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simulator by means of computational
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Abstract
Domain-specific simulators often have an edge on general-purpose simulators in terms of performance. Their intricate
knowledge of the domain allows them to aggressively optimize and take shortcuts. In contrast, simulators for more gen-
eral formalisms, such as Discrete Event System Specification (DEVS), need to support a wider set of models. Their inabil-
ity to use domain information prevents DEVS simulators from achieving as high performance as their domain-specific
variants. To solve this problem, we introduce a way to enhance the simulation performance of DEVS models through
the use of computational resource usage models, often termed ‘‘activity’’ models. These models augment general-
purpose DEVS models with domain-specific information, which can be used by the simulator. We apply this information
in the context of data structure optimization, load balancing, and model allocation. Activity-awareness is a non-invasive
extension to the DEVS formalism, meaning that activity-augmented models remain perfectly valid for use in activity-
unaware simulators. Similarly, models without activity can still be simulated by an activity-aware simulator. Our approach
is validated by making PythonPDEVS, a Parallel DEVS simulator, activity-aware and evaluating the performance impact
on a set of benchmark models.
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1 Introduction

Domain-specific simulators often have an edge on more

general simulators when it comes to performance. This is

especially prominent in the simulation of Discrete Event

System Specification (DEVS) models, which allows a wide

variety of formalisms to be mapped onto it, often giving it

the status of a simulation assembly language.1 Although it

is the generality of DEVS that makes this possible, there is

a significant performance impact. DEVS simulators can

not make the same optimizations as domain-specific simu-

lators. For example, a discrete time formalism can go with-

out an event list: all models are always scheduled. Discrete

event formalisms, however, need to diligently maintain an

event list. Mapping a discrete time formalism onto DEVS
thus implies a performance impact, unless the DEVS simu-

lator is made aware of this potential optimization.

We propose computational resource usage models,

often termed ‘‘activity’’ models, as a way of passing per-

formance information along with the DEVS model.

Whether they are used or not is up to the simulator:

activity models only address performance, not correctness.

As such, simulators that are not activity-aware can still be

used and yield identical results. Similarly, activity-aware

simulators can also simulate activity-unaware models and

yield identical results. This augmentation is shown in

Figure 1. Activity extends both the simulator and model,

without touching any of the original specifications. This

activity definition might itself be a model of the same sys-

tem as the DEVS model, although at a higher level of

abstraction and with different preserved properties. This is

possible due to their distinct focus: the DEVS model

focuses on behavior, while the activity model focuses on
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performance. As a result, a DEVS model can be simulated

using algorithms optimized for a specific domain.

Three components are presented that can profit from

the addition of activity information: the event list schedu-

ler (i.e., internal data structure); model migration (i.e., load

balancing); and model allocation (i.e., initial distribution

of the model). For each component, we first discuss its

function without activity. After activity is introduced, it is

applied to these three components, making them activity-

aware.

Different methods for obtaining activity metrics are pre-

sented next. Activity can be measured based on the past or

the present. The future might even be possible with predic-

tion. Domain knowledge can be combined with these mea-

surements to further improve simulation performance.

Claimed performance improvements are made solid

using several benchmarks. For this, we extended

PythonPDEVS,2 a Parallel DEVS3 simulator, with

activity-awareness.4 Several synthetic models are used to

indicate the impact of parameters in the ideal situation.

Two realistic benchmarks show the relevance to real simu-

lation problems, and give pointers on performance

improvements that can be expected in realistic scenarios.

The remainder of this paper is organized as follows.

Section 2 presents the three simulator components that

increase performance. Section 3 gives a brief summary of

the different activity definitions that are used throughout

the paper, and how they relate to definitions found in the

literature. Section 4 presents different application domains

for each kind of activity. Section 5 distinguishes the three

dimensions of activity measurement that we observed.

Section 6 briefly discusses our implementation in

PythonPDEVS and compares the simulation performance

for several models, both synthetic and realistic, with and

without activity, and with and without domain-specific

information. Section 7 explores related work and Section

8 concludes the paper.

2 Performance components

This section briefly reviews three simulator components,

which will be augmented with activity information later:

the scheduler, allocator, and migrator. Each of these com-

ponents already contributes to performance gains, but often

require detailed model configuration. One major problem

with manual configuration is that even minor changes to

the model can require major changes in configuration. In

later sections, these components are extended with activity

to (semi-)automatically configure them.

2.1 Scheduler

One of the most complexity-defining parts of discrete

event simulation is the event list implementation (called

the scheduler in the remainder of this paper). It keeps track

of event/model notices (i.e., time–value pairs). Nearly

every DEVS simulator uses a different data structure as the

basis of the scheduler.5

The two common types of general-purpose schedulers

are as follows:

1. list-based, where complexity is independent of the

number of colliding (un)schedule operations, but is

relatively inefficient if only a single such operation

happens, as the whole list is traversed;

2. heap-based, where complexity is dependent on

the number of colliding (un)schedule operations,

but it is very efficient if only a single such opera-

tion happens.

An overview of their complexities can be seen in Table 1.

The ideal scheduler is dependent on the model.2

Specifying a good scheduler, however, proves challenging

to the modeler. This is certainly the case when the modeler

is unfamiliar with data structures and complexities. Even

if the user has this knowledge, the number of colliding

models might be difficult to estimate. Worse even, this

amount can vary during simulation, and then no single

ideal scheduler exists.

2.2 Allocation

Many parallel simulators require manual model allocation

during initialization. This clutters the model and means

that the sequential model has to be altered before it can be

Figure 1. Activity as an optional augmentation to the Discrete
Event System Specification (DEVS) model and simulator.

Table 1. Complexity of different scheduler types. k is the
number of reschedules and n is the total number of models in
the simulation.

Average case Worst case

List O(n) O(n)
Heap O(k · log(n)) O(n · log(n))
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distributed. While this is feasible for simple models, com-

plex models are much harder to allocate this way.

The ideal model allocation depends on many para-

meters, including the used simulation algorithms. With

allocation hardcoded in the model, changing any para-

meter of the simulator or model requires changes to the

model to update the allocation logic. Whereas one of the

core strengths of DEVS is its strict separation between

model and solver, model allocation implicitly links them,

breaking this separation. Ideally, the model, which con-

cerns behavior, should not be responsible for allocation, as

that is an implementation detail. Simulating the same

model, with the same allocation, in different simulators

might give completely different performance results.

The allocator resolves this problem. After model con-

struction, a function is called that performs the allocation

using global knowledge of the constructed model. Multiple

such functions can exist, each specialized for a specific

synchronization protocol or simulator implementation. The

model remains untouched, so comparing several allocation

strategies becomes much simpler.

2.3 Migration

Even when the ideal allocation is chosen at the start of

simulation, computational load might shift throughout

simulation. With migration, the modeler provides migra-

tion rules, which redistribute models during simulation,

thus rebalancing the load.

Note the difference with allocation: allocation happens

once, at the start of simulation, whereas migrations happen

throughout the simulation. Allocations specify a complete

model distribution from scratch, whereas migrations spe-

cify some specific models to move.

Without support for migration, the initial distribution

will be kept throughout the complete simulation run.

Varying some of the model parameters can have a signifi-

cant impact on the behavior of the model, and thus on the

ideal set of rules to use.

3 Activity definitions

The term ‘‘activity’’ has been used for a variety of pur-

poses in the literature. Only several of these definitions are

relevant to this paper. An excellent overview is given by

Muzy et al.,6 which forms the basis for this section. In the

scope of this paper, we consider activity for the monitoring

and optimization of computational resource consumption.

Although we slightly deviate from the definitions in the lit-

erature, and in particular how it is measured, the defini-

tions are conceptually similar.

3.1 Qualitative activity

Qualitative activity distinguishes between active and inac-

tive models. In this context, there is no numerical value

(quantity) linked to the activity. A model is qualitatively

inactive when no events occur in the horizon, and qualita-

tively active otherwise. The horizon signifies the period in

simulated time in which the (in)active model is consis-

tently (in)active. In the context of Parallel DEVS, an

atomic model is qualitatively inactive if its time advance

does not schedule an internal transition within the horizon

(e.g., because the time advance is infinite).

3.2 Quantitative activity

Quantitative activity links activity to a numerical measure.

In this context, the horizon implies the period in simulated

time over which the quantity is accumulated.

In the literature, a model’s quantitative activity is

defined as the sum of its quantitative internal activity and

quantitative external activity. Quantitative internal activity

corresponds to the number of internal discrete events in

the horizon. It counts the number of internal computations

within atomic models. Quantitative external activity corre-

sponds to the number of external discrete events in the

horizon. It counts the number of events received at atomic

models.

In our definitions, we further emphasize the distinction

between computational resource usage (internal activity)

and connection usage (external activity). Note that in our

definitions, we remain vague about the activity unit on pur-

pose. For example, these units can be wall-clock time, state

transitions, or even the number of elements in a queue,

depending on how the value is used later on.

3.2.1 Quantitative internal activity. In our definition, quanti-

tative internal activity measures resource consumption of

state transitions. Internal, external, and confluent transi-

tions all cause state transitions, so all of them are mea-

sured. Since internal activity measures computation, it is

only fair to also include the external and confluent

transitions.

3.2.2 Quantitative external activity. In our definition, quanti-

tative external activity measures the resource consumption

of event exchange. Contrary to the literature, metrics are

stored about the connection itself, instead of only the

receiving model. In this way, the source of the event is

also stored.

3.3 Domain-dependent activity

Due to our modified definition, domain-dependent activity

measures become possible: its units are left for the mode-

ler to define. For each type of activity, we describe how

we extended this notion further with domain-dependent

notions. In this context, we define domain-dependent

information as information that is not applicable in
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general. For example, the time taken in transition func-

tions or memory used to store the state is applicable for

each model, as there are no accesses to details of the

model. Domain-dependent information requires accesses

to particular aspects of the state, such as the number of

cars on a road or the temperature of a surface. These

notions cannot be ported between domains, and therefore

require aid from the user on how to access and interpret

the values.

3.3.1 Qualitative activity. Qualitative activity, specifying

whether a model is active or not, can be augmented with

domain-dependent notions of what it means for a model to

be active. For example, a model that times out every so

often is considered active by the general-purpose defini-

tion. This is because, in general, it is unknown whether a

transition indicates activity or not, so the safe option is to

assume that a transition means activity. With domain-spe-

cificity, we can also consider other states as inactive, for

example with a large time advance or an empty internal

transition function.

3.3.2 Quantitative internal activity. Quantitative internal

activity profits the most from domain-specificity. Instead

of keeping a transition counter, as proposed in the litera-

ture, we extend this to an invocation on the model in that

particular state. This invocation can return an arbitrary

value, as long as the simulation kernel knows its meaning.

For example, the number of cars on a road or the number

of events in the queue. General-purpose activity values

can also be returned, such as the central processing unit

(CPU) time for the transition or the number of transitions.

3.3.3 Quantitative external activity. Quantitative external

activity has not been extended with domain-specific

notions in our work. We believe that domain-specific

notions on what is the load of exchanging an event is diffi-

cult to justify: most of the cost is on the exchange of the

event, not on the type of event being exchanged. Adding

in domain-specific notions increases the overhead of event

passing even more due to bookkeeping. While we do not

think that domain-specific quantitative external activity

has no purpose, future work is needed to find a convincing

use case.

4 Applications

We now focus on using the measured activity with the

intention of increasing performance. All three definitions

of activity will be used: qualitative, quantitative internal,

and quantitative external activity. In our applications,

the first two can be modified by the user to add a

domain-specific notion. Activity will be used to enhance

the components presented previously.

4.1 Scheduler

Using activity, the scheduler can be extended in two direc-

tions. One direction is ignoring inactive models, thereby

reducing the scheduler’s complexity. Another direction is

automatic detection and switching to a different type of

scheduler during simulation.

4.1.1 Activity Scheduler. By default, an inactive model is a

model that has a time advance of +‘ (i.e., is passivated).

Inactive models never become imminent, so they can be

left out altogether. They can be activated by an external

event, which is independent of the scheduler. By removing

models from the scheduler, the complexity decreases as it

becomes dependent on the number of active models only.

This optimization is easy, and is implemented in most

performance-conscious simulators.

Our approach up until now was perfectly general and in

widespread use. The user might, however, have additional

domain-specific knowledge about the models.

A possible use case of this optimization is in a fire

spread model.7 Figure 2 shows such a model, where the

influence of inactive models on simulation complexity is

made clear. In the example, cells are either not burning,

burning, or burned out. The burned out regions cannot

burn again, and can be marked as permanently inactive.

Not (yet) burning regions do not currently host any activ-

ity, although they might in the future. They can be marked

as inactive too, further increasing performance.

Complexity is significantly reduced, as we only check the

burning cells. We define n as the number of cells in one

dimension, and ro and ri as the radius of the outer and

inner circle, respectively (refer to Figure 2). Using an

activity scheduler, the complexity is then reduced from

O(n2) to O(r2o � r2i ), as the burning cells only make up a

circle in the figure.

4.1.2 Polymorphic scheduler. Another activity-aware optimi-

zation is the polymorphic scheduler. This is a scheduler

that alters its data structure at run-time, based on observed

access patterns. This idea was also implemented in tools

such as Meijin++.8

A polymorphic scheduler does not use qualitative activ-

ity, as defined before, but is similar in idea: monitor beha-

vior and optimize for it. Improved performance is obtained

by alternating between schedulers at run-time, depending

on the measured activity.

The polymorphic scheduler solves both problems iden-

tified when choosing the scheduler manually: (1) no

knowledge about the model or different data structures is
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required; and (2) it becomes possible to alter the data

structure during a running simulation.

An example polymorphic scheduler chooses between

two different schedulers: one is list-based and the other is

heap-based. When many collisions are detected, the sche-

duler switches to a list-based scheduler. Otherwise, a heap-

based scheduler is chosen.

It is also possible to write a domain-specific poly-

morphic scheduler. Depending on the domain, different

heuristics can be implemented, or a different set of sche-

dulers can be selected, possibly even containing some

domain-specific ones.

4.2 Migration

The migrator is also extended with activity information.

Instead of using static migration rules, migrations are

based on values measured during simulation.

Only quantitative internal activity is used in the migra-

tor. Quantitative external activity is not used for several

reasons, as follows.

1. It is difficult to determine the scope of what should

be measured. Is it only the events exchanged

between cores, or also all internal events? Is this

including events that were rolled back, or not?

And what about anti-events, in the case of a time

warp implementation? While we do not believe

that it is impossible to measure this kind of activ-

ity; we feel that we have to make many decisions,

which are, at this point in our research, not well-

founded.

2. While we have a clear use for internal activity, we

do not know how useful the number of exchanged

events will be for migrations. Most likely, the

number of actually exchanged events is unpredict-

able when combined with optimistic synchroniza-

tion, as events are sometimes exchanged multiple

times. Even changing the model structure slightly

can result in a significantly different number of

exchanged events. We feel that the value of this

measure is unreliable.

3. Technically, adding these measurements increases

the simulation overhead. Whereas computation can

be easily measured, invoking multiple functions

for every exchanged event quickly becomes a per-

formance bottleneck. As our main motivation for

the use of activity is the potential performance

gain, we feel that the overhead outweighs the

benefits.

An example of activity migration is shown in Figure 3,

which shows the influence of a shifting computational

load. In the example, the initial allocation is first chosen in

such a way that there is a perfect load distribution. After

some time, different models become highly active,

whereas previously highly active models become almost

inactive. Therefore, simulation becomes less efficient as it

progresses. With activity migration, the distribution of

Figure 2. Application of qualitative activity can reduce
complexity from O(n2) to O(r2o � r2i ): red regions are burning
(active); light blue regions are not yet burning (inactive); black
regions are burned down. (Color online only.)

Figure 3. Activity-based migration example: (dark) red models are highly active, whereas (light) blue models are nearly inactive.
(Color online only.)
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activity is monitored throughout the simulation. The

imbalance is detected and highly active models are

migrated to a dedicated core again.

Activity-based migrations automatically search for

migration rules to apply, very similar to the existing work

on load balancing.9 Rules are no longer specific to the

model configuration, but become general to all configura-

tions of the model. Modifying simulation and model para-

meters no longer requires changes to the statically defined

migration rules, as the migrator comes up with these rules

automatically as long as its assumptions remain valid.

These assumptions are usually valid for all models in the

same domain and the same formalism. For example, with

fire spread simulation, different configurations of the same

fuel bed can be made and different sources of the fire can

be selected. These configuration choices do not influence,

for example, the fact that a burned out cell will be perma-

nently inactive. The migrator is able to cope with changing

model configurations, as it relies on characteristics of the

domain and formalism, and not on the configuration.

Whether or not it is domain-specific is up to the user: if it

is not domain-specific, the migrator only accesses general

performance metrics; otherwise, the migrator can access

the full model state.

Domain information is helpful for the following.

1. To define the granularity of the migrations. A

general-purpose algorithm has no idea which two

models are closely linked together. While good

design of the model suggests that closely linked

models are in the same coupled model, this is not

necessarily the case. Domain-specific algorithms

can help by suggesting which models should never

be split up.

2. To define a priority on some migrations. A

general-purpose algorithm has no migration cost

metric. Generally, as few models as possible

should be migrated, each having a small state and a

high computational load. This is difficult to deter-

mine automatically, as the state size and its compu-

tation fluctuates significantly. Domain-specific

algorithms can help in making these decisions.

3. To define some known bad distributions, which

should be avoided. A general-purpose algorithm

has no idea which distributions are good and bad.

It can make an educated guess, based on the

observed activity, but it has no clue whether the

new distribution is sane or not. Domain-specific

algorithms can help by evaluating the new config-

uration before actually performing the migration.

Algorithm 1 describes the algorithm used by a domain-

specific migrator in pseudo-code.

4.3 Allocation

Contrary to the migrator, the allocator uses quantitative

internal and quantitative external activity. It has the same

function as the static allocator discussed previously: find-

ing a good allocation at the start of simulation. There are

two major differences, as follows.

1. The allocator has a profiling time, specifying at

what point in simulation time the allocation should

be performed. For the static allocator, this was

always set to zero (i.e., the simulation start time).

A static allocator is thus a degenerate case of the

dynamic allocator, where no activity measurement

is done. If the profiling time is longer, simulation

runs sequentially (i.e., all models are executed on

a single core) in profiling mode until the profiling

time is reached. In profiling mode, quantitative

internal and external activity are monitored. When

simulation progresses past the profiling time, the

allocator is invoked with the gathered activity val-

ues. The horizon is thus equal to the profiling time.

The allocator returns an allocation, just as was the

case with the static allocator, which is used from

then on.

2. Two extra arguments are passed to the allocator:

the measured quantitative internal and external

activity. These are the activity values measured up

to the profiling time. Decisions are based on the

activity of atomic models (quantitative internal

activity), the activity of connections (quantitative

external activity), or both.

An example is shown in Figure 4, which shows that the

activity on connections is important in order to make a

good allocation. In the example, simulation starts with all

models running locally on a single core, in profiling mode.

When the profiling time has passed, the allocator is

invoked with the measured activity information. The

resulting allocation is shown as well: both cores have two

Algorithm 1 Activity-aware migration.

while True do
activity ½�
for all i ∈ models do

activity.append(fetch_activity(i))
end for
rules find_migrations(activity)
for all i ∈ rules do

perform_migration(i)
end for
sleep()

end while
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highly active atomic models and no connection with high

activity is an inter-core connection.

Algorithm 2 shows our activity-aware simulation algo-

rithm. As soon as profiling finishes, the model and its

measured activity is passed to the allocator. After alloca-

tion, simulation continues where the profiled simulation

stopped.

Normally, the user encodes the initial distribution either

by embedding it in the model or by adding a static alloca-

tor. Static allocators have the same weakness as manual

migrators: they are model-specific instead of domain-spe-

cific. This means that, if the model changes its behavior

ever so slightly, all information might become invalid. A

dynamic allocator adapts to a changing model as long as

its assumptions remain valid.

An allocator is completely different from a migrator,

despite them having similar goals. Whereas the allocator

returns a complete allocation, starting from scratch, the

migrator returns only a set of modifications, starting from

the previous distribution. So whereas a migrator can ignore

mostly inactive models, as their migration overhead will

be higher than the achieved performance, the allocator

needs to find an allocation for each and every model. The

migrator searches for slight updates to the current distribu-

tion, whereas the allocator searches for a completely new

distribution.

4.4 Overview

Table 2 summarizes the types of activity used by the dif-

ferent components. The scheduler only has access to quali-

tative activity. Migration can be based on quantitative

internal activity, but this can be generalized to qualitative

activity. All forms of activity can be used during

allocation.

For each use of activity, it is possible to use either a

general-purpose or domain-specific version. In the next

section, we describe how activity values are obtained from

the simulation. This shows that apart from different appli-

cations of these values, there are also different ways of

obtaining the values, including domain-specific ways.

5 Activity measurement

While we have already shown several applications of

activity, there has been no mention yet of how these val-

ues were measured. For qualitative activity, the model

state is inspected at the moment it needs to be decided

whether it is active or not. For quantitative external activ-

ity, we keep track of the amount of exchanged events

between two different cores, using a simple counter. These

measurements are trivial and not discussed further. In our

approach, the most versatile kind of activity to measure is

the quantitative internal activity. The remainder of this

section is devoted entirely to quantitative internal activity

measurement.

Quantitative internal activity measures the computa-

tional load of a model. This is done by calling a pre-tran-

sition and post-transition function, invoked before and

after the transition function, respectively. We have opted

to use two separate calls to measure activity, with the sec-

ond being passed the result of the first. This allows a com-

parison between the pre-transition and post-transition state

without having two complete states in memory: only rele-

vant values are retained. Furthermore, two calls are

required anyway to measure specific physical resource

Figure 4. Activity-based allocation example: (dark) red means
highly active, whereas (light) blue means nearly inactive. (Color
online only.)

Algorithm 2 Main simulation algorithm combined with an
initial profiling run.

initialize_model()
profiling [0 j i ∈ atomic_models]
while simulation_time < profiling_time do

start time()
simulate_step()
end time()
for all i ∈ transitioned_models do
profiling½i�  profiling½i�+end - start
end for

end while
allocation find_allocation(profiling)
allocate(allocation)
while simulation_time < termination_time do

simulate_step()
end while

Table 2. Overview of the used types of activity.

Quantitative Quantitative
Internal

Quantitative
External

Scheduler U

Migration U U

Allocation U U U
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consumption, such as CPU time spent or memory con-

sumed, to compare the usage before and after the transi-

tion. Different approaches to the measurement of

computational load are possible, such as the use of decora-

tors for the transition function.

As this function can be defined by the user, there are

two options: either generic information is provided (e.g.,

CPU time, number of transitions) or domain-specific infor-

mation is passed (e.g., queue length, queue load).

We distinguish three dimensions of activity measure-

ment as follows.

1. Time specifies for which region in time the activity

is measured. If the time is in the future, this implies

that a prediction is made about values measured in

the past. This time is always relative to the Global

Virtual Time (GVT), which is the minimum of the

simulation time in all solvers of all participating

cores.

2. Accumulation specifies if activity values are accu-

mulated or not. When accumulated, values can be

averaged over the horizon. Without accumulation,

a single consistent view is constructed for one point

in simulated time.

3. Data source specifies where the data comes from.

This can either be a generic function, such as mea-

suring the time taken, or a domain-specific func-

tion, such as measuring the queue length.

Other activity-aware DEVS simulators are limited to

general-purpose activity tracking, which accumulates val-

ues over the past in a general-purpose way. We contribute

to this ongoing research by introducing new ways of mea-

suring activity, in combination with domain-specific hints.

Measured values can be used in four ways: activity

tracking (past, accumulated, general-purpose); activity pre-

diction (future, accumulated, domain-specific); activity in

state (now, no accumulation, domain-specific); and activity

in state prediction (future, no accumulation, domain-

specific).

5.1 Activity tracking

The simplest method is activity tracking. For each model,

all activity values within the simulation time interval

½GVT � horizon,GVT � are accumulated into a single

value. These accumulated values are presented as activity.

When using activity tracking, we optimize for the aver-

age situation in the past horizon. If the horizon does not

offer a significant sample of the model’s behavior, results

might be skewed. Other approaches, presented next, alle-

viate this problem.

Despite optimizing for the past, this method yields

good estimates, on the condition that the horizon is large

enough to be representative, but small enough to be recent.

One of the major advantages is that it can be used as-is

without any domain-specific knowledge, while still offer-

ing fairly accurate results. Unsurprisingly, this is the

approach used by most algorithms found elsewhere. For

example, general-purpose load balancing can be seen as

the application of activity tracking in the migrator.

5.2 Activity prediction

Activity prediction builds on top of values found during

activity tracking. Instead of using the values as-is, future

activity is predicted. Prediction algorithms are domain-

specific. For example, predictions can use a simplified

DEVS model to approximate load evolution, or they could

use closed-form formulas to approximate the future.

If the prediction is accurate, we can approximate the

near future, and thus optimize for it. When prediction is

inaccurate, we optimize for an unrealistic situation, which

is thus inoptimal for the actual future. Even with incorrect

predictions, simulation errors never occur, as the model

and simulation algorithms remain unaltered; only the

choice between different components and algorithms is

influenced.

Accurate predictions require domain-specific knowl-

edge. The main question activity prediction needs to solve

is: ‘‘How will activity evolve over the next horizon?’’

Activity prediction optimizes the model for the simulation

time interval ½GVT ,GVT + horizon� (i.e., the future hori-

zon). This is quite logical, as the next time at which mea-

surements happen is around simulation time

GVT + horizon. Migrations should therefore focus on

optimizing the simulation up to that point, after which

new migrations can be performed. The value of the next

horizon is an unknown factor, as it is based on simulation

pace. Predicting simulation pace requires domain-specific

knowledge, as there is no predefined relation between

simulation time and wall-clock time.

The potential performance gain depends on the domain,

prediction accuracy, prediction computation time, and how

much the prediction differs from the past. Prediction is

particularly useful when activity fluctuations are only tem-

porary and do not require any reaction from the activity-

aware optimization components.

5.3 Activity in state

The activity in state method differs from activity tracking,

as it uses the activity in a single state, instead of the accu-

mulated activity throughout the horizon. This single state

is the last state of the interval that would be used by activ-

ity tracking. Consequently, it is the state of the model at

simulation time GVT. The activity provides a consistent

snapshot at the GVT. This requires domain-specific infor-

mation, as otherwise it is impossible for the simulation ker-

nel to interpret the state.
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For some activity definitions, activity accumulation is

counter-productive. An example is a fire spread model:

activity can be defined as the temperature at the state.

With accumulation, this returns the sum of all temperatures

seen throughout the interval. Combined with the number

of transitions, we obtain the average temperature in the

horizon. With activity in state, the activity is the tempera-

ture at the GVT. The result is a consistent view on the

complete model, containing the temperature of each cell.

For optimization, the current temperature is more useful

than the average temperature over some period, as other-

wise the temperatures are averaged out, making burnt-out

cells seem active.

Activity values can be anything, as they do not need to

be accumulated. However, the obtained values should be

fairly compact, as they are gathered in a single core.

5.4 Activity in state prediction

The user is free to combine activity in state with predic-

tion, where prediction is based on the activities of individ-

ual states. This might prove simpler than activity

prediction over a complete simulation time interval. As it

is the dual of activity prediction, all remarks about making

predictions apply as well.

This method has the most potential, as it combines

domain-specific information from both dimensions.

Depending on how advanced the model is, basic predic-

tions are easy to make in this way. For example, if a queue

contains 10 elements, each requiring on average of 1 sec-

ond to process, we estimate that after 5 seconds, five ele-

ments will be left in this model, and five will be present in

the next model.

5.5 Comparison

All of these different methods consider a different interval

or point in simulation time. Table 3 categorizes these four

methods based on the previously identified dimensions.

Each of them uses domain-specificity in its own way.

Activity tracking optimizes for the past, assuming the

near future is similar to the recent past. Its advantage is that

its data is correct if the horizon is adequate, as it does not

involve predictions. Tracked values can be used as-is and

its use for measuring the time spent in transition functions

makes this the simplest method. It is insufficient when

activity fluctuates drastically, when an adequate horizon is

difficult to determine, or when accumulated values are

unreliable. Domain-specific information can be used to

have more reliable values than CPU time consumption.

Activity prediction optimizes for the near future, based

on values measured in the recent past. As it is a prediction,

it can take into account more domain knowledge, resulting

in better results. It is possible, however, that the predicted

data is (partially) incorrect. Domain-specific information

must be used for the prediction of the activity evolution.

Activity in state optimizes for the current point in

simulated time, using only the activity values of a single

state. While it gives access to a consistent activity snap-

shot of the complete model, extracting meaningful activity

values requires significant domain knowledge. Its useful-

ness depends on the domain in which it is used. Domain-

specific information must be used to attach an indication

of resource consumption to the current state.

Activity in state prediction optimizes for the near

future, based on the current state. It gives access to a con-

sistent activity snapshot, which might be easier to make

predictions on. Predictions are based on a single point in

time, instead of an interval. Domain-specific information

must be used for both the resource consumption and the

prediction.

5.6 Example

An example of the different measurements is shown in

Figure 5, which shows the influence of measurement

functions. While this might seem a new application, it is

merely a more concrete version of the application in

Figure 3, which presented a series of models through

which activity migrates during simulation. In the

Table 3. Categories of activity measurement. Only activity
tracking can be used without domain-specific information.

past future

Accumulation Tracking Prediction
Single value In state In state prediction

Figure 5. Measurement example.
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example, three road segments are shown, two of which

are occupied. Cars determine whether or not they can

progress to the next road segment by sending queries,

which are acknowledged.

Activity in state measurement can use the presence of a

car as an indication of activity, whereas the absence of a

car indicates inactivity. This is domain-dependent informa-

tion, which cannot be transferred to other domains, such as

fire spread simulation. Activity tracking measures the

wall-clock time spent by the transition functions. These

two options are encoded in Listings 1 and 2, respectively.

In Listing 1, the model state is accessed to obtain domain-

specific information. In contrast, Listing 2 merely logs the

time taken by the transition function, independent of the

value of the state. For prediction, we know that cars have

slightly progressed before the end of the next horizon. At

the end of horizon 1, this yields results similar to those in

Table 4.

Due to the insignificant horizon, only the transitions of

segment 2 and some of segment 3 are taken into account.

Even though there are no transitions taking place in seg-

ment 1, it could still be considered active since it is

processing a car. Activity tracking and activity prediction

go wrong as the horizon is not representative. This prob-

lem is not present with activity in state measurement, as it

is independent of the horizon.

6 Implementation and benchmarks

We implemented the use of activity in PythonPDEVS,10 a

modular Parallel DEVS3 simulator, to validate our

approach. PythonPDEVS supports both sequential2 and

distributed11 simulation, using the previously presented

performance components. The latter uses Time Warp12 for

optimistic synchronization, although some changes were

made, similar to those made by Kim et al.13 Whereas the

name of the Parallel DEVS formalism might imply

that it is always parallel, this is not necessarily the case.14

Examples of the basic use of PythonPDEVS can be found

online at http://msdl.cs.mcgill.ca/projects/DEVS/

PythonPDEVS. More information on the implementation

of activity in a Parallel DEVS is provided by Van

Tendeloo.4

Next, we present several benchmark models: several

synthetic benchmarks to evaluate specific aspects of the

activity algorithms, and two realistic models, taken from

the literature, to evaluate the impact of activity-aware

simulation for realistic scenarios. Two realistic models,

taken from the literature, show that activity-aware simula-

tion still has its benefits in realistic models, although the

impact is not as high as in synthetic models. This proves

the applicability of our approach to realistic models.

We did not benchmark the use of the allocator. As the

added value of an allocator strongly depends on the initial

allocation, we did not have a baseline to compare with, as

we would need to explicitly choose a bad allocation.

6.1 Methodology

All simulations were performed on a 30-node shared clus-

ter of Intel Core2 6700 dual-core @ 2.66GHz machines

with 8 GB main memory, running Fedora Core 13, Linux

kernel 2.6.34. The number of CPU cores used is always

indicated where appropriate. These machines have

CPython 2.7.5 and use MPICH 3.0.4 as the MPI imple-

mentation with the MPI4py 1.3 wrapper. Local simula-

tions only use a single core.

Results are averages of five simulation runs. Variability

was low and therefore only the average is shown.

The PythonPDEVS formalism offers many additional

(not activity-based) hints that can be added to the model,

such as state saving hints and message passing hints. These

hints are always used in our benchmarks, both with and

without activity.

Listing 1. Code in Python for activity in state.

Listing 2. Code in Python for activity tracking.

Table 4. Measurements for Figure 5 at the end of horizon 1.
Predictions are for horizon 2 based on horizon 1.

Segment

1 2 3

Tracking 0.0 s 1.0 s 0.5 s
Prediction 0.0 s 0.0 s 1.0 s
In state 1 car 0 cars 1 car
Predict state 0 cars 1 car 1 car
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6.2 Activity scheduler

The use of qualitative activity in the scheduler is the sim-

plest form of activity in terms of implementation and use.

Therefore, it is considered first.

6.2.1 Synthetic. Our first benchmark consists of a model

containing 1000 atomic models. Of these, only a fixed

number of models is active (i.e., it has a time advance dif-

ferent from infinity). No connections exist between the

different models, so an inactive model stays inactive inde-

finitely. Simulations are run with an increasing number of

active models, starting from no active models and going to

all models being active. Results were obtained by using a

heap-based scheduler using invalidation for reschedules.

The activity heap is identical to the normal heap, but

implements the check for +‘.

The results are shown in Figure 7. It shows the relative

difference in total simulation execution time, which is the

sum of the simulation overhead and the theoretical simula-

tion time (i.e., the time it takes to execute the transitions

only).15 Using an activity-based scheduler is more effi-

cient, unless almost all models are continuously active.

While the overhead is insignificant, it shows that the use

of activity is not guaranteed to speed up simulation. Even

when only 50% of the models are active, total simulation

execution time is only decreased to 95% of its original

value. This is due to the fact that simulation overhead is

relatively low already: improving the scheduler only

decreases the simulation overhead, and of course does not

influence the theoretical simulation time. Nevertheless,

simulation overhead is reduced in almost all cases.

6.2.2 Realistic. For a more realistic model, we use the fire

spread model given by Muzy et al.7 Recall that this is the

same model that was used as our rationale in Figure 2.

Quantized DEVS16 was used to make sure that the

fire (and thus computation) does not spread too fast. In

normal DEVS simulation, the temperature is broadcast

from the cell immediately, starting a chain reaction. There

is no threshold on when values need to be passed, meaning

that even negligible temperature differences are communi-

cated. These temperature differences have no significant

impact on simulation results, but drastically increase simu-

lation execution time. Quantized DEVS, on the other

hand, only propagates events when the difference reaches

a certain threshold. For example, in fire spread simulation,

if the threshold is x degree Celcius and the last output

event contained y, a new event is only sent when its value

goes outside of the boundary ½y� x, y+ x�. After the

event is sent, y is updated with the output event and the

boundary thus moves. The simulation results become less

accurate, since even these minor variations can have an

impact. The threshold is therefore configured for an

acceptable trade-off between simulation accuracy and effi-

cient simulation.17–19

In our model, the use of Quantized DEVS means that

only some models become active, as the spreading of the

values is mitigated. Were it not for this quantization, all

models would become active almost instantly, as even

temperature changes of a fraction of a degree would be

communicated.

Figure 6 shows how the different schedulers behave.

Adding more and more cells, the size of the model

increases significantly. These extra cells, however, only

become active very late in the simulation, or even never,

thanks to quantization. This makes the activity heap faster

than the normal heap.

Figure 6. Time taken for simulation of the synthetic model
using the activity heap, normalized with the time taken for
simulation with the normal heap.

Figure 7. Time taken for simulation of the fire spread model
using the activity heap, normalized with the time taken for
simulation with the normal heap.
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6.3 Polymorphic scheduler

For the polymorphic scheduler, we provide benchmarks

for both parts of our rationale.

� The user does not need to have knowledge about

data structures or the access patterns of the model.

For this benchmark, we use a model with a para-

meter configuring the number of collisions.
� If the ideal scheduler varies throughout the simula-

tion, the polymorphic scheduler changes its config-

uration at run-time. For this benchmark, a model is

constructed that has different phases during its

simulation, with each phase having distinct access

patterns.

6.3.1 Different model configurations. The synthetic model

from before is used: a model containing several atomic

models, none of them inter-connected. The percentage of

collisions is configured by altering the ratio of both types.

However, instead of having a mix of active and inactive

models, we now have a mix of models with a random or

fixed time advance, thus preventing or causing collisions,

respectively.

Figure 8 shows the results near the tipping point. A

heap-based scheduler is better when nearly no collisions

happen, so the polymorphic scheduler uses this scheduler

internally. By default, the polymorphic scheduler is cali-

brated to switch when 30% of models collide. We see

three regions of interest in Figure 8 as follows.

1. With less than 30% of the models colliding, the

heap-based scheduler is much faster than the list-

based scheduler. Thanks to its heuristics, the poly-

morphic scheduler uses a heap-based scheduler.

2. With more than 30%, but less than 40% of models

colliding, the heap-based scheduler is still slightly

faster than the list-based scheduler. We notice that

the internal scheduler has already switched to the

list-based scheduler. This indicates that the heuristic

is not perfect in this situation. Nonetheless, simula-

tion remains correct, but takes longer to finish.

3. With more than 40% of models colliding, a list-

based scheduler becomes better. The heuristic of the

scheduler becomes the right decision at this point.

In conclusion, the polymorphic scheduler often makes a

correct guess about the ideal scheduler. If the user is obliv-

ious about the ideal scheduler, the polymorphic scheduler

adequately manages this situation. A small overhead is

unavoidable due to the need for monitoring and potentially

changing the internal data structures.

6.3.2 Phases in simulation. For this benchmark, we use a

model that cycles through two different modes: one where

many collisions happen and another where no collisions

happen. At the start of the simulation, all models collide.

Every two phases, the behavior switches between many

collisions and few collisions. Using a single, statically

defined scheduler is insufficient: no single scheduler is

ideal in both situations.

Figure 9 shows the results of this benchmark, where the

time taken in each phase is visualized. The polymorphic

scheduler is never the fastest, although it is consistently

fast by switching multiple times during the simulation.

Summed over the complete simulation, the polymorphic

scheduler is faster than either of the static schedulers.

6.4 Activity-based migrations

Activity-based migrations are achieved solely by using

internal quantitative activity. We start with a synthetic

Figure 8. Relative performance for the polymorphic scheduler
with a varying model.

Figure 9. Polymorphic scheduler phased benchmark.
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model, closely resembling our motivating example in

Figure 3. This example, however, is very similar to ordi-

nary load balancing methods, although some information

is taken into account about the model structure.

Afterwards, we simulate traffic in a city during rush hour.

6.4.1 Synthetic. This synthetic benchmark uses the model

shown in Figure 3, although with a higher number of mod-

els. A ring of atomic models is constructed, of which 10%

have a high computational load, and the others a negligible

computational load. Activity migrates through the model,

so a good initial allocation is only useful at the start of the

simulation.

Figure 10 shows that activity migration helps to achieve

a decent speedup. This benchmark was done using a

dynamic allocator to find a good allocation at the start of

the simulation. Models that are highly active at the start

are placed on separate cores, whereas mildly active models

are combined. Speedup increases slightly when no migra-

tions are performed, although this is only due to the favor-

able situation created by the dynamic allocator. With

migrations, speedup increases almost linearly up to about

20 cores. This comes as no surprise, as the migrator bal-

ances the load, achieving as much speedup as possible.

With more than 20 cores, the model becomes too small to

distribute over this many cores: each active model already

has a dedicated core. This explains the sudden drops in

performance for some configurations.

Apart from showing that activity can indeed increase

performance, we also collected activity measurements per

core from a simulation run on three cores. With activity

tracking (Figure 11), the measured activity of all cores

stays approximately equal, although with the occasional

peaks that are quickly resolved. These peaks happen for

only a brief period of time, which is the reaction time for

the migrator. The average activity seems to be about 0:13s
per core. Without activity tracking (Figure 12), the activity

of all cores is always different. At first only cores 2 and 3

are active, with activity shifting toward core 2. Node 2

quickly becomes the only core with any computation

whatsoever, with an activity of 0:45s. All other cores have
an activity of (almost) 0 s. Near the end of the simulation,

activity starts to shift toward core 1. This causes core 2 to

become almost inactive, and core 1 to become highly

active. With a bad distribution, simulation is similar to

sequential simulation, but with the additional overhead of

optimistic synchronization.

6.4.2 City layout. The city layout model is a realistic

model, presented by Posse.20 A small example is shown in

Figure 14, which contains two example routes. A

Manhattan-style city layout is constructed with

Figure 10. Activity migration synthetic benchmark for a
varying number of cores.

Figure 11. Activity with activity migrations.

Figure 12. Activity without activity migrations.
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unidirectional roads between intersections. These intersec-

tions contain traffic lights, which toggle after a fixed

delay. Every road segment contains either a residential

building (source) or a commercial building (sink). Each

road segment is part of a district, which is the atomic

entity used in migrations. A district can be either residen-

tial or commercial, determining which type of buildings is

constructed on its road segments. The route is pre-com-

puted, and thus not part of simulation execution time.

The communication between different road segments is

shown in Figure 13 and is part of the specification.20

Residential buildings are generators and commercial

buildings are collectors. At an intersection, queries are for-

warded to the destination if the traffic light is green, or are

immediately rejected if the traffic light is red. As soon as

the traffic light becomes green again, all previously

rejected queries are forwarded immediately.

While this is a realistic model, there are some disadvan-

tages to distributed simulation as follows.

1. Atomic models have almost no computation, as

they only compute the new velocity. This is a sim-

ple formula, not warranting distribution or paralle-

lization. Code is therefore added to make the

computational load in the transition function

configurable.

2. The state of the models is relatively complex, as it

contains cars, queued queries, processing queries,

acknowledgments, and so on. State saving thus

imposes a significant simulation overhead. The

state saving overhead takes even longer than the

transition functions in many cases.

3. Queries are answered almost instantly, thus looka-

head is very small. This makes this a bad model for

distribution, and certainly for time warp, as each

message likely causes a rollback.

Distributed simulation now proves slower than sequen-

tial simulation, so our results only show absolute execu-

tion times. This observation does not invalidate the results

observed concerning activity, as we merely compare dif-

ferent activity measurement approaches. Some models

require distributed simulation, as they are simply too large

to store in the memory of a single core. In that case, dis-

tributed simulation can become slower than sequential

simulation without losing its value. Nonetheless, we still

want to do the distributed simulation as fast as possible.

Activity is used to migrate districts between different

cores during simulation. Intuitively, activity can have an

impact here as the cars (and thus the activity) move

through the model. At the start of simulation, residential

districts are active, whereas the commercial districts are

inactive. Near the end of simulation, the commercial dis-

tricts become active, whereas the residential districts

become inactive, as all traffic has shifted from the residen-

tial to the commercial districts.

Figure 15 shows the results for a distributed simulation

using five cores. Four measurement methods are compared

as follows.

1. No migration. The basic case without any activity

information, and thus no load balancing at all.

Figure 13. Example city layout model for two cars.

Figure 14. A road stretch.
Figure 15. Activity migration city layout benchmark.
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2. Activity tracking. The wall-clock time spent in

the transition functions is used for activity.

Migrations balance the time spent, by migrating

districts between cores. Apart from the domain-

specific migration (i.e., migrating at district-granu-

larity), this is identical to normal load balancing.

3. Activity in state. The number of cars in a district

is used as the activity metric. Migrations balance

out the number of cars, which is a domain-specific

measure.

4. Activity in state prediction. The number of cars

in a district is used as the activity metric. However,

instead of using this value as-is, we predict that

20% (this value was obtained empirically and

requires some tuning depending on the horizon) of

the cars exit the district and enter the next district.

In commercial sections, we further assume that

there is a chance that the car has arrived at its des-

tination and is subsequently removed from the

simulation. This prediction is at a much higher

level of abstraction than the DEVS model, and

much faster to compute. Nonetheless, the results

offer a fair indication of the future.

From these results, it is clear that both activities in state

methods are always faster than no migration. Both perform

nearly identically and their difference is negligible.

Prediction is unable to exploit any information that can

really make a difference: activity moves too slowly

throughout the model, making the prediction almost iden-

tical to the measured values. Only for low computational

load can we see that prediction is marginally faster,

although this is negligible.

The difference between activity tracking and activity in

state is an important observation. As computational load is

increased, the horizon becomes smaller. The horizon

might become so small that a model only transitions a few

times, if at all, making the measured activity statistically

insignificant. This is the problem mentioned as a disadvan-

tage of activity tracking. While increasing the horizon

alleviates this problem, it causes slower reaction times.

Activity in state methods are invulnerable to this problem.

If the horizon is sufficiently large, such as for up to 300

microseconds load, activity tracking performance is simi-

lar to the other activity methods. On average, the perfor-

mance improvement due to the use of (domain-specific)

activity is around 5–10% for this model.

7 Related work

We have used the PythonPDEVS2,10 simulator as an exam-

ple implementation of our approach.

PythonPDEVS supports the simulation of the Classic
DEVS,16 Parallel DEVS,3 and Dynamic Structure

DEVS 21 formalisms, each of which can benefit from activ-

ity-awareness. Several other simulators for these formal-

isms, or a subset thereof, exist, such as adevs,23 vle,24

DEVS-Suite,25 PowerDEVS,33 and X-S-Y.26 Out of these

simulators, none support distributed Parallel DEVS
simulation.5 While adevs offers parallel simulation using

conservative synchronization, migration and allocation are

not supported. Consequently, there is no opportunity to use

activity for migration or allocation either.

Nonetheless, their schedulers can still be optimized to

use activity information. For example, adevs and vle

already filter out inactive models. This is equivalent to our

simple activity scheduler presented in Section 4.1.1. They

do not, however, support a polymorphic scheduler, nor

can they import user-defined schedulers (potentially using

activity). Neither supports domain-specific extensions to

activity.

A polymorphic scheduler is implemented in the

Meijin++8 tool. However, this tool does not offer

(Parallel) DEVS simulation, nor does it explicitly

allow the user to chose the underlying data structures and

the threshold parameters.

DEVSimPy,22 based on a modified version of

PythonPDEVS, also has an activity tracking plugin.27,28

This plugin only visualizes measured activity, and is not

used for load balancing or performance optimization.

Modelers must manually use this information to optimize

their model.

A frequently used example of activity is the simulation

of fire spread models, as used by Muzy et al.29,30 and

Potier et al.31 In our case, this only exploits qualitative

activity, as a cell is either burning (active) or not (inac-

tive). Use cases for quantitative activity are more complex,

such as the asynchronous electrical machine used by Muzy

et al.27

We have mainly touched upon the computational

resource usage-aspect of activity, as our intention was to

reduce simulation execution time. This was also the main

focus for Muzy et al.27 and Santucci and Capocchi.28

Other directions could be memory resource usage, energy

consumption,32 or even completely different notions.6

A comparison between the terms seen in the literature

and ours was previously made in Section 3.

8 Conclusions

We have shown that activity can give significant speedups

for a wide variety of models. Three simulator components

were extended with the notion of activity.

For the scheduler, it becomes possible to achieve a

lower complexity than even the most efficient (static,

activity-unaware) scheduler. These scheduler optimiza-

tions are compatible with all other features, in sequential

and distributed simulation.
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In distributed simulation, activity can be used to find a

good initial allocation (with the allocator), or for optimiz-

ing this allocation at run-time using load balancing (with

the migrator).

While these components are also usable without activ-

ity, activity makes them more flexible and dynamic. The

components also require less user intervention, as soon as

the domain-specific code is written. Activity is therefore

not inherently linked to the possibilities for improved per-

formance, although makes it easier to exploit.

Our approach enables users to increase simulation per-

formance by providing (optional) domain-specific hints

about the model being simulated. This user information,

however, can be wrong, depending on the skills of the user.

Luckily, simulation can cope with wrong information, at

the cost of lower performance.

It would be ideal to include such activity-based compo-

nents in domain-specific tools or translators, which auto-

matically generate DEVS models. Tool builders can then

include activity hints in their generated models, as they

have the necessary domain knowledge. As soon as the

model and its activity-based extensions are created, no fur-

ther user intervention is required. The end-user thus gets

improved performance without any additional effort.

Future work is possible in several directions. Firstly,

other aspects of the simulator might also be able to profit

from the use of activity. Further analysis of the algorithms

might yield additional opportunities for activity-aware-

ness. Secondly, determining the statistical relevance of the

measured activity values can potentially limit or event pre-

vent operations based on unreliable activity measurements

caused by a too small horizon. Thirdly, our approach still

has the problem that no information is known about activ-

ity at the start of the simulation. We tried to overcome this

problem by using a small profiling run in the allocator.

Static analysis of the model, such as in Muzy et al.,27

might possibly help in analyzing the statistical significance

of the obtained horizon, and aid in obtaining a decent ini-

tial allocation without the need for a profiling run.

Fourthly, domain-specific extensions for quantitative

external activity are to be considered. Fifthly, a more

detailed analysis of the trade-offs between increasing per-

formance and requiring more domain knowledge can help

determine the ideal level of domain knowledge required.

This trade-off is highly domain-dependent and also

depends on the users and how they have encoded the

solution.
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