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Abstract
The discrete event system specification formalism, which supports hierarchical and modular model composition, has
been widely used to understand, analyze and develop a variety of systems. Discrete event system specification has been
implemented in various languages and platforms over the years. The DEVStone benchmark was conceived to generate a
set of models with varied structure and behavior, and to automate the evaluation of the performance of discrete event
system specification-based simulators. However, DEVStone is still in a preliminary phase and more model analysis is
required. In this paper, we revisit DEVStone introducing new equations to compute the number of events triggered. We
also introduce a new benchmark with a similar central processing unit and memory requirements to the most complex
benchmark in DEVStone, but with an easier implementation and with it being more manageable analytically. Finally, we
compare both the performance and memory footprint of five different discrete event system specification simulators in
two different hardware platforms.
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1 Introduction

In the last four decades, various modeling and simulation

(M&S) methodologies have provided excellent approaches to

solve problems. Among them, one of the M&S techniques

that has gained popularity is the discrete event system specifi-

cation (DEVS): a sound, formal definition, based on theoreti-

cal concepts of generic dynamic systems, which supports

efficient event based simulation, verification, and validation.1,2

DEVS divides the system into basic models called atomic

models and composite models called coupled models.

Atomic models define the behavior of the system, whereas

coupled models specify the structure. We can distinguish

between classic DEVS and parallel DEVS (PDEVS).2 In

classic DEVS, when two or more models are scheduled for

state transitions at the same time, one of the models is cho-

sen according to a select function provided in the coupled

model specification. PDEVS is an extension of classic

DEVS which allows all of the imminent components to be

activated and to send their output to other components.

Removing the select function and adding a new confluent

transition function, PDEVS introduces the possibility of

managing simultaneous events in a natural manner.

DEVS has been successfully used for modeling a wide

range of application domains. For example, it has been used

in urban traffic analysis,3 logistics and supply chains,4 com-

puter architectures,5,6 embedded system designs,7 unmanned

aerial vehicles,8 decision support systems,9 etc. Because of

the ease of model definition, model composition, reuse, and

hierarchical coupling, DEVS has always been successfully

applied in a variety of applications.

In contrast to time-stepped discrete time simulation,

DEVS advances time through the concept of minimum
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time to the next event, thereby advancing time asynchro-

nously and achieving a significant speedup over the for-

mer method.2 As a result, the DEVS formalism has been

implemented in major object-oriented programming lan-

guages, like Lisp, Scheme, C++, Java, Python, and

SmallTalk, leading to many DEVS simulation engines

across the globe, like DEVSJAVA,10 DEVS-Suite,11

COSMOS,12 CD++,13 PyPDEVS,14 aDEVS,15 JAMES-

II,16 DEVSim++,17 and xDEVS,18 to name but a few.

This variety of simulation engines has generated an

extensive study on the DEVS performance, commonly

focused on particular application domains. However, after

several years of research, a final version of a discrete

event simulation benchmark was published, named

DEVStone.19–21 DEVStone can be used to automatically

generate a vast variety of models with different shapes and

sizes. These models can then be simulated to test different

features with respect to the corresponding simulator.

These benchmarks incorporate several benefits but

some of them suffer from shortcomings in their mathemat-

ical descriptions, like the formal computation of the

total number of events triggered. In this paper, we reconsi-

der these benchmarks. Firstly, we include the computation

of the total number of events triggered inside each bench-

mark. Secondly, we fix some equations that in the work

by Wainer et al. did not give the exact number of transi-

tions. In21, these Equations are (2), (3) and (4).21 It is

worthwhile to mention that these errors have not affected

the reliability of the previous papers results, since these

models have been always used to compare wall-clock exe-

cution times. Finally, we define an additional benchmark,

which demands the same computational effort as the more

complex model in DEVStone, but is analytically more

manageable, as is demonstrated in the research work of

this paper.

The remainder of this paper is organized as follows: we

show a brief description of the DEVS formalism and intro-

duce several DEVS simulation engines in Section 2. The

DEVStone benchmark is revisited in Section 3, including

all of the contributions to the benchmark performed in this

work. In Section 4 we describe our experimental infra-

structure and methodology. In Section 5 we present experi-

mental results, including a comparison of up to five

simulators and more than 1400 DEVStone models. Finally,

we present conclusions in Section 6.

2 DEVS: Formalism and simulation
engines

2.1 The discrete event system specification

DEVS is a general formalism for discrete event system

modeling based on set theory.2 The DEVS formalism pro-

vides the framework for information modeling which gives

several advantages to analyze and design complex systems:

completeness, verifiability, extensibility, and maintainabil-

ity. Once a system is described in terms of the DEVS the-

ory, it can be easily implemented using an existing

computational library. As stated in Section 1, the PDEVS

approach was introduced, after 15 years, as a revision of

classic DEVS. Currently, PDEVS is the prevalent DEVS,

implemented in many libraries. In the following, unless it

is explicitly noted, the use of DEVS implies PDEVS.

DEVS enables the representation of a system by three

sets and five functions: input set ðX Þ, output set ðY Þ, state
set ðSÞ, external transition function ðdextÞ, internal transi-
tion function ðdintÞ, confluent function ðdconÞ, output func-
tion ðlÞ, and time advance function ðtaÞ.

DEVS models are of two types: atomic and coupled.

Atomic models are directly expressed in the DEVS formal-

ism specified above. Atomic DEVS processes input events

based on their model’s current state and condition, gener-

ates output events and transitions to the next state. The

coupled model is the aggregation/composition of two or

more atomic and coupled models connected by explicit

couplings. Particularly, an atomic model is defined by the

following equation:

A= X ; Y ; S; dext; dint; dcon; l; tah i ð1Þ

where:

1. X is the set of inputs described in terms of pairs

port-value: p 2 IPorts; v 2 Xp

� �
;

2. Y is the set of outputs, also described in terms of

pairs port-value: p 2 OPorts; v 2 Yp

� �
;

3. S is the set of sequential states;

4. dext : Q 3 X b ! S is the external transition func-

tion. It is automatically executed when an external

event arrives at one of the input ports, changing the

current state if needed:

� Q= ðs; eÞs 2 S; 04 e4 taðsÞ is the total state
set, where e is the time elapsed since the last

transition;
� X b is the set of bags over elements in X ;

5. dint : S ! S is the internal transition function. It is

executed right after the output ðlÞ function and is

used to change the state S;

6. dcon : Q 3 X b ! S is the confluent function, sub-

ject to dconðs; taðsÞ; ;Þ= dintðsÞ. This transition

decides the next state in cases of collision between

external and internal events, i.e., an external event is

received and the elapsed time is equal to the time -

advance. Typically, dconðs; taðsÞ; xÞ= dextðdintðsÞ;
0; xÞ;

7. l : S ! Y b is the output function. Y b is the set of

bags over elements in Y . When the time elapsed
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since the last output function is equal to taðsÞ, then
l is automatically executed;

8. taðsÞ : S ! <0+ [ ‘ is the time advance function.

The formal definition of a coupled model is described as:

M = X ; Y ;C;EIC;EOC; ICh i ð2Þ

where:

� X is the set of inputs described in terms of pairs

port-value: p 2 IPorts; v 2 Xp

� �
;

� Y is the set of outputs, also described in terms of

pairs port-value: p 2 OPorts; v 2 Yp

� �
;

� C is a set of DEVS component models (atomic or

coupled); note that C makes this definition recursive;
� EIC is the external input coupling relation, from

external inputs of M to component inputs of C;
� EOC is the external output coupling relation, from

component outputs of C to external outputs of M ;
� IC is the internal coupling relation, from component

outputs of ci 2 C to component outputs of cj 2 C,

provided that i 6¼ j.

Given the recursive definition of M , a coupled model can

itself be a part of a component in a larger coupled model

system giving rise to a hierarchical DEVS model

construction.

2.2 DEVS simulation engines

In the last decade, many DEVS M&S engines have come

into existence. All of them offer a programmer-friendly

application programming interface (API) to define new

models using a high level language. However, only a few

of them provide a user-friendly graphical user interface

(GUI) for model specification. In the following, we

describe some of the most referenced DEVS M&S simula-

tion frameworks.

2.2.1 DEVSJAVA. DEVSJAVA has been developed by

Bernard P Zeigler (University of Arizona, USA) and

Hessam Sarjoughian (Arizona State University, USA).10 It

is written in Java and supports virtual time, real time, and

sequential and parallel execution. The definition of new

models is performed through an API. Several M&S tools

have been defined around DEVSJAVA (GUIs for results

visualization, GUIs for models definition, etc.), as

DEVSJAVA is one of the primary DEVS M&S reference

simulators in the community.

2.2.2 DEVS-Suite and CoSMoS. DEVS-Suite is a simulator

built based on the PDEVS formalism. This software

provides a library of examples proving some experimental

concepts. It also incorporates simulation visualization

techniques consisting of displaying the static structure of

models, animation of models, and run-time viewing of

time-based trajectories.11 CoSMoS (component-based sys-

tem modeling and simulation) is a framework aimed at

integrated visual model development, model configuration

and automatic data collection simulation.12 The CoSMoS

environment supports component-based modeling with

direct support for DEVS formalism and extensible markup

language (XML) schemas. DEVS-Suite’s core is largely

DEVSJAVA. It is bundled within the CoSMoS distribution

and thus enables both modeling and simulation of PDEVS

models.

2.2.3 CD++. CD++ has been developed by Gabriel

Wainer and his students (Carleton University, Canada;

Universidad de Buenos Aires, Argentina). Written in C++,

it allows the definition of DEVS and Cell-DEVS models

graphically. These models are also defined using an API.

CD++ supports virtual and real time, as well as sequential,

parallel, and distributed simulations.13

2.2.4 PythonPDEVS. PythonPDEVS (PyPDEVS) imple-

ments both the classic DEVS and PDEVS in the Python

language, with a matching simulator.14 Models are defined

through the provided API, allowing the execution of vir-

tual time or real time simulations. The latest release of

PyPDEVS is focused on improving the performance,

mainly because Python is an interpreted language. To this

end, several schedulers have been defined, obtaining good

performance metrics.

2.2.5 aDEVS. aDEVS (a discrete event system simulator)

is a C++ library for constructing discrete event simulations

based on the PDEVS and dynamic DEVS (dynDEVS)

formalisms.15 Developed by Jim Nutaro, it allows the

implementation of both sequential and parallel simulations

using the provided C++ API. This tool has usually dis-

played the best performance.

2.2.6 JAMES-II. Developed at the University of Rostock,

the Java-based multipurpose environment for simulation II

(JAMES II) provides support for many different formal-

isms, including various variants of DEVS. Besides an API

to define models, this framework also provides a GUI to

configure experiments and check simulation results. This

simulation engine supports sequential and parallel

execution.16

2.2.7 DEVSim++:. Developed by Tag Gon Kim and his

group at the Korea Advanced Institute of Technology

Risco-Martı́n et al. 3



(KAIST),17 this is a C++ based engine and is used exten-

sively for large simulations focusing on wargaming and

simulation interoperability.

2.2.8 xDEVS. xDEVS (cross-platform DEVS) engine is

Java-based and is released under the GNU public license

(GPL). This facilitates the rapid development of new com-

ponents and extensions, and a wide adoption of the core

engine. xDEVS provides the user with a set of base classes

that can be used to develop new DEVS models, or to

develop new DEVS simulation engines. It is based on the

fundamental separation of the model and the underlying

corresponding simulator,2 and rightly so, provides, the mod-

eling API and the simulation API.18 It is made available as a

standalone executable jar and as an Eclipse plugin.

2.2.9 Others. In addition to the above DEVS implementa-

tions used widely, there are others with selective adoption

such as GALATEA (glider with autonomous, logic-based

agents, temporal reasoning and abduction) for multi-agent

systems (MAS),22 SimStudio,23 PowerDEVS for hybrid

systems,24 MS4Me based on DEVSJAVA,25 and last but

not the least, virtual laboratory environment (VLE),26 that

is based on C++ and is a multiparadigm environment based

on several DEVS extensions.

We have selected five well-known DEVS simulation

frameworks distributed among three implementation lan-

guages and compared their performance against a revisited

DEVStone benchmark. The current diversity on the pro-

gramming languages used is concentrated on C++, JAVA,

and Python. As a consequence, we have selected two

JAVA-based simulators (DEVSJAVA and xDEVS), two

C++-based simulators (aDEVS and CD++) and PyPDEVS

as the Python-based simulation engine. In the following,

we describe the revisited DEVStone benchmark.

3 DEVStone

DEVStone is a synthetic benchmark that has been used in

recent years to evaluate the performance of different

DEVS simulators.21,27,28 DEVStone can be used to auto-

matically generate a vast variety of models with different

shapes and sizes. These models can then be simulated to

test different features with respect to the corresponding

simulator. A DEVStone benchmark is defined with five

parameters.

1. Type. Different structure and interconnection

schemes between the components in the model.

2. Width. This parameter is based on the number of

components in each intermediate coupled model.

3. Depth. The number of levels in the model hierarchy.

4. Internal transition time. The execution time spent

by each internal transition function.

5. External transition time. The execution time spent

by each external transition function.

According to the DEVStone specifications, both the

internal and external transition function times are spent

executing Dhrystones to keep the central processing unit

(CPU) busy.29

In the work by Wainer et al.,21 four different DEVStone

benchmarks were presented; low level of interconnections

(named LI), high input couplings (named HI), HI model

with numerous outputs (named HO), and HOmod, deriving

different equations to compute the number of external and

internal transition functions.

In the following a formal definition of the DEVStone

atomic model is introduced. Next, all five of the bench-

marks considered in this work (LI, HI, HO, HOmod and

the newly introduced HOmem) are presented. To simplify

the computation of the total number of events triggered, it

is assumed that:

1. The execution time spent by the external or internal

transition function is equal to 0 s, i.e. the transition

is instantaneous in a computational sense.

2. all of the events injected to the DEVStone bench-

marks are separated in time by more than 0 s.

3.1 DEVStone atomic model

The atomic model of DEVStone can be defined as shown

in Algorithm 1.

3.2 LI models

Figure 1 shows the general structure of an LI model. With

d layers (depth), the first d � 1 (with d 5 1) layers have

the structure of Figure 1(a). All of these layers have one

coupled model and w� 1 (with w5 2) atomic models

(where w is the width). On the other hand, the d-th layer

has the structure given in Figure 1(b), just with one atomic

model. The arrows in the figure represent the connection

between the input and output ports in the whole model.

As stated above, two metrics are measured: the execu-

tion time and the memory footprint (also known as mem-

ory high-water mark). Obviously, these two metrics

depend on the number of atomic models, number of inter-

nal transitions, number of external transitions, and the total

number of events internally generated. Additionally, the

memory footprint depends on the concurrency of the

model, that is, the number of pending events simultane-

ously waiting at the input ports.

Since the model structure is known, and the simplifica-

tion Dint =Dext = 0 is made, the theoretical execution

time and the total number of events generated can be eas-

ily computed.
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Firstly, considering the model’s d � 1 levels with w� 1

atomic models and one level with one atomic model, the

total number of atomic models is as follows:

#Atomic= ðw� 1Þ � ðd � 1Þ+ 1 ð3Þ

Secondly, LI models produce one external transition, out-

put event and internal transition for each atomic model and

external events injected. Thus, in LI models, the number of

transitions and events generated is equal to the number of

atomic models multiplied by the total number of external

events injected N , as follows:

#dint =N � ðw� 1Þ � ðd � 1Þ+ 1ð Þ ð4Þ
#dext =N � ðw� 1Þ � ðd � 1Þ+ 1ð Þ ð5Þ

#Events=N � ðw� 1Þ � ðd � 1Þ+ 1ð Þ ð6Þ

In the following DEVStone benchmarks, we derive the

equations for the number of transition functions and events

internally generated given a single external event injected,

i.e., for this benchmark this is given as follows:

#dint = ðw� 1Þ � ðd � 1Þ+ 1 ð7Þ

#dext = ðw� 1Þ � ðd � 1Þ+ 1 ð8Þ

#Events= ðw� 1Þ � ðd � 1Þ+ 1 ð9Þ

3.3 HI models

Figure 2 shows the general structure of a HI model. It is

equal to the LI model, but where the output port of an

atomic component i is connected to the input port of the

next atomic component i+ 1, as seen in Figure 2(a).

Therefore, the number of atomic models is equal to the

LI model. However, the number of transition functions

and events generated are quite different, because for each

external input, the set of w� 1 atomic models acts as a

shift register, generating one additional event for each

external event. As a result, the number of atomic models,

Algorithm 1 DEVStone atomic model.

Require: NUM_DELT_INTS, NUM_DELT_EXTS and
NUM_OF_EVENTS are global variables, and store the total
number of internal transition functions, external transition
functions, and events triggered inside the whole model. �int

and �ext are the delays introduced in the internal and
external transition functions, respectively.

function [list,phase,σ] = init()
list = [] {list is part of the state, and stores all the
events received by this atomic model}
σ=∞
function [list,phase,σ] = δint(list,phase,σ)
NUM_DELT_INTS = NUM_DELT_INTS + 1
Dhrystone(�int)
list = []
σ=∞
function [list,phase, σ] = δext(list,phase,σ,e, Xb)
NUM_DELT_EXTS = NUM_DELT_EXTS + 1
Dhrystone(�ext)
values = XbðinÞ{XbðinÞ is a list containing all the events
waiting in the ‘‘in’’ input port}
NUM_OF_EVENTS = NUM_OF_EVENTS + values.size()
list = [list;values] {Concatenate both lists}
phase = ‘‘active’’
σ= 0

function [list,phase,σ] = δcon(list,phase,σ,taðsÞ,Xb)
δext(δint(list,phase,σ),0,Xb)

function λðÞ
send(‘‘out’’, list) {sends the whole list by the ‘‘out’’ output
port}

function σ = ta(list,phase,σ)
σ= σ

Figure 1. DEVStone LI components. (a) DEVStone LI regular
coupled component and (b) DEVStone LI deepest coupled
component.
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transition functions and events generated are computed as

follows:

#Atomic= ðw� 1Þ � ðd � 1Þ+ 1 ð10Þ

#dint = ðw� 1Þ+
Xw�2
i= 1

i

 !
� ðd � 1Þ+ 1

=
w2 � w

2

� �
� ðd � 1Þ+ 1

ð11Þ

#dext = ðw� 1Þ+
Xw�2
i= 1

i

 !
� ðd � 1Þ+ 1

=
w2 � w

2

� �
� ðd � 1Þ+ 1

ð12Þ

#Events= ðw� 1Þ+
Xw�2
i= 1

i

 !
� ðd � 1Þ+ 1

=
w2 � w

2

� �
� ðd � 1Þ+ 1

ð13Þ

3.4 HO models

Figure 3 shows the general structure of a HO model. The

HO model has a more complex interconnection map with

the same number of atomic and coupled components. For

example, HO coupled components have two input and two

output ports in each level. The main differences compared

to the HI model are that the second input port of each

coupled model is connected to the input of each atomic

model. Additionally, the output of each atomic model is

connected to the second output of its parent coupled

model.

It is worthwhile to mention that the number of atomic

models, transition functions, and events generated in HO

models are exactly the same as in the HI model. However,

the main difference is in both the execution time and the

memory footprint, which are higher due to the additional

external input connections. Thus, we have the following:

#Atomic= ðw� 1Þ � ðd � 1Þ+ 1 ð14Þ

#dint = ðw� 1Þ+
Xw�2
i= 1

i

 !
� ðd � 1Þ+ 1 ð15Þ

#dext = ðw� 1Þ+
Xw�2
i= 1

i

 !
� ðd � 1Þ+ 1 ð16Þ

#Events= ðw� 1Þ+
Xw�2
i= 1

i

 !
� ðd � 1Þ+ 1 ð17Þ

3.5 HOmod models

Figure 4 depicts the structure of a HOmod DEVStone

model. As usual, the deepest coupled model is formed by

one single atomic model. The remaining coupled models

are constituted of one coupled model, a chain of w� 1

atomic models and a set of k = 1 . . . w� 1 chains formed

by
Pk

i= 1 i atomic models. The second external input port

is connected to the whole first row and only to the first

atomic component in the remaining rows. Additionally, all

the atomic models in the second row are connected to the

first row, which in turn sends the whole output directly to

the coupled component. Finally, each remaining atomic

component is connected to its upper component.

The computation of the number of atomic modes is

quite straightforward, as follows:

#Atomic= ðw� 1Þ+
Xw�1
i= 1

i

 !
� ðd � 1Þ+ 1 ð18Þ

Figure 2. DEVStone HI components. (a) DEVStone HI regular
coupled component and (b) DEVStone HI deepest coupled
component.
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However, the calculation of the number of transition func-

tions is hard. After an exhaustive mathematical analysis

we have determined that:

#Atomic= ðw� 1Þ+
Xw�1
i= 1

i

 !
� ðd � 1Þ+ 1 ð19Þ

#dint = ðd � 1Þ � ðw� 1Þ2 +

+ ðd � 1Þ+ ðw� 1Þ �
Xd�2
i= 1

i

 !

3 ðw� 1Þ+
Xw�1
i= 1

i

 !
+ 1

ð20Þ

#dext = ðd � 1Þ � ðw� 1Þ2 + ðd � 1Þ+ ðw� 1Þ �
Xd�2
i= 1

i

 !

3 ðw� 1Þ+
Xw�1
i= 1

i

 !
+ 1

ð21Þ

Similarly, the computation of the number of events follows

a recursive equation, which is defined as follows:

#Events=
Xd�1
l = 1

ð
XKl +w�1

c= 1

ðW1 3
Xw

i= 1

Pl
c�i+ 1

+
Xw

i= 1

+ ðWi � Pl
c�i+ 1ÞÞÞ+ 1

ð22Þ

where

Wi =
w� i if w� i5 0
0 otherwise

�
ð23Þ

Kl =
1 if l = 1

Kl�1 +W1 if l . 1

�
ð24Þ

and

P1
1 = 1 ð25Þ

Figure 3. DEVStone HO components. (a) DEVStone HO
regular coupled component and (b) DEVStone HO deepest
coupled component.

Figure 4. DEVStone HOmod components. (a) DEVStone
HOmod regular coupled component and (b) DEVStone HOmod
deepest coupled component.
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P
j
l = 0 if 1. j . Kl ð26Þ

P
j
l = ðw� 1Þ3

Xw

i= 1

P
j�i+ 1
l�1 ð27Þ

As can be seen, the complexity of the equations describing

the metrics of the HOmod is high. The inclusion of these

equations in a simulator is hard, and the theoretical analy-

sis becomes prohibitive. For these reasons, we have

defined a new DEVStone benchmark named HOmem that

when providing the same computational effort as the

HOmod into the different simulation frameworks, shows a

straightforward mathematical formulation.

3.6 HOmem models

As stated above, we propose the inclusion of a new model

in the DEVStone benchmark called HOmem. HOmem is

proposed as a mechanism to increment the traffic of events

with respect to the HO, equivalently to the HOmod, but

with a simpler structure and mathematical description.

Figure 5 shows the structure of the HOmem DEVStone

benchmark. As can be seen, the deepest coupled model is

identical to the HOmod. As for the remaining coupled

models, each one is formed by one coupled model and

2 � ðw� 1Þ atomic models. The second w� 1 chain

receives the input through external input connections, and

propagates these inputs to the first chain of w� 1 atomic

models. These, in turn, send all of the inputs received to

the coupled model.

The number of transition functions are easy to compute,

since it is equal to the number of atomic models. However,

to calculate the number of events it must be taken into

account that each single event is sent w� 1 times to the

whole second chain of atomic models. This grows expo-

nentially with the depth of the model, in the following

form:

#Atomic= 2 � ðw� 1Þ � ðd � 1Þ+ 1 ð28Þ

#dint = 2 � ðw� 1Þ � ðd � 1Þ+ 1 ð29Þ

#dext = 2 � ðw� 1Þ � ðd � 1Þ+ 1 ð30Þ

#Events=
Xd�1
l = 1

ðw� 1Þ2�l + ðw� 1Þ2�l�1
� �

+ 1

ð31Þ

Experimental results show that this straightforward specifi-

cation leads to a similar execution time and memory foot-

print, when compared to the HOmod.

4 Experimental methodology

Once the DEVStone equations have been analytically

derived, we compare the CPU execution time and memory

footprint over a total of five well known simulation

engines using all of the benchmarks presented above. Our

aim is to show an exhaustive comparison and a standard

procedure to evaluate the performance of any new discrete

event simulator.

We first provide a detailed description of the experi-

mental set-up used in this research.

All of the benchmarks presented above (LI, HI, HO,

HOmod and HOmem) were executed using five simulation

engines: aDEVS 2.8.1, CD++ 2.45 (a CD++ branch with

support for PDEVS), DEVSJAVA 3.1, xDEVS

1.20151013 and PyPDEVS 2.2.4. Table 1 shows the pro-

gramming language and the main data structures used in

each simulation engine. As stated above, CD++ and

aDEVS are C++ implementations, DEVSJAVA and

xDEVS have been implemented using Java, whereas

PyPDEVS is a Python simulation engine. As Table 1

shows, aDEVS and xDEVS use generic classes, whereas

PyPDEVS uses duck typing. To store events, aDEVS and

CD++ use standard C++ arrays. On the contrary,

DEVSJAVA, xDEVS, and PyPDEVS use dynamic data

structures, like linked lists or dictionaries. Finally,to store

components and implement the simulation scheduler, all

Figure 5. DEVStone HOmem components. (a) DEVStone
HOmem regular coupled component and (b) DEVStone
HOmem deepest coupled component.
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of the frameworks use dynamic data structures such as sets

or linked lists.

We tested all of these simulation engines in two differ-

ent machines: a 48 GB AMD Opteron 6272 @ 2.1 GHz

(abbreviated as AMD) and a 64 GB Intel Xeon 2670 @

2.6GHz ‘‘Sandy Bridge’’ (abbreviated as Intel), in both

cases under a GNU/Linux Debian 8 Operating System.

aDEVS and CD++ were compiled using the gcc -O3 opti-

mization level.

In all of the test cases, only one external event was

injected, generating the total number of transition func-

tions and the total number of events given in the previous

equations. As demonstrated in previous works,21,27,28 the

previous metric just scaled linearly with the number of

external events.

Each benchmark type was generated for different values

of width and depth. These values were defined for running

different trials with all the five simulators. We looked for a

good trade-off between the wall-clock simulation time and

the memory footprint, since these are the metrics measured

in all of the simulations. Table 2 shows these intervals,

where each row represents a DEVStone benchmark type,

in relation to the width and depth, each described by the

minimum value, the step size, and the maximum value

used to generate a full range for these parameters. For

example, the smallest LI model is a 23 1 model, where

width= 2 and depth= 1. The biggest model, on the other

hand, is a 15023 1501 model.

Finally, each simulation is repeated 10 times for each

simulator, benchmark, size, and hardware platforms.

Simulation wall-clock times and the memory footprint are

averaged over these 10 trials. Although no significant

deviations were appreciated, we kept this number of trials

to avoid spurious deviations. Table 2 shows in the last col-

umn the total number of simulations performed.

5 Results
5.1 CPU comparison

Table 3 shows a comparison between the execution time

(in seconds, measured inside the simulator to avoid the

loading time of the model) and the memory footprint (in

GiB, measured using the general GNU time command) for

the five simulation engines and the largest models of the

DEVStone models tested in this work, i.e., LI

1502 3 1501, HI 1102 3 1101, and HO 1102 3 1101.

HOmod 10 3 10 and HOmem 10 3 10 are not included

because no simulator was able to finish them, at least dur-

ing the 48 h in which we ran these tests. The same hap-

pened in all of the cases in Table 3 marked with ‘. As can

be seen, only aDEVS and xDEVS were able to finish all

of the models in Table 3, followed by CD++, which was

not able to load the largest LI model. Regarding the mem-

ory footprint, there is not much difference between both

servers. However, in terms of the execution time, the best

server in almost all cases was the 64 GB Intel Xeon 2670

@ 2.6 GHz ‘‘Sandy Bridge’’, since between both servers,

this one has the fastest processor and memory. Thus, simu-

lation results are coherent with the server used, i.e., the

faster the processor and the greater the memory size, the

faster the simulation. The memory footprint is independent

of the server, since it only depends on the internal struc-

ture of the DEVStone model.

As can be seen in Table 3, some simulators were not

able to execute the model because the system was unable

to handle the memory requirements. To tackle these issues

Table 1. Main data structures used in the simulation engines.

aDEVS CD++ DEVSJAVA xDEVS PyPDEVS

Programming language C++ C++ Java Java Python
Generics Yes No No Yes Duck typing
Events container array/port array/port Hashtable LinkedList/port dictionary
Components container std::set std::list HashSet LinkedList list

Table 2. Configuration of the parameters.

Benchmark Width Depth # Simulations

Min. Step Max. Min. Step Max.

LI 2 100 1502 1 100 1501 25,600
HI 2 100 1102 1 100 1101 14,400
HO 2 100 1102 1 100 1101 14,400
HOmod 2 1 10 1 1 10 9000
HOmem 2 1 10 1 1 10 9000
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in the remaining analysis, the wall clock execution time is

limited to 1200 s and the memory footprint to 4 GiB,

enough to perform more than 70,000 simulations in a rea-

sonable amount of time, also obtaining significant values

to compare. Thus, in the following, every experiment with

time or memory greater than the aforementioned values is

truncated to 1200 s or 4 GiB, respectively.

5.2 Execution time

Figure 6 shows the contour maps of the different execution

times needed by all of the five simulators in both the LI

and HI models. Blue regions mean low execution time,

whereas red regions mean high execution time.

CD++, DEVSJAVA and PyPDEVS saturated the exe-

cution time of 1200 s multiple times in both models.

aDEVS and xDEVS, on the contrary, reached the best

results. Regarding the LI model, the ordered list of simula-

tors, from best to worst contour maps is: aDEVS, xDEVS,

CD++, DEVSJAVA ,and PyPDEVS. With respect to the

HI model, the list is: xDEVS, aDEVS, CD++,

DEVSJAVA, and PyPDEVS.

Continuing with this analysis, Figure 7 shows the same

contour maps, this time in the HO and HOmem models.

Regarding the HO model, xDEVS obtained the best

execution times, especially as the width and depth were

increased. For low values of the width and depth, aDEVS

was better than xDEVS. Once again, CD++, DEVAJAVA,

and PyPDEVS saturated the execution time limit of 1200 s.

With respect to the HOmod and HOmem, all of the

simulators reached the maximum execution time quite

soon, with relatively small models. Moreover, in the case

of the HOmod, only two simulators, aDEVS and xDEVS,

were able to load all of the models in the memory, before

the execution of the simulation. In fact, this is due to the

intrinsic complexity of the HOmod benchmark, which

includes many more atomic models than the HOmem.

HOmem is simpler in structure than HOmod, and all of the

simulation engines are able to load it. Once the simulation

starts, the HOmod and HOmem offer similar execution

times and memory footprints, as shown in Section 5.4.

We do not show a comparison between all of the simu-

lators in the HOmod because only aDEVS and xDEVS

were able to run a significant number of HOmod instances.

These experiments are shown in the comparison between

aDEVS and xDEVS.

5.3 Memory footprint

As mentioned before, the memory footprint is the memory

high-water mark of a process. The comparison of all five

of the simulators were performed constraining the execu-

tion time to 1200 s and the memory footprint to 4 GiB.

The set of five simulators compared in this paper have

been developed using different programming languages:

aDEVS and CD++ in C++, DEVSJAVA and xDEVS in

JAVA, and PyPDEVS in Python. Since JAVA and Python

use their own virtual machines, it is expected that these

simulators have a higher memory footprint. However, our

experimental results showed some exceptions in this regard.

Figure 8 shows the memory footprint reached by the

five simulators in the LI and HI models. As can be seen,

DEVSJAVA and specially PyPDEVS reached the memory

limit quite soon. aDEVS had by far the lowest memory

usage. However, between CD++ and xDEVS, the latter

obtained less memory footprint even when the Java virtual

machine must be loaded into memory. This is because

CD++ uses a complex structure to store the model, as is

evident when CD++ is completely saturated once width

and depth is greater than 1200.

Now, Figure 9 shows the memory footprint reached by

the five simulators in the HO and HOmem models.

Regarding HO, the situation is almost identical to the

HI model. aDEVS and xDEVS are still the two best simu-

lators. With respect to HOmem, all five of the simulators

reached the memory limit quite soon. As in the execution

time analysis, DEVSJAVA was the first to leave the model,

for a width greater than six. Surprisingly, PyPDEVS offered

Table 3. Execution time (s) and memory footprint (GiB) of the larger models executed by the five simulation engines and in both
the AMD and Intel servers.

Simulator LI HI HO

AMD Intel AMD Intel AMD Intel

aDEVS 2:5× 100 2:1× 100 1:0× 103 1:0× 103 1:2× 103 1:2× 103

1.19 1.19 1.11 1.11 1.11 1.11
CD++ ∞ ∞ 6:3× 103 5:1×103 7:0× 103 4:5× 103

∞ ∞ 3.46 3.46 3.69 3.69
DEVSJAVA ∞ ∞ 6:6× 104 4:0×104 ∞ ∞

∞ ∞ 4.23 4.21 ∞ ∞
xDEVS 3:8× 100 2:6× 100 9:3× 102 4:6×102 1:0× 103 5:0× 102

1.95 2.07 1.88 1.84 1.94 1.84
PyPDEVS ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞
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Figure 6. Execution time of LI and HI models. (a) aDEVS – LI, (b) aDEVS – HI, (c) CD++– LI, (d) CD++– HI, (e) DEVSJAVA – LI,
(f) DEVSJAVA – HI, (g) xDEVS – LI, (h) xDEVS – HI, (i) PyPDEVS – LI, and (j) PyPDEVS – HI.
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Figure 7. Execution time of HO and HOmem models. (a) aDEVS – HO, (b) aDEVS – HOmem, (c) CD++– HO, (d) CD++–
HOmem, (e) DEVSJAVA – HO, (f) DEVSJAVA – HOmem, (g) xDEVS – HO, (h) xDEVS – HOmem, (i) PyPDEVS – HO, and (j)
PyPDEVS – HOmem.
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Figure 8. Memory footprint of LI and HI models. (a) aDEVS – LI, (b) aDEVS – HI, (c) CD++– LI, (d) CD++– HI, (e) DEVSJAVA – LI,
(f) DEVSJAVA – HI, (g) xDEVS – LI, (h) xDEVS – HI, (i) PyPDEVS – LI, and (j) PyPDEVS – HI.
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Figure 9. Memory footprint of the HO and HOmem models. (a) aDEVS – HO, (b) aDEVS – HOmem, (c) CD++– HO, (d) CD++–
HOmem, (e) DEVSJAVA – HO, (f) DEVSJAVA – HOmem, (g) xDEVS – HO, (h) xDevs – HOmem, (i) PyPDEVS – HO, and (j)
PyPDEVS – HOmem.
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comparable results to aDEVS, CD++, and xDEVS in

HOmem and HOmod, the more complex models.

As in the previous section, we do not show a compari-

son between all of the simulators in the HOmod because

only aDEVS and xDEVS were able to run a significant

number of HOmod instances.

As a conclusion, we may say that, regarding the memory

footprint, aDEVS is by far the best DEVS simulator between

those analyzed in this paper. In the case of the execution

time, xDEVS is better as the complexity of the model

increases, until the cases of HOmod and HOmem, where the

complexity of both models cannot determine a classification

with clarity. In the following, we investigate the perfor-

mance of the aDEVS and xDEVS simulators in finer detail,

as well as the similarities between the HOmod and HOmem.

5.4 Comparison between aDEVS and xDEVS

Firstly, we show the difference in the execution time and

the memory footprint obtained by both simulators in the

LI, HI, HO, HOmod, and HOmem models.

Figure 10 depicts five contour maps. Each one represents

the difference in execution time of xDEVS minus aDEVS.

In the case of models with a lower complexity, like the

LI model in Figure 10(a), the difference is small (2.5 s vs

2.1 s according to Table 3) and in favor of aDEVS. With

respect to the HOmod and HOmem, the difference funda-

mentally varies from 210 s to 10 s, with more cases in

favor of aDEVS. However, these two models remain inde-

cisive since they show sparse maps.

The analysis of Figure 10(b) and (c) is much clearer. As

the model complexity is increased, the difference is higher,

in favor of xDEVS (up to 700 s faster in the case of HO).

We now compare both the simulator in the HOmod and

the HOmem DEVStone model. aDEVS and xDEVS were

the only two simulators that were able to simulate a signif-

icant number of HOmod models.

Figure 11 depicts both the execution time and the mem-

ory footprint reached by aDEVS and xDEVS in the

HOmod and HOmem models. In both cases, contour maps

are practically Yes/No maps, where, after a given width

and depth both of the simulators immediately reach the

Figure 10. Execution time comparison of the LI, HI, HO, HOmod, and HOmem models computed as Time(xDEVS) –
Time(aDEVS). (a) LI: xDEVS- - aDEVS, (b) HI: xDEVS – aDEVS, (c) HO: xDEVS – aDEVS, (d) HOmod: xDEVS – aDEVS, and (e)
HOmem: xDEVS – aDEVS.
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limit in the execution time and memory footprint. These

‘‘saturation’’ values in the HOmod are reached ‘‘sooner’’

(in terms of w and d) than the corresponding values in the

HOmem model. We prove here that the HOmem offers the

same results compared to the HOmod with a more straight-

forward mathematical formulation, after a comparison of

Equations (28) to (31) against Equations (18) to (27).

6 Conclusions

The DEVS formalism has been widely used to conceive,

design, model, and develop a great variety of systems.

DEVS has been implemented in various languages and

platforms over the years. The DEVStone benchmark

defines a set of models with varied structure and behavior,

Figure 11. Execution times and memory footprints of HOmod and HOmem models given by aDEVS and xDEVS. (a) aDEVS –
HOmod (time), (b) aDEVS – HOmod (memory), (c) xDEVS – HOmod (time), (d) xDEVS – HOmod (memory), (e) aDEVS –
HOmem (time), (f) aDEVS – HOmem (memory), (g) xDEVS – HOmem (time), and (h) xDEVS – HOmem (memory).
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and was designed to evaluate the performance of DEVS-

based simulators.

The key contributions of this work are the following.

We have added a new model to the benchmark, called

HOmem, which shows identical qualitative behavior to the

HOmod but with a more manageable mathematical formu-

lation. As with HOmod, HOmem is also intensive on both

the execution time and memory usage. We have added the

study of the memory footprint in DEVStone, deriving the

equations needed to compute the number of events trig-

gered inside the model and per each single injected exter-

nal event. We have also recalculated the number of

transition functions triggered in all of the DEVStone

benchmarks. Finally, we have compared five simulation

engines in two different hardware platforms, analyzing

both the execution time and the memory footprint. To per-

form a fair comparison between simulation engines that

allow and do not allow model flattening, we did not flat-

tened the benchmark in any case.

These five DEVStone models are executed against

five different DEVS simulators, implemented in differ-

ent programming languages such as C++, JAVA, and

Python.

Results show that all of the simulators were able to run

the HOmem model for at least a significant range of width

and depth values. Between all five of the simulators,

aDEVS, which is based on C++, had the lowest memory

footprint at least in the LI, HI, and HO models. With

respect to the execution time, xDEVS was the fastest one,

especially in the HI and HO models.

As future work, we propose the extension of this com-

plete analysis to study the performance of the DEVStone

parallel and distributed simulations.
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