLights model shown in Figure 12 to the

PowerDEVS input language (in the Appendix, Figure 14

lists the result of compiling the same model to DEVS-

Suite). As Figure 13 shows, the code is clean, well-

indented and structured, and strictly follows the conven-

tions set forth by PowerDEVS (e.g., there is a function

called dint for the internal transition function, another

function dext for the external transition function, and so

on). Note the use of function findInSet, which is a

function implemented as part of the CML-DEVS frame-

work. Functions such as this are included in the library

auxFunc, which in turn is made available to the

PowerDEVS model. PowerDEVS users would have to

write their own set of manipulation functions if they

implemented the model without the CML-DEVS compiler.

Instead, by using the compiler, they can simply write

s infRG,RY ,GRg and let the compiler implement it. Last,

but not least, compare the simplicity, familiarity, and

cleanness of the CML-DEVS source code of Figure 12

with respect to the C++ code of Figure 13. For example,

in the former there are no elements such as casts and poin-

ters (i.e., programming, not modeling, concepts), which

are necessary in the latter. We argue that the model of

Figure 12 can be written by an engineer completely una-

ware of C++, which is not the case for the program of

Figure 13.

In our opinion, compilation times, the sizes of the

CML-DEVS models, and the corresponding PowerDEVS

and DEVS-Suites concrete models, plus Figures 12 and

13, clearly support claims (3) and (4) mentioned above.

We believe this evaluation shows that the whole

approach (i.e., the CML-DEVS specification language and

Figure 12. CML-DEVS source code for the TrafficLights
atomic model.

Figure 13. Result of compiling to PowerDEVS input language
(C++) the TrafficLights model of Figure 12.

10 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



its multi-target compiler) is feasible and has several

advantages over existing technology.

5. Integrating CML-DEVS within existing
simulators

Mainstream DEVS simulators usually feature powerful

GUIs that allow users to easily compose large models from

existing ones. However, as we pointed out, atomic models

have to be written in general-purpose programming lan-

guages. For this task, DEVS simulators either provide a

programming editor or users can use the editor of their

choice. Once the new atomic model is written, it can be

used as a component of larger models by a simple gesture

of the GUI.

The CML-DEVS compiler can be integrated into the

PowerDEVS and DEVS-Suite environments. If the appro-

priate code generators are developed (Section 3.1), the

compiler could in principle be integrated into DEVS-based

systems such as DEVS-C++,2 DEVSim++,3 CD++,4

JDEVS,6 and LSIS-DME.8 Some of these systems are

complex, powerful M&S environments. For example,

PowerDEVS features a rich GUI interface and a large

model library, allowing users to easily compose models.

As another example, JDEVS6 integrates five modules: a

simulation kernel, a GUI interface for coupled models, a

models library, a connection to a GIS, and a cellular simu-

lation panel. The integration of M&S components into

existing systems has a long tradition in the DEVS

community.

Therefore, we propose to integrate the CML-DEVS

compiler into existing DEVS simulators. In the first place,

the corresponding code generator has to be implemented.

Once the code generator is available, the compiler can be

integrated into the DEVS simulator system as follows:

1. Use the editor provided by your DEVS simulator

to write CML-DEVS code for the new atomic

models. Ideally, a CML-DEVS editor, such as a

formula editor, can also be easily integrated.

2. Compile each CML-DEVS model into the input

language of your simulator. Here, the editor can

call the CML-DEVS compiler.

3. Save the compiled model as any other atomic

model of the simulator. CML-DEVS compiled

models are indistinguishable from atomic models

developed by other means.

4. Now users can couple compiled CML-DEVS mod-

els with other models as is normally done in your

simulator (e.g., by using exactly the same GUI

gesture).

In this way, simulators’ users will build their DEVS

models as usual up until the moment they need to write a

new atomic model. At this point the simulator environ-

ment can call the CML-DEVS editor, allowing users to

write more abstract, mathematics-oriented models that will

be transparently coupled in larger models. Furthermore, if

users want to try out these atomic models on different

simulators they can simply take the CML-DEVS sources

to the environment of the new simulator (optionally they

can compile the CML-DEVS models and export the object

code). From this point, coupling these models proceeds as

usual in the new simulator.

6. Related work

As far as we know, there is no approach such as the CML-

DEVS multi-target compiler for the automatic generation

of atomic DEVS models. However, there are some works

that in one way or another are related to this approach. We

will briefly comment on them in this section.

CML-DEVS has some relation with the standardization

effort carried out by the DEVS community.25 One of the

standardization areas identified by this group is model rep-

resentation.26–27 Notations such as CML-DEVS could be

used for model representation as they are independent of

simulators. DEVSpecL, developed by Hong and Kim,28

which somewhat inspired CML-DEVS, could also be used

as an abstract model representation. The relation between

CML-DEVS and DEVSpecL was commented on by

Hollmann et al.9 Mittal and Douglass29 present a domain-

specific language based on Finite Deterministic DEVS,

which, with some limitations, can also be used to write

abstract DEVS models. These last two proposals would

allow automatic code generation in order to get executable

DEVS code in different DEVS implementations, but

apparently they do not face this problem. Several works

propose XML as a language to describe DEVS mod-

els.27,30–32 One of the reasons is that XML is platform-

independent and thus is sometimes regarded as abstract.

We believe XML bears no relation to the notion of the

abstract model as seen in the CML-DEVS context (i.e.,

the conceptual distance with respect to the language of

mathematics and formal logic). XML could, indeed, be

useful to communicate and share models among comput-

ers, systems, and tools.

CML-DEVS is inspired by formal notations used in

software engineering such as Z,10 B,11 and TLA+.12 For

example, the semantics of DEVS can be formalized in

TLA+.33 Engineering and scientific software tend to have

many errors that turn decision-making based on them

risky.34–36 Researchers and engineers use software that has

not been formally or even extensively verified by

experts.37 Some errors are introduced due to development

processes based on informal descriptions. In this sense, the

CML-DEVS approach is an attempt to formalize the pro-

cess of developing a concrete simulation model.

Cristiá et al. 11



Model-driven engineering (MDE) and model-driven

development (MDD) attempt to translate abstract models

into more concrete models by means of model transforma-

tions. Once the initial model and all the model transforma-

tions are given, the final model can be automatically

generated.38 CML-DEVS and its compiler can be seen in

terms of MDD: CML-DEVS would be the modeling lan-

guage used to describe an abstract model and the CML-

DEVS compiler would be a model transformation. On the

other hand, the DEVS community has attempted to adopt

concepts and techniques from MDE and MDD, in particu-

lar there are efforts toward defining model transforma-

tions.39–45 In these approaches, different modeling or

meta-modeling languages are proposed to describe DEVS

models in such a way that they can be automatically trans-

formed by the corresponding model transformations. None

of these modeling languages describes atomic DEVS mod-

els using only mathematical or logical concepts. The mod-

eling and meta-modeling languages proposed within the

DEVS community, instead, are based on general object-

oriented technologies and notations, notably UML, XML,

OCL, etc. Although some of the model transformations

proposed in the works cited above are automatic, some of

them still require writing code in some general-purpose

programming language. In this way, we think that our

work provides a concrete implementation of a modeling

language and a model transformation, although not

inspired by MDE or MDD concepts.

7. Concluding remarks

We have presented the main features and properties of a

multi-target compiler for CML-DEVS specifications. We

have shown that CML-DEVS specifications are quite close

to the way engineers would use mathematics to write their

atomic DEVS models. Then we have shown that these

specifications can be compiled into the input language of

PowerDEVS and DEVS-Suite, which are mainstream

DEVS simulators. We have also provided evidence that

the code-generation phase of the CML-DEVS compiler

can be easily reimplemented to generate code for other

DEVS concrete simulators. Indeed, currently, code genera-

tors for PowerDEVS and DEVS-Suite are about 10% of

the total compiler code, which makes it evident that code

generation is relatively easy. But it is even more important

that plugging in a new code generator is favored by the

design of the compiler as it is based on well-known com-

piler designs. In fact, plugging in a new code generator

would require no code modification, only new code. A

multi-target compiler would enable the possibility of eas-

ily simulating the same atomic model on an array of con-

crete simulators by simply recompiling the CML-DEVS

specification.

Having an abstract, mathematics-oriented specification

language for DEVS models and a compiler that automati-

cally produces concrete models would make the task of

M&S much easier, more productive, and less error-prone.

In effect, from the conception of the idea of a DEVS model

to its implementation in the input language of major con-

crete simulators, either the engineer has to learn a pro-

gramming language or to ask a programmer to implement

his or her models. In either case, the initial model is read

and interpreted by different persons over a lengthy time

period. These multiple readings might introduce errors in

the final model with respect to the initial, abstract model.

Furthermore, if engineers want to see how the model

behaves (in terms of performance, for instance) on differ-

ent simulators, they need to implement it over and over

again, in which case more errors can be introduced.

Leaving errors to one side, productivity would be increased

if the same CML-DEVS specification can be automatically

implemented for different simulators. Moreover, engineers

would not need to learn to program nor to rely on a pro-

grammer to try out their models. Put in another way, how

much time and effort would be needed for, say, an electric

engineer to learn C++ in such a way as to be able to pro-

duce the code shown in Figure 13? Conversely, how much

time and effort would (s)he need to learn CML-DEVS,

provided (s)he already knew DEVS, in such a way as to be

able to produce the code of Figure 12? What is the core

business of an electric engineer – to program or to write

mathematical models?

Having a multi-target compiler opens the door to, at

least, two important aspects: (1) the compiler can be opti-

mized by experts in such a way as to produce the best pos-

sible code; and (2) once the compiler is proved correct,

model translation stops being a source of errors and

problems.

Appendix 1

Figure 14 lists the Java code resulting from compiling the

traffic light model of Figure 12 with the CML-DEVS com-

piler after choosing Java as the target language. This Java

program is an atomic DEVS model of the DEVS-Suite

simulator. The code has been edited to make it fit into a

single page. Compare the length and complexity of the

Java code of Figure 14 with respect to the CML-DEVS

code of Figure 12.

Table 2 gives a brief informal description of the models

used in the empirical evaluation. These descriptions are

taken directly from the authors.

Figures 15–17 depict UML class diagrams of some of

the design patterns used to implement the CML-DEVS

compiler. Due to space reasons, some elements in these

class diagrams are omitted.

12 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



Figure 14. Result of compiling the traffic lights model to DEVS-Suite input language.

Cristiá et al. 13



Figure 15. CMLDEVSVisitor is the head class of an instance of the Visitor design pattern. These classes visit objects in Figure 16.

14 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



Figure 16. CMLDEVSData is the head class of an instance of the Composite design pattern. These classes are visited by classes in
Figure 15.

Cristiá et al. 15



Target Language Factory

Figure 17. The AbstractFactory design pattern is used to create target-language-dependent components.

16 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



Funding

This research was partially funded by CONICET under a post-

doctoral grant and by ANPCyT under PICT 2014-2200.

Notes

1. That is, an interface or a class parametrized by a type.

2. www.cifasis-conicet.gov.ar/hollmann/projects/CML-DEVS

References

1. Zeigler BP, Kim TG and Praehofer H. Theory of modeling

and simulation. Orlando, FL: Academic Press, 2000.

2. Cho HJ and Cho YK. DEVS-C++ reference guide. Tucson,

AZ: University of Arizona, 1997.

3. Kim TG. DEVSim++ user’s manual. C++ based simulation

with hierarchical modular DEVS Models. Daejeon: Korean

Advanced Institute of Science and Technology 1994.

4. Wainer GA. CD++: a toolkit to develop DEVS models. Softw

Pract Exper 2002; 32(13): 1261–1306.

5. Bergero F and Kofman E. PowerDEVS: a tool for hybrid sys-

tem modeling and real-time simulation. Simulation 2011;

87(1–2): 113–132.

6. Filippi J and Bisgambiglia P. JDEVS: an implementation of

a DEVS based formal framework for environmental model-

ling. Environ Modell Software 2004; 19(3): 261–274.

7. Kim S, Sarjoughian HS and Elamvazhuthi V. DEVS-suite: a

simulator supporting visual experimentation design and

behavior monitoring. In: Wainer GA, Shaffer CA, McGraw

RM, et al. (eds), Proceedings of the 2009 spring simulation

multiconference, SpringSim 2009, San Diego, March 22–27,

2009. New York: SCS/ACM, 2009.

8. Hamri MEA and Zacharewicz G. LSIS-DME: an environ-

ment for modeling and simulation of DEVS specifications.

In: AIS-CMS international modeling and simulation multi-

conference, Buenos Aires, Argentina, 8–12 February 2007.

pp.55–60. San Diego, CA: The Society for Modeling &

Simulation International.

9. Hollmann DA, Cristiá M and Frydman C. CML-DEVS: a

specification language for DEVS conceptual models. Simul

Modell Pract Theory 2015; 57: 100–117.

10. Spivey JM. The Z notation: a reference manual. Hemel

Hempstead: Prentice Hall, 1992.

11. Abrial JR. The B-book: assigning programs to meanings.

New York, NY: Cambridge University Press, 1996.

12. Lamport L. Specifying systems: The TLA+ language and

tools for hardware and software engineers. Boston, MA:

Addison-Wesley Longman Publishing, 2002.

Table 2. Brief description of the atomic DEVS models used for the evaluation of the CML-DEVS compiler.

Model Description

ACCtrlUnit ACTempProp
CoolUnit

These are three atomic models of an air-conditioning system with cooling and heating units.
The user can set the desired temperature while the system works to maintain this
temperature in the room.14

ATMVerif This is one atomic model part of a simple ATM machine. The ATM is only capable of
dispensing money to a customer. ATMVerif verifies that the required amount is covered in the
balance.16

BilliardBall This models the movement of a billiard ball on a two-dimensional pool table. The ball is struck
by a cue (external event), it heads off in a direction at constant speed determined by the
impulsive force imparted to it by the strike. Hitting the side of the table is considered as
another input that sets the ball going in a well-defined direction.13

BinaryCounter In this model, the system outputs a ‘‘one’’ for every two ‘‘one’’s that it receives. To do this it
maintains a count of the ‘‘one’’s it has received so far. When it receives a ‘‘one’’ that makes its
count even, it goes into a transitory phase, ‘‘active,’’ to generate the output.13

Constant This is the simplest of our models since it just outputs once a given constant and then remains
idle forever (PowerDEVS model library).

ElevatorDoor ElevatorEngine These two models are part of a coupled model describing an elevator in a one-elevator
building. ElevatorDoor describes the behavior of the elevator’s door, and ElevatorEngines
describes the behavior of its engine.17

Generator Describes a simple proactive system. It has no inputs but when started in phase ‘‘active,’’ it
generates outputs with a specific period.13

HInt Models a hysteretic quantized integrator which is used in continuous system simulation.18

TrafficLights This atomic model describes the behavior of two traffic lights in an intersection. These traffic
lights have two modes of operation: autonomous, in which the lights behave as expected; and
manual, in which the lights blink yellow. There is some external mechanism that switches
between modes by sending two events.15

Server This model describes a simple processing server. The server receives jobs to be executed
during a user-defined period of time. The server keeps a queue of pending jobs.19

Switch A switch is modeled as a system with pairs of input and output ports. When the switch is in
the standard position, jobs arriving on port ‘‘in’’ are sent out on port ‘‘out,’’ and similarly for
ports ‘‘in1’’ and ‘‘out1.’’ When the switch is in its other setting, the input-to-output links are
reversed.13

Cristiá et al. 17



13. Zeigler BP and Sarjoughian HS. Introduction to DEVS mod-

eling and simulation with Java: developing component-

based simulation models, 2003. Tempe, AZ: Arizona Center

of Integrative Modeling and Simulation.

14. Fal L and Vasconcelos G. Simulation of discrete event sys-

tems: course assignment 1. wainer/wbgraf/samples/

airconditionPARALLEL.zip (2004, accessed 20 March

2018).

15. Vangheluwe H. The Discrete EVent System specification

(DEVS) formalism. http://msdl.cs.mcgill.ca/people/hv/teach-

ing/MoSIS/notes.DEVS.pdf (accessed 20 March 2018).

16. Saadawi H. SYSC-5807: Methodological aspects of model-

ing and simulation – course assignment 1. www.sce.carle-

ton.ca/faculty/wainer/wbgraf/samples/atm.zip (accessed 20

March 2018).

17. Herrero G. Simulation of discrete event systems: course

assignment 1. www.sce.carleton.ca/faculty/wainer/wbgraf/

samples/Elevator.zip (accessed 20 March 2018).

18. Cellier FE and Kofman E. Continuous system simulation.

Secaucus, NJ: Springer, 2006.

19. Wainer G. SYSC-5104: Methodologies for discrete-event

modelling and simulation. www.sce.carleton.ca/courses/

sysc-5104/materials/private/Lecture5.ppt (accessed 20

March 2018).

20. Gu F. CSC 754: System simulation topics. www.cs.csi.cu-

ny.edu/_gu/teaching/courses/csc754/csc754.html (20 March

2018).

21. Strachey C. Fundamental concepts in programming lan-

guages. Higher-Order and Symbolic Comput 2000; 13(1/2):

11–49 (accessed 20 March 2018).

22. Parr T. The definitive ANTLR 4 reference. Frisco, TX:

Pragmatic Programmers, LLC, 2013.

23. Gamma E, Helm R, Johnson R, et al. Design patterns: ele-

ments of reusable object-oriented software. Boston, MA:

Addison-Wesley Longman Publishing, 1995.

24. Parr TJ. Enforcing strict model-view separation in template

engines. In: Feldman SI, Uretsky M, Najork M, et al. (eds)

Proceedings of the 13th international conference on World

Wide Web, WWW 2004, New York, USA, May 17–20, 2004,

pp.224–233. New York: ACM, 2004.

25. DEVS Standardization Group. http://cell-devs.sce.carle-

ton.ca/devsgroup (accessed 20 March 2018).

26. Wainer GA, Al-Zoubi, K Hill DRC, et al. Discrete-event

modeling and simulation: theory and applications. London:

Taylor & Francis, 2010.

27. Touraille L, Traoré MK and Hill DRC. A mark-up language

for the storage, retrieval, sharing and interoperability of

DEVS models. In: Wainer GA, Shaffer CA, McGraw RM, et

al. (eds) Proceedings of the 2009 spring simulation multi-

conference, SpringSim 2009, San Diego, USA, March 22–

27, 2009. New York: SCS/ACM, 2009.

28. Hong KJ and Kim TG. DEVSpecL: DEVS specification lan-

guage for modeling, simulation and analysis of discrete event

systems. Inf Softw Technol 2006; 48(4): 221–234.

29. Mittal S and Douglass SA. DEVSML 2.0: the language and

the stack. In: Wainer GA and Mosterman PJ (eds) 2012 spring

simulation multiconference, SpringSim ‘12, Orlando, USA,

March 26–29, 2012, p.17. New York: SCS/ACM; 2012.

30. Fishwick PA. XML-based modeling and simulation: using

XML for simulation modeling. In: Snowdon JL and Charnes

JM (eds) Proceedings of the 34th winter simulation confer-

ence: exploring new frontiers, San Diego, USA, December

8–11, 2002, pp.616–622. Piscataway, NJ: IEEE.

31. Röhl M and Uhrmacher AM. Flexible integration of XML

into modeling and simulation systems. In: Proceedings of

the 37th winter simulation conference, Orlando, USA,

December4–7, 2005, pp.1813–1820. Piscataway, NJ: IEEE.

32. Sarjoughian HS and Chen Y. Standardizing DEVS models:

an endogenous standpoint. In: Wainer GA, Traoré MK,

Heckel R, et al. (eds) 2011 spring simulation multi-confer-

ence, SpringSim ‘11, Boston, USA, April 3–7, 2011, Volume

4, pp.266–273. New York: SCS/ACM, 2011.

33. Cristiá M. Formalizing the semantics of modular DEVS

models with temporal logic. In: 7ème Conférence on

Modélisation, Optimisation et Simulation des Systèmes

MOSIM 08, Paris, 31 March–2 April 2008. Paris: Supméca-

LISMMA, ENSTIB and CRAN.

34. Hatton L and Roberts A. How accurate is scientific software?

IEEE Trans Software Eng 1994; 20(10): 785–797.

35. Hatton L. The chimera of software quality. IEEE Computer

2007; 40(8): 102–104.

36. Post DE and Votta LG. Computational science demands a

new paradigm. Phys Today 2005; 58(1): 35–41.

37. Joppa LN, McInerny G, Harper R, et al. Troubling trends in

scientific software use. Science 2013; 340(6134): 814–815.

38. Brambilla M, Cabot J and Wimmer M. Model-driven soft-

ware engineering in practice: synthesis lectures on software

engineering. Williston, VT: Morgan & Claypool Publishers,

2012.

39. Vangheluwe H. Foundations of modelling and simulation of

complex systems. ECEASST 2008; 10.

40. Kühne T, Mezei G, Syriani E, et al. Systematic transforma-

tion development. ECEASST 2009; 21.

41. Cxetinkaya D, Verbraeck A and Seck MD. Model continuity

in discrete event simulation: a framework for model-driven

development of simulation models. ACM Trans Model

Comput Simul 2015; 25(3): 17.

42. Cetinkaya D, Verbraeck A and Seck MD. Applying a model

driven approach to component based modeling and simula-

tion. In: Proceedings of the 2010 winter simulation confer-

ence, WSC 2010, Baltimore, USA, December 5–8, 2010,

pp.546–553. WSC, 2010. Piscataway, NJ: IEEE.

43. Cetinkaya D, Verbraeck A and Seck MD. A metamodel and

a DEVS implementation for component based hierarchical

simulation modeling. In: McGraw RM, Imsand ES and

Chinni MJ (eds) Proceedings of the 2010 spring simulation

multiconference, SpringSim 2010, Orlando, USA, April 11–

15, 2010, p.170. New York: SCS/ACM, 2010.

44. Cetinkaya D and Verbraeck A. Metamodeling and model

transformations in modeling and simulation. In: Jain S Jr

RRC, Himmelspach J, White KP, et al. (eds) Winter simula-

tion conference 2011, WSC’11, Phoenix, USA, December

11–14, 2011, pp. 3048–3058. Piscataway, NJ: IEEE.

45. Touraille L. Application of model-driven engineering and

metaprogramming to DEVS modeling & simulation.

Doctoral dissertation, Université d’Auvergne, France, 2012.

18 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



46. Wainer GA, Shaffer CA, McGraw RM, et al. (eds).

Proceedings of the 2009 spring simulation multiconference,

SpringSim 2009, San Diego, CA, March 22–27, 2009. New

York: SCS/ACM, 2009.

Author biographies

Maximiliano Cristiá is a professor of software

Engineering at Universidad Nacional de Rosario

(Argentina). He is also head of the software Engineering

research group at CIFASIS (Argentina) and associated

researcher at LIS (Marseilles, France). He received an

MSc in mathematics in 1993 from Universidad Nacional

de Rosario; an MSc in computer science in 2002 from

Universidad de la República (Uruguay); and a PhD from

Aix-Marseille Université (France) in 2012. His research

interests include: modeling and simulation, formal meth-

ods, formal verification, and software design.

Diego Hollmann received his MSc and PhD in com-

puter science in 2009 and 2015, respectively, both from

Universidad Nacional de Rosario (Argentina). He cur-

rently works as an external contractor for iRobot Corp., a

world-class, Massachusetts-based robotics company.

Claudia Frydman is a researcher at Laboratoire

d’Informatique et Systèmes and professor of computer sci-

ence at Aix-Marseille Université (France). She holds an

MSc in computing from Universidad de Buenos Aires

(Argentina), a PhD from Université de Montpellier, and in

1998 she got the Habilitation á diriger des Recherches. Dr.

Frydman has supervised many PhD students and has led a

number of projects with high-level industrial partners.

Cristiá et al. 19




