
Applications

Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

1–25

� The Author(s) 2017

DOI: 10.1177/0037549716684552

journals.sagepub.com/home/sim

DEVS for AUTOSAR-based system
deployment modeling and simulation

Joachim Denil1,2,3, Paul De Meulenaere1,3,
Serge Demeyer1,3 and Hans Vangheluwe1,2,3

Abstract
AUTOSAR (AUTomotive Open System ARchitecture) is an open and standardized automotive software architecture,
developed by automobile manufacturers, suppliers, and tool developers. Its design is a direct consequence of the increas-
ingly important role played by software in vehicles. As design choices during the software deployment phase have a large
impact on the behavior of the system, designers need to explore various trade-offs. Examples of such design choices are
the mapping of software components to processors, the priorities of tasks and messages, and buffer allocation. In this
paper, we evaluate the appropriateness of DEVS, the Discrete-Event System specification, for modeling and subsequent
performance evaluation of AUTOSAR-based systems. Moreover, a DEVS simulation model is constructed for
AUTOSAR-based electronic control units connected by a communication bus. To aid developers in evaluating a deploy-
ment solution, the simulation model is extended with co-simulation with a plant and environment model, evaluation at
different levels of detail, and fault injection. Finally, we examine how the simulation model supports the relationship
between the supplier and the original equipment manufacturer in the automotive industry. We demonstrate and validate
our work by means of a power window case study.

Keywords
Simulation-based design, software-intensive systems, multiparadigm modeling, DEVS, AUTOSAR, deployment

1 Introduction

Software has become a key component of a rapidly grow-

ing range of applications, products, and services from all

sectors of economic activity. This can be observed in

large-scale heterogeneous systems, embedded systems for

automotive applications, telecommunications, wireless ad

hoc systems, business applications with an emphasis on

web services, etc. For example, an automobile in the 1970s

was an almost completely mechanical device, in which

only the radio had some electronic components. By con-

trast, today’s vehicles contain up to 70 electronic control

units (ECUs) for controlling a range of features, from

safety functions, such as anti-lock braking systems and

electronic stability programs, to comfort functions for air-

conditioning.1

Systems that feature a tight interaction and coordination

between physical components and cyber-components are

commonly referred to as cyber-physical systems. 2 We

look at a specific subset: software-intensive systems. In

such systems, software contributes essential influences to

the design, construction, deployment, and evolution of the

system as a whole. One of the key enablers for the design

of these complex systems is the use of system simulation

tools. 3 Industrial leaders identified the increased predic-

tion of system behavior (prior to testing) as a top strategy

for system design. However, some observations are needed

to create a usable system simulation model for software-

intensive systems and, more specifically, AUTOSAR-

based automotive systems.

For performance, cost, and practical reasons, the

increasingly complex systems are often implemented in a

distributed fashion. This means that the computational

hardware components are scattered throughout the system

and need to interact using a communication medium (most

commonly, a bus). System architectures, like AUTOSAR

(AUTomotive Open System ARchitecture), are commonly

1University of Antwerp, Belgium
2McGill University, Canada
3Flanders Make, Belgium

Corresponding author:

Joachim Denil, University of Antwerp, Middelheimlaan 1, 2020

Antwerpen, Belgium.

Email: Joachim.Denil@uantwerpen.be

https://doi.dox.org/10.1177/0037549716684552
journals.sagepub.com/home/sim

used to keep the complexity of the system design under

control by providing a method to develop the software as

well as a standardized middleware for deploying the soft-

ware. During the process of deployment onto hardware, a

myriad of design choices must be made in the middleware

and on the system. These choices range from the mapping

of software components to ECUs, mapping software func-

tions onto tasks and assigning these tasks a priority, to

parameters that affect the sending and receiving of mes-

sages on the bus. Because of the impact these choices have

on the functional and extrafunctional behavior of the sys-

tem, a method is needed to evaluate candidate deployment

solutions. However, the effects of deployment, combined

with the interaction with the physical part of the system,

make it difficult to analyze the overall system behavior.

Simulation provides techniques for the concurrent simula-

tion of the control model, the physical part of the system,

commonly referred to as a plant model, and the environ-

ment models.

The problem of deployment is usually tackled at differ-

ent levels of detail. 4 In the literature, performance analy-

sis models have been proposed at these different levels of

detail. One such technique is schedulability analysis.

Schedulability analysis uses the worst-case timing beha-

vior of the different components and checks whether an

application meets the proposed deadlines. In a periodic

activation model, every time a message is transmitted or

received, a task (message) may need to wait for up to an

entire period of sampling delay to read (forward) the latest

data stored in the communication buffers. Analysis models

add worst-case delays at each of these steps to obtain the

worst-case latencies of paths. The probabilities of these

worst-case delays is very small. 5 The analysis models are

used for the purpose of safety analysis and not to evaluate

the overall behavior of the system. Moreover, many appli-

cations are not time-critical. Performance and user comfort

of the system largely depends on the average response

time, which also needs to be analyzed and optimized. This

is also true for many time-critical functions, where user

comfort must be analyzed alongside safety. The effects of

the design choices during deployment must also be veri-

fied with respect to the overall system behavior. More so,

creating an analysis model taking all these design choices

into account is technically hard. Simulation models are

more appropriate in this case.

Automotive systems are usually also highly critical sys-

tems. A failure in these critical systems may lead to severe

consequences, ranging from physical damage to the loss of

human lives. Critical software-intensive systems must,

therefore, be dependable. A number of techniques are cre-

ated to make a system more dependable, for example triple

modular redundancy. 6 To respond to this trend, the auto-

motive industry proposed new safety and criticality stan-

dards. The ISO-26262 functional safety standard defines

the safety aspects of the development of electric and

electronic automotive systems. 7 Standard ISO-26262 pro-

vides a life-cycle model, processes, risk classes, and

requirements for the validation measures to ensure that a

sufficient level of dependability is achieved. Simulation is

an important experimental method to obtain an early mea-

sure of the performance and dependability. 8 Faults can be

injected into the simulation model in a controlled way.

Finally, automotive systems are developed in a sup-

plier–OEM setting. Original equipment manufacturers

(OEMs) often outsource the development of many compo-

nents to supplier companies. Suppliers must verify the cor-

rectness with respect to the requirements of the

component. This means that the component should be ver-

ified in a realistic setting. Simulation techniques, like rest-

bus simulation,9 can be used to check the behavior of the

created components under realistic conditions by generat-

ing the normal operating conditions in which the subsys-

tem has to function.

The development of a system-level simulation model

for the deployment of AUTOSAR-based systems must take

these observations into account. We therefore define the

following requirements for such a system-level simulation

framework.

� Different levels of detail. The framework should

support multiple levels of detail where design

choices can be verified.
� System behavior. The interactions of the physical

part (plant) and the control part (hardware + soft-

ware) of the system must be simulated together to

verify the behavior of the software with respect to

the system.
� Supplier–OEM. The framework should be usable

both within the integration company as well as in

supplier companies to verify the behavior of a

subsystem.
� Verification of the system under faulty conditions.

Fault injections are considered a standard technique

to verify the behavior of the system when errors are

present. At the system level, fault injection in simu-

lation models can be used, prior to testing, to verify

the correct behavior of the system in the presence

of faults.

Note that this is a non-exhaustive list of requirements for a

modeling and simulation framework for AUTOSAR-based

systems, based on previously described observations.

Other generic and company-specific requirements, for

example, consistency management techniques between

design and simulation models in distributed development

teams, are considered beyond the scope of this paper. The

contribution of this paper is to demonstrate the appropri-

ateness of the Discrete-Event System (DEVS) specifica-

tion formalism to model and simulate the effects of

deployment. To show that DEVS is indeed an appropriate

2 Simulation: Transactions of the Society for Modeling and Simulation International

formalism, we compare the characteristics of DEVS with

the requirements we observed previously. To further show

this appropriateness, we create a generic simulation model

for the automotive domain, including a model of the

AUTOSAR platform, as well as a single communication

medium. The model is implemented using PythonDEVS.
10 The proposed simulation model is based on our previ-

ous work. 11 We extend this work in different directions

by adding different levels of detail, co-simulation, and

fault-injection techniques.

The paper is structured as follows. Section 2 presents

some essential background concepts relating to this work.

Section 3 compares the characteristics of DEVS with the

formulated requirements and elaborates on the use of the

DEVS formalism. Section 4 introduces the model of the

AUTOSAR platform and a communication bus. In Section

5, the AUTOSAR platform model is augmented with co-

simulation, different levels of detail, and fault injection. In

Section 6, we discuss the use of the proposed simulation

model within an automotive design process. In Section 7,

the created model is used to deploy and verify the beha-

vior of an automotive power window. Section 8 reviews

relevant contributions that deal with performance evalua-

tion of software-intensive systems and automotive sys-

tems. Finally, in Section 9 some conclusions are made.

2 Background

In this section, we look at the background related to the

proposed work. Firstly, the DEVS formalism is introduced.

Secondly, we look at the AUTOSAR software architecture.

Finally, we discuss the causal-block diagram formalism.

2.1 DEVS

The DEVS formalism was conceived by Zeigler. 12 It pro-

vides a basis for the compositional modeling and simula-

tion of discrete-event systems where the time base is

continuous. During a certain time, only a finite number of

events occur that can change the state of the system. In

between these events, the state of the system remains the

same. We describe here the DEVS-with-ports formalism. We

select the DEVS-with-ports formalism because the formalism

is considered the assembly language of simulation. 13

A system is modeled in DEVS using a composition of

atomic and coupled DEVS components. An atomic model

describes the behavior of a discrete-event system as a

sequence of transitions between states. It also describes

how the system reacts to external input events and how it

generates output events. The atomic DEVS model is speci-

fied as M = \ X ; Y ; S; dint; dext; l; ta . , where:

X = fðp; vÞ j p 2 iPorts; v 2 Xpg. This is the set of

input events, where iPorts is the set of input ports and

Xp is the set of values for the input ports.

Y = fðp; vÞ j p 2 oPorts; v 2 Ypg. This is the set of

output events, where oPorts is the set of output ports

and Yp is the set of values for the output ports.

S. The state set S is the set of sequential states.

dext : Q 3 X ! S. This is the external state transition

function, with Q= fðs; eÞ j s 2 S; e 2 ½0; taðsÞ�g, where
e is the elapsed time since the last state transition.

dint : S ! S. This is the internal state transition

function.

l : S ! Y . This is the output function.

ta : S ! R+
0 [‘. This is the time-advance function.

The time base of a DEVS model is not explicitly men-

tioned but is continuous. Informally, the operational

semantics of an atomic model are as follows. At any given

moment, a DEVS model is in a state s 2 S. When no

external event is given, the model remains in that state for

the duration defined by the time-advance function ðtaðsÞÞ.
On expiration of this time, the model outputs the value

lðsÞ through a port y 2 Y . After the output of the event,

the model changes its state to a new state given by the dint
function.This is called an internal transition.When an

external event is received, an external transition

occurs.The new state is determined by the function

dextðs; e; xÞ,where s is the current state of the model, e is

the elapsed time since the last transition, and x 2 X is the

external event that was received. The definition of the

time-advance function states that this can take a real value

between zero and infinity. When :taðsÞ= 0, the model

will trigger an instantaneous transition and the state is

called a transient state. When taðsÞ=‘, the model will

remain in this state until an external event occurs. This is

called a passive state.

A coupled DEVS describes a system as coupled com-

ponents of atomic DEVS models or coupled DEVS. The

connections between the components denote how they

influence each other: output events of one component can

become, via a network connection, input events of another

component. The coupled model is formally defined as CM =
\ X ; Y ;D;Md j d 2 D;EIC;EOC; IC; select. , where:

X = fðp; vÞ j p 2 iPorts; v 2 Xpg. This is the set of

input events, where iPorts represents the set of output

ports and Xp represents the set of values for the output

ports.

Y = fðp; vÞ j p 2 oPorts; v 2 Ypg. This is the set of

output events, where oPorts represents the set of output

ports and Yp represents the set of values for the output

ports.

D. This is the set of component names, for each d 2 D.

Md . This is a DEVS basic (i.e., atomic or coupled)

model.

EIC. This is the set of external input couplings:

EIC � fððSelf; inSelfÞ; ðj; injÞÞ j inSelf 2 iPorts; j 2 D;
inj 2 iPortsjg.

Denil et al. 3

EOC. This is the set of external output couplings,

EOC � fððSelf; outSelfÞ; ði; outiÞÞ j outSelf 2 oPorts; i
2 D; ini 2 oPortsig.
IC. This is the set of internal couplings,

IC � fðði;outiÞ; ðj; injÞÞ j i; j 2 D;outi 2 oPortsi; inj 2
iPortsjg.
select. This is the tiebreaker function, where

select � D! D, such that, for any nonempty subset E,

selectðEÞ 2 E.

The semantics for a coupled model is, informally, the

parallel composition of all the submodels. Each submodel

in a coupled model is assumed to be a process, concurrent

to the rest. There is no explicit method of synchronization

between processes. However, there is a serialization of

events whenever there are two or more submodels that

have a transition scheduled to be performed at the same

instant. Logically, the transitions are made at that instant,

but the implementation of these transitions on a sequential

computer is serialized. The coupled model uses the tie-

breaking function to define which model will transit first.

2.2 AUTOSAR

To keep complexity under control and to create a competi-

tive market for automotive software components, some

leading automotive companies created the AUTOSAR

consortium. 14 This consortium contains OEMs and sup-

plier companies. The AUTOSAR technical goals include

modularity, scalability, transferability, and reusability of

functional components. To achieve these goals, the

AUTOSAR initiative has a dual focus. On the one hand, it

defines an open platform (middleware) for automotive

embedded software through standardized interfaces. On

the other hand, it provides a method of creating automo-

tive embedded systems. Using AUTOSAR, software can

be developed mostly independently from the platform it

will be deployed on.

AUTOSAR describes a metamodel for the deployment

of automotive software components to a set of ECUs. The

metamodel of AUTOSAR spans three different areas: (a)

software architecture, (b) the system, and (c) the ECU. A

small introduction to the AUTOSAR concepts is given

next. More information about AUTOSAR can be found on

the AUTOSAR website.

2.2.1 Software architecture model. AUTOSAR describes

software using a software-component oriented approach.

For reasons of scalability and transferability of these com-

ponents the model is centered around standardized inter-

faces. The functional model of AUTOSAR consists of a

set of atomic software components. Compositions of differ-

ent components can be used to structure the models hier-

archically. Components can interact with each other using

ports. The service or data provided or required by a port is

defined by its interface. This can be either a data-oriented

communication mechanism (sender–receiver interface) or

a service-oriented communication mechanism (client–ser-

ver interface). The data-oriented interface can support two

types of semantics. The first is ‘‘last-is-best,’’ where only

the last received value is stored. The other is a queued ver-

sion, where the data is stored in a queue until it is read.

Each software component defines its behavior by a set

of runnable entities. A runnable entity is a function that

can be executed in response to events, for example from a

timer or due to the reception or transmission of a data ele-

ment. A runnable entity can also wait for the arrival of cer-

tain events. This can be used when it needs another data

element to continue execution. These are called waitpoints.

Finally, the runnable entity may need to update state vari-

ables, with exclusive read–write access. This is achieved

using exclusive areas. Each software component defines

the interfaces using a software component template. This

contains all the information regarding the interfaces and

the behavior of the software component.

To achieve the goal of transferability, software compo-

nents are defined independently of the hardware. The vir-

tual functional bus enables a virtual functional integration

of the software defined at the software architecture level.

To verify the functional behavior of the created software

architecture, the virtual functional bus provides an abstract

platform to simulate the component diagram.

2.2.2 System configuration model. The system model defines

the available hardware that can be used in the system. This

includes the number and types of the ECUs in the system.

It also describes the communication hardware involved.

Finally, a topology represents how the ECUs interact with

the different communication buses. The system configura-

tion model defines how the software is deployed on the

hardware. This includes the mapping of atomic software

components to the hardware units. Signals that are commu-

nicated between software components on different ECUs

have to be transmitted on a communication bus.

2.2.3 ECU model. To make software components indepen-

dent of the hardware, the interface to this hardware must

be standardized. This is done using the AUTOSAR basic

software, shown in Figure 1. The basic software consists

of the following components.

� Operating system. The middleware consists of a

real-time operating system based on the OSEK/

VDX standard. 15 The operating system schedules

tasks with a fixed priority. Some tasks can be pre-

emptive while others are not preemptive. Since the

concept of a task is not known at the functional

level, the components must first be mapped to the

4 Simulation: Transactions of the Society for Modeling and Simulation International

processors and then the runnable entities must be

mapped onto tasks. The mapping to tasks is not

necessarily one-to-one. The rules for mapping run-

nables to tasks are defined in the run-time environ-

ment specification. 14 All tasks have to be assigned

a priority to be scheduled by the operating system.
� Communication services. The middleware also con-

tains services for sending and receiving messages

on a communication bus. These are composed of

signals that originate in the application layer.

Communication signals and messages have certain

configurable properties, such as the signal transfer

property and the message transmission mode,

which have an impact on the timing behavior of the

application. Table 1 shows the behavior in trans-

mitting a message based on the signal transfer

property and message transmission mode when a

signal is written to the COM module. For a cyclic

transmission, a period is required. Other design

choices are parameters used to transmit the mes-

sage for a set number of times or to prohibit a

transmission for a certain amount of time after a

previous transmission.
� Communication abstraction and drivers. On the

communication abstraction and driver layer, the

most common automotive buses, for example the

CAN bus16 and FlexRay-bus, 17 are currently sup-

ported by the AUTOSAR communication stack.

These also have many configurable choices, such

as the priority of the frames containing the

message, which impact the real-time behavior of

the full system.
� IO abstraction. Other services exist for reading and

writing values from the hardware periphery units:

analog-to-digital converter, pulse-width modulator,

etc.
� Run-time environment. This is used as a glue

between the functional components and the

AUTOSAR basic software. It is responsible for

storing the internal messages using buffers or for-

warding the external messages to the communica-

tion stack. It also activates the runnable entities

when an event occurs.

Other services are available for diagnostics, memory man-

agement, error management, etc.

2.2.4 Code generation. Using the configuration templates,

code can be generated on a per-ECU basis. For each ECU,

an optimized middleware, containing only the required

features for that specific ECU, can be generated. From the

system template, the run-time environment code can be

generated.

2.3 Causal-block diagrams

A common formalism to model the plant and environment

of a software-intensive system involves causal-block dia-

grams. These are a general-purpose formalism used to

model causal, continuous-time, and discrete-time systems.

Causal-block diagrams are commonly used in tools such

as Simulink�. They use two basic entities: blocks and

links. Blocks represent (signal) transfer functions, such as

arithmetic operators, integrators, and relational operators.

Links are used to represent the time-varying signals shared

between connected blocks.

Causal-block diagrams can be mapped to ordinary dif-

ferential equations when continuous-time blocks are used.

If discrete-time blocks are used, the causal-block diagram

formalism can be mapped to difference equations. Another

approach is to use a numerical method to solve the net-

work, using a discrete time-step. Many numerical tech-

niques are proposed in the literature to solve difference

and differential equations.18

Figure 1. The AUTOSAR basic software.

Table 1. Communication properties of the AUTOSAR COM module.

Message mode Direct Cyclic Mixed

signal property
Triggered Immediate transmission Cyclic transmission Cyclic and immediate transmission
Pending No transmission Cyclic transmission Cyclic transmission

Denil et al. 5

The simulation of causal-block diagrams involves two

steps:

� Establishing an evaluation order (including the

detection of loops);
� Solving the network.

To establish the evaluation order, a directed graph is con-

structed. The topological sort algorithm, first presented by

Kahn, is used to sort the blocks from source to sink. 19 The

blocks are evaluated in order from source to sink. A prob-

lem arises when a loop is present in the directed graph,

since the topological sort algorithm can only work on a

directed acyclic graph. Because of this, the strongly con-

nected components in the graph are first detected using

Tarjan’s algorithm.19 These strongly connected compo-

nents are solved as a single block. A multitude of solvers

can be used to solve these components, ranging from

Gauss–Jordan elimination for linear algebraic loops to

iterative solvers for other types of loop.

3 Appropriateness of DEVS for
deployment modeling and simulation

From an abstract point of view, the DEVS formalism pro-

vides excellent features for behavior modeling and simu-

lating AUTOSAR-based automotive systems. Here is a list

of some properties of DEVS and their mapping to proper-

ties of software-intensive systems.

3.1 Concurrency

Multiple processors and communication buses are concur-

rent in a software-intensive system. Even within a single

ECU, there are components, like the communication buf-

fers, that work concurrent from the processing unit. The

semantics of DEVS coupled models supports concurrency

by appropriate interleaving of the discrete-event behavior

of individual submodels.

3.2 Time

Real-time performance is a crucial property of real-time

software-intensive systems. End-to-end latencies are part

of the requirements for these applications. The time-

advance function of an atomic DEVS model can be used

to model latency. This latency can be the computational

time needed to execute a function or the time needed to

transmit a message on the communication bus.

3.3 Events

Event-triggered and time-triggered architectures use trig-

gers in the form of either external events or timing events

to execute certain pieces of functionality. DEVS

implements a reaction to events using external transition

functions. Time-triggering can also be handled by external

events when the source of the trigger is a separate compo-

nent to generate the timing event.

3.4 Priorities

Some automotive buses use a priority-based mechanism to

arbitrate the bus (for example, the CAN bus). DEVS sup-

ports this by means of a tiebreaking function to select an

event from the set of simultaneous events.

3.5 Modularity

Atomic DEVS modules are modular. They can be replaced

by more abstract components. This allows us to create a

simulation model that can be used at different levels of

detail. It also allows us to replace an ideal component with

a component that behaves as if faults are present, allowing

us to inject faults into the simulation model. In the case of

a fault injection, this type of component is known as a

mutant. 8

3.6 Compositionality

The compositionality feature of DEVS helps us to address

two different requirements for the modeling and simula-

tion of software-intensive systems. Firstly, suppliers build

part of the system concurrently with other parts of the sys-

tem. The compositionality of DEVS allows the addition of

extra abstract components and generators to create more

realistic scenarios for simulation at the supplier. It allows

OEMs to integrate the different components into a single

simulation. Secondly, the compositionality feature can also

be used to inject faults in the simulation. A saboteur 8 can

be placed in between the output and input ports of two

connected components. The component receives the events

and can alter the timing behavior as well as any values pig-

gybacked within the event.

3.7 DEVS as a common denominator

DEVS is a very general formalism and is able to simulate

different additional formalisms. 13 This generality stems

from the infinite possible states that DEVS allows us to

model and the (continuous) time elapse between the differ-

ent state transitions. The hierarchical coupling techniques

are used to integrate the different formalisms using DEVS

as a common denominator.

4 The AUTOSAR simulation model

In this section, we construct a model for the timing simula-

tion of the deployed AUTOSAR components onto a set of

networked ECUs. This simulation model simulates the

6 Simulation: Transactions of the Society for Modeling and Simulation International

timing behavior of the deployed system when all deploy-

ment choices have been made, namely the operating sys-

tem and communication stack are completely configured.

However, the model does not evaluate the behavior of the

full system because there is no connection with the envi-

ronment and plant models. In the next sections, this base

model will be extended with different additional features

to support the modeling and simulation of software-

intensive systems.

4.1 Coupled model

The atomic models in the coupled model represent concur-

rent modules in a software-intensive system architecture.

The most obvious atomic model is the ECU. It is the

atomic DEVS model that will execute the application soft-

ware. Because most software-intensive systems are distrib-

uted over several ECUs, the ECU models need to

communicate. This is done using a model of the communi-

cation bus. The buffers that receive and transmit messages

on the bus also work concurrently with each other. They

are represented by a separate atomic DEVS model.

Finally, a schedule table model is used to start time-

triggered tasks on an ECU. Figure 2 shows a partial class

diagram of the simulation model.

4.2 ECU

The ECU atomic DEVS model represents the actual pro-

cessor with operating system to which tasks are mapped.

However, it does not contain any peripherals, since these

usually work concurrently with the processing unit itself.

Figure 3 shows a state diagram for the operating system

that controls the behavior of the ECU model. The ECU

model starts in a idle state. This state defines that no tasks

are executed at the processor. The ECU model will remain

in this state until an external event is received. This exter-

nal event is either a timing event received by the schedule

table or a communication event. On reception of a timing

event, the ECU model goes to a systemcall state. The

event activates the necessary task(s) at the ECU model.

The time advance for the systemcall state is defined by a

parameter in the model. After completion, the ECU model

starts running the task (busy state). On reception of a com-

munication event from the receive or transmit buffer, the

state of the ECU model is changed to the interrupt state.

The reception of a message or a transmission confirmation

can result in the activation of a task (or a set of tasks),

resulting in a transition to the systemcall state. When there

are no tasks to run after the time advance of the interrupt

or systemcall state, the ECU model returns to the idle

state.

Because the operating system keeps track of all the

tasks running in the ECU model, it is similar in design as

a normal operating system. It keeps track of all tasks using

two different lists. The suspended list contains all tasks

that are, at that point in time, suspended or waiting for an

event. The systemcall state activates the tasks by taking

them out of the suspended state and placing them in the

ready queue. This is a priority queue, ordered by the prior-

ity of the task. Since only a single task can be executed by

a single ECU, the task with the highest priority is always

chosen as the running task.

When the task is activated from the suspended state, the

task starts by executing the first runnable entity mapped to

this task. A runnable entity, like other executable modules,

has an execution time parameter that must be configured.

After execution of this runnable entity, the task can go

through a number of states, depending on the configura-

tion, as shown in Figure 4. The internal transition mechan-

ism is used to change between the different states. We

distinguish the following states.

� Run-time environment. In the run-time environment

state, the task keeps track of the data buffers of the

interfaces. When an intra-ECU signal is written,

the run-time environment state places this value in

the corresponding receive buffer. To signal to the

underlying operating system model that the work is

done, the task state is changed to a ‘‘DummyState’’

Figure 2. Class diagram of AUTOSAR deployment simulator.

Figure 3. State diagram of the operating system. Full lines
represent internal transitions; dashed lines, external transitions.

Denil et al. 7

by the internal transition function. In some cases,

the run-time environment state produces activation

events that are used by the operating system model

to activate certain runnables or tasks. For external

communication, the run-time environment state

changes the application signals to communication

signals and transitions to the COM state.
� COM. The COM state mimics the behavior of the

COM module in the AUTOSAR basic software.

When the COM is activated, it places the messages

received from the run-time environment state in the

configured message buffers. The COM state checks

the signal properties and message modes. Based on

the defined properties, it decides whether to make

the message available to the PDU-router state or to

transit to the DummyState.
� PDU-R. The corresponding AUTOSAR module is

used to route the messages to the correct interface.

This means that different CANIF/CAN instances

can be used within a single ECU. The PDU-R con-

tains a translation table to decide the routing to the

correct interface or driver instance.
� CANIF/CAN. This state represents the AUTOSAR

interface and the driver of the CAN bus. The CAN

and CANIF modules are used to place the messages

into the CAN transmit buffers. The module adds

the message priority and length to the message.

Occasionally, it buffers certain messages when the

hardware buffers are full. These modules must be

executed in an atomic way, so the task cannot be

preempted during the execution of these modules.

The CANIF/CAN state has a similar behavior; it

adds message priority, length, and the number of

the buffer before making the CAN message avail-

able to the operating system model.
� DummyState. The DummyState is introduced to

notify the operating system that there could be

CAN messages pending for transmission to the buf-

fers or that there is an activation event pending. It

does not take any time to execute. However, it can

happen that the runnable is not fully finished after

the DummyState. In this case, the task reactivates

the runnable. Another situation can occur where

multiple runnables are mapped to a single task. In

this case, the operating system checks whether

another runnable entity can be executed. If no other

runnables are available, the task is suspended by

the operating system.

Because of the priority mechanisms in the operating sys-

tem, a running task can be preempted by a higher priority

task that has become available due to the interrupt and sys-

temcall mechanisms described. It is the responsibility of

the task to keep track of which state it has to resume and

how much time has already passed before the preemption

occurred.

Besides the normal task behavior, a second type of task

can be created: the schedule manager task (SchM_Task).

The SchM_Tasks are special tasks that execute the main

functions of the COM stack. They are used for the cyclic

transmission of messages, for the reception of messages

using the polling mode, and for other special behavior in

the COM module. The SchM_Task thus contains. as run-

nable entities, the main functions of the different modules

of the COM stack. The DummyState is also used to signal

to the operating system that the task is completed.

The described behavior of the ECU atomic DEVS

model is captured in the class diagram shown in Figure 5.

For communication with the other atomic models in the

coupled DEVS model, the EcuModel has two input ports

and two output ports. Depending on the configuration not

all of them need to be connected to another model.

� FromRxBuffer. This port receives an event, with a

piggybacked CAN frame, from the connected

RxBuffer. Depending on the configuration of the

AUTOSAR ECU model, the external transition

functions will unpack a frame in either an interrupt-

based way or a polling-based way:
� Polling. Store the frame in the CAN/CANIF mod-

ule. This will set the state of the ECU to an inter-

rupt state. The internal transition time is a

configurable parameter of the model.
� Interrupt. Go through the several layers of the com-

munication stack and unpack the different signals

to application signals in the run-time environment.

Figure 4. State diagram of a task.

8 Simulation: Transactions of the Society for Modeling and Simulation International

The state of the ECU is also changed to interrupt

state, but the time advance is a sum of the different

configurable timing parameters of the communica-

tion stack modules. Note that several task activa-

tion events can be generated from the unpacking of

the frame into signals. These are stored and evalu-

ated after the interrupt time-delay is finished. This

results in the transition of the interrupt state to the

systemcall state.
� FromTxBuffer. The FromTxBuffer port receives an

event to notify the processor that a frame has been

transmitted on the CAN bus. This is to allow notifi-

cation of transmission events to the application

layer. These events are, like the frames, processed

within an interrupt or by using a polling mechan-

ism. The behavior is as described before. The

FromTxPort is also used for returning frames out of

the TxBuffer when the configuration has the can-

cellation option defined or when software buffering

is enabled and the transmit buffer rejects the frame.

This will store the frame in the CAN/CANIF soft-

ware buffer for resending when the TxBuffer is

available.
� ToTxBuffer. This is used for sending an event, with

a piggybacked CAN frame, to the TxBuffer.
� FromScheduleTable. This port receives timing

events for the activation of time-triggered tasks. A

look-up table is used to activate tasks this way. The

EcuModel will activate a set of tasks by changing

to the systemcall state.

4.3 Buffers

The TxBuffer and RxBuffer work independently of the

processor. In most common processor systems, these

buffers are within the communication controller of the

ECU. The CAN controller, implementing the CAN bus

protocol defines how a message is placed on the bus. Both

the TxBuffer and RxBuffer have a specifiable number of

internal buffers. Each ECU model that needs to transmit

or receive a message on the CAN bus needs its own set of

buffer models. The TxBuffer has two input and two output

ports:

� FromECuU. The TxBuffer receives a piggybacked

frame from the ECU model via this port. It also

contains the buffer number where the frame should

be placed.
� ToCAN. Depending on the configuration of the

CAN module, either the first or the highest-priority

message is put on the port to the CAN bus. The

event contains a complete frame. Because several

buffers in the whole system can transmit a message

at the same time, the tiebreaking function is used to

select the highest-priority message among the com-

peting messages.
� FromCAN. The CAN bus transmits a notification

message to the buffer when the transmit of the

frame is complete. All transmit buffers receive this

event, though only the source buffer of the trans-

mitted message forwards this to the ECU.
� ToECU. This port is used to notify the processor

that the frame has been transmitted on the bus. It is

also possible to change the content of a buffer when

cancellation is supported or when the buffer is full.

The TxBuffer returns either the content of the buf-

fer to the ECU model for storage in the software

buffers or returns the incoming frame from the

ECU model.

Figure 5. Class diagram of the ECU atomic DEVS model.

Denil et al. 9

4.4 Buses

The AUTOSAR standard supports different communica-

tion mediums. In this paper, we only model the behavior

of the CAN bus. The CAN bus model introduces the delays

imposed by physically transmitting a frame on the bus.

Figure 6 shows the state diagram of the simulation model.

The model starts in an idle state with an infinite time

advance. This represents the state when no messages are

being transmitted on the bus. It changes state when one or

more messages are put into the CAN transmit buffer. The

tiebreaking function checks the priority of the message and

selects the one with the highest priority.

The model then changes to the busy state. This state

reflects the physical processes of transmitting the frame to

the communication medium. It stays in this state based on

the length of the message and the configured bandwidth of

the bus: t = ð1=speedÞ � size.
On completion, the model writes the message to the

CAN receive buffer on the passenger side. It also notifies

the transmit buffers that the bus is ready for arbitration. If

there are pending messages, it returns to the busy state.

Otherwise, the bus returns to the idle state.

The CAN atomic DEVS model has three ports to com-

municate with the buffer models.

� InFrame. The InFrame port accepts incoming

frames. It connects to all the TxBuffers. Frames are

only accepted when the bus is in an idle and notify

state.
� Notify. The Notify port lets the TxBuffer models

know that the bus is no longer in a busy state (trans-

mitting a frame on the bus).
� OutFrame. A frame is put on the OutFrame port

when the transmission delay is completed. It con-

nects to all the RxBuffer models.

4.5 Schedule table

The schedule table model implements the schedule table

mechanism of the AUTOSAR operating system. It gener-

ates timing events to activate periodic tasks. The only out-

put port transmits this event to the attached ECU model.

The ECU model activates the necessary tasks based on this

timing event.

5 Augmenting the base model

In this section, the base model is augmented with (a) co-

simulation, (b) simulation at different levels of detail, and

(c) fault injection.

5.1 Co-simulation

In the previous section, all aspects of the computational

part of a software-intensive system have been modeled.

With this model, it is already possible to evaluate the tim-

ing behavior of applications, because the DEVS formalism

interleaves the executions of the different runnables, basic

software modules, and buses with the incurred delays.

However, we cannot check the behavior of the overall sys-

tem with this model. A co-simulation of the DEVS formal-

ism with the plant and environment model is needed to

evaluate the full behavior of the system, together with the

execution of the software functionality within the defined

runnables.

For this, three behaviors must be added to the previ-

ously described model.

� Execution of the software functions. In the previous

model, no application code is executed during exe-

cution. To observe the system behavior, the appli-

cation code must be executed during the simulation

at the correct time. The input values are accessed

by the runnable entity in the run-time environment.

The output values of the runnable entity are written

in the run-time environment.
� Passing data in the events. The functions need the

input data of other runnables. As in the implemen-

ted AUTOSAR system, the values are passed

through the communication stack, while building

up a frame that is transmitted on the bus. The com-

municated data are piggybacked in the event that is

exchanged between the different coupled DEVS

models.
� Integration of the plant and environment models in

the simulation model. The plant and environment

models must be co-simulated with DEVS. Two

extra ports are added to the ECU model to receive

and transmit values to the plant and environment

models.

The signals from the environment and plant model are

stored in the run-time environment of the ECU model.

This is a simplification that we made during the design.

The different runnable entities sample (polling-based) the

values, as in the AUTOSAR implementation. In this case,

the time needed to sample this value is reflected in the time

Figure 6. State diagram of CAN bus simulation model. Full
lines represent internal transitions; dashed lines, external
transitions.

10 Simulation: Transactions of the Society for Modeling and Simulation International

advance of the runnable entity. When an interrupt-based

approach is needed, a dedicated atomic DEVS model is

used to detect the interrupt and store the value in the run-

time environment. The interrupt mechanism of the ECU

model is extended with the time needed to store the value

in the ECU. The run-time environment starts different

tasks or sets a number of events in the real-time operating

system, reflecting the actual behavior.

As shown previously,13 DEVS is an appropriate formal-

ism to combine different formalisms. We will give a single

example of integrating another formalism in DEVS. To co-

simulate causal-block diagrams with our simulation model,

we embed the full causal-block diagram model and solver

in an atomic DEVS block. The time-step is generated by

the time-advance function of the DEVS atomic model. We

use the same time-step for all the blocks in the model; it is,

therefore, necessary to change the select function of the

coupled model so that it reflects the same source to sink

execution as in the causal-block diagram simulation model.

The topological sort algorithm is used for this purpose.

With this extension to our base model, it is possible to

verify the behavior of the whole system when all deploy-

ment choices have been made. Using a set of scenarios,

usually already defined as use-cases in previous develop-

ment steps, the choices made during deployment can be

evaluated.

5.2 Levels of detail

Depending on the abstraction level, the AUTOSAR design

and deployment model does not yet contain enough infor-

mation to create the full simulation model described in

Section 4. We identified three levels of detail that are use-

ful to check the behavior of the system when not all the

information is present in the design model.

5.2.1 Virtual functional bus. The first level of detail,

depicted in Figure 7(a), uses a completely abstract plat-

form where no inter-ECU communication is used. This is

known as the virtual functional bus. The model is used to

verify the behavior of the AUTOSAR software component

diagram. The software component diagram contains such

information as software components, runnable entities,

and triggering events.

The virtual functional bus model uses a single ECU

atomic DEVS model to simulate the behavior of the soft-

ware component diagram. Each runnable entity defined in

the AUTOSAR software component diagram is mapped to

its own task for simulation. Because every runnable entity

is mapped to the same ECU, there is no need for the

AUTOSAR communication stack. Thus, the communica-

tion stack is not included in the simulation model and does

not need a configuration. The run-time environment can

handle all the communication between the different

software components. The triggering events to execute the

runnable entities on the ECU model are defined in the

design model. The coupled model contains a

ScheduleTable model when timing events are used to trig-

ger the execution of one or more runnable entities. The

time advances for executing a single runnable entity or a

run-time environment call are set to zero. The model is

untimed because there is no available information on the

concurrency of runnable entities in the component dia-

gram. However, to create a correct simulation model, the

execution chain of runnable entities must be correct. The

priority of the tasks in the simulation model are, therefore,

based on the topological ordering of the flattened (i.e.,

only runnable entities that communicate without the hier-

archy of the software components) AUTOSAR software

component model. Again the topological sort algorithm is

used for this.

5.2.2 Task and message scheduling. At the second level of

detail, all information about the distribution of software

components to ECUs is known. Also, the underlying net-

work is specified, the runnable entities are mapped to

tasks, and the communication signals are mapped to mes-

sages on the bus. This means that all the information is

available to create the correct amount of ECU models, the

configuration of the operating system, the configuration of

the COM module, a partial configuration of the interface

and driver module (the frame ID of the message), and the

bus that connects the different ECU models.

Figure 7(b) shows the configuration of the ECU model.

The low-level details on how the messages are handled by

the buffers are not yet known at this stage. This means that

the interface and driver modules of the ECU model cannot

be configured. The module is configured with a standard

configuration that delivers the frame to the transmit buffer

without any configuration. However, the interface or buf-

fer modules can already have a time advance. This time

advance reflects the time normally needed to store the

message in the buffer, but could also contain a

Figure 7. Levels of detail defined with the simulation model:
(a) virtual functional bus, (b) task and message scheduling, (c) full
deployment.

Denil et al. 11

probabilistic component to take jitters from software buf-

fering into account.

A new transmit buffer atomic DEVS model is created

that supports an infinite buffer capacity. The new transmit

buffer model has the exact same ports and functionality of

the one presented in Section 4 but does not include the

design choices for the number of buffers and other related

choices. The infinite buffer function to select the next

message to be transmitted on the bus has two options: (a)

FIFO, select based on arrival time; (b) Priority, always

select the highest-priority message.

5.2.3 Full deployment. Finally, in the last level of detail, all

design decisions with respect to the AUTOSAR basic soft-

ware are made. Communication buffers are a constrained

resource in many ECUs. The limited amount of buffers

need to be configured as either receiving or transmitting

buffers. However, buffers can be shared between different

messages, a transmit buffer can transmit different frame

IDs, while a receive buffer can be used to receive multiple

messages. The model presented in Section 4 has all the

capabilities needed to simulate the full deployment of a

software-intensive system.

5.3 Fault injection

Fault injection is a general technique used in different

simulation tools. 8,20,21 While it is beyond the scope of this

paper to provide the reader with an extensive survey of

fault-injection techniques, we briefly look at two tech-

niques for adding faulty behavior in a simulation.

� Simulator commands. The technique is based on

using the simulator or simulation framework to

modify the values of the variables in the model.

The main advantage of this technique is that it does

not require any changes to the model. The applica-

tion, however, depends on the underlying function-

alities of the simulator. This approach has been

implemented in the DEVSimpy framework 22,23 but

it is not available in our PyDEVS simulator.

Similarly, other variants of the DEVS formalism

have been created to add faulty behaviors to DEVS

models, for example the BFS-DEVS formalism, 24

which allows concurrent fault simulation with the

DEVS formalism.
� Model modification. The model can be modified to

include injections directly. Mutants and saboteurs

can be inserted into the model to change the beha-

vior. Mutants with the DEVS formalism have been

previously used by Zia et al. 25 to model the beha-

vior of a pump control system.

In the AUTOSAR model, the behavior of the different run-

nable entities can be augmented with errors. The mutants

of the runnable entities allow us to look at the behavior of

our system under the influence of software bugs. However,

the effects on the behavior of the system can already be

verified at a higher abstraction level when designing and

testing the software. Because we are interested in the sys-

tem behavior, there are other, more interesting, fault injec-

tions to add. Sensors and actuators are prone to different

errors, e.g., short circuits, damage, or calibration errors.

The values of the sensors are provided by our environment

model. A saboteur can be inserted in between the system

under study and the environment and plant models. Figure

8 shows a model of a simple saboteur. The atomic DEVS

model has a single input port and a single output port. The

saboteur can be either active or passive. In the latter case,

when an event arrives at the input port, the saboteur imme-

diately sends the event out on its output port (using the

N_PASSIVE state). When the saboteur is active, the piggy-

backed data in the event can be changed and the event can

be delayed using a parameterized time advance from the

N_ACTIVE to the ACTIVE state. Changing from passive to

active and vice versa is also parameterizable. The saboteur

allows us to mimic the effect of broken and faulty compo-

nents and intermittent errors. It has the advantage that no

atomic models need to be changed; only the couplings

between atomic DEVS models must be changed. It also

requires no change to the standard DEVS formalism or the

simulator to be used for introducing faulty behavior in the

model.

Introducing errors in the communication system is also

a common technique. The CAN bus standard already has a

mechanism to deal with faulty conditions. When some-

thing happens during the transmission of a message, the

bus goes into an error state and the nodes start to transmit

an error frame. This error state lasts for a maximum of 23

bits, with the inclusion of the inter-frame spacing. The

aborted message remains in the transmit buffer and can

again compete for the bus. In Section 4, we did not model

this error state because our modeling goal did not require

this level of detail. The model of the CAN bus (and also

the depending buffer) must be updated to include this

Figure 8. State diagram of serial saboteur model.

12 Simulation: Transactions of the Society for Modeling and Simulation International

behavior. This is done by adding the ERROR state with a

time advance of 14 to 23 bit-times. The notification event

for the buffers is augmented with a field to indicate

whether the message has been transmitted without any

errors. An extra input port is added that allows the external

transition from the busy state to the error state. A model to

create errors on the bus must be added to the coupled

model and can be arbitrarily simple or very complex,

depending on the required testing scenarios. Similarly, the

buffers are adapted to comply with this new event type.

6 Simulation model within an automotive
design process

In this section, we discuss how the presented model and

its features can be used in an automotive design process.

The automotive industry is characterized by an integrator

(OEM) and supplier relation. The OEM, as a system inte-

grator, integrates the different components produced by

the supplier companies. For more details about this rela-

tion, we refer the reader to Volpato. 26

Automotive systems, and more general software-

intensive systems, are commonly engineered using the V

life-cycle model. 27 The V-model is a life-cycle process

guideline for planning development projects. 28 The devel-

opment process of the system is represented as a V. The

time and maturity of the system follow the V-shape from

left to right. The left leg of the V-model starts from system

requirements over system development, higher-level sub-

system development (architecture) and finally low-level

subsystem development. The right leg of the V-model rep-

resents the different realization (and integration) phases of

the system.

AUTOSAR allows for a top-down or bottom-up cre-

ation of the software architecture and subsequent deploy-

ment. 29 Simplified, in the top-down approach, a system

architect starts by defining the software architecture with

its components and interfaces. These components are fur-

ther refined and afterward outsourced to supplier compa-

nies. The supplier company receives the specifications of

the component (including a worst-case execution time

constraint). In the bottom-up approach, a large collection

of legacy components is used to create an architectural

model.

Components in the automotive process are tested at dif-

ferent levels of abstraction and at different levels of inte-

gration. 27 Different integration platforms are used during

the verification process.

� Model-in-the-loop. The system is fully realized in

models. The model of the software is simulated.

The simulation is either (a) open-loop, where the

control software inputs are provided by the develo-

per to test the model, or (b) closed-loop, where

models of the plant and environment are simulated

together with the model of the control.
� Control-in-the-loop. This is also known as rapid

control prototyping. The model is run on a (high-

end) computer that is embedded in the real car. The

real car acts as the environment and plant model

for the control model.
� Software-in-the-loop. The fixed point source code

of the software is run in open-loop, or closed-loop

together with the plant and environment.
� Processor-in-the-loop. The software runs on the

target processor or target processor simulator. The

plant and environment are simulated.
� Hardware-in-the-loop. The software runs on the

target hardware; the plant and environment is simu-

lated. Debugging of the control model is much

harder with this test execution platform.
� The car. All components are fully realized and inte-

grated in the vehicle.

This research focuses on the use of a virtual platform on

which to deploy the software and thus complements these

X-in-the-loop approaches. It specifically targets the inte-

gration of the different control algorithms on networked

control units. The simulation model can thus be seen as a

model-in-the-loop for integration. The model can be used

for rapid control prototyping if it is executed in real time

together with the behavior components. The car replaces

the co-simulation with the plant and environment models.

However, this is beyond the scope of this paper and is con-

sidered a topic for future work. To be usable as model-in-

the-loop for integration, the OEM and supplier must have

the capability to create this virtual ECU model with ease.

6.1 Simulation model creation and traceability

The presented DEVS model in Python is not the most

appropriate level of abstraction to design AUTOSAR-

based systems. More appropriately are domain-specific

languages and tools that allow the creation of such an

AUTOSAR model, and the behavior of each of the compo-

nents. These tools are commonly referred to as AUTOSAR

authoring tools. However, these tools have little or no

simulation capabilities. It is, therefore, necessary to trans-

late the model created in the authoring tool to the simula-

tion model. Model transformation technology allows for a

translation between these different types of model. The

simulation model has to be initialized with all the design

choices, such as the number of ECUs, the tasks and run-

nable entities per ECU, and all of its properties, e.g., the

task priorities. Template-based model-to-text transforma-

tions help in creating a simulation model from the model

defined in the authoring tool. For example, the MOF

model-to-text transformation language is such a template-

based transformation language. 30 The transformation

Denil et al. 13

starts by generating all the components of the ECU model

and configuring the ECU model based on the design

choices made by the designer in the authoring tool. This

code is generated for each of the ECUs present in the

AUTOSAR model. Finally, a coupled model is constructed

using these components.

Each element created in an AUTOSAR authoring tool

is, in compliance with the AUTOSAR standard, identified

with a global unique identifier or GUID. This GUID has

the advantage that we can trace back different errors and

configurations within the simulation model, back to the

components in the authoring tool. This traceability is nec-

essary to allow for the integration of a DEVS-based simu-

lation environment within the automotive development

process.

6.2 Simulation calibration

Before the simulation model can be used in practice, it

must be calibrated (i.e., parameter values must be esti-

mated). Since we focus on real-time behavior, time delays

for all actions in the simulation model must be measured

on the used hardware platforms. Here are some of the mea-

surements or estimations that must be completed:

� execution time of all the runnable entities or states

in the runnables, without the calls to the run-time

environment;
� execution time of activating or suspending tasks, as

well as the context switching times;
� execution time of the transmission and reception of

messages in every part of the communication stack,

including the run-time environment;
� amount of time needed to handle each type of

interrupt.

The timing analysis of the basic software components must

be done once for each hardware processor used in the

design. For the runnables, we can differentiate between the

top-down approach, which results in timing constraints,

and the realized components, which need timing analysis

to verify if they comply with the constraints.

In the top-down approach, timing requirements are

decomposed until the component level is reached. These

timings are the constraints that are put on the design of

these components. AUTOSAR supports the modeling of

these timing constraints and decompositions using the

AUTOSAR Timing Extension (TIMEX). 31 Because

AUTOSAR is only part of the whole design process, other

tools are also used in the process for this decomposition,

for example, the MARTE profile for UML and SysML. 32

In the bottom-up approach and with the realized com-

ponents in the top-down approach, the timing of the differ-

ent runnables can be measured or analyzed. This gives the

modelers either a worst-case execution time or a timing

profile of the runnable on the chosen hardware. The

embedded systems community has spent significant efforts

in the measurement and analysis of timing behavior of

source code on a processor. A complete overview can be

found in Wilhelm et al.33

The execution times in our simulation model can be

sampled from a distribution of execution times based on a

scenario or the worst-case execution times. This is depen-

dent on the interest of the developers.

6.3 Original equipment manufacturer

The OEM can use the presented model in both the top-

down and the bottom-up approach. The simulation model

complements the use of analysis techniques at different

phases of the V-model. At the architectural design level, it

allows for design choices to be made and trade-off analy-

sis. Because the behavior of the components is not yet

designed, the simulation model can be used to look at the

behavior of the embedded system in open-loop. Co-simu-

lation with the plant, fault injection, etc., is not used at this

stage. Engineers can use what-if analysis and design-space

exploration to create a good software and hardware

architecture.

What-if analysis is used to experiment with parameters

of the model. The modeler experiments with some para-

meters of the model to try and evaluate the outcome of

such a change, hence the name what-if. A simulation

model is excellent for this purpose because it returns quan-

tifiable results that the engineer can use to make decisions.

Similarly, design-space exploration tries to look at differ-

ent design alternatives to help designers select an opti-

mized design with respect to a goal function. Automatic

design-space exploration techniques create a set of solu-

tions and evaluate these with respect to the goal function.

The simulation model can be used for this evaluation, as

shown by Denil et al. 34

Once the supplier has provided the behavior models or

(software and hardware) components, the OEM can use

the simulation model in the different integration phases of

the V-model. The model is simulated in closed-loop to

check and optimize the behavior of the whole system.

Finally, the simulation model provides OEMs with the

capability to explore the impact of new components and

upgrades to current vehicles.

6.4 Supplier

The supplier can use the model at the different levels of

abstraction during the design, validation, and verification

phase. The design of a single subsystem also follows a

system life-cycle process, for example, the V-model. The

functional verification of the subsystem architecture and

models can be made using the simulation model at the

14 Simulation: Transactions of the Society for Modeling and Simulation International

virtual functional bus level. Other, more integrated, simu-

lations are run when the components are developed.

Because the supplier needs to test the components

under real operating conditions, techniques like rest-bus

simulation need to be supported. Rest-bus simulation

simulates the rest of the network to create the normal oper-

ating conditions for the subsystem. It is also used, when

developing a subsystem, to generate the inputs of the

model that originate in another subsystem, the environ-

ment of the model. The information for system-wide com-

munication is often described using standard interchange

formats; examples are DBC-files or Fibex 35 for automo-

tive networks. All information about messages, signals,

data-types, etc., is described in the interchange file. The

file is often called a communication matrix and is (par-

tially) shared with subcontractors.

An atomic DEVS generator model is used to generate

the frames at the correct instances. The transmit buffer,

with infinite capacity, is used to store the frames in the

buffer and transmit them on the bus. A model transforma-

tion from the communication matrix in the DBC-format or

Fibex format can be used to generate the atomic DEVS

model automatically.

7 Case study

In this section, we use the constructed simulation model to

deploy a power window. Power windows are automobile

windows that can be raised and lowered by pressing a but-

ton or switch, as opposed to using a hand-turned crank han-

dle. Such devices exist in the majority of automobiles

produced today. The basic controls of a power window

include raising and lowering the window. An increasing set

of functionalities is being added to increase the comfort,

safety, and security of vehicle passengers. To manage this

complexity while reducing costs, automotive manufactur-

ers use software to handle the operation and overall control

of such devices. However, as a power window is a physical

device that may come into direct contact with human

beings, it becomes imperative that sound construction and

verification methods are used to build such software.

Safety requirements of the power window system are

detailed by government bodies, such as the Road Safety

and Motor Vehicle Regulation Directorate of Transport

Canada. 36 They address safety issues of the power win-

dow, for example, the maximum force that may be exerted

on an object by a window going up. Other requirements of

the system are not safety requirements and are thus not

addressed by the governing bodies. These are requirements

originating in the features that a company wants to present

to its customers. Prahbu and Mosterman define some tex-

tual requirements of the power window system.37 We

adapted these requirements to take safety requirements36

into account.

1. The window must start moving within 200 ms after

a move command is issued.

2. The window must be fully opened or closed within

4 s.

3. The force to detect when an object is present

should be less than 100 N.

4. When an object is present, the window should be

lowered by approximately 12.5 cm.

5. The window can only be operated when in the

‘‘start,’, ‘‘on,’’ or ‘‘accessory’’ position.

6. Driver commands have precedence over passenger

commands.

The power window system has all the essential complexity

typical of a software-intensive system. A physical window

has to be moved within certain real-time bounds, while

information on the detection of an object is fed back to the

control component for the safety requirement. It also has a

distributed nature, since the controller sensing the interac-

tions of the driver is physically on the other side of the car.

Hence, information must be transmitted using a communi-

cation medium that connects the different control units.

The supplier receives the specification of the power

window together with the messages and priorities of mes-

sages on the CAN bus. He also receives access to a com-

munication matrix to simulate the power window in real

operating conditions. During the design of this software-

intensive system, different models are created, starting

with the requirements. From these requirements, design

models are created, not only to control the power window,

but also for the physical window and motor (the plant

model). A block diagram model of the power window

plant is shown in Figure 9. The model receives a motor

command from the control model. The motor uses this

command to raise or lower the window. Two integrator

blocks are used to determine the position of the window

based on the acceleration given by the motor. The window

also has a friction component based on the velocity of the

Figure 9. Power window plant model using causal-block
diagrams.

Denil et al. 15

window. Similarly, block diagrams are also used to

describe the scenarios to test the models. As an example

we use a single test-scenario that will raise the window. In

this scenario, the driver issues a command to raise the win-

dow. After 3 s, an object is present between the window

and the window frame. This results in an excessive force.

The driver releases after 3.5 s. No commands are issued

for another 3.5 s. Finally, the driver issues a command to

lower the window. A control model using Statecharts is

used to model the logic of the window controller. These

models can be simulated together to verify the behavior of

the window. However, no delays are taken into account,

since transitions in Statecharts are instantaneous. We will

go through the different simulation models created for the

power window during the deployment process. More infor-

mation about the design process of the power window can

be found in Mustafiz et al.38

7.1 Virtual functional bus

During the deployment of the power window controller, an

AUTOSAR software architecture must be modeled. Figure

10 shows the component diagram of our power window

controller.

The two control components read out sensor signals

from the buttons that control the window. The driver-side

component is also responsible for applying child protec-

tion to the power window and checking whether the igni-

tion of the car is on. The Load_Sensor component reads

out the resistive force placed on the window. When the

execution of the runnables inside these components is fin-

ished, they make the sensor values available to the logic

component that decides how to control the window using

these sensor values. A code generation step of the model

describing the logic is needed to provide the behavior of

the logic component. Finally, the DC_Motor component

uses the output to control the window physically.

We configured the AUTOSAR model to use a timing

event of 100 ms to trigger the execution of the

Control_Driver component. The Control_Passenger,

Load_Sensor and logic components are triggered by a

data-receive event of the state signal, transmitted by the

driver. The DC_Motor also uses a data-receive event to

trigger the execution, but uses the direction signal for this

purpose.

This information is used to create the virtual functional

bus model, described to check whether the behavior of this

model complies with the functional requirements. Other

extrafunctional properties cannot yet be checked because

the virtual functional bus model does not use timing infor-

mation to include delays of computations and delays of

communication. Figure 11 shows the results of the simula-

tion. As expected, the windows starts to move up until the

object is present, shown by the position signal, because of

the driver signal. When the object is detected by the sen-

sor, the window control switches to the emergency state

and lowers the window. Finally, when the down button is

pressed, the window starts moving down. The PlantIn sig-

nal shows the driving signal to the electromotor.

7.2 Task and message scheduling

Extra information is added to the AUTOSAR model for

task and message scheduling. A major design decision is

the mapping of the components to the different ECUs. On

the driver side, a single task executes the DriverControl

runnable entity. This task transmits three signals on the

bus, mapped to two different messages. The arrival of two

signals in the communication stack causes the transmis-

sion of a message on the bus, while the other signal is only

stored in the message without causing a transmission. On

the passenger ECU, two tasks are configured: a high-

priority task, executing all the runnable entities, and a

lower-priority task, executing the DCMotor runnable. The

priorities of the tasks and messages are chosen based on

experience in building a power window system, though in

a normal design process schedulability analysis and

design-space exploration techniques are used to create a

valid configuration.

Once this information is available, the simulation model

for the second abstraction level is constructed. Timing

information is added to include the delays caused by com-

putation of the runnable entities and part of the communi-

cation stack, as well as the delay of the messages on the

Figure 10. AUTOSAR software component diagram of power window case study.

16 Simulation: Transactions of the Society for Modeling and Simulation International

bus. The interface model and driver model are not yet con-

figured, meaning that no messages can be lost as a result

of locked buffers or errors in the configuration. Rest-bus

simulation is already included to include the delays of the

other communication messages on the bus. Table 2 shows

a partial communication matrix of the shared communica-

tion bus. This configuration is used to create the rest-bus

component in our simulation.

The results of the behavior are similar to Figure 11. To

inspect the timing behavior, it also possible to look at the

timing traces of the simulation. Figure 12 shows a visuali-

zation of this trace. In this figure, the timing behavior is

depicted as a Gantt diagram. All delays due to computa-

tions of the runnable entities, the partially configured com-

munication stack, and the bus are included. Because of the

priority mechanism of the CAN bus, the message to trans-

mit the status of the driver button (frame ID 10, under-

lined) has to wait its turn. However, this does not influence

the overall behavior of our system in a significant way.

The prescribed end-to-end latency of the power window is

met. The configuration is thus valid.

7.3 Full deployment

The final step in the deployment of our power window

system is making the last design choices related to the

communication stack. The number of available hardware

buffers must be divided between transmit and receiver

buffers.

In a first attempt, we assigned a single transmit buffer

to send both messages from the driver ECU to the passen-

ger ECU. Figure 13 shows the behavior of the system

using this configuration. The behavior is not what we

expected. The trace of our simulation model indicates that

the transmit message buffer is still locked when the other

message arrives at the transmit buffer. We did not enable

any software buffering in our driver; this results in a lost

message.

Figure 14 shows a valid configuration. By utilizing a

second buffer to transmit the frame, the message is cor-

rectly transmitted to the passenger ECU. A viable alterna-

tive is to enable software buffering in the CAN interface

configuration. This will store the second message in a soft-

ware buffer until the first frame has been transmitted. A

notification from the buffer to the ECU model results in an

interrupt to the processor. During this interrupt, the frame

is moved from the software buffer to the hardware buffer.

Figure 11. Virtual functional bus simulation results.

Table 2. Communication matrix for the other messages on the
bus.

Frame ID Period, ms Offset, ms Size, byte

2 10 1 8
3 10 1 7
4 10 1.5 8
5 15 1.15 8
8 50 2.15 4

Denil et al. 17

The behavior of our power window system is again similar

to the graph shown in Figure 11.

7.4 Fault injection

To test our created system under faulty conditions, two

fault injections are added to our model. The first one intro-

duces errors during the transmission of the second CAN

frame. Figure 15 shows the resulting behavior on the bus.

The introduction of the error during the transmission

results in an error state on the bus. The second message,

however, has to compete for the bus when the error state

is finished. However, a higher priority message is already

available. This creates an added delay to the response time

of the window but is negligible as a whole. The behavior

of our window is still within the bounds of the

requirements.

Our second injection introduces a saboteur component

between the sensor to measure the resistive force on the

bus and the passenger ECU. The saboteur simulates a

Figure 12. Visualization of timing behavior trace.

Figure 13. Resulting behavior using a wrong interface–driver configuration.

18 Simulation: Transactions of the Society for Modeling and Simulation International

Byzantine failure 39 of the sensor, i.e., the sensor produces

erroneous results when the saboteur is in the active state.

Figure 16 shows one of the experiments with the intro-

duced saboteur. After ’1 s, the window behavior changes

because of the faulty sensor. The window controller

detects a high resistive force on the window while no

resistance is present. The window starts moving down. For

the customer, this would result in an uncomfortable situa-

tion but not an unsafe behavior. However, at the third sec-

ond, there is a resistive force on the window but the sensor

fails to detect this. The window continues to go up. This

results in an unsafe state. Other mechanisms must be intro-

duced to ensure safe operation of the window under faulty

conditions.

7.5 Calibration of the model

We used the technique presented by Denil et al. 40 to cali-

brate the execution times of our runnable entities. The tech-

nique uses the plant, environment, and control models to

generate a calibration infrastructure. The source code of the

control models is instrumented so that time measurements

can be made during the execution of the model. The same

scenario is used during the calibration phase. The other

parameters are estimated based on hardware measurements.

7.6 What-if analysis

Now that the full component is created at the supplier side,

the OEM can integrate the power window. The system inte-

grator deploys messages of lights and blinkers together with

the messages of the power window on the same CAN bus.

The behavior of the deployed window in this context was

already partially evaluated through rest-bus simulation.

Figure 14. Power window application deployed on the hardware. P(ending) is a signal that does not cause the message to be
transmitted, in contrast with the T(riggered) signals. Signal and message names are removed for of clarity.

Figure 15. Behavior of CAN bus with errors.

Denil et al. 19

The controller of the turning lights receives a message

from the dashboard controller to enable or disable the

blinking lights. The turning lights controller periodically

checks the physical condition of the lamp by means of

a current measurement. Only when the lamp is broken, is

a diagnostic message returned to the dashboard. This

behavior was not specified by the communication matrix

that was given by the OEM to the supplier. The message is

transmitted periodically with a very high priority. The simu-

lation trace of such a scenario is depicted in Figure 17.

As can be observed, CAN message 10 (underlined) is

delayed for more than 1 ms, compared with the previous

Figure 16. Result of a fault injection.

Figure 17. Original equimpment manufacturer integrating different ECUs and software components.

20 Simulation: Transactions of the Society for Modeling and Simulation International

trace in Figure 12. It does not affect the prescribed dead-

line of the power window so there is no problem there.

However, by analyzing the trace of the simulation further,

the engineer observes that the message for the blinkers

never arrives at its destination and that the blinkers are no

longer enabled or disabled on user request. The engineer

notices that this is because of the behavior of this high-

priority message. Another hint of this problem is that the

message buffers of the different components are showing

errors because of overwritten messages in the output buf-

fers. The engineer can use what-if analysis to, for exam-

ple, change the priority of the message, the frequency of

the polling, etc., to correct this wrong behavior.

8 Related work

To evaluate AUTOSAR-based systems, both analysis tech-

niques and simulation models are available at different

abstraction levels.

On the analysis side, techniques are available to predict

the timing behavior after deployment. A well-known tech-

nique is schedulability analysis, which uses the worst-case

timing behavior of the different components to check

whether an application meets its deadlines. A multitude of

schedulability analysis techniques for different application

domains, schedulers, and buses is described in the litera-

ture. 41–46 These mathematical models focus on the time

and order of the scheduling of tasks and messages.

Schedulability analysis provides a method to verify

whether the end-to-end deadlines of the application are

met. Schedulability analysis does not focus on the beha-

vior of the application. The simulation models we propose

do not replace schedulability analysis but can be used as

an augmentation to verify the behavior of the fully inte-

grated system under different timing constraints.

Different commercial AUTOSAR tool vendors support

the simulation of software components at the virtual func-

tional bus level. For example, the DSpace SystemDesk and

Vectors DaVinci tools are able to simulate the designed

software components on the virtual functional bus. For

this, all software components are mapped to a single vir-

tual ECU. The formalisms used to model this virtual ECU

are unknown. Using techniques like the functional mock-

up interface,47 the simulation of the virtual platform can be

connected to another tool to simulate the environment and

plant models. Our approach is able to co-simulate different

formalisms. We do not need the functional mock-up inter-

face standard for this because we use the DEVS formalism

as a common denominator for the simulation of heteroge-

neous models.

Krause et al. 48 evaluated SystemC as a language for

modeling and performance evaluation of AUTOSAR-

based software. Krause et al. 49 also introduced different

levels of detail, where SystemC can be used to evaluate

the timing behavior of the application. The levels of detail

proposed are similar to our own. An extra level with

cycle-accurate simulation is also introduced where the real

middleware and application code is executed on a cycle-

accurate simulation model of the processing unit. The

cycle-accurate approach is computationally expensive and

not recommended by the authors. The integration of plant

and environment models is not discussed by the authors.

Similarly, we evaluate DEVS as an appropriate formalism

for the virtual prototyping of AUTOSAR deployment.

Another approach involves incorporating the effects of

scheduling in Simulink� models. 50 In TrueTime, all

application components are simulated in combination with

operating system and communication bus blocks, mimicking

the delays due to the communication hardware and the oper-

ating system scheduler. Similarly, Vanherpen et al. 51 use

the technique of schedulability analysis to lift extrafunc-

tional properties to the behavioral model in Simulink. By

round-tripping this design information, information about

delays is woven into the Simulink application model. The

domain expert can use this information to predict and adapt

the model. Our approach takes this a step further by simulat-

ing not only the application level, scheduler, and communi-

cation bus level, but also the effects of the configuration of

the full AUTOSAR platform in combination with the plant

and environmental models in causal-block diagrams.

More generally, different modeling, analysis, and simu-

lation frameworks for software-intensive systems have

been proposed in the literature. Metropolis 52 is an inter-

disciplinary research project that develops a design metho-

dology, supported by a comprehensive design environment

and tool set, for embedded systems. Metropolis is able to

devise a simulation model from the defined model in the

Metropolis language.53 This simulation model is written in

Java or C++. The underlying code is specific to the

Metropolis approach. We propose to use a well-known

general-purpose simulation formalism, DEVS, for the

simulation of deployed software-intensive systems. A

more complete overview of tools that support the deploy-

ment of applications on platforms is given by Törngren.54

The DEVS formalism has also been used to develop

embedded real-time applications. Wainer et al.55,56 intro-

duce a model-driven method to develop these real-time

embedded applications. The authors show that the use of

DEVS improves reliability, promotes model reuse, and

permits the reduction of development and testing times for

the overall process. Finally, DEVS-like operating systems

have been proposed to close the gap between modeling

and deployment of software-intensive systems.57–59

9 Conclusions

In this article, we compared the requirements for the mod-

eling and simulation of the deployment of automotive

Denil et al. 21

AUTOSAR-based systems with the characteristics of the

DEVS formalism. It is shown that DEVS is an appropriate

formalism to model the behavior of AUTOSAR-based

automotive systems. The DEVS formalism provides an

intuitive manner to model the timing behavior of the appli-

cation deployed on the system architectures used in auto-

motive systems. Because DEVS is a common denominator

for simulating different formalisms, the model can be co-

simulated with the plant and environment models so a full

assessment of the behavior of the system is possible.

Finally, such techniques as fault injection and rest-bus

simulation can easily be added to the model because of the

modularity and compositionality of the DEVS formalism.

To support this reasoning, we constructed a generic

simulation model for the automotive domain. The simula-

tion model is able to simulate the deployment of automo-

tive applications on the AUTOSAR basic software and

CAN bus. By using model transformation, the simulation

model is automatically constructed based on the modeling

artifacts of the deployment process. The model is usable at

different stages of the design process because different

abstraction levels are possible. This gives early feedback

to the designer when making design choices related to the

deployment. The results obtained by using this simulation

model will help the AUTOSAR developer to analyze the

impact of different choices on the behavior of the system.

It can be used to explore various trade-offs while deploy-

ing automotive applications to AUTOSAR-based ECUs.

Finally, we used the simulation model to evaluate the

virtual functional bus and deployed behavior of the soft-

ware of a power window controller on the AUTOSAR

platform and CAN bus. The plant and environment are

expressed using the causal-block diagram formalism,

which is co-simulated with our deployed models. At differ-

ent approximation levels, design choices are evaluated

with respect to the global behavior of the system under rea-

listic conditions. This is achieved by using a rest-bus simu-

lation of a CAN communication matrix. Faults are injected

in the CAN bus and at the sensor outputs to investigate the

fault tolerance of our constructed model. Furthermore, we

looked at the behavior of the window when integrated with

other components.

Because of the properties of the DEVS formalism, the

simulation model can be further extended with other com-

munication buses and components without any problems.

In future developments, multicore processors will become

the dominant execution platforms for automotive systems.

In a first stage, the multicore processors will feature their

own operating systems and act as redundant components.

The current simulation model can be used to model these

situations. When the multicore processors are used by a

single operating system to schedule different tasks, a new

atomic model of this operating system should be con-

structed. This is a topic for future work.

Acknowledgments

The authors would like to acknowledge the three anonymous

reviewers whose comments and suggestions helped improve and

clarify this manuscript.

Funding

This research was partially supported by Flanders Make vzw.

This work is also supported in part by the Natural Sciences and

Engineering Research Council of Canada as part of the NECSIS

Automotive Partnership with General Motors, IBM Canada, and

Malina Software Corp.

References

1. Broy M. Challenges in automotive software engineering. In:

Proceeding of the 28th international conference on Software

engineering—ICSE ’06, Shanghai, China, 20–28 May 2006,

p.3. New York: ACM.

2. Lee E. Cyber physical systems: Design challenges. In: 2008

11th IEEE international symposium on object and

component-oriented real-time distributed computing

(ISORC), Orlando, FL, 5–7 May 2008, pp.363–369. Los

Alamitos, CA: IEEE.

3. Boucher M and Kelly-Rand C. System design: Get it right

the first time. Technical Report, Aberdeen Group, August

2011.

4. Sangiovanni-Vincentelli A and Di Natale M. Embedded sys-

tem design for automotive applications. Computer 2007; 40:

42–51.

5. Di Natale M, Giusto P and Sangiovanni-Vincentelli A.

Stochastic analysis of CAN-based real-time automotive sys-

tems. IEEE Trans Ind Inf 2009; 5: 388–401.

6. Lyons RE and Vanderkulk W. The use of triple-modular

redundancy to improve computer reliability. IBM J Res Dev

1962; 6: 200–209.

7. ISO 26262:2011 Road vehicles—Functional safety— Part

10: Guidelines on ISO 26262.

8. Ziade H, Ayoubi R and Velazco R. A survey on fault injec-

tion techniques. Int Arab J Inf Technol 2004; 1: 171–186.

9. Köhl S and Jegminat D. How to do hardware-in-the-loop

simulation right. SAE paper 2005-01-1657(724), 2005.

10. Van Tendeloo Y and Vangheluwe H. The modular architec-

ture of the Python(P)DEVS simulation kernel: Work in prog-

ress paper. In: Proceedings of the symposium on theory of

modeling & simulation—DEVS integrative, Tampa, FL, 13–

16 April 2014, pp.14:1–14:6. San Diego, CA: Society for

Computer Simulation International.

11. Denil J, Vangheluwe H, Ramaekers P, et al. DEVS for

AUTOSAR platform modelling. In: Proceedings of the 2011

symposium on theory of modeling & simulation: DEVS inte-

grative M& S symposium, Boston, MA, 3–7 April 2011,

pp.67–74. San Diego, CA: Society for Computer Simulation

International.

12. Zeigler BP. Multifaceted modelling and discrete event simu-

lation. Cambridge, MA: Academic Press, 1984.

13. Vangheluwe H. DEVS as a common denominator for multi-

formalism hybrid systems modelling. In: Proceedings of the

IEEE international symposium on computer-aided control

22 Simulation: Transactions of the Society for Modeling and Simulation International

system design (CASC), Anchorage, AK, 25–27 September

2000, pp.129–134. Piscataway, NJ: IEEE.

14. AUTOSAR. www.autosar.org (2012, accessed: 15 June

2012).

15. OSEK. OSEK operating system v.2.2.3. http://web.archive.

org/web/20120204070317/http://www.osek-vdx.org/ (2005,

accessed: 1 November 2013).

16. Farsi M, Ratcliff K and Barbosa M. An overview of control-

ler area network. Comput Control Eng J 1999; 10: 113–120.

17. Makowitz R and Temple C. FlexRay—a communication net-

work for automotive control systems. In: 2006 IEEE interna-

tional workshop on factory communication systems, Torino,

Italy, 28–30 June 2006, pp.207–212. Piscataway, NJ: IEEE.

18. Press W, Teukolsky S, Vetterling W, et al. Numerical

recipes in C: the art of scientific computing. Cambridge,

UK: Cambridge University Press, 1992.

19. Cormen T, Leiserson C, Rivest R, et al. Introduction to algo-

rithms. Cambridge, MA: MIT press, 2001.

20. Gil D, Baraza JC, Gracia J, et al. VHDL simulation-based

fault injection techniques. In: Benso A and Prinetto P (eds)

Fault injection techniques and tools for embedded systems

reliability evaluation. Dordrecht: Kluwer, 2004, pp.159–176.

21. Lu W and Radetzki M. Concurrent and comparative fault

simulation in SystemC and its application in robustness eva-

luation. Microprocess Microsyst 2013; 37: 115–128.

22. Santucci JF and Capocchi L. A proposed evolution of

DEVSimPy environment towards activity tracking. In:

ACTIMS workshop, May 28–1 June 2012, pp.1–10. Cargese,

Corsica: HAL-CCSD.

23. Capocchi L, Santucci J, Poggi B, et al. DEVSimPy: a colla-

borative Python software for modeling and simulation of

DEVS systems. In: 2011 IEEE 20th international workshops

on enabling technologies: infrastructure for collaborative

enterprises, Paris, France, 27–29 June 2011, pp.170–175.

Piscataway, NJ: IEEE.

24. Capocchi L, Bernardi F, Federici D, et al. BFS-DEVS: A

general DEVS-based formalism for behavioral fault simula-

tion. Simul Modell Pract Theory 2006; 14: 945–970.

25. Zia M, Mustafiz S, Vangheluwe H, et al. A modelling and

simulation based process for dependable systems design.

Software Syst Model 2007; 6: 437–451.

26. Volpato G. The OEM-FTS relationship in automotive indus-

try. Int J Automot Technol Manage 2004; 4: 166–197.

27. Zander J. Model-based testing of embedded systems in the

automotive domain. Ph.D. Thesis, Technical University

Berlin, Germany, 2009.

28. Blanchard BS. System engineering management. Hoboken,

NJ: John Wiley & Sons, 2004.

29. Sandmann G and Thompson R. Development of AUTOSAR

software components within model-based design. SAE paper

2008-01-0383, 2008.

30. OMG. MOF model to text language (MTL). Technical report,

OMG, http://www.autosar.org/fileadmin/files/standards/classic/

4-2/methodology-and-templates/methodology/auxiliary/AUTO

SAR_TR_TimingAnalysis.pdf (2008, accessed: 15 October

2012).

31. AUTOSAR. Timing analysis v.4.2.2, http://www.autosar.

org/fileadmin/files/standards/classic/4-2/methodology-and-

templates/methodology/auxiliary/AUTOSAR_TR_Timing

Analysis.pdf (2015, accessed: 10 July 2016).

32. OMG. UML profile for MARTE: modeling and analysis of

real-time embedded Systems v.1.1, http://www.omg.org/

spec/MARTE/ (2011, accessed: 1 November 2013).

33. Wilhelm R, Engblom J, Ermedahl A, et al. The worst-case

execution-time problem—overview of methods and survey

of tools. ACM Trans Embedded Comput Syst 2008; 7(3): 36.

34. Denil J, Cicchetti A, Biehl M, et al. Automatic deployment

space exploration using refinement transformations. Electron

Comm EASST, http://journal.ub.tu-berlin.de/eceasst/article/

view/711/718 2012; 50: 1–13.

35. ASAM. ASAM MCD-2 NET, v4.1.1. www.asam.net (2014,

accessed 10 July 2016).

36. Canada Transport. Power-operated window, partition, and

roof panel systems. Technical report, Standards Research

and Development Branch—Road Safety and Motor Vehicle

Regulation Directorate, 2009.

37. Prabhu S and Mosterman P. Model-based design of a power

window system: modeling, simulation and validation. In:

Proceedings of IMAC-XXII: A conference on structural

dynamics, Dearborn, MI, 26–29 January 2004. Bethel, CT:

Society for Experimental Mechanics, Inc.

38. Mustafiz S, Denil J, Lúcio L, et al. The FTG + PM frame-

work for multi-paradigm modelling: An automotive case

study. In: Proceedings of the 6th international workshop on

multi-paradigm modeling, Innsbruck, Austria, 1 October

2012, pp.13–18. New York: ACM.

39. Lamport L, Shostak R and Pease M. The Byzantine generals

problem. ACM Trans Program Lang Syst 1982; 4: 382–401.

40. Denil J, Vangheluwe H, De Meulenaere P, et al. Calibration

of deployment simulation models: A multi-paradigm model-

ling approach. In: Proceedings of the 2012 symposium on

theory of modeling and simulation—DEVS integrative M& S

symposium, Orlando, FL, 26–30 March 2012, paper no. 13,

pp.13:1–13:8, San Diego, CA: Society for Computer

Simulation International.

41. Hamann A, Jersak M, Richter K, et al. A framework for

modular analysis and exploration of heterogeneous

embedded systems. Real-Time Syst 2006; 33: 101–137.

42. Pop T, Eles P and Peng Z. Holistic scheduling and analysis

of mixed time/event-triggered distributed embedded sys-

tems. In: Proceedings of the tenth international symposium

on hardware/software codesign, Estes Park, CO, 6–8 May

2002, pp.187–192. New York: ACM.

43. Lakshmanan K, Bhatia G and Rajkumar R. Integrated end-

to-end timing analysis of networked autosar-compliant sys-

tems. In: Proceedings of the conference on design, automation

and test in Europe, Dresden, Germany, 8–12 March 2010,

pp.331–334. Leuven: European Design and Automation

Association.

44. Pop T. Analysis and optimisation of distributed embedded

systems with heterogeneous scheduling policies. Ph.D.

Thesis, Linköping University, 2007.

45. Palencia J and Gonzalez Harbour M. Schedulability analysis

for tasks with static dynamic offsets. Proceedings 19th IEEE

real-time systems symposium, Madrid, Spain, 2–4 December

1998, paper no. 98CB36279, pp.26–37. Piscataway, NJ: IEEE.

Denil et al. 23

46. Tindell K and Clark J. Holistic schedulability analysis for

distributed hard real-time systems. Microproc Microprog

1994; 40: 117–134.

47. ITEA2. Functional mock-up interface for co-simulation.

Technical report 07006, Modelisar, 2010.

48. Krause M, Bringmann O, Hergenhan A, et al. Timing simu-

lation of interconnected AUTOSAR software-components.

In: DATE, Nice, France, pp.474–479. Piscataway, NJ: IEEE.

49. Krause M, Bringmann O and Rosenstiel W. Verification of

AUTOSAR software by SystemC-based virtual prototyping.

In: Ecker W, Müller W and Dömer R (eds) Hardware-depen-

dent software. New York: Springer, 2009, pp.261–293.

50. Henriksson D, Cervin A and Årzén K. TrueTime: Simulation

of control loops under shared computer resources. IFAC

Proc Vols 2002; 35: 417–422.

51. Vanherpen K, Denil J, Vangheluwe H, et al. Model transfor-

mations for round-trip engineering in control deployment

co-design. In: Proceedings of the symposium on theory of

modeling & simulation: DEVS integrative M& S symposium,

Alexandria, VA, 12–15 April 2015, pp.55–62. San Diego,

CA: Society for Computer Simulation International.

52. Balarin F, Watanabe Y, Hsieh H, et al. Metropolis: an inte-

grated electronic system design environment. Computer

2003; 36: 45–52.

53. Balarin F, Lavagno L, Passerone C, et al. Concurrent execu-

tion semantics and sequential simulation algorithms for the

Metropolis meta-model. In: Proceedings of the tenth interna-

tional symposium on hardware/software codesign CODES

’02, Estes Park, CO, 6–8 May 2002, pp.13–18. New York,

NY: ACM.

54. Törngren M, Henriksson D, Redell O, et al. Co-design of

control systems and their real-time implementation—a tool

survey. Technical report. Report no. TRITA-MMK 2006:11,

2006. Stockholm: Department of Machine Design, Royal

Institute of Technology.

55. Wainer G, Glinsky E and MacSween P. A model-driven

technique for development of embedded systems based on

the DEVS formalism. In: Beydeda S, Book M and Gruhn V

(eds) Model-driven software development. Berlin: Springer-

Verlag, 2005, pp.363–383.

56. Wainer G. DEVS modelling and simulation for development

of embedded systems. In: Proceedings of the 2015 winter

simulation conference, Huntington Beach, CA, 6–9

December, pp.73–87. Piscataway, NJ: IEEE.

57. Yu YH and Wainer G. eCD++: An engine for executing

DEVS models in embedded platforms. In: Proceedings of the

2007 summer computer simulation conference, SCSC ’07,

San Diego, CA, 16–19 July 2007, pp.323–330. San Diego,

CA: Society for Computer Simulation International.

58. Furfaro A and Nigro L. A development methodology for

embedded systems based on RT-DEVS. Innov Syst Softw

Eng 2009; 5: 117–127.

59. Niyonkuru D and Wainer G. Towards a DEVS-based operat-

ing system. In: Proceedings of the 3rd ACM conference on

SIGSIM—principles of advanced discrete simulation,

London, UK, 10–12 June 2015, pp.101–112. New York:

ACM.

Author Biographies

Joachim Denil is currently a post-doctoral researcher at

the University of Antwerp. He received his Ph.D. in com-

puter science and his B.Sc. and M.Sc. in electronics from

the University of Antwerp. He received his B.Sc. in com-

puter science from the Free University of Brussels. Joachim

also pursued post-doctoral research at McGill University on

the Canada-wide NECSIS project. His main research inter-

est is the design of software-intensive and cyber-physical

systems, in particular multiparadigm modeling, embedded

system design, and simulation-based design.

Paul De Meulenaere is Professor of Automotive

Engineering at the faculty of Applied Engineering of the

University of Antwerp. His research is mainly oriented to

software deployment onto embedded microcontroller plat-

forms. In this area, software architectures such as

AUTOSAR and OSEK are widely applied. He runs vari-

ous research projects, often in collaboration with R& D

divisions of mechatronic or automotive companies. He is

also a member of Flanders Make, the Flemish research

center for the mechatronics industry. Paul is also spokes-

person for the CoSys-Lab research group, which focuses

on the design of embedded technology for cyber-physical

systems.

Serge Demeyer is a professor at the University of

Antwerp and the spokesperson for the Antwerp System

Modelling research group. He directs a research lab inves-

tigating the theme of software reengineering’ (LORE—

Lab On REengineering). Serge Demeyer is a spokesperson

for the NEXOR interdisciplinary research consortium and

an affiliated member of the Flanders Make Research

Centre. In 2007, he received a ‘‘best teachers award’’ from

the Faculty of Sciences at the University of Antwerp and

as a consequence remains very active in all matters related

to teaching quality. His main research interest concerns

software evolution, more specifically how to strike the

right balance between reliability (striving for perfection)

and agility (optimizing for improvements). He is an active

member of the corresponding international research com-

munities, serving in various conference organization and

program committees. He has co-authored a book, Object-

Oriented Reengineering Patterns, and co-edited a book,

Software Evolution. He also authored numerous peer-

reviewed articles, many of them in top conferences and

journals.

Hans Vangheluwe is a professor in the Department of

Mathematics and Computer Science at the University of

Antwerp in Belgium, an Adjunct Professor in the School

of Computer Science at McGill University, Montréal,

24 Simulation: Transactions of the Society for Modeling and Simulation International

Canada, and an Adjunct Professor at the National

University of Defense Technology in Changsha, China.

He holds a D.Sc. degree and M.Sc. degrees in computer

science and in theoretical physics, as well as a B.Sc. in

education, all from Ghent University in Belgium. He has

been a research fellow at the Centre de Recherche

Informatique de Montréal, Canada, the Concurrent

Engineering Research Center, WVU, Morgantown, WV,

USA, at the Delft University of Technology, in the

Netherlands, and at the Supercomputing and Education

Research Center of the Indian Institute of Science, in

Bangalore, India. He teaches courses on software design,

computer architecture, modeling and simulation, and

model-based systems design. At McGill University, he

helped establish a new software engineering program. He

heads the Modelling, Simulation and Design (MSDL)

Research Lab, geographically distributed over McGill and

Antwerp. He has been the principal investigator of a num-

ber of research projects focused on the development of a

multiformalism theory and enabling technology for mod-

eling and simulation. Some of this work has led to the

WEST++ tool, which was commercialized for use in the

design and optimization of bio-activated sludge waste-

water treatment plants. He was the co-founder and coordi-

nator of the European Unions ESPRIT Basic Research

Working Group 8467 Simulation in Europe, a founding

member of the Modelica Design Team (www.

modelica.org), and an adviser to national and international

grant agencies in Europe and North America. In a variety

of projects, often with industrial partners, he applies the

model-based theory and techniques of computer auto-

mated multiparadigm modeling in a variety of application

domains. The adapID project, for example (funded by the

Flemish government), investigated how the Belgian elec-

tronic ID card can be made more secure and privacy-pre-

serving. In the NECSIS project (funded by the

Automotive Partnership Canada), he works on making

model transformation industrially usable and analyzable.

He is a frequent keynote speaker at software engineering,

as well as simulation, conferences. He has published over

150 peer-reviewed papers. He is Associate Editor of sev-

eral Springer’s journals: Software and Systems Modeling,

International Journal of Critical Computer-Based Systems,

Simulation: Transactions of the Society for Computer

Simulation, and International Journal of Adaptive,

Resilient and Autonomic Systems. His current interests are

in domain-specific modeling and simulation, including the

development of graphical user interfaces for multiple plat-

forms. The MSDLs tool AToM3, developed in collabora-

tion with Professor Juan de Lara uses metamodeling and

graph transformation to specify and generate domain-

specific environments. A web-based successor called

AToMPM is currently under development. Recently, he

has become active in multiabstraction modeling and simu-

lation of buildings and cities.

Denil et al. 25

