Applications

Simulation

Simulation: Transactions of the Society for Modeling and Simulation International I-26 © The Author(s) 2018 DOI: 10.1177/0037549718757039 journals.sagepub.com/home/sim

A comparative evaluation of the effectiveness of virtual reality, 3D visualization and 2D visual interactive simulation: an exploratory meta-analysis

Ikpe Justice Akpan and Murali Shanker

Abstract

Research on the application of 3D visualization and virtual reality (VR) in discrete-event simulation (DES) has received increased attention in the past two decades. The increasing popularity of the 3D display in DES is mainly due to superior display capabilities and the associated benefits that it offers. However, the 2D display also continues to enjoy active use to date, thus provoking some fierce debates questioning the need for the 3D and VR if the 2D interface suffices. Several studies comparing the effectiveness of the different visualization methods also produce different conclusions. This paper undertakes a meta-analysis of the different positions and synthesizes the findings from 162 studies on the impacts of the 2D display versus 3D/VR on user performance on various DES tasks. The results highlight four key findings. First, the perception that the 2D display is more effective for model development is misleading as 3D/VR offers overall better performance and quality of models. Second, 3D/VR enables more effective performance than 2D display for model verification and validation. Third, 3D/VR decreases the time taken for verification, validation, experimentation, and analysis of results, but can increase model development time. Finally, the latent variables such as the application domains and nature of the problems tackled have no direct or indirect influence on the efficacy of the 3D display/VR versus 2D on DES task performance.

Keywords

3D visualization, discrete-event simulation, virtual reality, visual interactive simulation

I. Introduction

Visualization in discrete-event simulation (DES) has continued to evolve since the introduction of visual interactive simulation (VIS) and visual interactive modeling (VIM) in the early 1980s.^{1,2} As predicted by Hurrion³ and Jain,⁴ virtual reality (VR) and the three-dimensional (3D) display are the most recent developments in the advancement of DES practice as a decision-support system.^{5,6} This 3D/VR has enjoyed a steady growth in popularity and adoption by DES researchers and practitioners in academia and industry in the past 17 years.² In DES, the transformation in the nature and sophistication of the visual display from the VIS/VIM based on two-dimensional (2D) graphics to 3D/ VR results from the tremendous advances in computer hardware and software,⁷ and the adoption of these technologies in other fields. Some of the popular areas of application of 3D/VR include computer games,⁸ architecture,⁹ and archaeology.¹⁰ Similarly, developers of computer models and simulation professionals, and users of these systems to aid business decisions, tend to prefer 3D visualization and VR,^{11,12} a trend that has continued since the 1980s when the 3D maintenance aids, computer modeling, and design tools such as "Crew Chief," "Combiman," "Cyberman," etc. were preferred as good fit for the tasks at hand.¹³ The proponents of 3D/VR espouse the view that the higher the dimension of the visual display, the better the clarity and understanding of the model.^{6,11}

Department of Management & Information Systems, Kent State University, USA

Corresponding author:

Ikpe Justice Akpan, Department of Management Information Systems, Kent State University, 330, University Drive NE, New Philadelphia, OH 44663, USA. Email: iakpan@kent.edu

Despite the popularity of VR/3D visualization, traditional VIS/VIM continues to enjoy active use.6,11 Unlike during the advent of VIS/VIM, which quickly replaced the non-visual interface,¹⁴ the same is not the case with 3D/ VR. Some model developers sometimes use both versions (2D and 3D/VR) concurrently, indicating that both display techniques still offer some notable benefits. Rohrer¹⁵ found that visualization generally (2D and 3D displays) improves people's understanding of simulation, although 3D visualization possesses the vital attribute of realism more than does 2D. Practitioners in academia and industry also have different opinions about the realized benefits of 3D visualization and VR compared to traditional VIS/VIM.² For example, some authors posit that the 2D display offers better performance in model development^{16,17} and knowledge elicitation for decision-making^{18,19} compared to 3D/VR visualization, while others^{11,20,21} offer a positive and glowing appraisal in favor of 3D visualization and VR for model verification and validation tasks. However, simulation software vendors continue to create both 3D/VR and 2D versions (e.g., WITNESS/WITNESSVR,^{22,12} AUTOMOD/ AUTOMOD 3D,23 COSMO WORLD/COSMO WORLD 3D.¹¹ A few simulation softwares offer the 3D/VR version alone (e.g., FLEXSIM²⁴).

The 2D version "uses icons and display techniques that confine its scope to a mostly flat 2D surface," while 3D visualization "contains real binocular stereographic depth effects."¹¹ In the broader computer science field, the term "VR" applies in different contexts and often refers to graphics and equipment that provide a sense of immersion (e.g., by using specialized equipment, such as a head-mounted display to interact with the virtual environment⁷). In DES the 3D display is usually referred to as VR by simulation vendors and users.^{12,25} Most DES software provides a 3D display rather than immersive VR, although this will likely change in the future as the use of VR equipment becomes more affordable and popular in DES practice^{26–29}. This paper uses the terms "3D" and "VR" interchangeably.

The rest of the paper is organized as follows: Section 2 examines the existing literature, explains the scope of this research and presents the theoretical framework. Section 3 discusses the research methodology. Section 4 presents the results, synthesizes the conclusions from the literature, and discusses the realized value of 2D display vs. 3D/VR in DES. Section 5 discusses the main findings. Section 6 concludes the paper and shows areas for future work.

2. Theoretical background

2.1 Existing literature surveys on visualization techniques in DES

Information visualization as a multidisciplinary field is an active area of research and practice, both in mainstream computer science and in simulation applications. In separate articles published in 1987 and 1991, Bell and colleagues^{30,31} analyzed the various developments in VIM/ VIS for the period covering the 1980s and early 1990s. Similarly, Otamendi and colleagues³² reviewed the general advances in DES and the visual display for the remaining parts of the 1990s, with a brief mention of 3D/VR as the current trend in the early 2000s. This paper, therefore, offers the first comprehensive review since the introduction of 3D/VR in DES, covering the period 2000–2016.

In the past 17 years, the adoption of 3D and VR as a DES modeling methodology by practitioners and researchers in the industry and academia has grown tremendously.^{2,11,27} Almost all simulation software vendors now implement 3D/VR animation,¹⁷ while actively maintaining the 2D display. Some journals have also devoted special editions to addressing the impacts of 3D visualization in DES (e.g., Simulation $77(3-4)^{33}$). However, most of these studies led to different conclusions and caused endless debates, hence the need to synthesize these views. This paper fills this gap through a comprehensive and comparative review evaluating the performance effectiveness of 2D vs. 3D/VR display on the various DES tasks in the context of cognitive fit theory,^{12,34-37} as explained in Section 2.2. The results of this study will be beneficial to simulation practitioners and researchers in academia and industry, and any simulation project team attempting to determine the model development tasks and when to use either 3D/VR or 2D displays, or both.

2.2 Theoretical framework

This review utilizes cognitive fit theory to guide the evaluation of the effectiveness of 2D display versus 3D/VR on the performance of various DES tasks and activities. The theory examines the fit of a chosen technology to specific tasks.^{35,38} The significance of this theory is that it provides the guidance to choosing appropriate tools or methods that match specific tasks and activities in order to enhance performance.³⁵ Further details about this theory are available elsewhere.³⁵

Cognitive theory is appropriate for this study for several reasons. First, any DES activity revolves around the performance of several tasks and activities, ranging from problem formulation through verification and validation, and the presentation and implementation of the results.^{11,39} Second, this paper evaluates visualization techniques in DES (2D display, 3D visualization/VR), and examines the techniques that suit the specific tasks to enhance performance.⁴⁰ For example, while 2D display or 3D/VR can improve the performance of some DES functions (e.g., model validation and verification^{6,11,41}), it may not be very useful for other tasks, (e.g., problem definition¹¹).

Previous studies on usability engineering and information visualization employed cognitive fit theory successfully. Vessey³⁵ surveyed the literature on "graph vs. tables" and concluded that the cognitive fit between the task and its representation affect performance. Dennis and Carte⁴² extended the application of cognitive fit theory to user performance on geographically based tasks, concluding that the use of geographical information systems is more effective when using map-based presentations versus tabular data. Wickens and Carswell⁴³ emphasized the importance of "display proximity," and the extent to which the display matches a given task and the visualization format (e.g., 2D versus 3D). Further, Vessev³⁵ and Dennis and Carte⁴² identified several forms of tasks and presentation styles including "spatial versus symbolic," and explained the effects on performance. Thus, the nature of the activities informs the display choices, which in turn affects performance effectiveness and efficiency.⁴⁴ Spatial tasks involve the acquisition of information or comparing alternatives for decision-making, while symbolic functions utilize numeric data.35,42

While cognitive fit theory originated from different disciplines such as psychology and ergonomics,^{43,45} it is also applicable to the study of information visualization techniques. For example, in an experimental study, Akpan and Brooks⁶ examined the learning style of users and the possible effects on performance using 2D versus 3D for model validation and verification, and decision-making tasks. The study highlighted that both the visual and non-visual learners who carried out the tasks on the 3D display performed significantly better than those who used 2D. Dennis and Carte⁴² present the two forms of tasks as mutually exclusive, while Akpan and Brooks⁶ show circumstances in which the spatial and symbolic values can complement each other in the task performance.

2.3 Research questions (RQs)

The use of both 3D and 2D displays to perform the same or different DES tasks and activities has raised several questions. First, what DES tasks or activities can be performed better using 3D or 2D display? Second, why use 3D modeling and simulation platforms/tools if 2D displays can serve the purpose and vice versa? Table 1 presents the five hypotheses formulated to answer these and several other questions. The first question (RQ1) seeks to determine the effectiveness of 3D vs. 2D displays on the performance of eight primary DES tasks (RQ1(i) to RQ1(viii) in Table 1). The second research question (RQ2) examines another major issue of contention about the comparative impacts of 3D vs. 2D on time taken to complete the modeling and simulation tasks. The third and fourth questions (RQ3 and RQ4) examine the comparative impacts of 2D vs. 3D/VR on problem formulation and conceptual modeling. Finally, RQ5 examines the possible co-effects of any latent variables and the type of display (3D/VR vs. 2D) on task performance. These latent variables are explained in Section 2.4.

2.4 Latent variables

The fifth research question (RQ5) examines any possible influence of some latent variables on the conclusions reached by the reviewed articles. The latent variables examined include:

- Problems tackled: Does the nature of the problem tackled influence the outcomes of the studies conducted by the reviewed articles?
- Application domains: Computer simulation and modeling is a multidisciplinary subject that guides decision-making in diverse fields of application, e.g., healthcare, manufacturing or aerospace.
- Research methods: The purpose is to identify any possible effects of the approach adopted by the reviewed articles on the outcomes, such as case study, survey, or scientific experiments.
- Period of study: In this era of rapid transformation in technology, the graphical displays of simulation elements and components improved over time. This study intends to observe any possible effects of the time dimension on the results, given an extended period covered in this study (2000–2016).

3. Research methodology

This literature review is structured according to the guidelines offered by the "Preferred Reporting Items for Systematic Reviews and Meta-Analyses – PRISMA."⁴⁶ PRISMA defines the steps and the processes in identifying, interpreting, and evaluating articles' data; Moher and colleagues⁴⁶ offer further details. This paper follows the PRISMA guidelines⁴⁶ in collecting the data that help to answer the RQs that were identified in Section 2.3.

3.1 Literature search, screening, and selection criteria

The literature search covered the period 2000–2016. The multidisciplinary nature and broad applications of DES and information visualization means articles in the field are published in several journals over various disciplines. Figure 1 shows the filtering, screening, and selection process based on the PRISMA guidelines.⁴⁶ Employing the search, filtering, and querying functionalities of Endnotes, duplicate entries were removed, while a further filtering process reduced the initially retrieved articles from 1929 to 453, using eligibility screening.

The selection criteria were as follows. Any selected articles must: address the effects of information visualization in 3D/VR or 2D displays; evaluate the impacts of visual display in DES (2D, 3D/VR, + DES), which helped to answer the RQs listed in Table 1; must be a peer-reviewed article published in journals or reputable conference

RQI	Does 3D visualization/VR of simulation tasks?	or 2D display offer more effect	tive performance on the following m	odel development and
	i. Model development	ii. Experimentation	iii. Model run	iv. Model verification
	v. Model validation	vi. Analysis of results	vii. Presentation of results	vii. Implementation
RQ2	Does it take longer to perf	form the DES tasks using 3D v	isualization compared to 2D display	?
	i. Model development	ii. Verification	iii. Validation	iv. Analysis of results
RQ3	i. Does 3D visualization im	prove problem definition perfe	ormance more than 2D display?	
	ii. Does it take less time to	undertake problem definition	with 3D visualization compared to 2	2D display?
RQ4	Does 3D visualization impr	rove conceptual modeling perf	ormance more than 2D display?	. ,
RQ5	What are the impacts of o	ther latent variables (application	on domains, research methods, prob	lems tackled) on
-	performance other than th	e two types of display (3D vs.	2D)?	,

Figure 1. Screening and selection process for the articles based on PRISMA guidelines.⁴⁶

proceedings between 2000 and 2016 (print/online sources); and the articles must be written in English or have been translated into English. Articles that examined the general benefits of visualization in DES without specifying the display types (e.g., Jain⁷) were removed.

The filtered vs. selected papers follow a similar trend throughout the 17-year period, except in 2012 and 2016, when there was a surge in publications on 3D and VR research in DES. This trend highlights the importance of visualization in DES, and a sustained development in the

display techniques as a way of advancing DES practices since the early 2000s.

Out of the 453 publications screened, 84 papers (about 19%) met the selection criteria as stated in Section 3.2, while 369 papers were discarded.

4. Research data, results, and analyses 4.1 The research data

The data used for the analysis were extracted from the reviewed articles to help answer the RQs (RQ1–RQ5) listed in Table 1. The problems tackled by each reviewed publication and the DES tasks performed (e.g., model development, verification, validation, etc.) are listed in Table 2.

The reviewed papers employed one of the five research methods listed in Table 3, with more than 62% of the articles using the case study method, while over 30% utilized the experimental study approach. The remaining 8% of the reviewed papers used either the survey method or a combination of survey and case study or experiment and case study (Table 3). None of the selected publications used other research methodologies such as an interview method. The case study method involved either an implementation of a simulation solution or using the platform to model a system of interest in 3D/VR, 2D display, or both, and evaluating the impacts of visualization on some DES activities/ tasks (e.g., Kamsu-Foguem and colleagues⁹ and Kamat and Martinez²¹). Others used off-the-shelf simulation software to do so (e.g., Akpan and Brooks⁶; Runeson and Höst¹¹¹). Table 3 also presents the 24 different application domains in which the selected/reviewed publications tackled problems.

Table 4 shows the list of selected articles and the related publication outlets. Over 50% of the 84 selected papers appeared in 10 major journals and conference proceedings in the fields of information systems and information technology (IS/IT), operations research/management science (OR/MS), and decision sciences (DS) journals. Simulation and Automation in Construction had the highest count of seven each, or 8%, of the papers. Expert Systems with Applications and Simulation Modelling Practice & Theory each had six, or 7%, of the selected papers. Others are Decision Support Systems, Journal of Operations Research Society, ACM Transactions on Modeling & Computer Simulation, Winter Simulation conference proceedings, and MIS Quarterly with 3-4 articles each. Also, one article each came from Systems Analysis Modelling Simulation, Computers and Industrial Engineering, and 27 other journals in IS/IT, OR/MS, and the general computing fields. Civil engineering and construction had the highest number of articles in terms of the application domains.

The research data compares the effectiveness of 3D/VR vs. 2D display techniques on the performance of DES

tasks. On average, each paper investigated 2-3 DES tasks. For example, Akpan and Brooks⁶ and Kamat and Martinez⁷² examined the impacts of 2D and 3D/VR displays on model verification, validation, and credibility. All the papers included in the review contributed to the overall conclusions of this paper. However, some authors covered more DES tasks, e.g., Akpan and Brooks,¹¹ Dangelmaier et al.,⁵⁹ Petti et al.⁴⁹ Out of the 162 investigations by the 84 reviewed articles, the studies that evaluated the impacts of the 3D/VR and 2D display techniques on presentation had the highest number (32), followed by analysis of results (28). The DES activities with the fewest number of research articles were on problem definition (5), while the conceptual modeling and implementation of the simulation outcomes had 4 each (Table 3). It is not surprising that the studies on problem definition and conceptual modeling had fewer studies based on a common perception that visualization does not influence these DES tasks.^{2,11}

In the application domains, the 84 articles tackled problems in over 33 application areas, some of which includes aerospace, production, manufacturing, construction, and medical services operations. Others were road and air traffic controls, real estate services, and emergency and crisis management (Table 3). Some of the reviewed papers tackled problems in more than one application area. For example, Akpan and Brooks⁶ examined problems in the automotive industry and bank customer services operations. Table 3 shows the complete list.

4.2 Results and analyses

The objective of this review is to evaluate the efficacy of the visualization techniques (2D vs. 3D/VR) on the performance of DES tasks (as discussed in Section 2). The conclusions from the 84 reviewed articles and the investigations on 162 DES tasks showed three possible outcomes (3D/VR better, 2D better or same performance). We utilize the exploratory technique to analyze and synthesize the conclusions from the reviewed articles while comparing the efficacy of 3D/VR vs. 2D display in the performance of modeling and simulation tasks. The exploratory analysis technique also helps to probe further into the non-quantitative rationale for the preference of one visualization method over the other. Previous studies evaluating the visual interactive simulation^{11,112} adopted a similar approach for similar reasons.

4.3 RQ1: does 3D visualization enhance better performance on DES tasks than 2D display?

The answers to the first research question covers seven DES activities (RQ1(i) to RQ1(viii) in Table 1).

Akpan and Brooks ¹¹ Surveyed simulation practitioners X Brooks ¹¹ Surveyed simulation practitioners X Mueller-Wittig Virtual factory: improving et al. ⁴⁷ Virtual factory: improving electronics assembly processes X Roheer ¹⁵ Using visualization to improve the simulation processes of a manufacturing system X Huttabarat R-DES as a method to visualize the simulation processes of a manufacturing system X Fishwick et al. ⁵⁰ Shop floor facility layout design Atopan and Atopan and Atopan and Atom assembly and banking customer service X Al-Hussein et al. ⁵¹ Dower crane operations on construction sites X Whyte ⁵³ Construction management Waly and Thabet ²⁹ Provers management fegineering construction process planning and design Bruzzone et al. ⁵⁴ Process management construction sites Chan ⁵⁵ Process management for large-scale recail stores Process planning design Process planning design Dangelmaier et al. ⁵⁹ Problem formulation (2D vs. 3D) Automated manufacturing systems design Putomated manufacturing systems design Den and Huang ⁵⁷ Provess planning design Process planning design Putomated manufacturing systems design Putomated manufacturing systems design <th></th> <th>× × ×× ×</th> <th>×××</th> <th>× × × × ×</th> <th>× × × × × × ×</th> <th>×</th> <th>× ></th> <th>××</th> <th>×</th>		× × ×× ×	×××	× × × × ×	× × × × × × ×	×	× >	××	×
Brooks ¹¹ and users on diverse DES projectsMueller-Wittigand users on diverse DES projectsMueller-Wittigvirtual factory: improvinget al.**Virtual factory: improvingRohrer!sVirtual factory: improvingRohrer!sVirtual factory: improvingRohrer!sVirtual factory: improvingButabaratVirtual factory: of shop floor behaviorPetti et al.**Shop floor facility layout designAkpan andVR-DES as a method to visualize theShop floor facility and bankingAuto assembly and bankingBrooks*Diagnoses of inflammatory responseAlbertsSyndromeAlbertsDiagnoses of inflammatory responseWhyte ⁵³ Tower crane operations onConstruction managementFor large-scaleRuzzone et al.5 ⁶¹ Process mangement for large-scaleRussen ⁵⁶ Process planningBuzzone et al.5 ⁶¹ Process planningBurzone et al.5 ⁶¹ Problem formulation (2D vs. 3D)Choi et al.5 ⁶³ Problem formulation (2D vs. 3D)Dangelmaier etSimulated digital factoryal.5 ⁷³ Den Hunang ⁵⁷ Den Hengst et al. ⁶¹ Collaborative modeling: airportDorozhkin et al. ⁶¹ Collaborative modeling interactions		× ×× ×	×	× × ×	× × × × × ×	×	>	×	
Mueller-WittigVirtual factory: improving et al.47Rohrer ¹⁵ Using visualization to improve the simulation processes of a manufacturing systemHutabaratVR-DES as a method to visualize the simulation processes of a manufacturing systemHutabaratVR-DES as a method to visualize the complexity of shop floor behavior Shop floor facility layout design Aton assembly and banking customer serviceAlbertsShop floor facility layout design modeling methodology Auto assembly and banking customer serviceAlbertsShop floor facility layout design n Modeling methodology Auto assembly and banking customer serviceMbyte ⁵³ Construction management construction process planning and design Process management for large-scale retal storesModel et al.56Construction management for large-scale retal storesBuzzone et al.56Process management for large-scale retal storesDen And Huang ⁵⁷ Prolem formulation (2D vs. 3D) Automated manufacturing systems designDen Hengst et al.60Collaborative modeling: airport construction/operations		× ×× ×	×	× × ×	× × × × × ×	×	>	×	
et al. ¹⁷ , electronics assembly processes Rohrer ¹⁵ Using visualization to improve the simulation processes of a manufacturing system Hutabarat VR-DES as a method to visualize the complexity of shop floor behavior Shop floor second a station and design ductors and tesign Whyte ⁵³ Whyte ⁵³ Ower crane operations on custome et al. ⁵⁴ Whyte ⁵³ Tower crane operations on construction process planning and design floor stations on construction sites Whyte ⁵³ Construction management for large-scale retal stores Bruzzone et al. ⁵⁴ Process planning and design floor systems design Wor et al. ⁶⁰ Collaborative modeling: airport construction sites Den Hengst et al. ⁶⁰ Collaborative modeling: airport construction sites Den Hengst et al. ⁶¹ Collaborative modeling: airport construction sites		× ×× ×	×	× ×	× × × ×	×	>	×	
RohrerUsing visualization to improve the simulation processes of a manufacturing systemHutabaratVR-DES as a method to visualize the simulation processes of a manufacturing systemHutabaratVR-DES as a method to visualize the somp floor facility layout designPetti et al.48Nop floor facility layout designPishwick et al.50Modeling methodologyAkpan and Bucoks6Auto assembly and banking customer serviceAlbertsShop floor facility layout designAubartsNodeling methodologyAlbertsDiagnoses of inflammatory response syndromeAl-Hussein et al.51Tower crane operations on construction managementMyte53Construction management 		× ×× ×	×	××	× × × ×	×	>	×	
Hutabaratsimulation processes of a manufacturing systemHutabaratVR-DES as a method to visualize the tet al.48Petti et al.48VR-DES as a method to visualize the complexity of shop floor behavior Shop floor facility layout designPetti et al.48No-Bis of shop floor behavior Shop floor facility layout designAkpan and Berooks6Auto assembly and banking customer serviceAlbertsShop floor facility layout design Auto assembly and banking customer serviceAlbertsDiagnoses of inflammatory response et al.51Whyte53Tower crane operations on construction management for and dasignWhyte53Construction management construction process planning and design Process planning designPerces floor et al.58Process planning designDangelmaier et al.59Collaborative modeling: airport construction'operationsDorozhkin et al.61Collaborative modeling: airport construction'operations		×× ×	×	××	× × ×		<		
Hutabaratmanufacturing systemHutabaratwanufacturing systemEet al.48VR-DES as a method to visualize thePetti et al.49Nop floor facility layout designFishwick et al.50Shop floor facility layout designAkpan and Akpan and AlbertsAuto assembly and banking customer serviceBrooks6Auto assembly and banking customer serviceAlbertsShop floor facility layout designAkpan and AlbertsAuto assembly and banking customer serviceAlbertsDiagnoses of inflammatory response syndromeMyte53Construction management construction management for large-scaleWryte53Construction sites construction management planning and design Process planning designMaly and Huang57Process planning designDen Hengst et al.59Collaborative modeling: airport construction/operationsDorozhkin et al.69Collaborative modeling: airport construction/operations		×× ×	×	× ×	× × ×				
HutabaratVR-DES as a method to visualize the et al.48HutabaratVR-DES as a method to visualize the et al.40Petti et al.40Shop floor facility layout designPetti et al.40Shop floor facility layout designAkpan andComplexity of shop floor behaviorBrooksAuto assembly and banking customer serviceAlbertsDiagnoses of inflammatory response syndromeAlbertsDiagnoses of inflammatory response syndromeAl-Hussein et al.51Tower crane operations on construction managementMhyte ⁵³ Construction management construction istesWhyte ⁵³ Construction istes planning and designBruzzone et al.54Process management for large-scale retail storesChan ⁵⁵ Problem formulation (2D vs. 3D) dutomated manufacturing systems designDangelmaier et al.69Collaborative modeling: airport construction/operations		×× ×	×	× ×	× × ×				
et al. ⁴⁸ complexity of shop floor behavior Fishwick et al. ⁵⁰ Shop floor facility layout design Akpan and Shop floor facility layout design Akpan and Customer service Brooks ⁶ customer service Alberts Diagnoses of inflammatory response et al. ⁵¹ Tower crane operations on customer service Al-Hussein et al. ⁵² Tower crane operations on custruction management Whyte ⁵³ Construction management Whyte ⁵³ Construction process planning and design Bruzzone et al. ⁵⁴ Process management for large-scale retail stores Chan ⁵⁵ Process planning design Dangelmaier et al. ⁶⁰ Collaborative modeling: airport Dorozhkin et al. ⁶¹ Coupling interactive flexible Construction/operations		×× ×	×	×	× × ×				
Petti et al.Shop floor facility layout designXFishwick et al. 50Modeling methodologyAkpan andXAkpan andAuto assembly and bankingLustomer serviceXBrooks6customer serviceDiagnoses of inflammatory responseAlbertsDiagnoses of inflammatory responseAlbertsDonstruction managementAlbertsTower crane operations onConstruction sitesConstruction processWhyte ³³ Construction processBruzzone et al. ⁵⁴ Process management for large-scaleBruzzone et al. ⁵⁴ Process planningBruzzone et al. ⁵⁸ Process planningChen and Huang ⁵⁷ Problem formulation (2D vs. 3D)Choi et al. ⁵⁸ Problem formulation (2D vs. 3D)Dangelmaier etSimulated digital factoryal. ⁵⁹ Collaborative modeling: airportDorozhkin et al. ⁶¹ Collaborative flexibleDorozthkin et al. ⁶¹ Collaborations		×× ×	×	×	× × ×				
Fishwick et al. 50Modeling methodologyAkpan andAuto assembly and bankingBrooks6customer serviceAlbertsDiagnoses of inflammatory responseet al. 51Diagnoses of inflammatory responseAlbertsDiagnoses of inflammatory responseet al. 51Diagnoses of inflammatory responseAl-Hussein et al. 51Tower crane operations onConstruction managementConstruction sitesWhyte33Construction managementBruzzone et al. 54Engineering construction processPlanning and designProcess management for large-scaleRuzzone et al. 54Process management for large-scaleChan 55Process planningChan 56Process planningChen and Huang 57Problem formulation (2D vs. 3D)Choi et al. 58Problem formulation (2D vs. 3D)Dangelmaier etSimulated digital factoryal. 59Collaborative modeling: airportDorozhkin et al. 61Collaborative flexibleDorozhkin et al. 61Collaborative flexible		× ×	×		× ×	×		×	
Akpan and Brooks6Auto assembly and banking customer serviceBrooks6customer serviceAlbertsDiagnoses of inflammatory responseet al.51Diagnoses of inflammatory responseAlbertsSyndromeAl-Hussein et al.51Tower crane operations on construction sitesWhyte33Construction sitesWhyte33Construction management construction processPlanning and designProcess management for large-scale retail storesBruzzone et al.54Process management for large-scale retail storesChan55Process planning designWenzel and Besen56Process planning designDangelmaier et al.59Simulated digital factory designDangelmaier et al.60Collaborative modeling: airport construction/operations		×	×		× ×				
Brooks ⁶ customer serviceAlbertsDiagnoses of inflammatory responseAlbertsDiagnoses of inflammatory responseet al. ⁵¹ Diagnoses of inflammatory responseAl-Hussein et al. ⁵¹ Tower crane operations onAl-Hussein et al. ⁵¹ Tower crane operations onMyte ⁵³ Construction sitesWyly and Thabet ²⁹ Engineering construction processPlanning and designProcess managementBruzzone et al. ⁵⁴ Process management for large-scaleBruzzone et al. ⁵⁴ Process planningBruzzone et al. ⁵⁶ Process planningChan ⁵⁵ Problem formulation (2D vs. 3D)Choi et al. ⁵⁸ Problem formulation (2D vs. 3D)Dangelmaier etSimulated digital factoryal. ⁵⁹ Collaborative modeling: airportDorozhkin et al. ⁶¹ Collaborative flexible		×	×		×	×			
Alberts Diagnoses of inflammatory response et al. ⁵¹ Diagnoses of inflammatory response syndrome Al-Hussein et al. ⁵¹ Tower crane operations on construction sites Tower crane operations on construction sites Whyte ⁵³ Construction management Construction sites Waly and Thabet ²⁹ Engineering construction process planning and design Process management for large-scale Bruzzone et al. ⁵⁴ Process management for large-scale Process planning retail stores Chan ⁵⁵ Process planning design Process planning design Choi et al. ⁵⁸ Problem formulation (2D vs. 3D) Dangelmaier et al. ⁵⁹ Collaborative modeling: airport Dangelmaier et al. ⁶⁰ Collaborative modeling: airport Dorozzhkin et al. ⁶¹ Coupling interactive flexible		×	×		×				
et al. ⁵¹ syndrome Al-Hussein et al. ²² Tower crane operations on whyte ³³ Construction sites Whyta ³³ Construction management Waly and Thabet ²⁹ Engineering construction process Bruzzone et al. ⁵⁴ Engineering construction process planning and design Process management for large-scale retail stores Chan ⁵⁵ Process management for large-scale retail stores Chan ⁵⁶ Process planning lessen ⁵⁶ Process planning choi et al. ⁵⁸ Problem formulation (2D vs. 3D) Choi and Huang ⁵⁷ Problem formulation (2D vs. 3D) Choi et al. ⁵⁸ Problem formulation (2D vs. 3D) Choi et al. ⁵⁸ Problem formulation (2D vs. 3D) Choi et al. ⁶⁰ Collaborative modeling: airport Dangelmaier et al. ⁶⁰ Collaborative modeling: airport construction/operations Coupling interactive flexible		×	×		×	×	×		
 Al-Hussein et al.⁵² Tower crane operations on construction sites Whyte⁵³ Construction sites Waly and Thabet²⁹ Engineering construction process Bruzzone et al.⁵⁴ Engineering construction process Bruzzone et al.⁵⁴ Process management for large-scale retail stores Chan⁵⁵ Process planning design Wenzel and Huang⁵⁷ Problem formulation (2D vs. 3D) Choi et al.⁵⁸ design Brugelmaier et Simulated digital factory al.⁵⁹ Den Hengst et al.⁶⁰ Collaborative modeling: airport construction/operations 		×	×		×				
Whyte*3construction sitesWaly and Thabet23Engineering construction processBruzzone et al.54Engineering construction processBruzzone et al.54Engineering construction processBruzzone et al.54Process management for large-scaleBruzzone et al.54Process management for large-scaleChan55Process planningChen and Huang57Problem formulation (2D vs. 3D)Choi et al.58Automated manufacturing systemsBangelmaier etSimulated digital factoryal.59Collaborative modeling: airportDorozhkin et al.61CollaborationsCoupling interactive flexibleCoupling interactive flexible			×			×			
WhyteSourceConstruction managementWaly and ThabetEngineering construction processWaly and ThabetEngineering construction processBruzzone et al.54Engineering construction processBruzzone et al.54Process management for large-scaleretail storesProcess management for large-scaleChan ⁵⁵ Process planningGhen and Huang ⁵⁷ Problem formulation (2D vs. 3D)Choi et al. ⁵⁸ Automated manufacturing systemsdesignGollaborative modeling: airportDorozhkin et al. ⁶¹ Collaborative flexibleDorozhkin et al. ⁶¹ Coupling interactive flexible			×						
Waly and Thabet ²⁹ Engineering construction process Bruzzone et al. ⁵⁴ Forcess management for large-scale planning and design Bruzzone et al. ⁵⁴ Process management for large-scale retail stores Chan ⁵⁵ Process planning lessen ⁵⁶ Problem formulation (2D vs. 3D) Choi et al. ⁵⁸ Automated manufacturing systems design Den Hengst et al. ⁶⁰ Collaborative modeling: airport construction/operations Dorozhkin et al. ⁶¹ Coupling interactive flexible			×					×	
Bruzzone et al. ⁵⁴ planning and design Bruzzone et al. ⁵⁴ Process management for large-scale Chan ⁵⁵ Process planning Wenzel and Process planning Jessen ⁵⁶ Problem formulation (2D vs. 3D) Chen and Huang ⁵⁷ Problem formulation (2D vs. 3D) Choi et al. ⁵⁸ Automated manufacturing systems design design Dangelmaier et Simulated digital factory al. ⁵⁹ Collaborative modeling: airport Dorozhkin et al. ⁶¹ Collaborative flexible									
Bruzzone et al. ⁵⁴ Process management for large-scale retail stores Chan ⁵⁵ Process design Wenzel and Process planning Venzel and Process planning Jessen ⁵⁶ Problem formulation (2D vs. 3D) Chen and Huang ⁵⁷ Problem formulation (2D vs. 3D) Choi et al. ⁵⁸ Automated manufacturing systems design Dangelmaier et Simulated digital factory al. ⁵⁹ Collaborative modeling: airport Den Hengst et al. ⁶⁰ Collaborative modeling: airport Dorozhkin et al. ⁶¹ Coupling interactive flexible									
Chan ⁵⁵ retail stores Chan ⁵⁵ Process design Wenzel and Process planning Jessen ⁵⁶ Problem formulation (2D vs. 3D) Chen and Huang ⁵⁷ Problem formulation (2D vs. 3D) Choi et al. ⁵⁸ Automated manufacturing systems Dangelmaier et al. ⁶⁰ Collaborative modeling: airport Den Hengst et al. ⁶¹ Collaborative modeling: airport Dorozhkin et al. ⁶¹ Coupling interactive flexible							×	×	
Chan ⁵⁵ Process design Wenzel and Process planning Jessen ⁵⁶ Problem formulation (2D vs. 3D) Chen and Huang ⁵⁷ Problem formulation (2D vs. 3D) Choi et al. ⁵⁸ Automated manufacturing systems design Dangelmaier et Simulated digital factory al. ⁵⁹ Den Hengst et al. ⁶⁰ Collaborative modeling: airport construction/operations Dorozhkin et al. ⁶¹ Coupling interactive flexible									
Wenzel and Jessen ⁵⁶ Process planning Chen and Huang ⁵⁷ Problem formulation (2D vs. 3D) Choi et al. ⁵⁸ Automated manufacturing systems design Dangelmaier et al. ⁵⁹ Simulated digital factory al. ⁵⁹ Den Hengst et al. ⁶⁰ Collaborative modeling: airport construction/operations Dorozhkin et al. ⁶¹ Coupling interactive flexible				×	×	×			
Jessen ⁵⁶ Problem formulation (2D vs. 3D) Chen and Huang ⁵⁷ Problem formulation (2D vs. 3D) Choi et al. ⁵⁸ Automated manufacturing systems design design Dangelmaier et Simulated digital factory al. ⁵⁹ Collaborative modeling: airport Den Hengst et al. ⁶⁰ Collaborative modeling: airport Dorozhkin et al. ⁶¹ Coupling interactive flexible								×	
Chen and Huang ⁵⁷ Problem formulation (2D vs. 3D) Choi et al. ⁵⁸ Automated manufacturing systems design design Dangelmaier et Simulated digital factory al. ⁵⁹ Collaborative modeling: airport Den Hengst et al. ⁶⁰ Collaborative modeling: airport Dorozhkin et al. ⁶¹ Coupling interactive flexible									
Choi et al. ⁵⁸ Automated manufacturing systems design Dangelmaier et Simulated digital factory al. ⁵⁹ Collaborative modeling: airport Den Hengst et al. ⁶⁰ Collaborative modeling: airport Dorozhkin et al. ⁶¹ Coupling interactive flexible	×	×						×	
design Dangelmaier et Simulated digital factory al. ⁵⁹ Den Hengst et al. ⁶⁰ Collaborative modeling: airport construction/operations Dorozhkin et al. ⁶¹ Coupling interactive flexible	<	< ×				×		<	
Dangelmaier et Simulated digital factory al. ⁵⁹ Collaborative modeling: airport Den Hengst et al. ⁶⁰ Collaborative modeling: airport Dorozhkin et al. ⁶¹ Coupling interactive flexible									
al. ⁵⁹ Den Hengst et al. ⁶⁰ Collaborative modeling: airport construction/operations Dorozhkin et al. ⁶¹ Coupling interactive flexible		×	×	×	×	×	×	×	
Den Hengst et al. ⁶⁰ Collaborative modeling: airport construction/operations Dorozhkin et al. ⁶¹ Coupling interactive flexible									
construction/operations Dorozhkin et al. ⁶¹ Coupling interactive flexible		×		×					
Dorozhkin et al. ⁶¹ Coupling interactive flexible									
			×	×			×		
manufacturing operations									
Bailey et al. ⁶² Evaluating display types						×			
Fabritius et al. ⁶³ Determining best visualization								×	
method									
Farood et al. ⁶⁴ Implementation process simulation X			×	×	×	×	×		
of mobile wireless network									
Fishwick ⁶⁵ Modeling systems using 2D vs. 3D		×		×				×	
Fishwick et al. ⁶⁶ Visualization in 2D vs. 3D		×							

Table 2. The problems tackled and the DES tasks performed.

Reference	Problems tackled	Problem definition	Conceptual modeling	Model development	Model run	Experimentation	Verification	Validation	Analysis	Presentation	Implementation
Talmaki et al. ⁶⁷	Monitoring visibility-constrained				×				×	×	
Su et al. ⁶⁸	construction Smart building planning			×			×			;	
Suh et al. ⁰⁷ Huano et al. ²⁶	Products display Svetem implementation			×	×					×	
Sun et al. ³⁴	Container terminal management			< ×	<						
Tory et al. ⁴⁰	Performing tasks on 2D vs. 3D									×	
John et al. ⁴⁵	Relative positioning in air traffic									×	
	control using 2D and 3D			;			;	;			
Kamat and	Creating and evaluating software for			×			×	×			
Marcinez Kamat at al ⁷¹	construction management Evoluating spood dotoction in 20 vs						>	>			
Namat et al.	Evaluating speed detection in 2D vs. 3D						<	<			
Kamat ²⁰	Construction process-level planning						×	×			
Kamat and	Visualization of construction						×	×		×	
Martinez ⁴	equipment										
Kamat and	Validating complex earth-moving						×	×		×	
Martinez ⁷²	construction activities										
Kamat and Martinez ²¹	Construction planning							×	×		
Vamen Eastron of	Determine of journed in interesting and								>	>	
Namsu-roguem et al.°	Detection of issues in intensive care patient								<	<	
Khoury et al. ⁷³	Airside airport construction and						×	×			
	operation										
Kim et al. ⁷⁴	Web-based simulation									×	
Kim and Chung ⁷⁵	Modeling of human 3D anatomical								×		
	model										
Van Orden and	Altitude and speed judgment (air									×	
Broyles /*	traffic control)										
Aigner et al.''	Visual analytics								×	×	
Kumar and	Evaluation of 2D vs 3D line graphs								×	×	
Benbasat ^{/8}	-					>			>		
Li et al.	Virtual construction					×			×		
Lindskog et al. ⁸⁰	Systems re-design			×						×	
Moon et al. ⁸¹	Simulated body shop design in auto						×				
	assembly										
Mujber et al. ⁸²	Flexible manufacturing process						×	×			
	analysis										
Murphy and Perera ⁸³	Process planning		×								
Nah et al. ⁸⁴	Compare 2D vs. 3D									×	
											(continued)

Table 2. Continued

ontinued
Ŭ
ч.
e
Tab

Reference	Problems tackled	Problem definition	Conceptual modeling	Model development	Model run	Experimentation	Verification	Validation	Analysis	Presentation	Implementation
Wainer and Liu ³⁶ Okulicz et al. ⁸⁵	Systems evaluation Process planning								××	×	
Otamendi et al. ³²	Software evaluation and selection			×					(
	for airport construction and operations										
Quarles et al. ⁸⁶	Analyze interaction among			×							
Rekapalli and Martiney ²³	Process evaluation							×			
Waisel et al. ³⁷ Robinson et al. ²²	Model formulation by experts Knowledge elicitation and decision-	×	×		×	×					
Rodriguez et al. ⁸⁷	making in auto engine production Industrial plants and traffic flow,								×	×	
Ahlberg et al. ⁸⁸	speed, rate, etc. Diagnoses and case detection during									×	
Qu et al. ¹⁸ Rua and Alvito ¹⁰	surgery Teleonomic modeling of eggplant Reconstruction of heritage					×			××	××	
Rubio et al. ⁸⁹ Smallman et al. ⁹⁰	Flexible manufacturing Evaluation of 2D vs. 3D in air traffic								××		
Son and Kim ⁹¹	control Visualization of underwater vehicle								×		
Oerter et al. ⁹²	and effective maneuvering control VR platform for collaborative modeling and cimulation			×	×	×					
Hurrion ³ Dialami et al. ⁹³	3D modeling as DES methodology Material transport and flow in a					×		×	×		
Vasudevan and Son ⁹⁴	friction stir welding Evacuation performance using different layouts in crowd safety									×	
Lu et al. ⁹⁵ Korošec et al. ⁹⁶	management Assembly facility planning operation Production scheduling and	×						×			
Khosravi et al. ⁹⁷	optimization Metamodeling and simulation of baggage handling			×							
Hartmann and Fischer ³⁸ Chen et al. ⁹⁹	Reviewing facility with 3D visualization Maintenance and management of			×							
	building facilities										(continued)

Reference	Problems tackled	Problem definition	Conceptual modeling	Model development	Model run	Experimentation	Verification	Validation	Analysis	Presentation	Implementation
Shen et al. ¹⁰⁰	Safety and security in emergency and crisis management									×	
Hajdas ^{ioi}	Creating an intelligent support system and simulating construction					×			×		
Somasundaram and Kalaiselvi ¹⁰²	process gynamics Surgical experiment					×		×			
Calabrese et al. ¹⁰³ Li et al. ¹⁰⁴	Shipboard damage control Construction planning							×	×		
Hong et al. ¹⁰⁵ Moghadam et al. ¹⁰⁶ Noodoo et al. ¹⁰⁷	Construction process planning Building construction scheduling			×			×	× >	×		
Zhang et al. ¹⁰⁸	fraction stir welding process Friction stir welding process Evaluateing the use of 2D and 3D simulation visualization in planning							<	<	×	
Patel et al. ¹⁰⁹	and performing hepatectomy operations Disaster, emergency, and crisis									×	
Zhou et al. ¹¹⁰	management Manufacturing process optimization	2	£	22	6	1	61	X 26	X 28	32	_

Table 2. Continued

Application domains	Case study	Experiment	Survey	Case study and survey	Case study and experiment
Advertising Aerospace	Khoury et al. ⁷³ Otamendi et al. ³²	Suh et al. ⁶⁹ Van Orden and Broyles ⁷⁶ Den Hengst et al. ⁶⁰ Smallman et al. ⁹⁰ Khosravi et al. ⁹⁷ John et al. ⁴⁵			
Agriculture		Qu et al. ¹⁸			
(virtual plantation)		10			
Archaeology Automotive		Rua and Alvito ¹⁰ Akpan and Brooks ⁶ Robinson et al. ²²			
Banking – customer		Akpan and Brooks [®]			
service					
Construction	Kamat and Martinez ²¹	Kamat et al ⁷¹	Akpan and brooks		
(Civil Eng.)	Kamsu-Foguem et al. ⁹ Waly and Thabet ²⁹ Talmaki et al. ⁶⁷ Rekapalli and Martinez ²³	Chen and Huang ⁵⁷ Li et al. ⁷⁹			
	Kamat and Martinez ²¹				
Facility layout planning/ design	Kamat and Martinez	Petti et al. ⁴⁹	Akpan and Brooks ¹¹		
Finance			Akpan and Brooks ¹¹		
Healthcare	Kamsu-Foguem et al. ⁹ Alberts et al. ⁵¹ Zhang et al. ¹⁰⁸ Kim and Chung ⁷⁵		Akpan and Brooks ¹¹		
Logistics operations	Wenzel Jessen ⁵⁶				
Manufacturing	Lu et al. ⁹⁵ Dorozhkin et al. ⁶¹ Lindskog et al. ⁸⁰ Rubio et al. ⁸⁹ Mujber et al. ⁹² Chan et al. ⁵⁵ Zhou et al. ¹¹⁰ Murphy and Perera ⁸³ Hutabarat et al. ⁴⁸ Rohrer ¹⁵ Mueller-Wittig et al. ⁴⁷		Akpan and Brooks ¹¹		
Marine – seaport Modeling methodology	Sun et al. ⁵¹ Hong et al. ¹⁰⁵ Farooq et al. ⁶⁴ Kim et al. ⁷⁴ Wainer and Liu ³⁶ Eisbwick et al. ⁵⁰			Fishwick et al. ⁶⁶	Fishwick ⁶⁵
Not specified	FISHWICK et al.	Waisel et al ³⁷			
Ontology	Fabritius et al. ⁶³	ulber et ul			
Production operation	Okulicz et al. ⁸⁵				
Real estate construction	Moghadam et al. ¹⁰⁶ Whyte ⁵³ Li et al. ¹⁰⁴ Hartmann and Fischer ⁹⁸ Hajdas ¹⁰¹ Chen et al. ⁹⁹				
	SU et al." Al Hussoin et al ⁵²				
Repairs and	Moon et al. ⁸¹				
maintenance (auto)					

 Table 3. The research methods and application domains covered by the reviewed papers.

Table 3. Continued

Application domains	Case study	Experiment	Survey	Case study and survey	Case study and experiment
Retail	Bruzzone et al. ⁵⁴				
Safety and security	Patel et al. ¹⁰⁹	Vasudevan and Son ⁹⁴			
		Shen et al. ¹⁰⁰			
Systems implementation	Choi et al. ⁵⁸	Nah et al. ⁸⁴		Huang et al. ²⁶	
and evaluation	Kamat and Martinez ⁷⁰	Kumar and Benbasat ⁷⁸			
	Bailey et al. ⁶²	Tory et al. ⁴⁰			
	Rodriguez et al. ⁸⁷				
	Calabrese et al. ¹⁰³				
	Son and Kim ⁹¹				
	Oerter et al. ⁹²				
Visual analytics	Aigner et al. ⁷⁷				
Welding		Dialami et al. ⁹³			
		Nandan et al. ¹⁰⁷			

||

4.3.1 *RQ1(i): model development.* Model development involves the implementation of a conceptualized problem via a computer program or using off-the-shelf modeling software or specialized applications such as WITNESS, FLEXSIM,^{6,11,12,24} or customized modeling and simulation tools like VITASCOPE⁷⁰ or RUBE.⁵⁰ Examining the impacts of the visual display on performance during modeling activities, 59% (13 out of 22) of the studies concluded that 3D display offers better performance, while 32% (7 out of 22) of the studies considered 2D display as better, and 9% (2 out of 22) viewed both displays as offering the same performance effectiveness.

The combined frequencies of the "2D better" or "no difference" in performance effectiveness is 41% compared to 59% for 3D visualization (Table 5), indicating a higher preference for 3D/VR. Also, most of the authors preferring the 2D display agreed that the 3D display offers an overall better performance, but preferred the 2D because 3D/VR is more difficult and it takes a longer time to build a model. Table 6 provides the bases for the conclusions and further explanations.

4.3.2 *RQ1(ii): Experimentation.* Experimentation is another activity in which the visual display plays a key role. The activity involves an evaluation of the alternative courses of actions, such as undertaking a what-if analysis toward arriving at a preferred decision to improve the system under study.^{79,113}

Out of the 17 studies that examined the performance effectiveness of 3D visualization vs. 2D display on model experimentation, 16 (or 94%) concluded that 3D visualization offers better and faster performance. Table 7 presents further explanations for the conclusions provided by the reviewed articles.

4.3.3 *RQ1(iii): Model run.* Studies on the impacts of 3D vs. 2D display on performance effectiveness during model runs attracted only nine articles investigating the activity. The purpose of running a model is often to perform other tasks such as experimentation, validation, and verification, or to examine the behavior of the system modeled. Out of the nine articles that investigated the impacts of the 3D display vs. 2D on model runs, 78% concluded that 3D visualization offers better performance, while 22% considered 2D as more effective. Table 7 offers further explanations/reasons.

4.3.4 *RQ1(iv): Model verification.* Model verification is another DES activity that benefits significantly from the use of visual displays.^{3,6,11,15,31} The verification activity involves determining whether the conceptual model and assumptions are translated correctly into a DES model.^{41,72} Nineteen articles investigated the impacts of 3D display vs. 2D on verification tasks. Eighteen out of 19, or 95%, of the studies concluded that 3D visualization makes it easier to verify the DES model than does 2D (Table 5). As demonstrated by Kamat and Martinez,⁷² even the domain experts with limited expertise in simulation were able to understand the model easily and detect severe errors caused by the model developers' incorrect use of data. These were errors that the simulation experts may not detect. Table 6 presents the reasons for these conclusions.

4.3.5 *RQ1(v): Model validation.* Model validation is the process of determining whether a simulation model is an accurate representation of the system based on the particular objectives of study.^{6,72} The activities include checking and correcting errors in the model, such as logic, routing, incorrect components combination, or systems errors.^{6,41}

Journals	References	n	Journals	References	n
Simulation	Akpan and Brooks ¹¹ Alberts et al. ⁵¹ Wenzel Jessen ⁵⁶ Choi et al. ⁵⁸ Fishwick ⁶⁵ Khoury et al. ⁷³	7	Automation in Construction	Hong et al. ¹⁰⁵ Waly and Thabet ²⁹ Chen and Huang ⁵⁷ Al-Hussein et al. ⁵² Huang et al. ²⁶ Li et al. ¹⁰⁴	7
Simulation Modelling Practice & Theory	Bruzzone et al. ⁵⁴ Farooq et al. ⁶⁴ Murphy and Perera ⁸³ Otamendi et al. ³² Rodriguez et al. ⁸⁷ Qu et al. ¹⁸	6	Expert Systems with Applications	Robinson et al. ²² Son and Kim ⁹¹ Korošec et al. ⁹⁶ Chen et al. ⁹⁹ Khosravi et al. ⁹⁷ Calabrese et al. ¹⁰³	6
Proceedings of the Winter Simulation Conference	Hutabarat et al. ⁴⁸ Rohrer ¹⁵ Mueller-Wittig et al. ⁴⁷ Fishwick et al. ⁵⁰	4	Journal of the Operational Research Society	Den Hengst et al. ⁶⁰ Fabritius et al. ⁶³ Waisel et al. ³⁷ Hurrion ³	4
ACM Transaction on Modelling & Computer Simulation	Fishwick et al. ⁶⁶ Kim et al. ⁷⁴ Oerter et al. ⁹²	3	MIS Quarterly	Suh et al. ⁶⁹ Kumar and Benbasat ⁷⁸ Nah et al. ⁸⁴	3
Decision Support Systems	Akpan and Brooks ⁶ Kamsu-Foguem et al. ⁹ Shen et al. ¹⁰⁰	3	Advances in Engineering Software	Kamat and Martinez ⁷⁰ Kamat ²⁰	2
Journal of Computing in Civil Engineering	Kamat and Martinez ²¹ Kamat and Martinez ⁴¹	2	International Journal of Production Research	Moon et al. ⁸¹ Okulicz et al. ⁸⁵	2
Computers and Industrial Engineering	Lu et al. ⁹⁵ Vasudevan and Son ⁹⁴	2	Multimedia Tools and Applications	Kim and Chung ⁷⁵	Ι
Proceedings of the Operational Research Society Simulation	Petti et al. ⁴⁹	I	Science and Technology of Welding and Joining	Nandan et al. ¹⁰⁷	I
Workshop Engineering with	Talmaki et al. ⁶⁷	I	Computers in Industry	Dangelmaier et al. ⁵⁹	I
Systems Analysis Modelling Simulation	Kamat and Martinez	I	Journal of Archaeological Science	Rua and Alvito ¹⁰	I
Journal of Construction, Engineering & Management	Rekapalli and Martinez ²³	I	Journal of Information Technology in Construction	Kamat et al. ⁷¹	I
Computers in Biology and Medicine	Somasundaram and Kalaiselvi ¹⁰²	I	Computers & Graphics	Aigner et al. ⁷⁷	I
International Journal of Computer Integrated Manufacturing	Rubio et al. ⁸⁹	Ι	IEEE Transactions on Visualization & Computer Graphics	Tory et al. ⁴⁰	I

 Table 4. List of reviewed articles and the publication outlets (2000–2016).

(continued)

Table	e 4 . (Contir	nued
-------	----------------	--------	------

Journals	References	n	Journals	References	n
Human Factors: The Journal of the Human Factors & Frannomics	John et al. ⁴⁵	I	Technological and Economic Development of Economy	Hajdas ¹⁰¹	I
Society The American Journal of	Ahlberg et al. ⁸⁸	I	Virtual Reality	Dorozhkin et al. ⁶¹	I
Surgery Journal of Materials Processing	Mujber et al. ⁸²	I	IEEE Computer Graphics and Applications	Smallman et al. ⁹⁰	I
Technology Advanced Engineering	Sun et al. ³⁴	I	Procedia CIRP	Lindskog et al. ⁸⁰	I
Computer Standards &	Su et al. ⁶⁸	I	Displays	Van Orden and Broyles ⁷⁶	I
Interfaces. Journal of Defense Modeling & Simulation: Applications, Methodology,	Oerter et al. ⁹²	I	Canadian Journal of Civil Engineering	Moghadam et al. ¹⁰⁶	I
Technology International Journal of Material	Dialami et al. ⁹³	I	Organization Science	Bailey et al. ⁶²	I
Building Research and	Hartmann and Fischer ⁹⁸	I	Assembly Automation	Chan et al. ⁵⁵	I
Construction Management	Whyte ⁵³	I	Surgical Oncology	Zhang et al. ¹⁰⁸	I
ana Economics Geomatics, Natural Hazards and Risk	Patel et al. ¹⁰⁹	I	JOM Design and Manufacturing	Zhou et al. ¹¹⁰	I

Table 5.	Summary	of the conc	lusions fror	n the	reviewed	articles	on tl	he impacts	of 3D) vs. 21	D displays	on DES t	asks.
----------	---------	-------------	--------------	-------	----------	----------	-------	------------	-------	----------	------------	----------	-------

DES activities	Whi	ch display bette	er enhances pe	rformance?	Per	Performance time			
	n	3D better	2D better	Same	n	Shorter time with 3D	Shorter time with 2D	Same time	
Model development	22	13	6	3	10	I	9	_	
Experimentation	17	16	I	_	_	-	-	_	
Model run	9	7	2	-	_	-	-	_	
Verification	19	18	_	I	5	5	-	_	
Validation	26	24	_	2	6	6	-	_	
Analysis	28	28	_	_	4	2	1	I	
Presentation	32	32	_	_	_	_	_	_	
Problem definition	5	3	I	I	T	1	-	_	
Conceptual modeling	4	-	2	2	_	_	_	_	
Implementation $n = 162$	I	-	-	I	-	-	-	-	

Investigating the efficacy of 3D vs. 2D visual display on model validation, 92% (24 out of 26) of the reviewed articles concluded that 3D display is more effective when performing model validation. The remaining 8% of the reviewed articles found that both 2D and 3D displays offer the same level of performance effectiveness, while no study identified 2D display only as a better option when checking for errors in the model (Table 5). This shows a significant positive outcome in favor of 3D visualization. According to Akpan and Brooks,⁶ using a 3D display increases validation performance by over 70% when attempting to spot an error that is relatively harder to find and 65% more effective than the 2D display in finding the standard bugs in a model. Thus, the more complicated the errors, the longer it takes to find using the 2D display, if at all. Similarly, Kamat and Martinez⁷² highlight that some of the errors that are easier to identify using the 3D display can take considerable effort to spot in a 2D model, if at all. Table 7 provides further details.

4.3.6 *RQ1(vi):* Analysis of the results. The analysis of results is another DES activity that has seen fierce debate questioning the need for 3D visualization. The analysis includes undertaking a what-if analysis or evaluating alternatives. The results show that all 28 papers that investigated the effectiveness of 3D/VR vs. 2D in enhancing results analysis in DES considered 3D/VR to be more effective than 2D display (Tables 5 and 7).

4.3.7 RQ1(vii): Presentation. This activity involves a demonstration of the model to the client or different stakeholders (e.g., managers, decision-makers¹¹⁴) involved in a given simulation project. The comparative evaluation of the impacts of 3D/VR vs. 2D on presentation of the simulation/model and the simulation results attracted the most studies (Table 5). Thirty-two articles investigated this activity, with all arriving at a similar conclusion: 3D/VR visualization is more effective than 2D in presenting and communicating simulation results to management and decision-makers. The effectiveness of 3D/VR for this purpose also encourages management buy-in to the simulation project and subsequent adoption as a decision-support system and implementation of the simulation results.¹⁵ This conforms with practitioners' perceptions as 93% of simulation developers and decision-makers agreed with a similar conclusion in a survey of researchers and practitioners.¹¹ Table 7 provides further details.

4.3.8 RQ1(viii): Implementation of simulation outcomes. Studies investigating the effect of visual displays on the implementation of simulation results had the fewest publications, at only one. Akpan and Brooks¹¹ concluded that, although the use of visual simulation can positively influence the implementation

of the simulation outcomes both in terms of its effectiveness and the time taken to complete the activity, and managers' buy-in,¹⁵ it does not matter whether 3D/VR or 2D visual displays are used. However, more studies are required in this area before a firm conclusion can be reached.

4.4 RQ2: Comparative analysis of time taken to complete DES tasks using 3D/VR vs. 2D displays

This section presents the results of the comparative evaluation of the impacts of 3D vs. 2D displays on the time taken to perform DES tasks, as formulated in Section 2.3 (RQ2(i)–RQ2(iv) in Table 1). Relatively fewer studies investigated the time dimension in performing the DES tasks. The data extracted from the reviewed articles were summarized in three categories, "Shorter time with 3D,""Shorter time with 2D," or "Same time." These three options formed the basis for answering the RQs about the impacts of 3D/VR vs. 2D on the time taken to complete the DES tasks.

4.4.1 RQ2(i): Time taken to complete model development. Ten out of the 22 articles that examined the impacts of 3D vs. 2D displays on model development also investigated the effects of the two visualization techniques on time taken to complete model development. Nine out of the 10 articles (90%) concluded that it took a shorter time to complete model development when using a 2D display, while only one of the studies (10%) found that the 3D display took a shorter time (Tables 5 and 6). Several studies drew this conclusion irrespective of the modeling/simulation platforms and software used. Also, some of the studies that preferred 3D/VR reached the same conclusion, that 2D display does take less time to build.

4.4.2 RQ2(*ii*): Time taken to complete model verification. The data from the literature review on the impacts of 3D vs. 2D displays on time taken to complete model verification show a convincing position in favor of 3D visualization. The five articles that investigated this aspect of the study (time spent to undertake model verification) concluded that 3D visualization takes a significantly shorter time to complete the verification tasks.^{6,11,59,72}. None of the reviewed articles considered 2D displays as offering the same level of performance or better. The reasons for these conclusions are provided in Table 7.

4.4.3 RQ2(iii): Time taken to complete model validation. Six out of the 26 articles that investigated the comparative effectiveness of 3D vs. 2D displays on model validation also examined the time taken to complete the validation task. All the reviewed papers (Table 5) concluded that it

Table 6.	Model	development	performance	evaluation us	ing 3D/VR	vs. 2D di	splays.
----------	-------	-------------	-------------	---------------	-----------	-----------	---------

Modeling tools	2D better	3D better	Same	Modeling time	Reasons/ conclusions
AOOSS	Hong et al. ¹⁰⁵			2D Shorter	3D wastes time (longer to
Automod		Den Hengst et al. ⁶⁰			develop model) 3D/VR helps to resolve
Custom software		Dangelmaier et al. ⁵⁹			complexities Easier for stakeholders to
Custom 2D with 3D CAD	Lindskog et al. ⁸⁰			2D Shorter	anderstand 3D is time- consuming; over
MicroPort		Sun et al. ³⁴			3D helps to reduce
OLIVE		Oerter et al. ⁹²		2D Shorter	VR is a great learning and
QUEST with CVP	Huang et al. ²⁶			2D Shorter	3D is tedious and time-
QUEST3D		Khosravi et al. ⁹⁷			3D precisely represents baggage
RUBE RUBE			Fishwick et al. ^{50,66}	2D Shorter 3D Longer	handling 3D should complement 2D, not replace
					"Slower speed in model creation" with 3D
SPS with 3D visualization		Al-Hussein et al. ⁵²			Domain experts can easily build 3D model
STROBOSCOPE, other		Chen et al. ⁹⁹			3D is precise, accurate and
VITASCOPE & DCV		Kamat and Martinez ⁷⁰			efficient 3D/VR representation
VM Factory		Choi et al. ⁵⁸			is accurate Domain experts can create 3D
Custom software			Fishwick ⁶⁵	2D Shorter	model 3D is appealing but time-
Custom application		Chen and Huang ⁵⁷			consuming Non-experts can interact
VS-CaSP		Su et al. ⁶⁸		3D Shorter	with 3D model Quicker to build the 3D
WITNESS, ARENA, custom	Otamendi et al. ³²			2D Shorter	model 3D modeling is time-consuming
WITNESS/VR, ARENA, QUEST	Akpan and Brooks ¹¹			2D Shorter	3D model takes a lot longer to build

(continued)

Modeling tools	2D better	3D better	Same	Modeling time	Reasons/ conclusions
No platform indicated No platform indicated Custom software	Petti et al. ⁴⁹	Rohrer ¹⁵ Quarles et al. ⁸⁶			2D offers fast build and low cost 3D offers more realistic display Transparent reality, accuracy, interactivity

Table 6. Continued

takes less time to validate the 3D model compared to 2D displays. Table 7 offers the explanations for the conclusions.

4.4.4 RQ2(iv): Time taken to complete the analysis of results. Four articles investigated the relationship between the types of visual display (3D vs. 2D) and the time taken to complete the analysis of simulation results. A synthesis of the conclusions from the reviewed articles shows that 50% of the papers posited that using 3D/VR helps to complete the "analysis of results" in a shorter time, while 25% considered 2D displays to complete the task more quickly. One study concluded that there was no difference (Table 5). Table 7 provides further explanations and reasons for the different conclusions.

4.5 RQ3(i–ii): The impacts of 3D/VR vs. 2D display on problem definition

4.5.1 RQ3(*i*): Does 3D visualization improve problem definition/formulation better than 2D display?. Problem definition occurs at the early stage of a modeling and simulation project. It is during this stage that the experts formulate the problem and define the project's objectives. The general perception is that visual display is not commonly useful at this stage of a simulation process,^{2,11} though a few recent studies have undertaken to employ visualization techniques at this stage of the DES process.^{37,49,64,96} Practitioners also evaluated the effects of visual display at problem definition through a survey conducted by Akpan and Brooks.¹¹

Five papers examined the potential impacts of 3D and 2D displays at this stage. Three out of the five studies concluded that 3D visualization can enable a better, easier, and faster problem definition compared to 2D. Petti et al.⁴⁹ observed that 3D visualization enables fast problem definition as the participants easily understood the activities performed and identified the important steps in a manufacturing process. In contrast, one paper³⁷ identified 2D displays as providing better performance, while another¹¹ concluded that there is no difference between the two options. The different reasons for the conclusions (Table 7) points to a possibility of some substantial benefits that 3D displays offer in making the problem definition task better, easier, and faster.^{49,64}

Further, Waisel et al.,³⁷ while examining how expert model developers use sentential and 2D-based diagrammatic sketches, concluded that such modeling strategies enhances insight, leading to the creation of better models. Akpan and Brooks¹¹ showed that 94% of simulation professionals, users, and decision-makers did not identify any impacts of 3D or 2D displays on problem definition, and concluded that there are no additional benefits to using 3D display over 2D for this DES activity. Also, it is important to note that only one of the three articles¹¹ compared the impacts of 2D and 3D displays concurrently in the same study. The other two studies^{37,64} focused on either 2D display or 3D visualization respectively. Since the study by Waisel et al.³⁷ involved only 2D sketches, further studies replicating the study using 3D drawings and diagrams is recommended to compare the outcomes.

4.5.2 RQ3(ii): Time taken to complete problem definition. Only one study evaluated the effects of the type of display and the time taken to complete the problem definition task. That paper⁴⁹ concluded that 3D allows faster problem definition. The conclusion was based on an experimental study in which the participants performing the task in 3D/VR were able to identify the important steps in a manufacturing process. However, it is important to note that this conclusion comes from a single study rather than a synthesized outcome from many papers. Further studies tackling different problems in diverse application domains are recommended before generalizing the outcomes.

4.6 RQ4: Does 3D visualization improve conceptual modeling performance better than 2D display?

The impacts of visual display on conceptual modeling is one of the three studies that received the least publications, the other two being problem definition and implementation of results. Particularly for the conceptual modeling,

Table 7.	Comparative	effectiveness	of 3D/VR vs	. 2D	visualization	on DES	tasks.
Table 7.	Comparative	enectiveness		. 20	VISUAIIZACION		lasks.

DES tasks	Reasons/conclusions	Authors
Model experimentat	ion	
3D/VR is better	3D best suited for real-time manipulation.	Dorozhkin et al. ⁶¹ Bua and Alvito ¹⁰
	Enhances optimization.	Dangelmaier et al. ⁵⁹
	Easy to create new experiments and undertake what-if analyses.	Faroog et al. ⁶⁴
	, , , , ,	Li et al. ⁷⁹
		Hajdas ¹⁰¹
	Interactivity superior to 2D; shows changes in the variables, and	Akpan and Brooks ¹¹
	clearly highlights collisions, violations, and near misses.	Chan et al. ⁵⁵
		Fishwick ⁶⁵
	Users can explore the model to carry out experimentation.	Oerter et al. ⁹²
	Possible to rotate model, view different angles or positions.	Hurrion ³
	Other views (2D) misled users, while users of 3D/VR can identify	Somasundaram and Kalaiselvi ¹⁰²
	exact positions to undertake brain surgery.	.20
	3D nignlights model behavior.	Kamat
		Hutabarat et al. Muellen Wittig et al ⁴⁷
	3D/VP anables factor experimentation	Potti ot al ⁴⁹
2D is better:	3D slower run-speed easier to detect inaccuracies in 2D model	Robinson et al 22
Model run	5D slower run-speed, easier to detect maccuracies in 2D model.	Robinson et al.
3D/VR is better	Non-simulation experts can run and optimize the construction	Huang et al. ²⁶
	planning simulation model in 3D, and evaluate the resource	
	utilization.	
	Running the model in 3D was more effective for examining the	Akpan and Brooks''
	model behavior, checking errors and completing the tasks faster.	Oerter et al. ²²
	Running the model in 3D offers the users the capabilities to	Oerter et al. ²
	properly visualize and explore the entire model, which reduces	
	Cost for the customer.	Dangelmaion et al 59
	associated with the 2D display such as misinterpretation and	Dangennaler et al.
	errors in the results at runtime	
	The immersive VR environment allows the users to interact with	Dorozhkin et al ⁶¹
	the model as in real life during the runtime.	Faroog et al. ⁶⁴
	The 3D visualization system integrated with PROTOCOL	Talmaki et al. ⁶⁷
	platform can receive sensor input from the real world, and	
	provide audio-visual warning feedback for accident avoidance at	
	runtime.	
2D is better	Slower run-speed of the 3D display is reducing the collection	Robinson et al. ²²
	rate.	Waly and Thabet ²⁹
Model verification		NA 11 182
3D/VR is better	VR helps in verifying model logic and behavior	Mujber et al. ⁶²
	With 2D/V/B downin average who did not build the model can	Muihan at al ⁸²
	operity verify it	Faroog et al.
	easily verify it.	Chan et al ⁵⁵
	Any discrepancy in the model can be corrected easily in line with	Kamat et al ⁷¹
	real system.	Dangelmaier et al. ⁵⁹
		Su et al. ⁶⁸
	Verification with 3D is effective and efficient; saves time and	Dangelmaier et al. ⁵⁹
	costs.	Su et al. ⁶⁸
		Kamat and Martinez ⁷²
		Khoury et al. ⁷³
		Akpan and Brooks'
		Akpan and Brooks ^o
	3D makes it easier to understand construction operation and	Al-Hussein et al. ³²
	aids verification.	Konrer Chap at al ⁵⁵
	throughouts atc	Chan et al.
	Domain experts can easily identify errors that even the	Kamat et al ⁷¹
	simulation experts may not detect.	Kamat ²⁰
	· · · · · · · · · · · · · · · · · · ·	Kamat and Martinez ⁴¹

Table 7. Continued

DES tasks	Reasons/conclusions	Authors
	3D animation and the geometric details enhance verification.	Kamat ²⁰
	3D/VR offers significant value for model verification.	Kamat and Martinez ⁷² Kamat and Martinez ⁴¹ Khoury et al. ⁷³ Parti et el. ⁴⁹
No difference	3D/VR provides spatial and geometric details which helps in verification of automotive, construction, and other domains. 3D can simplify verification, but it is complex to create. The 2D model is easy to create and can be equally effective in verification.	Kamat ²⁰ Moon et al. ⁸¹ Hong et al. ¹⁰⁵
Model validation		<i>,</i>
3D/VR is better	3D/VR makes it easier to detect errors in model (logic, wrong component combination, routing errors).	Akpan and Brooks ⁶ Akpan and Brooks ¹¹ Kamat and Martinez ⁷² Kamat and Martinez ²¹ Bailey et al. ⁶² Mujber et al. ⁸²
	Easy to match model behavior with real world, which helps to detect any abnormalities in the model.	Al-Hussein et al. ⁵² Akpan and Brooks ¹¹ Bailey et al. ⁶² Khoury et al. ⁷³ Rekapalli and Martinez ²³ Kamat and Martinez ⁷⁰ Zhou et al. ¹¹⁰ Chan et al. ⁵⁵ Lu et al. ⁹⁵
	3D enhances better understanding of operations and validation.	Al-Hussein et al. ⁵² Kamat et al. ⁷¹ Kamat ²⁰ Rohrer ¹⁵
	3D/VR is very effective for model validation. 3D enhances validation irrespective of the application domain. Easier and quicker to spot errors.	Alberts et al. ⁵¹ Khoury et al. ⁷³ Dangelmaier et al. ⁵⁹ Dorozhkin et al. ⁶¹ Kamat and Martinez ⁷⁰ Chan et al. ⁵⁵ Dorozhi et al. ⁵⁵
	Non-technical users and domain experts can easily validate 3D model where developers fails.	Bailey et al. ⁶² Bailey et al. ⁵⁸ Choi et al. ⁵⁸ Kamat and Martinez ²¹ Kamat and Martinez ⁷⁰
	3D helps in debugging, improving the accuracy of model and system.	Kamat ²⁰ Dorozhkin et al. ⁶¹ Kamat et al. ⁷¹ Kamat ²⁰ Nandan et al. ¹⁰⁷
	3D adds sufficient value in model quality by improving validation.	Somasundaram and Kalaiselvi ¹⁹² Kamat and Martinez ⁴¹ Zhou et al. ¹¹⁰ Chan et al. ⁵⁵
	3D/VR makes it easier to match simulation with real life and data. 3D/VR helps users and managers to have a clearer and more reliable picture about any changes in the system and related	Zhou et al. ¹¹⁰ Chan et al. ⁵⁵ Rohrer ¹⁵
	impacts. 3D provides spatial and geometric details which helps in	Kamat ²⁰
No difference	validation. 3D model is complex to create – OK with 2D Validation using the 2D and 3D displays were both good.	Hong et al. ¹⁰⁵ Dialami et al. ⁹³

(continued)

Table 7. Continued

DES tasks	Reasons/conclusions	Authors
Analysis of results 3D/VR is better	3D is a set of low-cost and fast analysis tools and styles.	Rubio et al. ⁸⁹
	, , ,	Moghadam et al. ¹⁰⁶ Dangelmaier et al. ⁵⁹ Alexen en d. Brasche ⁶
		Kumar and Benbasat ⁷⁸
	3D is more effective in analyzing the construction methods.	Moghadam et al. ¹⁰⁶
	3D encodes further information that is useful for analysis.	Aigner et al.'' Akpan and Brooks ⁶ Pobror ¹⁵
	The interactive effectiveness of 3D helps users to understand the operation, evaluate, and change the parameters of the simulation	Dorozhkin et al. ⁶¹
	at runtime.	Kamsu-Foguem et al ⁹
	segmentation, clustering, and detection of events; also an analysis of underwater vehicles	Son and Kim ⁹¹
	3D/VR makes it easier to create different experiments to	Rua and Alvito
	undertake analyses.	Wainer and Liu ³⁶
	3D enables analysis of behaviors of the system at realistic scales on PC.	Alberts et al.
	3D offers easy analysis of store layout modifications with easily	Bruzzone et al. ⁵⁴
	understood feedback directly to domain experts and other	Dangelmaier et al. ⁵⁹ Earoog et al. ⁶⁴
	3D helps to experiment different construction methods in what- if analysis	Li et al. ⁷⁹
	The 3D graphic and status output modules offer good interface	Qu et al. ¹⁸
	for parameters control as well as data analysis; also enhances	Kim et al. ⁷⁴
	accuracy. 3D dynamic construction visualizer offers realistic feedback from	Nandan et al. ¹⁰⁷ Kamat and Martinez ²¹
	simulation. The 3D system allows project teams to monitor the progress of	Huang et al 26
	projects, and improves understanding of the processes in	Li et al. ¹⁰⁴
	constructions and other domains.	Li et al. ⁷⁹
	The 3D platform enhances workflow patterns analysis, identifying changes and the impact on construction process performance,	Hajdas ¹⁰¹
2D is better	and variant solutions. The VR platform enhances behavioral analysis of the simulated	Bodriguez et al ⁸⁷
	system and achieving optimal solution.	Zhou et al. ¹¹⁰
	Although 3D offers better analysis, it does take a longer time to perform, hence the reason for preferring the 2D.	Talmaki et al. ⁶⁷
Limitation of 3D/VR	The 2D display enhances analysis of details better than 3D.	Smallman et al. ⁹⁰
-	collecting input data from the system is time-consuming.	Huang et al.
3D/VR is better	3D offers expressive presentation of certain types of data $e \sigma$	Aigner et al 77
SDAAR IS DELLER	volume data.	Lindskog et al. ⁸⁰ Fabritius et al. ⁶³
		Tory et al. ⁴⁰
	3D/VR facilitates accurate/effective representation of information to users.	Kamsu-Foguem et al. ⁷ Kumar and Benbasat ⁷⁸ Mising and Liu ³⁶
	3D vividly mimics the appearance/shape of real grown eggplant	Qu et al. ¹⁸
	cultivation.	45
	3D visualization helps in presenting the model to learners and stakeholders.	Fishwick ^{°°} Petti et al. ⁴⁹
		Rohrer ¹⁵
	VR provides immersion as users can move freely inside the simulation.	Rodriguez et al. ⁸⁷

Table 7. Continued

DES tasks	Reasons/conclusions	Authors
	The 3D model enhances the exhibition to archaeological	Rua and Alvito ¹⁰
	Simulating building interiors and exteriors in photo-realistic 3D display improves presentation of new apartment building units compared to using 2D	Whyte ⁵³
	The real-time 3D visualization scheme provides realistic graphical views that are appealing to users that are not possible through the conventional display. The 3D realistic display enhances an elaborate presentation to decision-makers, managers, and other stakeholders not familiar with simulation.	Talmaki et al. ⁶⁷ Kim et al. ⁷⁴ Van Orden and Broyles ⁷⁶ Bruzzone et al. ⁵⁴ Dangelmaier et al. ⁵⁹ Kamat and Martinez ⁴¹ Kumar and Benbasat ⁷⁸ Wenzel Jessen ⁵⁶
	The 3D visualized models and animations are at present still the most intuitive presentation and appealing to customers.	Akpan and Brooks'' Chen and Huang ⁵⁷ Van Orden and Broyles ⁷⁶ Suh et al. ⁶⁹ Nah et al. ⁸⁴ John et al. ⁴⁵
	Surgeons had to transpose the 2D displays into 3D for better presentation, understanding and precise performance. 3D presents information from different angles to help users comprehend the situation and determine escape routes.	Ahlberg et al. ⁸⁸ Zhang et al. ¹⁰⁸ Shen et al. ¹⁰⁰ Vasudevan and Son ⁹⁴ Parel et al. ¹⁰⁹
Problem definition/for	mulation	
3D/VR is better	Easier and helps to understand the problem. 3D helped the participants in an experiment to identify and	Farooq et al. ⁶⁴ Korošec et al. ⁹⁶ Petti et al. ⁴⁹
2D is better No difference	process. Use of 2D sketch generates insight. No effect or no need of 2D or 3D at this stage	Waisel et al. ³⁷ Akpan and Brooks ¹¹
2D is better	2D easier to use, especially in complex problems	Waisel et al. ³⁷ Chen and Huang ⁵⁷
No difference	Display type is not useful at the conceptual stage	Murphy and Perera ⁸³
No difference	Implementation time is the same irrespective of display	Akpan and Brooks ¹¹

one can speculate about the reasons for the little interest in this area based on the perception that visual display may not bring any significant benefits to conceptual modeling activities.

Three of the reviewed articles investigated the impacts of the effects of the visual displays on conceptual modeling. The results show that two out of the three articles concluded that using the 2D display is more beneficial,^{37,57} while one⁸³ opined that there was no difference, irrespective of using either the 2D display or 3D visualization. There is a need to be cautious in interpreting the outcomes of the studies, given the limited number of studies involved. Table 7 provides the reasons and explanations for the various conclusions.

4.7 RQ5: The impacts of other latent variables on DES tasks and activities

The purpose of this research question is primarily to observe any possible influence of other factors that can influence the performance of DES tasks and activities other than the types of displays (3D and 2D display). The potential latent variables include the application domains, research methods, problems tackled, and the time when the study was conducted between 2000 and 2016. The time dimension mirrors the different levels of technological advancement.

The data extracted from the literature survey identified 84 different problems tackled (Table 2) in 24 distinct application domains (Table 3). Some of the articles tackled problems in more than one area (e.g., Apkan and Brooks⁶ tackled problems in automotive assembly and banking customer service). Table 3 also lists the five research methods adopted by the reviewed articles. For RQ1 and RQ3-RQ5, the results show that 3D visualization consistently offered better performance on the DES tasks and activities across the different application domains, problems tackled, and the research methods, irrespective of the year in which the study was conducted. Similarly, the 2D display recorded significantly higher performance on time taken to develop DES models (RQ2) irrespective of the listed possible latent variables. For example, in the analysis of the impacts of 3D/VR vs. 2D display on model development tasks (RO1(i)), the 22 reviewed articles tackled problems in over 10 different application domains and adopted various research methods (Tables 3 and 6). According to the results, 13 studies concluded that 3D display offered better performance for model development. These studies addressed problems that spanned several application domains and research methods. This indicates that the latent variables did not exert any influence on the performance of DES tasks and activities other than the types of visual displays (3D vs. 2D). Similarly, there were no impacts from the year in which the study was conducted, hence the time dimension did not impact the outcomes. For example, Hurrion,³ Otamendi et al.,³² and Sun et al.³⁴ published in 2000, 2008, and 2012, respectively, preferred 3D/VR, and concluded that 3D can advance the potential of DES as a decision-support system, whereas Robinson and Lee,²² published in 2012, preferred 2D display even after using the more recent 3D display. Thus, there is no impact from the date factor (and level of technology at the time the study) on the outcomes other than the visual display.

5. Discussion

The purpose of this study was to evaluate the comparative effectiveness of 2D display and 3D visualization/VR on DES activities, tasks, and user performance through a systematic literature review. The study synthesized the conclusions from 84 articles selected through a rigorous review process and exploratory meta-analysis, producing several useful highlights. The most bullish results showed that 3D/VR indeed offers significant benefits over 2D display for the presentation of models or outcomes of simulation projects to stakeholders, validation and verification, and experimentation and analysis. All 32 articles that investigated the effects of the presentation showed that 3D/VR is more useful than 2D display.

Another notable highlight of this study is synthesizing the benefits of 3D display on model development, which is a significant aspect of the DES task. The common position was that 2D display is the most effective DES and modeling technique (e.g., Wenzel and Jessen⁵⁶). But the synthesis of the literature shows that it is indeed 3D display that provides a better model development option for DES practice in this era of advances in information visualization, not 2D display as some perceive.^{15,53,56,91} Although developing a model in 2D is easier and quicker, 3D/VR offers the best overall benefits (Table 6). However, the majority of the 22 studies that examined the impact of 2D vs. 3D, (including those that favored 3D/VR) raised a concern that developing a DES model remains more difficult and takes longer. As such, we carried out a further evaluation of the time it takes to complete model development in 3D vs. 2D. The results showed an even split, with nearly half concluding that it takes longer to build a 3D model compared to a 2D model, which can be due to the diversity of the modeling techniques and tools used. For example, simulation and modeling software such as WITNESSVR offers the modeling platform in 2D with a fast-build option that translates the 2D model into a 3D visualization.⁴² On the contrary, applications such as FlexSim offer model development directly in 3D from scratch.24,115 One can speculate that the two scenarios provided by the two DES applications can lead to different conclusions, indicating an area that simulation software vendors and practitioners need to address.

Model validation and verification are other important activities in which 3D display provides clear benefits, in two main ways. First, the simulation experts and other users can easily and quickly spot errors in 3D models due to its advanced visualization features, highlighting the model behavior better than does 2D animation. Second, the stakeholders involved as part of the simulation project team are very knowledgeable in the application domains and can identify severe errors in the model. Of particular interest are situations in which the problem involves critical issues caused by the expert's use of incorrect data, followed by certification of the design as valid and verified. It is only by using a 3D model, which the domain experts can easily understand, that these experts can help to identify such mistakes as the behavior of the model appears unusual from a real-life perspective. Such problems can take simulation experts a long time to detect, if at all.^{3,20, 21,72, 97,116} These results indicate that 3D visualization can bring a significant quality contribution to the DES process, and help to resolve one of the major bottlenecks that had cast doubt on DES as a decision-support system for decades.

Other areas where the benefits of 3D display/VR are significant compared to 2D include experimentation and analysis, presentation of results, and communication with clients. All but one study preferred the 3D/VR for experimentation (Tables 4 and 6). It is important to highlight the fact that the findings by the different authors largely depend on the purpose and focus of the experiment activities. The only study that preferred 2D display for experiments²² did so because the 3D model was slower to run than the 2D model, whereas the papers that preferred 3D display for experimentation (e.g., Akpan and Brooks¹¹) considered the effectiveness of the display on task performance, such as spotting errors during validation. Similarly, the outcomes for model analysis also provided strong positive results, with all 25 studies preferring the 3D/VR to provide better performance (Table 6). The results imply that the third dimension can be very helpful when evaluating model behavior and undertaking the what-if analysis.^{11,77}

The central reason offered for these benefits is that 3D visualization and VR significantly enhance users' understanding of the DES model and the behavior of the systems. All 42 papers that investigated this benefit favored 3D/VR over 2D display. For example, the ability of 3D visualization to improve understanding by highlighting poor behavior of the model during runtime and experimentation (not readily evident in 2D) enhances the understating of the model, and in turn helps in the verification and validation process.⁹⁶

6. Conclusions and future projections

This study provides strong evidence that the use of a 3D display can have considerable benefits in many aspects of the DES processes, tasks, and activities. The results show that 3D/VR offers an overall better performance on all the main DES activities and tasks, including model development, verification, and validation, and in experimentation and analysis in addition to the generally acceptable benefits of enhancing model presentation and communication. Another new finding from the study is that 3D/VR helps involved interested parties (e.g., managers and domain experts^{20,21}) in the modeling process. By facilitating stakeholders' involvement in the DES process, the study shows the benefit of 3D/VR in enhancing management buy-in and the overall success of a simulation project.¹⁵

However, the main drawback of creating 3D models is the possibility that it can take longer to complete the model development task; the majority of the published articles identified this concern, including the studies that preferred 3D/VR display to traditional 2D display.⁹² However, no studies among the reviewed articles pointed out the actual causes of the longer time required for 3D modeling. The possible causes can include the modeling platforms/tools, considering the diversity of the techniques adopted by different software and tools. Notwithstanding this limitation, the synthesized outcomes from the study indicate that 3D visualization and VR in DES is fast becoming an acceptable modeling methodology, while further work is required in research and modeling software implementation to resolve the identified drawbacks. Further, the results of the meta-analysis presented in this study show that the application of 3D visualization and VR in discrete-event simulation, and the increased adoption of 3D visualization, and has received more attention in the past two decades, which is mainly due to its important benefits in terms of superior display capability.

Future work intends to survey the practitioners in academia and industry to establish the reasons for the concurrent use of 2D displays and 3D visualization. The research study will also investigate practitioners' perceptions about the possible use of fully immersive VR in DES. This will be followed with experimental studies on modeling and simulation with different 3D software and tools.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

References

- Hurrion RD. Visual interactive modelling. *Eur J Oper Res* 1986; 23(3): 281–7.
- Akpan IJ and Shanker M. The confirmed realities and myths about the benefits and costs of 3D visualization and virtual reality in discrete event modeling and simulation: a descriptive meta-analysis of evidence from research and practice. *Comput Ind Eng* 2017; 112: 197–211.
- Hurrion RD. A sequential method for the development of visual interactive meta-simulation models using neural networks. J Oper Res Soc 2000; 51(6): 712–719.
- Jain S. Simulation in the next millennium. In Proceedings of the 31st conference on simulation: Simulation – a bridge to the future, Phoenix, AZ, December 1, 1999, 1478–1484. New York: ACM.
- Akpan JI and Brooks RJ. Practitioners' perception of the impacts of virtual reality on discrete-event simulation. In *Proceedings of the winter 2005 simulation conference*, Orlando, FL, December 4, 2005, p. 9. Piscataway, NJ: IEEE.
- Akpan IJ and Brooks RJ. Experimental evaluation of user performance on two-dimensional and three-dimensional perspective displays in discrete-event simulation. *Decis Support Syst* 2014; 64: 14–30.
- Moher HK, Ramamurthy K and Sundaram S. Effectiveness of visual interactive modeling in the context of multiplecriteria group decisions. *IEEE Trans Syst Man Cybern Part* A Syst Human 2006; 36(2): 298–318.
- García I and Mollá R. Videogames decoupled discrete event simulation. *Comput Graph* 2005; 29(2): 195–202.
- Kamsu-Foguem B, Tchuenté-Foguem G, Allart L, et al. User-centered visual analysis using a hybrid reasoning architecture for intensive care units. *Decis Support Syst* 2012; 54(1): 496–509.
- Rua H and Alvito P. Living the past: 3D models, virtual reality and game engines as tools for supporting archaeology and the reconstruction of cultural heritage – the case-study of the Roman villa of Casal de Freiria. *J Archaeolog Sci* 2011; 38(12): 3296–3308.

- Akpan IJ and Brooks RJ. Users' perceptions of the relative costs and benefits of 2D and 3D visual displays in discreteevent simulation. *Simulation*. 2012; 88(4): 464–480.
- Waller AP and Ladbrook J. Virtual worlds: experiencing virtual factories of the future. In *Proceedings of the 34th conference on Winter simulation: exploring new frontiers*, San Diego, CA, December 8, 2002, pp. 513–517. New York: ACM.
- Das B and Sengupta AK. Computer-aided human modelling programs for workstation design. *Ergonomics* 1995; 38(9): 1958–1972.
- Hurrion RD. Visual interactive modelling. *Eur J Oper Res* 1986; 23(3): 281–287.
- Rohrer MW. Seeing is believing: the importance of visualization in manufacturing simulation. In: *Proceedings of the winter 2000 simulation conference*, Orlando, FL, 3 December 2000, volume 2, pp. 1211–1216. Piscataway, NJ: IEEE.
- Taylor SJ, Eldabi T, Riley G, et al. Simulation modelling is 50! Do we need a reality check? *J Oper Res Soc* 2009; 60(1): S69–S82.
- Taylor SJ and Robinson S. So where to next? A survey of the future for discrete-event simulation. J Sim 2006; 1(1): 1–6.
- Qu H, Zhu Q, Guo M, et al. Simulation of carbon-based model for virtual plants as complex adaptive system. *Simul Modell Pract Theory* 2010; 18(6): 677–695.
- Akpan IJ. Virtual reality, 3D visualization and simulation in decision support. In: Sarrafzadeh M and Petratos P (eds.) *Strategic advantage of computing information systems in enterprise management*. Athens: ATINER, 2010, pp.13–44.
- 20. Kamat VR. Logical product models for automated scripting of process-level construction animations. *Adv Eng Software* 2008; 39(3): 233–241.
- Kamat VR and Martinez JC. Visualizing simulated construction operations in 3D. J Comput Civil Eng 2001; 15(4): 329–337.
- Robinson S, Lee EP and Edwards JS. Simulation based knowledge elicitation: effect of visual representation and model parameters. *Expert Syst Appl* 2012; 39(9): 8479–8489.
- Rekapalli PV and Martinez JC. Discrete-event simulationbased virtual reality environments for construction operations: technology introduction. *J Constr Eng Manag* 2010; 137(3): 214–224.
- Beaverstock M, Greenwood A, Lavery E, et al. *Applied simulation: modeling & analysis using Flexsim.* 3rd ed. Orem: Flexsim Software Products Inc., 2012.
- Rohrer MW and McGregor IW. Simulating reality using AutoMod. In: Proceedings of the winter 2002 simulation conference, San Diego, CA, December 8, 2002, volume 1, pp.173–181. Piscataway, NJ: IEEE.
- Huang T, Kong CW, Guo H, et al. A virtual prototyping system for simulating construction processes. *Autom Constr* 2007; 16(5): 576–585.
- 27. Hoffmann H, Stefani O and Patel H. Extending the desktop workplace by a portable virtual reality system. *Int J Hum Comput Stud* 2006; 64(3): 170–181.
- Turner CJ, Hutabarat W, Oyekan J, et al. Discrete event simulation and virtual reality use in industry: new opportunities and future trends. *IEEE Trans Hum-Mach Syst* 2016; 46(6): 882–894.

- Waly AF and Thabet WY. A virtual construction environment for preconstruction planning. *Autom Constr* 2003; 12(2): 139–154.
- Bell PC and O'Keefe RM. Visual interactive simulation: history, recent developments, and major issues. *Simulation* 1987; 49(3): 109–116.
- 31. Bell PC. Visual interactive modelling: the past, the present, and the prospects. *Eur J Oper Res* 1991; 54(3): 274–286.
- 32. Otamendi J, Pastor JM and Garcı A. Selection of the simulation software for the management of the operations at an international airport. *Simul Modell Pract Theory* 2008; 16(8): 1103–1112.
- Macal CM. Visualization & simulation. Simulation 2001; 77(3–4): 153–154.
- Sun Z, Lee LH, Chew EP, et al. MicroPort: a general simulation platform for seaport container terminals. *Adv Eng Inf* 2012; 26(1): 80–89.
- 35. Vessey I. Cognitive fit: a theory-based analysis of the graphs versus tables literature. *Decis Sci* 1991; 22(2): 219–240.
- Wainer G and Liu Q. Tools for graphical specification and visualization of DEVS models. *Simulation* 2009; 85(3): 131–158.
- Waisel LB, Wallace WA and Willemain TR. Visualization and model formulation: an analysis of the sketches of expert modellers. *J Oper Res Soc.* 2008; 59(3): 353–361.
- Engin A and Vetschera R. Information representation in decision making: the impact of cognitive style and depletion effects. *Decis Support Syst* 2017; 103: 94–103.
- Robinson S. Discrete-event simulation: from the pioneers to the present, what next? J Oper Res Soc 2005; 56(6): 619–629.
- Tory M, Kirkpatrick AE, Atkins MS, et al. Visualization task performance with 2D, 3D, and combination displays. *IEEE Trans Visual Comput Graphics* 2006; 12(1): 2–13.
- Kamat VR and Martinez JC. Dynamic 3D visualization of articulated construction equipment. J Comput Civil Eng 2005; 19(4): 356–368.
- Dennis AR and Carte TA. Using geographical information systems for decision making: extending cognitive fit theory to map-based presentations. *Inf Syst Res* 1998; 9(2): 194–203.
- Wickens CD and Carswell CM. The proximity compatibility principle: its psychological foundation and relevance to display design. *Hum Factors* 1995; 37(3): 473–494.
- Huang Z, Chen H, Guo F, et al. Expertise visualization: an implementation and study based on cognitive fit theory. *Decis Support Syst.* 2006; 42(3): 1539–1557.
- John M, Cowen MB, Smallman HS, et al. The use of 2D and 3D displays for shape-understanding versus relative-position tasks. *Hum Factors* 2001; 43(1): 79–98.
- Moher M, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Ann Intern Med* 2009; 151(4): 264–269.
- Mueller-Wittig W, Jegathese R, Song M, et al. Virtual factory: highly interactive visualisation for manufacturing. In: *Proceedings of the winter simulation conference*, San Diego, CA, 8 December 2002, volume 2, pp.1061–1064). Piscataway, NJ: IEEE.
- 48. Hutabarat W, Oyekan J, Turner C, et al. Combining virtual reality enabled simulation with 3D scanning technologies

towards smart manufacturing. In: *Proceedings of the 2016 winter simulation conference* Washington, D.C., 11 December 2016, pp. 2774–2785. Piscataway, NJ: IEEE.

- Petti A, Hutabarat W, Oyekan J, et al. Impact of model fidelity in factory layout assessment using immersive discrete event simulation. In *Proceedings of the Operational Research Society Simulation Workshop 2016 (SW16)*, (ed A. Anagnostou, K. Hoad, and M. Kunc), Ettington, 13 April 2016, pp.124–132. Birmingham: OR Society.
- 50. Fishwick P, Lee J, Park M, et al. Next generation modeling I: RUBE: a customized 2D and 3D modeling framework for simulation. In: *Proceedings of the 35th winter conference on simulation: driving innovation*, New Orleans, LA, 7–10 December 2003, pp. 755–762. New York: ACM.
- Alberts S, Keenan MK, D'Souza RM, et al. Data-parallel techniques for simulating a mega-scale agent-based model of systemic inflammatory response syndrome on graphics processing units. *Simulation* 2012; 88(8): 895–907.
- Al-Hussein M, Niaz MA, Yu H, et al. Integrating 3D visualization and simulation for tower crane operations on construction sites. *Autom Constr* 2006; 15(5): 554–562.
- 53. Whyte J. Innovation and users: virtual reality in the construction sector. *Constr Manag Econ* 2003; 21(6): 565–572.
- Bruzzone AG, Briano E, Bocca E, et al. Evaluation of the impact of different human factor models on industrial & business processes. *Simul Modell Pract Theory* 2007; 15(2), 199–218.
- Chan DS. Simulation modelling in virtual manufacturing analysis for integrated product and process design. *Assembly Autom* 2003; 23(1): 69–74.
- Wenzel S and Jessen U. The integration of 3-D visualization into the simulation-based planning process of logistics systems. *Simulation* 2001; 77(3–4): 114–127.
- Chen HM and Huang PH. 3D AR-based modeling for discrete-event simulation of transport operations in construction. *Autom Constr* 2013; 33: 123–136.
- Choi BK, Park BC and Park JH. A formal model conversion approach to developing a DEVS-based factory simulator. *Simulation* 2003; 79(8): 440–461.
- 59. Dangelmaier W, Fischer M, Gausemeier J, et al. Virtual and augmented reality support for discrete manufacturing system simulation. *Comput Ind* 2005; 56(4): 371–383.
- Den Hengst M, De Vreede GJ and Maghnouji R. Using soft OR principles for collaborative simulation: a case study in the Dutch airline industry. *J Oper Res Soc* 2007; 58(5): 669–682.
- 61. Dorozhkin DV, Vance JM, Rehn GD, et al. Coupling of interactive manufacturing operations simulation and immersive virtual reality. *Virtual Real*. 2012; 16(1): 15–23.
- Bailey DE, Leonardi PM and Barley SR. The lure of the virtual. Org Sci 2012; 23(5): 1485–1504.
- Fabritius CV, Madsen NL, Clausen J, et al. Finding the best visualization of an ontology. *J Oper Res Soc* 2006; 57(12): 1482–1490.
- Farooq U, Wainer G and Balya B. DEVS modeling of mobile wireless ad hoc networks. *Simul Modell Pract Theory* 2007; 15(3): 285–314.
- 65. Fishwick PA. Toward an integrative multimodeling interface: a human–computer interface approach to interrelating model structures. *Simulation* 2004; 80(9): 421–432.

- Fishwick P, Davis T and Douglas J. Model representation with aesthetic computing: method and empirical study. ACM Trans Model Comput Simul 2005; 15(3): 254–279.
- Talmaki S, Kamat VR and Saidi K. Feasibility of real-time graphical simulation for active monitoring of visibilityconstrained construction processes. *Eng Comput* 2015; 31(1): 29–49.
- Su JM and Huang CF. An easy-to-use 3D visualization system for planning context-aware applications in smart buildings. *Comput Stand Inter* 2014; 36(2): 312–326.
- 69. Suh KS and Lee YE. The effects of virtual reality on consumer learning: an empirical investigation. *MIS Q* 2005; 1: 673–697.
- Kamat VR and Martinez JC. Software mechanisms for extensible and scalable 3D visualization of construction operations. *Adv Eng Software* 2008; 39(8): 659–675.
- Kamat VR and Martinez JC. Variable-speed object motion in 3D visualizations of discrete-event construction simulation models. *ITcon* 2007; 12(20): 293–303.
- Kamat VR and Martinez JC. Validating complex construction simulation models using 3D visualization. *Syst Anal Model Simulat* 2003; 43(4): 455–467.
- Khoury HM, Kamat VR and Ioannou PG. Evaluation of general-purpose construction simulation and visualization tools for modeling and animating airside airport operations. *Simulation* 2007; 83(9): 663–679.
- Kim T, Lee J and Fishwick P. A two-stage modeling and simulation process for web-based modeling and simulation. *ACM Trans Model Comput Simul* 2002; 12(3): 230–248.
- Kim SH and Chung KY. Medical information service system based on human 3D anatomical model. *Multimed Tools Appl* 2015; 74(20): 8939–8950.
- Van Orden KF and Broyles JW. Visuospatial task performance as a function of two-and three-dimensional display presentation techniques. *Displays* 2000; 21(1): 17–24.
- Aigner W, Miksch S, Müller W, et al. Visualizing timeoriented data: a systematic view. *Comput Graph* 2007; 31(3), 401–409.
- Kumar N and Benbasat I. The effect of relationship encoding, task type, and complexity on information representation: an empirical evaluation of 2D and 3D line graphs. *MIS Q* 2004; 1: 255–281.
- 79. Li H, Ma Z, Shen Q, et al. Virtual experiment of innovative construction operations. *Autom Constr* 2003; 12(5): 561–575.
- Lindskog E, Berglund J, Vallhagen J, et al. Visualization support for virtual redesign of manufacturing systems. *Procedia CIRP* 2013; 7: 419–424.
- Moon DH, Cho HI, Kim HS, et al. A case study of the body shop design in an automotive factory using 3D simulation. *Int J Prod Res* 2006; 44(18–19): 4121–4135.
- Mujber TS, Szecsi T and Hashmi MS. Virtual reality applications in manufacturing process simulation. J Mater Process Technol 2004; 155: 1834–1838.
- Murphy CA and Perera T. The definition of simulation and its role within an aerospace company. *Simul Pract Theory* 2002; 9(6): 273–291.
- 84. Nah FF, Eschenbrenner B and DeWester D. Enhancing brand equity through flow and telepresence: a comparison of 2D and 3D virtual worlds. *MIS Q* 2011; 1: 731–747.

- 85. Okulicz K. Virtual reality-based approach to manufacturing process planning. *Int J Prod Res* 2004; 42(17): 3493–3504.
- Quarles J, Fishwick P, Lampotang S, et al. A mixed reality approach for interactively blending dynamic models with corresponding physical phenomena. *ACM Trans Model Comput Simul* 2010; 20(4): 22.
- Rodriguez S, Hilaire V and Koukam A. Towards a holonic multiple aspect analysis and modeling approach for complex systems: application to the simulation of industrial plants. *Simul Modell Pract Theory* 2007; 15(5): 521–543.
- Ahlberg G, Enochsson L, Gallagher AG, et al. Proficiencybased virtual reality training significantly reduces the error rate for residents during their first 10 laparoscopic cholecystectomies. *Am J Surg* 2007; 193(6): 797–804.
- Rubio EM, Sanz A and Sebastián MA. Virtual reality applications for the next-generation manufacturing. *Int J Computer Integr Manuf* 2005; 18(7): 601–609.
- Smallman HS, John MS, Oonk HM, et al. Information availability in 2D and 3D displays. *IEEE Comput Graphics Appl* 2001; 21(5): 51–57.
- Son MJ and Kim TW. Maneuvering control simulation of underwater vehicle based on combined discrete-event and discrete-time modeling. *Expert Syst Appl* 2012; 39(17): 12992–13008.
- Oerter J, Suddarth W, Morhardt M, et al. A system architecture and simulation environment for building information modeling in virtual worlds. *J Def Model Simul* 2014; 11(3): 205–210.
- Dialami N, Chiumenti M, Cervera M, et al. Material flow visualization in friction stir welding via particle tracing. *Int J Mater Form* 2015; 8(2): 167–181.
- 94. Vasudevan K and Son YJ. Concurrent consideration of evacuation safety and productivity in manufacturing facility planning using multi-paradigm simulations. *Comput Ind Eng* 2011; 61(4): 1135–1148.
- 95. Lu H, Zhen H, Mi W, et al. A physically based approach with human-machine cooperation concept to generate assembly sequences. *Comput Ind Eng* 2015; 89: 213–225.
- Korošec P, Bole U and Papa G. A multi-objective approach to the application of real-world production scheduling. *Expert Syst Appl* 2013; 40(15): 5839–5853.
- Khosravi A, Nahavandi S and Creighton D. A prediction interval-based approach to determine optimal structures of neural network metamodels. *Expert Syst Appl* 2010; 37(3): 2377–2387.
- Hartmann T and Fischer M. Supporting the constructability review with 3D/4D models. *Building Res Inf* 2007; 35(1): 70–80.
- Chen HM, Hou CC and Wang YH. A 3D visualized expert system for maintenance and management of existing building facilities using reliability-based method. *Expert Syst Appl* 2013; 40(1): 287–299.
- Shen M, Carswell M, Santhanam R, et al. Emergency management information systems: could decision makers be supported in choosing display formats? *Decis Support Syst* 2012; 52(2): 318–330.
- Hajdas M. Modelling and simulation of monolithic construction processes. *Technol Econ Dev Eco* 2008; 14(4): 478–491.

- Somasundaram K and Kalaiselvi T. Fully automatic brain extraction algorithm for axial T2-weighted magnetic resonance images. *Comput Biol Med* 2010; 40(10): 811–822.
- Calabrese F, Corallo A, Margherita A, et al. A knowledgebased decision support system for shipboard damage control. *Expert Syst Appl* 2012; 39(9): 8204–8211.
- Li H, Huang T, Kong CW, et al. Integrating design and construction through virtual prototyping. *Autom Constr* 2008; 17(8): 915–922.
- Hong Z, Shi JJ and Tam CM. Visual modeling and simulation for construction operations. *Autom Constr* 2002; 11(1): 47–57.
- 106. Moghadam M, Al-Hussein M, Al-Jibouri S, et al. Post simulation visualization model for effective scheduling of modular building construction. *Can J Civ Eng* 2012; 39(9): 1053–1061.
- 107. Nandan R, Roy GG, Lienert TJ, et al. Numerical modelling of 3D plastic flow and heat transfer during friction stir welding of stainless steel. *Sci Technol Weld Joining* 2006; 11(5): 526–537.
- Zhang G, Zhou XJ, Zhu CZ, et al. Usefulness of threedimensional (3D) simulation software in hepatectomy for pediatric hepatoblastoma. *Surg Oncol* 2016; 25(3): 236– 243.
- 109. Patel VM, Dholakia MB and Singh AP. Emergency preparedness in the case of Makran tsunami: a case study on tsunami risk visualization for the western parts of Gujarat, India. *Geomat Nat Haz Risk* 2016; 7(2): 826–842.
- 110. Zhou C, Wang J, Tang G, et al. Integration of advanced simulation and visualization for manufacturing process optimization. *JOM* 2016; 68(5): 1363–1369.
- Runeson P and Höst M. Guidelines for conducting and reporting case study research in software engineering. *Empir Softw Eng* 2009; 14(2): 131.
- 112. Kirkpatrick PF and Bell PC. Visual interactive modeling in industry: results from a survey of visual interactive model builders. *Interfaces* 1989; 19: 71–79.
- 113. Hurrion RD. Using 3D animation techniques to help with the experimental design and analysis phase of a visual interactive simulation project. *J Oper Res Soc* 1993; 1: 693–700.
- 114. Pidd M. Model development and HCI. In: Proceedings of the 28th winter conference on simulation, Phoenix AZ, 8 December 1996, pp. 681–686. Piscatway, NJ: IEEE.
- 115. Barnes M. Virtual reality & simulation. In *Proceedings of the 1996 winter simulation conference* (ed. JM Charnes, DJ Morrice, DT Brunner, et al.), Coronado, CA: 8 December 1996, pp.101–110. Piscataway, NJ: IEEE.
- Kelsick J, Vance JM, Buhr L, et al. Discrete event simulation implemented in a virtual environment. J Mech Des 2003; 125(3): 428–433.

Author biographies

Ikpe Justice Akpan, Ph.D. is an Assistant Professor in the department of Management & Information Systems, Kent State University, USA. He obtained his Doctorate degree from Lancaster University Management School, UK, in 2006, and a Master's degree in Software Development from Leeds Metropolitan University, UK. He also holds the Chartered Professional Accountant (CPA) and Certified General Accountant (CGA) certifications from the Chartered Professional Accountants, Canada. Dr. Akpan recently served as a Distinguish Visiting Professor at Shanghai International Studies University, Shanghai, China. His research interests include computer simulation and applications, information systems strategies, and information visualization. **Murali Shanker, Ph.D.** is a full Professor in the department of Management & Information Systems, Kent State University. He holds a Ph.D. in Operations and Management Science, Carlson School of Management, University of Minnesota, 1990. Professor Shanker also holds an MS in Operations Research and a BS in Mathematics from the University of Madras. His research interests are in the areas of simulation, open source, and decision-making.