
Methodology

Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

2017, Vol. 93(2) 103–121

� The Author(s) 2016

DOI: 10.1177/0037549716678330

journals.sagepub.com/home/sim

An evaluation of DEVS simulation tools

Yentl Van Tendeloo1* and Hans Vangheluwe1,2,3*

Abstract
DEVS is a popular formalism for modeling complex dynamic systems using a discrete-event abstraction. Owing to its
popularity, and the simplicity of the simulation kernel, a number of tools have been constructed by academia and indus-
try. However, each of these tools has distinct design goals and a specific programming language implementation.
Consequently, each supports a specific set of formalisms, combined with a specific set of features. Performance differs
significantly between different tools. We provide an overview of the current state of eight different DEVS simulation
tools: ADEVS, CD++, DEVS-Suite, MS4 Me, PowerDEVS, PythonPDEVS, VLE, and X-S-Y. We compare supported form-
alisms, compliance, features, and performance. This paper aims to help modelers in deciding which tools to use to solve
their specific problems. It further aims to help tool builders, by showing the aspects of their tools that could be
extended in future tool versions.

Keywords
DEVS, tools, functionality, performance

1 Introduction

DEVS is a popular formalism for modeling complex

dynamic systems using a discrete-event abstraction. In

fact, it can serve as a simulation ‘‘assembly language’’ to

which models in other formalisms can be mapped.1 A

number of tools have been constructed by academia and

industry that allow the modeling and simulation of DEVS
models. Each of these tools was developed for a specific

application domain, resulting in different design goals.

Since there is no common DEVS format, used by all

tools, modelers are tied to their tool. Switching between

tools is far from trivial, as each tool uses its own API and

language for model specification. Porting models between

different tools equates to rewriting the model from scratch.

This makes the initial choice of tool important, as switch-

ing comes at an arbitrary high cost for huge models.

The problem is further aggravated in that each tool sup-

ports a different set of formalisms and features. Even

worse, performance between different tools varies by

orders of magnitude, depending on the domain and model.

It is therefore necessary to provide an overview of the cur-

rent state of different tools. Modelers will find an over-

view that can help them to decide which tool to use. Tool

builders will have a better idea of how each tool is posi-

tioned relative to similar tools.

Previous efforts at comparing different tools are mostly

sketched briefly in ‘‘related work’’ sections of new

contributions.2,3 These comparisons only include the most

closely related tools, and only use criteria relevant to their

contribution. Other researchers conduct an in-depth analy-

sis, but only for a limited set of simulation tools, and for a

single dimension. For example, there exist in-depth perfor-

mance comparisons between two simulation tools,4,5 or a

DEVS compliance check of two tools.6 Other survey

papers compare several tools, but do not go in-depth, nor

do they use an exhaustive set of criteria that has been

externally validated.7 End-users therefore have no com-

plete comparison between different tools, and information

is scattered.

In this paper, we compare a significant number of mod-

ern simulation tools (eight in total, selected according to

several criteria), using an exhaustive set of functionality

criteria, a set of DEVS compliance criteria, and a detailed

performance analysis. To guarantee objective criteria

selection, we use existing, independently defined criteria

for functionality,8 DEVS compliance,6 and performance.9

Only well-argued deviations from these criteria are made.

1Department of Mathematics and Computer Science, University of

Antwerp, Belgium
2Flanders Make, Belgium
3McGill University, Montréal, Canada
*SCS member

Corresponding author:

Yentl Van Tendeloo, Department of Mathematics and Computer Science,

University of Antwerp, Middelheimlaan 1, 2020 Antwerpen, Belgium.

Email: Yentl.VanTendeloo@uantwerpen.be

https://doi.dox.org/10.1177/0037549716678330
journals.sagepub.com/home/sim


We will continue by briefly introducing the four main

DEVS formalisms implemented by the tools under study

(Section 2), as well as the simulation tools themselves

(Section 3). The presented tools are compared in terms of

functionality (Section 4) and performance (Section 5).

Section 6 concludes the paper.

2 Background

This section briefly introduces the four DEVS formalisms

used in the remainder of this paper. This list of formalisms

is by no means complete.

2.1 Classic DEVS

Classic DEVS10 is the earliest DEVS formalism, and

forms the foundation for all subsequent variants. Two sig-

nificant shortcomings were encountered in the literature:

the lack of parallelism11 and the static structure of sys-

tems.12 In response to these shortcomings, different

DEVS variants were created.

2.2 Parallel DEVS

Parallel DEVS11 was introduced to solve the performance

problem caused by the (artificial) select function of

Classic DEVS. Parallel DEVS is widely supported

today, and has replaced Classic DEVS in most tools.

Parallel DEVS models can be more easily parallelized

than Classic DEVS models, owing to the lack of the

select function. The abstract simulator13 shows parallel

potential, by triggering all transition functions simultane-

ously. While it is argued that this might not be the best

option in some cases,14 it clearly shows the possibility for

parallelism.

2.3 Dynamic Structure DEVS

Both Classic DEVS and Parallel DEVS lack support for

dynamically changing models. While it is possible to emu-

late dynamically changing models (e.g., by putting the

model structure in the state too), this introduces a signifi-

cant amount of accidental complexity. Several Dynamic
Structure DEVS variants were introduced to make struc-

tural changes more intuitive, removing the need for manual

‘‘tricks.’’ Examples are DSDEVS15,16 and DynDEVS.17

These formalisms provide a mapping from an extended

DEVS formalism, supporting dynamic structure, to the

basic DEVS structures, proving their equivalence.12

Performing such a mapping during simulation is ineffi-

cient, so implementations frequently use shortcuts.

2.4 Cell DEVS

Cell DEVS18 is a combination of DEVS and Cellular
Automata. Cellular Automata use a discrete time base,

making them increasingly resource intensive with increas-

ing time granularity. Conversely, DEVS uses a discrete-

event time base, only taking into account points in time

where events are processed and exchanged. It is not opti-

mized, however, for synchronous communication, as is

the case in Cellular Automata. Cell DEVS merges these

two formalisms to combine a discrete-event time base

with synchronous communication. A Parallel Cell
DEVS19 variant was also introduced with the advent of

Parallel DEVS.
Quantization10 can be used to prevent the propagation

of insignificant state changes, thus improving performance.

As the definition of ‘‘insignificant’’ varies from model to

model, the user must define the significance threshold

manually. Using quantization is a trade-off between accu-

racy and performance.

3 Simulation tools

This section provides a brief introduction to the DEVS
simulation tools under study. We have selected the tools

based on the following criteria.

1. Features. Owing to the wide variety in simulation

software, all tools support a different set of fea-

tures. In our evaluation, we consider tools with an

extensive feature set, but also tools with a very

small number of special features.

2. Performance. For large-scale simulations, perfor-

mance is critical. While we certainly want to

include highly optimized simulation tools, we also

want to include tools with a potentially bad perfor-

mance, in case there is some gain in other dimen-

sions (e.g., more features).

3. Popularity. Finally, popularity is an important cri-

terion, owing to inertia: a popular tool will still be

used as long as there are not enough convincing

arguments to move to an all-round better tool.

There is probably a well-argued reason for the

tool’s popularity.

A summary of our selected tools is given in Table 1.

For each tool, we provide a brief introduction, an example

or screenshot where appropriate, and our rationale for

inclusion of this tool.

3.1 ADEVS

ADEVS20 is a lightweight C++ library, offering DEVS
simulation. Both atomic and coupled models are written in

C++ code, which must include the ADEVS headers.

Owing to the extensive use of templates, the headers con-

tain all required source code. The simulation kernel and

model are compiled into a single executable, and must

therefore be recompiled after every model edit.

104 Simulation: Transactions of the Society for Modeling and Simulation International 93(2)



3.1.1 Example. As models are pure C++ code, there is

nothing to show as an example. Examples of how the API

works can be found in the documentation.

3.1.2 Rationale. Because it is lightweight and has signifi-

cant potential for static optimization, ADEVS is included

for its potential performance. The use of efficient algo-

rithms21 and results from previous performance evalua-

tions4,7,22 indicate that it will probably be (one of) the most

efficient simulation tools under study. It also offers some

interesting features, such as simulation of hybrid systems

and OpenModelica23 bindings.

3.2 CD++

CD++24 is a DEVS simulator written in C++. Simulation

of Cell DEVS models is its main feature, though normal

DEVS models can be simulated too. DEVS models can

also be coupled to Cell DEVS models. Atomic models are

written in C++ and are linked to the simulation tool.

Coupled models are written in a custom syntax, which is

interpreted at simulation time. Changes to atomic models

require recompilation and linking to the simulation tool.

Changes to coupled models do not require any recompila-

tion at all, as these are interpreted during simulation. The

complete behavior of Cell DEVS models is defined using

the custom syntax, which is completely interpreted. A gra-

phical modeling environment, called CD++Builder,2 can

be used to create the models.

Note that every exchanged event must be a floating

point number. Sending complex events, such as records,

requires a workaround by mapping all attributes to a sepa-

rate port.

3.2.1 Example. An example of the custom syntax, together

with a workaround for complex events, is shown in Listing

1. Normally, a car is represented as a single object, and

passed as such. In CD++, every attribute has its own port.

Table 1. Simulation tools under study.

Version Release Language License

ADEVS 2.8.1 2014 C++ FreeBSD
CD++ 2.0-R.45 1999 C++ & custom (unspecified)
DEVS-Suite 2.1.0 2009 Java LGPLv2
MS4 Me 1.5.0 2015 Java & custom Proprietary
PowerDEVS 2.4rev 2015 C++ GPLv3
PythonPDEVS 2.3 2015 Python Apache-2.0
VLE 1.2 2014 C++ & XML GPLv3
X-S-Y 1.0.0 2012 Python LGPL

[top]
components : gen@Generator col@Collector proc@RoadSegment
Link : car_out_id@gen car_in_id@proc
Link : car_out_departure_time@gen car_in_departure_time@proc
Link : car_out_v_pref@gen car_in_v_pref@proc
Link : car_out_v@gen car_in_v@proc
Link : car_out_dv_pos_max@gen car_in_dv_pos_max@proc
Link : car_out_dv_neg_max@gen car_in_dv_neg_max@proc
Link : car_out_d_travelled@gen car_in_d_travelled@proc
Link : car_out_flush@gen car_in_flush@proc
Link : Q_send@gen Q_recv@proc
Link : Q_sack_id@proc Q_rack_id@gen
Link : Q_sack_t_until_dep@proc Q_rack_t_until_dep@gen
Link : Q_sack_flush@proc Q_rack_flush@gen
Link : car_out_id@proc car_in_id@col
Link : car_out_departure_time@proc car_in_departure_time@col
Link : car_out_v_pref@proc car_in_v_pref@col
Link : car_out_v@proc car_in_v@col
Link : car_out_dv_pos_max@proc car_in_dv_pos_max@col
Link : car_out_dv_neg_max@proc car_in_dv_neg_max@col
Link : car_out_d_travelled@proc car_in_d_travelled@col
Link : car_out_flush@proc car_in_flush@col

[gen]
IAT_min : 2.0
IAT_max : 2.0
v_pref_min : 20.0
v_pref_max : 20.0
dv_pos_max : 3.0
dv_neg_max : 5.0

[proc]
l : 10.0
v_max : 18.0
observ_delay : 0.1

Listing 1. Example CD++ coupled model.

Van Tendeloo and Vangheluwe 105



3.2.2 Rationale. CD++ is a mature tool and is widely used

in the literature for its Cell DEVS functionality.25–27 It is

included in our evaluation because of its popularity.

3.2.3 Remarks. Several versions of CD++ exist, such as

N-CD++,24 PCD++,19 and Dynamic Structure CD++.28 We

decided to use N-CD++ in our comparison. Glinsky and

Wainer previously compared the performance between N-

CD++ and PCD++, showing that N-CD++ had a lower over-

head,9 and should thus be faster. N-CD++ is also the version

compared with ADEVS by Wainer et al.,5 leading us to

believe that this is the most mature version of their tool.

3.3 DEVS-Suite

DEVS-Suite29 is the successor of DEVSJava.30 Both are

implemented in Java. Its features include visualization of

coupled model simulation, event injection during simula-

tion, and simulation tracking.

Both atomic and coupled models are written in Java
and are loaded into the simulation tool through introspec-

tion. Changes require recompilation of the model, but do

not require any action on the simulation tool.

3.3.1 Example. Figure 1 shows the SimView visualization

of a simple model. At the left, an overview of the model is

given, showing the components of the coupled model. Each

atomic model can be clicked on, revealing further informa-

tion about the selected model. Simulation control buttons

can be seen below the model overview, combined with sli-

ders to determine the speed of the visualization. At the right,

the model is visualized, summarizing the most important

information for every model, as well as its couplings. At the

bottom of the visualization, a console is used to print errors.

3.3.2 Rationale. Both DEVS-Suite and DEVSJava are fre-

quently used in the literature.31–33 It is one of the few

simulation tools that includes visualization and debugging

functionality. Therefore, it is added both for its popularity

and features.

3.4 MS4 Me

MS4 Modeling Environment (MS4 Me)34 is a DEVS mod-

eling environment and simulator. It is written in Java and

based on the Eclipse framework.

Atomic models are created using a custom, natural

language-like language called DNL, combined with frag-

ments of Java code. Files are automatically translated to

Java code, and subsequently compiled. Coupled models can

be constructed using System Entity Structure (SES),35–37

which are pruned before simulation commences.

3.4.1 Example. Figure 2 presents DNL notation, used for

the construction of atomic models. It shows the inclusion

of Java code and the use of Java types. Figure 3 presents

SES notation, used for the construction of coupled models.

Figure 4 presents the SimViewer, used for visualization

of model simulation. Visualization is fairly similar to

DEVS-Suite: each model can be inspected separately,

combined with a graphical representation of the complete

model. The complete content of exchanged events is also

visualized. It is possible to hide the couplings or the ports,

or both. Simulation status, such as the current time and the

number of transitions, is shown at the right. At the bottom,

a console is present, which logs every transition.

Figure 1. DEVS-Suite SimView example.

Figure 2. MS4 Me DNL example.

Figure 3. MS4 Me SES example.

106 Simulation: Transactions of the Society for Modeling and Simulation International 93(2)



3.4.2 Rationale. MS4 Me is included as it tries to move

away from the use of programming languages. Whereas

other tools redirect the modeler to a general-purpose pro-

gramming language for the atomic models, MS4 Me defines

its own syntax to aid nonprogrammers. Furthermore, it is a

proprietary tool, which will also give us insight into the state-

of-the-art of commercial DEVS simulation tools.

3.5 PowerDEVS

PowerDEVS38,39 is a Classic DEVS modeling and simu-

lation environment implemented in C++. It consists of a

graphical modeling environment, an atomic model editor,

and a code generator. The code generator generates C++
code, which can optionally also be handwritten.

PowerDEVS offers an intuitive modeling environment

(with user-definable icons for models), combined with a

library of models that can be reused, or used as examples.

3.5.1 Example. Figure 5 presents the IDE, with a focus on

the graphical coupling of models. The information shown

is quite different from other tools, as this environment pre-

sents a design view, instead of a simulation view. In a

design view, models can be constructed by adding hierar-

chy, adding atomic models, coupling models, or configur-

ing simulation parameters. No information about the state

of the models or the simulation is shown, as all informa-

tion is independent of simulation execution. Conversely, a

simulation view visualizes the state of models and previ-

ously defined hierarchy and couplings. Modifications are

not allowed, as the model is already loaded and being

simulated. Model simulation takes place without any kind

of visualization.

3.5.2 Rationale. PowerDEVS is very similar to ADEVS, as

it also focuses on the simulation of hybrid systems, and

uses C++ as its implementation language. Unlike ADEVS,

PowerDEVS offers a modeling environment that aids the

modeler in creating valid DEVS models with a lesser

degree of coding required. PowerDEVS is aimed more at

nonprogrammers, while still offering the potential for high

performance. It is thus included for both its potential per-

formance and its various features.

3.6 PythonPDEVS

PythonPDEVS22 is a DEVS simulator written in Python.
Owing to its implementation in Python, an interpreted,

dynamically typed language, fast prototyping of models

becomes possible. Despite its interpretation-based nature,

PythonPDEVS attempts to achieve high performance.

Both atomic and coupled models are written in Python,
making (re)compilation unnecessary.

PythonPDEVS is used as the simulation kernel in sev-

eral other tools. For example, DEVSimPy40 offers a gra-

phical modeling environment for coupled models,

combined with an experimentation environment. A debug-

ging front-end41 offers a graphical modeling environment

for atomic and coupled models alike, including advanced

debugging capabilities.

3.6.1 Example. As models are pure Python code, there is

nothing particular to show as an example. For examples of

Figure 4. MS4 Me simulation example.

Figure 5. PowerDEVS graphical modeling environment.

Van Tendeloo and Vangheluwe 107



the debugging extension41 or DEVSimPy,40 we refer to the

documentation of the respective tools.

3.6.2 Rationale. PythonPDEVS has a focus on perfor-

mance, despite its implementation in an interpretation-

based language.22,42 We therefore included PythonPDEVS

for its potential performance, but also for its set of sup-

ported features.

3.7 VLE

The Virtual Laboratory Environment (VLE)43 is a multi-

modeling and simulation platform written in C++. It

includes an IDE for model development and experimenta-

tion. Models are combined in ‘‘projects,’’ which are man-

aged by an automatically created CMake script.

Atomic models are written in C++ and thus require

recompilation of the models after changes. The simulation

kernel and IDE do not need to be recompiled. Coupled

models are created using either the graphical environment

(called GVLE), or by manually writing the XML files.

VLE is the simulation kernel, with several bindings and

‘‘apps’’ to add functionality, such as an IDE (GVLE), dis-

tributed simulation using MPI (MVLE), Python bindings

(PyVLE), and R bindings (RVLE).

3.7.1 Example. Like PowerDEVS, VLE only offers a mod-

eling environment without a simulation view. This envi-

ronment is provided by GVLE, shown in Figure 6.

3.7.2 Rationale. VLE comes close to PowerDEVS in terms

of supported features, as both offer a full modeling inter-

face that generates a model for simulation by a (separate)

simulator. Its use of C++ might also indicate that perfor-

mance is one of the concerns to the developers.

3.8 X-S-Y

X-S-Y44 is a DEVS simulator written in Python. Its dis-
tinguishing feature is the verification of FD-DEVS (Finite
and Deterministic DEVS) models. A small command line

interface is provided, allowing for simulation control.

3.8.1 Example. As models are pure Python code, there is

nothing particular to show as an example.

3.8.2 Rationale. X-S-Y offers the unique feature of sup-

porting verification of FD-DEVS models. As no other

tools implement verification, it is interesting to see how it

compares with them.

3.8.3 Remarks. During our analysis, we found that X-S-Y

uses only about 10–15% of the available CPU time.

Inspection of the source code revealed that a sleep of 1 ms

occurs after every simulation step. This sleep was removed

for our performance benchmarks, as it offers a fairer com-

parison between the used simulation algorithms.

4 Functionality

In this section, we will compare the functionality of the

previously mentioned tools. Tools are first evaluated based

on generic simulation tool criteria.8 Afterward, a brief

comparison is made based on some DEVS-specific cri-

teria: which formalisms do they support, and how compli-

ant they are to them.

4.1 General evaluation criteria

The simulation tool evaluation criteria from Nikoukaran

et al.8 are used as a basis. Some criteria were dropped, as

they were irrelevant for a DEVS-specific comparison.

Others were added, in case they were deemed necessary to

achieve a better distinction between the different tools.

Table 2 shows an overview of our evaluation results. A

feature is either present (marked as a green ‘‘Y’’), not

present (marked as a red ‘‘N’’), or only supported partially,

with manual coding, or through the use of extensions

(marked as a yellow ‘‘M’’). Normally, such a comparison

Figure 6. GVLE visualization of a coupled model.

108 Simulation: Transactions of the Society for Modeling and Simulation International 93(2)



is made using scores and weightings, as in Tewoldeberhan

et al.45 But as scoring is highly dependent on the needs of

the end-user, we omit this part.

4.1.1 Vendor. Concerning the vendor pedigree, MS4 Me is

the clear winner. RTSync is a spin-off of ACIMS, the crea-

tors of DEVS-Suite. ACIMS is headed by Dr. Bernard

Zeigler, the founder of DEVS. RTSync, however, is still

relatively young, and MS4 Me is still in beta testing. Other

tools are developed by different research groups, specia-

lized in DEVS simulation. Despite them being stable and

usable, they are to be considered prototypes.

Documentation and sample models are provided by all

tools. DEVS-Suite has the least documentation of all, as

there is no user’s guide beyond installation and running of

the tool. PowerDEVS has limited documentation too: the

user’s guide link in the help menu does not respond, and

the online manual is only partially completed. However,

the tool and its interface are fairly straightforward, even

without documentation. Note that some parts of the CD++

documentation require registration at their website.

For support, MS4 Me is again the clear winner, as it is

the only one offering tuition and consulting services. On a

commercial level, this is a crucial advantage.

4.1.2 Model and input. CD++ and MS4 Me are the only

tools providing an online library of models. The size and

reusability of these models is a different matter. CD++

offers a sizable repository of models, containing a mix of

reusable and stand-alone models. MS4 Me offers a rela-

tively small model store, mostly containing example mod-

els instead of reusable models. PowerDEVS comes

Table 2. General evaluation, based on Nikoukaran et al.8 and Tewoldeberhan et al.45

ADEVS CD++ DEVS-Suite MS4 Me PowerDEVS PythonPDEVS VLE X-S-Y

Vendor Pedigree N N N Y N N N N

Documentation Y Y N Y M Y Y Y

Support N N N Y N N N N

Model and input Library N Y N Y Y N N N

Coding Y M Y M M Y M Y

Input M Y Y Y M M N M

Execution Speed control N M Y Y Y Y N Y

Multiple runs Y Y N N Y Y Y Y

Batch runs Y Y N N Y Y Y N

Parallel Y Y N N N Y Y N

Distributed N Y N N N Y Y N

Executable models Y N N N Y N N N

Termination condition Y N N N N Y N N

Animation Time next N N Y Y N M N N

State N Y Y Y N M N N

Messages N N Y Y N M N N

Transitioning N N N Y N M N N

Sequence N N N Y N N N N

Testing and efficiency Tracing Y Y Y Y Y Y Y Y

Step function Y N Y Y Y M N Y

Verification N N N N N N N Y

Backward clock N N N N N M N N

Interaction Y Y Y Y M Y N Y

Multitasking Y Y Y Y Y Y Y Y

Breakpoints N N N N N M N N

Output Delivery Y Y Y Y Y Y Y Y

Graphics N Y Y Y M N N N

User Orientation N M N M M N N N

Financial Y Y Y N Y Y Y Y

Van Tendeloo and Vangheluwe 109



bundled with a small (offline) library too, though most

models are oriented toward hybrid systems.

All tools involve coding to a certain degree. CD++,

PowerDEVS, and VLE require coding at the level of atomic

models, while offering a user-friendly format for the con-

struction of coupled models. MS4 Me goes one step further,

and presents a custom language for atomic models too. It is

possible to write Java code manually, which will be

included in the generated code. This allows the combination

of the best of both worlds: basic conditionals and states

using DNL, but data structure manipulations using Java.
Most tools allow user input during simulation, though

differences exist in the kind of input. ADEVS requires

the user to implement this functionality in the model manu-

ally and experiment. CD++ reads input from a file, which

is injected into the simulation at the desired time. DEVS-

Suite and MS4 Me support graphical injection of events

during simulation. PowerDEVS can take user input through

the use of an input port. PythonPDEVS does not support

user input, except during realtime simulation. (In realtime

simulation, simulation time is synchronized with the wall-

clock time, creating a linear relation between them.46) The

PythonPDEVS debugging front-end41 adds this feature for

all kinds of simulation. VLE does not support input at all.

X-S-Y reads its input from standard input, so the user either

has to manually input the events, or write a wrapper script.

4.1.3 Execution. Some tools include speed control, which

is the option to run simulation using either scaled wall-

clock time (realtime simulation), or analytical time (as-

fast-as-possible simulation). ADEVS and VLE are the

only tools that do not support speed control by default. For

CD++, the extended RT-CD++47 is required for realtime

simulation.

Multiple runs, each with different parameters, are

widely supported, but might require some coding from the

user (i.e., writing the loop and the parameter variation).

DEVS-Suite and MS4 Me do not support this at all, as

these are GUI-only tools, and their GUI does not offer this

function.

Batch runs are similar, except for X-S-Y, which waits

for user input before terminating the simulation.

Parallel simulation is supported by ADEVS, CD++,

PythonPDEVS, and VLE. ADEVS allows this through the

use of conservative synchronization, where each core is at

a different point in simulated time. CD++, PythonPDEVS,

and VLE offer distributed simulation, which can also be

used for parallel simulation by hosting multiple nodes at

the same machine. This generally imposes additional over-

head, owing to the use of more general algorithms.

Many differences exist in terms of distributed simula-

tion. CD++, and in particular PCD++, supports distributed

simulation using different synchronization methods, pro-

vided by the Warped library.48 PythonPDEVS uses Time

Warp optimistic simulation, with MPI as the middleware.

VLE does not support model distribution, but does support

experiment distribution. A single model is not split up and

distributed over multiple nodes, but the same model can be

executed at different nodes simultaneously, using varying

parameters. While this is fine when simulating several sce-

narios, a single model cannot be distributed or parallelized.

ADEVS and PowerDEVS support executable models,

as they compile both the simulation tool and model into a

single executable. All other simulators have models as files

that are loaded by the simulator.

Termination conditions are included as an additional

criteria. They determine how the modeler can specify when

simulation terminates. Three different options were found:

(1) step count, as found in DEVS-Suite and MS4 Me; (2)

simulation time, as found in the others; and (3) termination

condition, as found in ADEVS and PythonPDEVS.

With step counting, simulation halts after a predeter-

mined number of simulation steps. Steps are unrelated to

the simulation time, making it difficult for the user to pre-

dict exactly when simulation will terminate. The use of

simulation time is more common, where simulation will

halt at a predetermined point in the simulation. This has

the advantage that it is closer to the problem domain.

Should the model change (e.g., different parameters),

simulation will still run up to the same point in simulated

time. A termination condition is even closer to the problem

domain, and allows the user to specify a termination state.

As soon as this state is reached, simulation will terminate.

This can be useful in design space exploration, where spe-

cific states in simulation are known to be unacceptable.

Thus, it becomes possible to quickly prune these branches,

even before the usual termination time is reached.

4.1.4 Animation. For animation, we deviate from the cri-

teria, since these criteria do not distinguish between the

tools in our study. We specify which part of the simulation

algorithm is visualized. Message sequence visualization,

to allow for manual dependency analysis, is another of our

criteria. PythonPDEVS does not support any of these fea-

tures, though its debugging extension does. As it is an

extension, these entries are marked with an ‘‘M,’’ even if

they are fully present. The features that we selected for

visualization correspond to the different stages seen in the

abstract simulator.

The first step of DEVS simulation is to find out which

models are triggered at what time. DEVS-Suite and MS4

Me offer this with their simulation viewer: each model is

annotated with the time remaining until internal transition,

or the absolute time of its next transition.

The second step is state visualization. Again, DEVS-

Suite and MS4 Me support this by showing the name of

the current state. CD++ can output a grid of floating point

numbers, indicating the state of the cells in Cell DEVS

110 Simulation: Transactions of the Society for Modeling and Simulation International 93(2)



simulation. After simulation, these values can be visua-

lized with the ‘‘drawlog’’ tool that is provided with CD++.

The third step is message visualization. DEVS-Suite

allows visualization of the type of message exchanged

(e.g., ‘‘Car’’), but does not show the content. MS4 Me

additionally visualizes event attributes (e.g., current velo-

city, maximal speed, or color).

The final step is transitioning model visualization,

optionally distinguishing between internal, external, and

confluent transitions. DEVS-Suite does not support this,

though it can be inferred by manually following the

exchanged messages. MS4 Me visualizes models that per-

form their transition by highlighting them, but makes no

distinction between transition types. In PythonPDEVS,

models executing their internal, external, or confluent tran-

sition are highlighted in distinct colors.

Additionally, MS4 Me allows simulation visualization

with a sequence diagram. This sequence diagram visualizes

exchanged messages, enabling simple causality analysis.

4.1.5 Testing and efficiency. All tools support tracing,

though there is a distinction between textual or graphical,

or both. Most textual output can be parsed, to allow for

visualization with a different tool.

Simulation stepping is possible with several tools.

ADEVS supports it, but the user must implement it manu-

ally. DEVS-Suite and MS4 Me support stepping through

the simulation ‘‘or’’ DEVS-Suite and MS4 Me offer step-

ping through the simulation, combined with visualization.

They also support stepping for a certain number of steps

with a specified realtime scale. PowerDEVS only supports

the execution of a model for a specific number of steps.

For PythonPDEVS, the debugging front-end can be used

for stepping, as well as for visualization. X-S-Y allows

stepping through its command line interface.

Verification is only supported by X-S-Y, and only for

FD-DEVS models.

Backward clock, or stepping back, is only supported

by the PythonPDEVS debugging extension.

All tools, apart from VLE, support simulation interac-

tion. Different tools support different degrees of interac-

tion: from high-level simulation control (e.g., pausing and

resuming), to low-level state modification (e.g., the modi-

fication of model states at simulation time).

Multitasking is supported by all tools, as they operate

on text files instead of binary files. Several instances of a

tool can be executed, allowing for a number of concurrent

simulation executions. Models can be altered during simu-

lation, using a text editor.

Breakpoints are only supported by the PythonPDEVS

debugging extension.

4.1.6 Output. All tools deliver some output, though it is

often textual. Of special interest are CD++, DEVS-Suite,

and MS4 Me, which can create graphics of the simulation.

PowerDEVS can make graphical output too, though this

requires the use of built-in blocks from the library. Other

tools require additional software to create graphical output.

For CD++, these graphics are heatmap-like figures,

which show the simulation state. For DEVS-Suite and

MS4 Me, the graphics are simulation state traces, which

show the simulation times at which some attribute of inter-

est has changed.

4.1.7 User. Owing to the use of general-purpose program-

ming languages, all tools are developer-oriented. An

exception is MS4 Me, which uses a natural language-like

specification, combined with methods written in Java. This

allows domain experts to work using DNL, while develo-

pers write utility functions in Java. CD++ is also note-

worthy, as Cell DEVS models can be completely specified

using a custom language. With CD++Builder, it is also

possible to use the DEVS-Graph formalism,2 which

allows graphical construction of atomic DEVS models. A

graphical front-end for PythonPDEVS also exists,49 which

uses a neutral language. Although it still relies on writing

code, the used language is specific to DEVS and can filter

out illegal constructs, such as state modifications in the

output function. All other tools require the modeler to

write code in a general-purpose programming language.

Financially, all tools are open-source and freely avail-

able, except for MS4 Me, which is proprietary and requires

a paid license. Installation and maintenance costs should

also be considered, though these are difficult to estimate.

Familiarity of the modelers with the used language is also

of importance, as otherwise a significant amount of train-

ing is required.

4.2 DEVS-specific evaluation criteria

Some additional criteria were added to check for strict con-

formance to the DEVS formalism, based on a previously

defined set of criteria.6 Several were dropped, whereas

some were added to extend the criteria to Parallel DEVS.
First, the supported formalisms of all tools are com-

pared. Only the four previously introduced DEVS formal-

isms are considered here. Some tools support additional

formalisms. An overview is shown in Table 3.

The remainder of this paper will not present examples

and performance results of either Cell DEVS or Dynamic
Structure DEVS, as these are not widely supported by the

tools under study. Similarly, we do not go deeper into

some other aspects of DEVS simulation, such as hybrid

simulation or HLA-compliance: most tools under study

have only limited (if at all) support for both. A comparison

detailing any of these aspects, either through detailed fea-

tures or performance analysis, would require a different

set of tools to make a fair comparison.

Van Tendeloo and Vangheluwe 111



4.2.1 Supported formalisms. Each simulation tool sets out

to support a different set of formalisms. Parallel DEVS,
the successor of Classic DEVS, is supported in all tools,

except for CD++, PowerDEVS, and X-S-Y. For CD++,

this is because we used N-CD++ instead of PCD++, which

is a Classic DEVS simulator instead of a Parallel DEVS
simulator. For X-S-Y and PowerDEVS, no Parallel DEVS
version is available at the moment.

Classic DEVS is used in those tools that do not sup-

port Parallel DEVS. PythonPDEVS supports both

Parallel DEVS and Classic DEVS, the former for perfor-

mance and the latter for support for legacy models.

On top of the previously defined DEVS formalisms,

some tools offer dynamic structure. Owing to the variety

of dynamic structure formalisms, such as DSDEVS12 and

DynDEVS,17 we have grouped all of these under a com-

mon term. A modified version of CD++28 exists, which

supports dynamic structure.

Finally, CD++ and VLE have specific modeling and

simulation options for Cell DEVS models.

4.2.2 DEVS compliance. Our first criterion is the presence

of the translation function, which is the function denoted

by the Zi, j in the formal definition. It translates event from

output-to-input, output-to-output, and input-to-input ports.

Despite the arguments in favor of this function, only

PythonPDEVS implements this function. For ADEVS, it

is possible to overload the routing mechanism, introducing

message modification there.

DEVS is a modular formalism: models can only com-

municate through event exchange. There is no way to read

or change the state of another model, except through the

exchange of an event that causes the model to alter its

own state. While breaking modularity allows for improved

performance,50 modularity is a necessity in DEVS, as it is
the basis of its closure under coupling. Owing to the use

of general-purpose programming languages in the models,

several methods to break modularity exist. While some

limitations can be imposed (e.g., preventing the passing of

pointers or references in events), there is always the possi-

bility of abusing language constructs (e.g., global vari-

ables). PythonPDEVS partially enforces modularity by

making deep copies of exchanged events. CD++ also

enforces modularity in this respect. However, this is

mainly caused by restriction of events, which can only be

floating point values. Some work has been conducted on

using static analysis of models, using a neutral language,

to prevent such constructs.49

A third requirement is for the time advance function

to be nonnegative. As a negative time advance is clearly

impossible in reality, this is also disallowed in a DEVS
model (though a time advance of 0 is allowed). Most tools

do not check this, assuming that the user follows the form-

alism, and can therefore give incorrect simulation results.

A notable case is MS4 Me: statically detectable negative

time advances are flagged as modeling errors, though there

is no run-time check for dynamically obtained values.

A fourth requirement is the presence of a select func-

tion, which only applies to Classic DEVS models. The

select function determines the model to execute if more

than one model is scheduled to execute an internal transi-

tion function at the same time. Of the four tools supporting

Classic DEVS, only PythonPDEVS allows users to define

the select function explicitly. PowerDEVS allows the defi-

nition of a priority list, though it is not possible to define

arbitrary functions. CD++ and X-S-Y implicitly use a

hard-coded select function, such as selecting the first

model after alphabetic sorting on model name.

Our final requirement is the presence of a confluent

transition function, which only applies to Parallel DEVS
models. The confluent transition function is triggered if

both the internal and external transition fire at exactly the

same point in time. All of the Parallel DEVS simulators

support this requirement, except for MS4 Me, where a

default is assumed. Other tools often provide the same

default, though the user can override this default.

Table 3. DEVS-specific evaluation, loosely based on Li et al.6

ADEVS CD++ DEVS-Suite MS4 Me PowerDEVS PythonPDEVS VLE X-S-Y

Formalisms Parallel DEVS Y M Y Y N Y Y N

Classic DEVS N Y N N Y Y N Y

Dynamic structure Y M N N N Y Y N

Cell DEVS N Y N N N N Y N

Compliance Translation functions M N N N N Y N N

Event modularity N M N N N M N N

Positive time Y N N M N Y Y N

Select function – N – – M Y – N

Confluent Y – Y N – Y Y –

112 Simulation: Transactions of the Society for Modeling and Simulation International 93(2)



5 Performance

With the growing demand for computing resources by

modern simulation applications, the need for efficient

simulators increases. Parallel and distributed simulation

thus becomes necessary to allow multiple computers to

work cooperatively on a single simulation. Distribution

and parallelism do not solve all problems though, as some

problems are inherently difficult to parallelize. Efficient

sequential algorithms therefore stay relevant, as parallel

and distributed synchronization algorithms are a layer on

top of sequential algorithms.

As not all of our tools under study support parallel or

distributed simulation—and even those that support it use

very different synchronization protocols, making a fair

comparison difficult—we have opted to study only sequen-

tial performance.

All simulations were performed on a system with an

Intel i5-4570 (3.2 GHz) with 16 GB of DDR3-1600 main

memory, running Gentoo Linux with kernel version

3.18.22. We used the following software versions: GCC

4.9.3, OpenJDK IcedTea6 1.13.9, Python 2.7.10, and PyPy

2.6.0. All tools were compiled with the optimizations

defined in their Makefile. For ADEVS, we had to make a

Makefile ourselves, where we opted for the compiler flag

‘‘-O2.’’ MS4 Me was benchmarked on the same machine,

but using Windows 7 Enterprise SP1.

All of the source code used for this paper (i.e., all mod-

els, benchmarks, and a copy of the tools used where possi-

ble) can be found at http://msdl.cs.mcgill.ca/people/yentl/

DEVS/tools.tgz.

Tools written in Python were benchmarked using both

CPython (https://www.python.org/, the reference imple-

mentation) and PyPy (http://pypy.org/, an alternative

implementation using JIT compilation). As most of the

inefficiency of Python code is caused by its interpreted

nature, we can partially mitigate this with PyPy, which

uses just-in-time compilation. While PyPy can be used in

cases where performance is important, most users will pre-

fer to use CPython, as it is installed by default on most

Linux distributions. We have opted to include both:

CPython for the average user, who is unconcerned about

performance, but also PyPy, for power users. As PyPy is

(almost) a drop-in replacement for CPython, it is possible

to develop and prototype using CPython, but perform the

actual long-running simulations using PyPy.

We present the benchmarks and their results, and dis-

cuss the results.

5.1 Benchmarks

Three different benchmark models are used, offering

insight into the performance of different aspects of the

simulation algorithms. Of these three, two are synthetic,

and one is more realistic, though still fairly simple.

For the synthetic benchmarks, we looked into the

DEVStone9 benchmark for inspiration. DEVStone defines

four model types: (1) LI: models with low interconnection;

(2) HI: models with high interconnection; (3) HO: HI

models with high number of outputs; (4) HOmod: models

with an exponential number of coupling and outputs. The

transition functions of each model contain artificial com-

putation, in the form of Dhrystones.

We found some limitations to the default DEVStone

models, such as all atomic models triggering their external

(and possibly internal) transitions simultaneously, which is

unlikely in realistic DEVS models. The execution of

Dhrystones during the transition functions does not fit our

desired analysis either: some of our tools are written in

different programming languages, each with distinct per-

formance characteristics. As the operations in the transi-

tion functions are time-bounded, a more complex (i.e.,

more computation) model is executed in efficient pro-

gramming languages. For a fair comparison, we would

like all tools to simulate an identical model, that is, with-

out any computation in the transition functions. The over-

head of the simulation is no longer computable, as there is

no longer any ‘‘theoretical simulation time,’’ as was the

case in the original definition.9 We can, however, compare

total execution times for a specific model in a specific

configuration. By minimizing the amount of model com-

putation, execution times maximally show the time taken

by the simulation kernel.

The use of deep hierarchy is not considered in our

benchmarks, as models that are hundreds of levels deep are

unrealistic. Additionally, modern simulation tools often pro-

vide automatic flattening, creating a single coupled model

with all atomic models as its direct children. This situation

closely mimics the models of our proposed benchmarks.

Note that, whereas flattening has a positive effect on most

realistic models, it is not necessarily always an optimization:

depending on model structure, the flattening overhead might

be significant compared with the small gain.

There is no doubt that the benchmark implementations,

for all simulation tools, can be improved for both code effi-

ciency, simulation performance, and conciseness.

5.1.1 Queue model. The ‘‘Queue’’ is a simple model,

where a single generator periodically creates output and

sends it to the first processor. Each processor sends the out-

put to exactly one other processor, called its successor.

There are no loops in the connections, thus forming a sin-

gle line of processors, as shown in Figure 7. If a processor

receives a new event while processing an event, the event

is placed in a FIFO queue. After processing an event, the

processor will check its queue and pop an event to process.

Our Queue model bears similarity to the HI DEVStone

model, in the sense that models are connected to their suc-

cessors, but also to the LI DEVStone model, as the model

Van Tendeloo and Vangheluwe 113

http://msdl.cs.mcgill.ca/people/yentl/DEVS/tools.tgz


output is only connected to a single other model. We did

not completely take over the HI model, as otherwise all

models would receive input at the exact same time, thus

triggering all external transitions (and later on, their inter-

nal transitions) simultaneously. This is an unnatural occur-

rence in DEVS, which specifically uses a continuous time

base. However, a benchmark model with a low number of

inter-model connections is necessary. The Queue model is

the result of this merge.

It is still interesting to analyze the behavior of the simu-

lation kernel when transition functions are triggered simul-

taneously (called collisions from now on). We allow for

either a ‘‘full collision’’ model or a ‘‘no collision’’ model,

by defining the time advance function as either fixed (to 1)

or random (uniformly distributed between 0 and 2), respec-

tively. If the time advance function always returns a fixed

number, all models will transition at exactly the same time.

Otherwise, the time advance function returns a random

number, preventing most collisions.

5.1.2 High Interconnect model. The ‘‘High Inter-connect’’

model is similar to the queue, but has many connections.

Every model is connected to every other model, as shown in

Figure 8. Each model outputs an event, which is routed to all

other models. On reception of an event, the models trigger

their external transition function, which simply ignores the

message.

This model is a more complex form of the HI

DEVStone model, where instead of only one outgoing

connection, many outgoing (and incoming) connections

are made. The number of connections, and consequently

of exchanged events, scales quadratically.

This not only benchmarks the performance in the pres-

ence of a high number of connections, but also of routing

a single event to a multitude of receivers. A parameter is

again provided to define whether or not collisions should

happen. If collisions happen, the bag merging algorithms

of Parallel DEVS are also benchmarked, as every model

outputs an event to every other model. All events must

then be merged into a single bag.

Although this model might seem totally unrealistic, it

was added to monitor the efficiency of simulation algo-

rithms where many events were exchanged and processed

simultaneously. Whereas other, more realistic, benchmarks

could be conceived to monitor this, they would deviate

further from the core aspects that are to be monitored:

event exchange. By only retaining the actual aspects to be

monitored, performance results are less cluttered with

other aspects of the model. Additionally, while such mod-

els might be ill-suited for DEVS, sometimes DEVS is

used for compatibility reasons, as argued by Vangheluwe.1

Whether or not DEVS is the ideal formalism for this part

of the model is then less relevant: it must be used to inter-

act with other models, and even then, high performance is

very relevant.

5.1.3 Traffic model. The ‘‘Traffic’’ model is a more realistic

model.51 It resembles the Queue model without collisions,

though more realistic communication and computation pat-

terns occur.

The Traffic model consists of a generator, some road

segments, and a collector, as shown in Figure 9. After a

randomly sampled time, a car is generated by the genera-

tor. The generator outputs the car and sends it to the con-

nected road segment. Every road segment processes the

car for a certain time (depending on the velocity), after

which it is sent to the next road segment. A car can accel-

erate or decelerate, depending on its preferred speed, the

speed limit of the road segment, and the cars in front of it.

To prevent car collisions, road segments communicate

with each other through the use of queries and acknowl-

edgments. As soon as a road segment receives a new car, it

Figure 7. ‘‘Queue’’ model: every output port is connected to
the input port of the previous model. Shown for three models
(excluding the generator).

Figure 8. ‘‘High Interconnect’’ model: every output port is
connected to every input port of a different model. Shown for
four models.

Figure 9. ‘‘Traffic’’ model, shown for two segments.

114 Simulation: Transactions of the Society for Modeling and Simulation International 93(2)



sends a query to the next road segment, requesting whether

the next road segment is free. It receives an acknowledg-

ment, stating how long it will take for the road segment to

become available. The car at the current road segment will

adjust its speed accordingly, depending on the maximal

acceleration and deceleration values. If a road segment

does not receive an acknowledgment in time, the car goes

on to the next road segment without adjusting its speed. At

the end of the road segments, a collector receives all cars

and computes average velocity and average deviation from

the preferred velocity. These statistics are used to test the

correct implementation of the model in the various simula-

tion tools.

5.2 Source code size

For every tool and every benchmark, Table 4 shows the

lines of code used to implement the model. This number

includes the atomic models, coupled models, and experi-

ment file. Entries marked with an asterisk only count the

size of the atomic models, as other parts are constructed

graphically (VLE), or by using a verbose syntax (CD++,

MS4 Me). DEVS-Suite models do not contain code for

experiment setup, as this is done manually by the user.

This analysis does not extend much further than the dif-

ferences already known52: the same behavior in C++
requires more lines of code than in Java, which still

requires more than in Python. Recall that MS4 Me uses a

natural language-like language. This has a significant

impact on the total size of the models, though it seems that

Python still requires fewer lines of code. In essence, the

natural language is very concise, though the total number

of lines of code is still this high because of the use of some

Java code in the model. As such, it is more appropriate to

compare MS4 Me with DEVS-Suite, as DEVS-Suite mod-

els are written completely in Java.
PowerDEVS has the highest number of lines of code;

this is due to the (helpful) comments that are included by

default in all models. As these benchmark models are rela-

tively small, their overhead becomes significant. For the

Traffic benchmark though, the overhead is negligible,

resulting in a smaller codebase. CD++ has the most ver-

bose code for the Traffic model, since complex events are

expanded: all event attributes are passed separately over

their own ports, resulting in more verbose code.

A complete usability study is outside of the scope of

this paper, so we limit ourselves to the size of the model.

As most tools resort to programming for atomic models, it

is best to choose a simulation environment that uses a lan-

guage with which the modeler is familiar. If the modeler

is unfamiliar with any programming language, MS4 Me

provides the simplest language to express model behavior.

5.3 Remarks

Owing to the comparison of different tools, each with their

own design decisions (e.g., about implementation language

and required input format), some remarks are required on

how these results should be interpreted.

First, different representations are used for coupled

models. Tools such as ADEVS use programming language

constructs to create a set of models and couple them. This

is highly efficient and allows modelers, familiar with pro-

gramming techniques, to create arbitrary constructions.

Tools such as VLE use a graphical environment to create

the models. Coupled models are no longer represented

with programming language constructs, but using a custom

syntax. This custom syntax, like XML in VLE, induces

additional overhead during simulation, as it must be

parsed. The overhead is only required during initialization,

though it imposes an overhead compared with the other

tools. Our results include this initialization overhead, as it

is required at every simulation run. Tools using compiled

models do not have their compilation time included, as

compilation is only required once. Compilation times are

negligible in long-running simulations, or when a single

(compiled) model is used in various settings. During

prototyping, compilation times of several seconds, as is

the case with ADEVS, offset the higher simulation perfor-

mance. Some tools also perform some preprocessing of

the model, such as direct connection.53 Whether or not the

compilation and initialization overhead is tolerable, com-

pared with the simulation time, is a decision that must be

left to the end-user.

Second, DEVS-Suite and MS4 Me do not provide a

command line interface, so we are unable to benchmark

them automatically. Results for these simulators were

obtained by manually starting and stopping the simulation,

while measuring the time. As a result, these measurements

have a lower accuracy and precision. Being purely

Table 4. Lines of code for the benchmarks.

ADEVS CD++ DEVS-Suite MS4 Me PowerDEVS PythonPDEVS VLE X-S-Y

Queue 178 169* 152 113* 234 94 150* 104
Highly connected 112 103* 113 57* 182 64 73* 76
Traffic 609 672* 498 380* 473 345 599* 359

*
Excludes experiment file and coupled models.

Van Tendeloo and Vangheluwe 115



graphical, these simulators continuously update their GUI

with simulation information (e.g., current simulation time

and number of processed transitions). We disabled as

much of these visualizations as possible to obtain our

results, though a significant overhead due to this animation

is to be expected.

Third, MS4 Me has low performance in all simulation

benchmarks. This is possibly because the tool is still in

beta status, meaning that some functionality is still missing

or not completely implemented, or simply that develop-

ment effort is currently not focused on performance opti-

mization. For example, all transitions are logged to the

console, inducing a significant overhead. A more signifi-

cant problem is that simulation performance seems effi-

cient at first, but quickly grinds to a halt. Our analysis

shows that this results from high memory usage, resulting

in very frequent garbage collection, finally even causing

out-of-memory errors. This could indicate the presence of

a memory leak. Through some undocumented options

(namely, manually invoking the generated Java files

instead of running them through the GUI) it was possible

to avoid this out-of-memory error and significantly

increase the performance. Nonetheless, the results that

were included here were obtained using this trick, but per-

formance is still significantly lower than other DEVS
simulation tools. As a result of these problems, results for

MS4 Me are likely to change significantly in the future.

Fourth, as there was a huge variety in simulation perfor-

mance, we plotted all tools on a logarithmic scale, and the

fastest few on a linear scale.

Fifth, results when using PyPy might seem strange in

comparison with the other results. This is caused by the

JIT, which requires some warm-up first. For small models,

the total simulation time is dominated by the interpretation

phase and the JIT compiler compiling the code. Therefore,

these results are fairly inaccurate for short simulations.

Sixth, CD++, PowerDEVS, and X-S-Y are Classic
DEVS simulation tools, whereas the others use Parallel
DEVS. Despite identical model behavior, both formalisms

mandate different simulation algorithms, causing differ-

ences in simulation performance. We argue that they are

still comparable, since they are equally expressive, and no

simulation tool (except for PythonPDEVS) supports both

at the same time. This means that users are restricted to

the formalism of the tool they choose.

5.4 Queue results

Results for the Queue benchmark are shown in Figure 10.

The results indicate that ADEVS is fastest in both cases,

with PowerDEVS coming extremely close.

For a random time advance, as in the left part of Figure

10, no collisions occur. For a fixed time advance, as in the

right part of Figure 10, collisions always occur. Several

important differences can be seen when comparing the

two.

First, DEVS-Suite is a lot faster with collisions than

without collisions. There can be several reasons for this.

One option is that the main simulation loop is inefficient

(e.g., due to GUI updating), as far fewer simulation steps

are executed if all models collide.

Second, PythonPDEVS outperforms VLE in the pres-

ence of collisions. This can be explained by the activity-

based data structures implemented in PythonPDEVS.54 As

a list-based scheduler would be better in cases where many

collisions occur,22 the data structure modifies itself to a

list-based one. VLE and ADEVS have a static, heap-based,

scheduler, which is not optimized for this situation.

Third, using PyPy instead of CPython has a significant

impact on both PythonPDEVS and X-S-Y. With CPython,

X-S-Y is far slower than PythonPDEVS, though they come

much closer when using PyPy. This indicates that much of

the performance improvement of PythonPDEVS with

CPython is gained as the result of CPython-aware optimi-

zations (e.g., expensive function calls), which are largely

mitigated using PyPy (e.g., using JIT inlining).

Figure 10. Benchmark results for the ‘‘Queue’’ benchmark.
Top figures use a logarithmic scale, bottom figures are zoomed
in on the fastest tools and uses a linear scale.
TA: time advance.

116 Simulation: Transactions of the Society for Modeling and Simulation International 93(2)



Fourth, ADEVS and PowerDEVS come very close.

This probably indicates that they implement similar algo-

rithmic optimizations, and that the compiler optimizes

most implementation details.

5.5 High interconnection results

Results for the High Interconnection benchmark are shown

in Figure 11. Again, ADEVS is clearly the fastest, with

PowerDEVS coming close for a random time advance.

For PowerDEVS, the reason for this slower perfor-

mance mostly lies with the use of Classic DEVS, where

other tools (except CD++ and X-S-Y) use Parallel DEVS.
In the presence of simultaneous events, Classic DEVS
models trigger their select function, selecting a single

model. For n colliding models, as is the case with a fixed

time advance, this causes n separate lookups in the sche-

duling data structures, explaining the difference. This same

occurrence is aggravated here, as every model must trigger

its external transition once for every other model. Each

external transition is called n times more in Classic

DEVS simulation kernels, owing to the formalism. As

external transitions contain nearly no computation, this

effect is not clearly visible. Because this was not the case

in the previous benchmark, the difference between Classic
DEVS and Parallel DEVS was relatively small.

VLE performs much more slowly than expected—even

slower than X-S-Y (using PyPy)—certainly in the absence

of simultaneous events. With simultaneous events, the

same behavior can be seen, though VLE is now much

closer to X-S-Y, and PythonPDEVS further distinguishes

itself from the others. We expect this low performance to

be due to the high number of connections, which must be

parsed at simulation time.

DEVS-Suite again shows better results in the presence

of simultaneous events, just as in the previous benchmark.

5.6 Traffic results

Figure 12 shows the results of the Traffic benchmark.

Results are very similar to those for the Queue model, as

the basic principles are the same. Once again, ADEVS and

PowerDEVS are tied, followed by VLE. Some differences

are visible because the transition functions are now more

complex, and more event passing happens.

5.7 Conclusions on performance

Our analysis has shown that ADEVS is currently the fast-

est for Parallel DEVS, and PowerDEVS for Classic

DEVS. The performance of these tools is unmatched in

any kind of model we have tried, leaving competitors

behind by a fair margin. However, this performance comes

at the cost of functionality and debuggability. Debugging

Figure 11. Benchmark results for the ‘‘High Interconnect’’
benchmark. Top figures use a logarithmic scale, bottom figures
are zoomed in on the fastest tools and uses a linear scale.
TA: time advance.

Figure 12. Benchmark results for the ‘‘Traffic’’ benchmark. The
left figure uses a logarithmic scale, whereas the right figure is
zoomed in on the fastest tools and uses a linear scale.

Van Tendeloo and Vangheluwe 117



ADEVS models, written in C++, combined with ADEVS’s

meager debugging capabilities, is significantly more work

than with other simulation tools. For example, there is no

tracing functionality included by default. PowerDEVS

includes a minimal simulation tool in the model, but at

least contains a debugging feature that traces the methods

being invoked.

VLE comes fairly close in more realistic models, but

loses terrain when the model has many connections. While

this is a fairly uncommon case, it is remarkable that this

simulation kernel falls that far behind in this specific con-

figuration. The performance gap with ADEVS is most

probably caused by the use of an XML-based language for

coupled models, which needs to be parsed at simulation

time.

PythonPDEVS comes in third for the Queue model, and

clearly profits from its activity-based scheduler, as it

comes quite close to VLE for models with many collisions.

For models with a high number of connections, it comes in

second, owing to the suddenly degraded performance of

VLE. Combined with the use of an interpreted language,

thus not needing compilation, PythonPDEVS is useful for

prototyping, even of large-scale models. Simulation using

CPython is clearly slower than using PyPy, though even

simulation using CPython is not among the slowest.

X-S-Y comes in fourth, though sometimes falls behind,

owing to the use of Classic DEVS. The performance gap

between CPython and PyPy is much larger than it was for

PythonPDEVS. PythonPDEVS has many built-in optimi-

zations that avoid slow paths in CPython, reducing the

potential speedup of PyPy. Such optimizations are still

important, as many users will use CPython instead of

PyPy. This is certainly true for users who do not seek

maximal performance.

CD++ comes in fifth, even though it is implemented in

C++. A likely explanation is the use of a custom language

for coupled models, which is parsed at simulation time.

DEVS-Suite seems to be inefficient in a few situations,

though fairly efficient in some others. These results are

probably related to the GUI, which was constantly updat-

ing the textual values, even with the graphical simulation

view disabled. Other simulation tools do not provide the

same level of detail on the running simulation, nor do they

offer visualization of the running simulation.

Lastly, MS4 Me could only be used for relatively small

models, owing to low performance. Without fixing the

memory leak issue, even these relatively small models

could not be simulated until their termination time.

6 Conclusions

We have shown that many differences exist between

DEVS simulators. Differences ranged not only between

functionality and performance, but also between the

programming languages used for modeling. The lack of a

standardized DEVS representation, in a programming

language-independent form, causes models to be incompa-

tible between simulators. Owing to the arbitrary cost of

porting models between different simulation tools, and the

different programming languages, simulation tool lock-in

can occur. This makes the initial choice of tooling an

important decision. Our comparison aims to aid in this

important decision.

The final decision on which is the ‘‘best’’ tool is depen-

dent on the requirements set out by the team that will be

using the tool. Performance analysis showed the expected

results: low-level simulation tools achieve significantly

higher performance, at the cost of reduced readability and

(debugging) functionality. We briefly summarize each

tool, and give a recommended target audience.

� ADEVS offers a limited set of features, but allows

for very efficient simulation of Parallel DEVS
models. It is, however, difficult to use by nonpro-

grammers as it boils down to programming in C++.
We would recommend ADEVS to modelers who

are familiar with C++ and wish to obtain every bit

of performance, at the cost of functionality.
� CD++ is mainly specialized in the simulation of

Cell DEVS models by nonprogrammers. While

Classic DEVS models are also supported, exten-

sions such as CD++Builder are recommended for

nonprogrammers. We would recommend the use of

CD++ for the development of Cell DEVS models,

or in combination with CD++Builder.
� DEVS-Suite presents a nice simulation environment

that provides much insight in the semantics of

Parallel DEVS models. Because of its additional

features, performance is rather slow, making it

unsuited for large-scale simulations. We would rec-

ommend DEVS-Suite for educational purposes,

where the steps of DEVS simulation must be thor-

oughly explained.
� MS4 Me provides an intuitive modeling and simula-

tion environment that tries to hide programming at

the level of both atomic and coupled models. The

availability of consulting options distinguishes it

from the rest, though it is still in beta testing and

performance is insufficient for any reasonably sized

model. We would recommend MS4 Me only once

the tool has stabilized in terms of performance, after

which it is a tool appropriate for nonprogrammers.
� PowerDEVS offers an integrated modeling environ-

ment, though it still relies on the modeler writing

C++ code. Its performance is often on a par with

ADEVS, though it only supports Classic DEVS,
despite Parallel DEVS being the more popular

formalism nowadays. We would recommend

PowerDEVS to modelers familiar with C++, but

118 Simulation: Transactions of the Society for Modeling and Simulation International 93(2)



not so familiar with DEVS itself, or those seeking

to use DEVS for the simulation of hybrid systems.
� PythonPDEVS provides users with a DEVS simu-

lator in Python, offering features that are relevant

to beginning users of DEVS. While performance is

decent compared with most other tools, it is vastly

outperformed by other efficient simulation tools.

We would recommend the use of PythonPDEVS

for educational purposes (owing to its close compli-

ance to the formalism), or for prototypes (owing to

its relatively efficient implementation in Python).
� VLE provides an integrated modeling environment

similar to PowerDEVS, but remains at a more basic

level. There is, however, more support for the cre-

ation of experiments and execution on multiple

machines. We would recommend VLE when a sin-

gle environment is desired for every operation:

from writing utility functions in C++ to running

experiments with various configurations.
� X-S-Y is unique in that it offers support for a verifi-

able subset of DEVS, implemented in Python.
Performance is lacking though, making it unfit for

large-scale models. We would recommend X-S-Y

if model verification is important.

Some aspects were left out of our comparison, such as

an analysis of parallel and distributed simulation perfor-

mance, or a more detailed performance comparison (e.g.,

memory usage). Usability evaluation of the tools is an

important aspect that we did not tackle. Our intuition tells

us that graphical tools can make up for their low perfor-

mance, by significantly reducing required training and

model development time. The same goes for debuggabil-

ity: tools offering advanced debugging capabilities are

orders of magnitude slower, though model errors are prob-

ably found earlier. In future, performance analysis of the

parallel and distributed simulation should be considered,

as well as usability evaluation of these tools.

Funding

This work was partly funded with a PhD fellowship grant from

the Research Foundation—Flanders (FWO). This research was

partially supported by Flanders Make vzw.

References

1. Vangheluwe H. DEVS as a common denominator for multi-

formalism hybrid systems modelling. In: IEEE international

symposium on computer-aided control system design,

Anchorage, USA, 25–27 September 2000, pp.129–134.

Piscataway, NJ: IEEE.

2. Bonaventura M, Wainer G, and Castro R. Graphical modeling

and simulation of discrete-event systems with CD++Builder.

Simulation 2013; 89(1): 4–27.

3. Vicino D, Niyonkuru D, Wainer G, et al. Sequential PDEVS

architecture. In: Proceedings of the 2015 spring simulation

multiconference, Alexandria, USA, 12–15 April, 2005,

pp.906–913. San Diego, CA: SCS.

4. Gutierrez-Alcaraz M and Wainer G. Experiences with the

DEVStone Benchmark. In: Proceedings of the 2008 spring

simulation multiconference, Ottawa, Canada, 13–16 April

2008, pp.447–455. San Diego, CA: SCS.

5. Wainer G, Glinsky E and Gutierrez-Alcaraz M. Studying

performance of DEVS modeling and simulation environ-

ments using the DEVStone benchmark. Simulation 2011; 87:

555–580.

6. Li X, Vangheluwe H, Lei Y, et al. A testing framework for

DEVS formalism implementations. In: Proceedings of the

2011 spring simulation multiconference, Boston, USA, 3–7

April 2011, pp.183–188. San Diego, CA: SCS.

7. Franceschini R, Bisgambiglia PA, Touraille L, et al. A sur-

vey of modelling and simulation software frameworks using

Discrete Event System Specification (ed. R Neykova and N

Ng). In: 2014 Imperial College computing student workshop,

London, UK, 25–26 September 2014, pp.40–49. Wadern,

Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

8. Nikoukaran J, Hlupic V, and Paul RJ. Criteria for simulation

software evaluation. In: Proceedings of the 1998 winter

simulation multiconference, Washington DC, USA, 13–16

December 1998, pp.399–406. Piscataway, NJ: IEEE.

9. Glinsky E and Wainer G. DEVStone: a benchmarking tech-

nique for studying performance of DEVS modeling and

simulation environments. In: Proceedings of the 2005 9th

IEEE/ACM international symposium on distributed simula-

tion and real-time applications, Montreal, Canada, 10–12

October 2005, pp.265–272. Piscataway, NJ: IEEE.

10. Zeigler BP, Praehofer H, and Kim TG. Theory of modeling

and simulation. 2nd ed. San Diego, CA: Academic Press,

2000.

11. Chow ACH and Zeigler BP. Parallel DEVS: a parallel, hier-

archical, modular, modeling formalism. In: Proceedings of

the 1994 winter simulation multiconference, Orlando, USA,

11–14 December 1994, pp.716–722. San Diego, CA: SCS.

12. Barros FJ. Dynamic structure discrete event system specifi-

cation: a new formalism for dynamic structure modeling and

simulation. In: Proceedings of the 1995 winter simulation

multiconference, Arlington, USA, 3–6 December 1995,

pp.781–785. Piscataway, NJ: IEEE.

13. Chow ACH, Zeigler BP, and Kim DH. Abstract simulator

for the parallel DEVS formalism. In: AI, simulation, and

planning in high autonomy systems, Gainesville, USA, 7–9

December 1994, pp.157–163. Piscataway, NJ: IEEE.

14. Himmelspach J and Uhrmacher AM. Sequential process-

ing of PDEVS models. In: Proceedings of the 3rd

European modeling & simulation symposium, Barcelona,

Spain, 4–6 October 2006, pp.239–244. Rende, Italy:

CAL-TEK S.r.l.

15. Barros FJ. Modeling formalisms for dynamic structure sys-

tems. ACM Trans Model Comput Simul 1997; 7: 501–515.

16. Barros FJ. Abstract simulators for the DSDE formalism. In:

Proceedings of the 1998 winter simulation multiconference

(ed. DJ Medeiros, EF Watson, JS Carson, et al.) Washington,

Van Tendeloo and Vangheluwe 119



DC, 13–16 December 1998, pp.407–412. Piscataway, NJ:

IEEE.

17. Uhrmacher AM. Dynamic structures in modeling and simu-

lation: a reflective approach. ACM Trans Model Comput

Simul 2001; 11: 206–232.

18. Wainer G and Giambiasi N. Timed cell-DEVS: modeling

and simulation of cell spaces. In: Sarjoughian HS and Cellier

FE (eds) Discrete event modeling and simulation technolo-

gies. New York: Springer-Verlag, 2001, pp.187–214.

19. Troccoli A and Wainer G. Implementing parallel Cell-

DEVS. In: Proceedings of the 2003 spring simulation sym-

posium, Orlando, USA, 30 March–2 April 2003, pp.273–

280. Piscataway, NJ: IEEE.

20. Nutaro JJ. adevs, http://www.ornl.gov/~1qn/adevs/ (2015,

accessed 16 November 2016).

21. Muzy A and Nutaro JJ. Algorithms for efficient implementa-

tions of the DEVS & DSDEVS abstract simulators. In: 1st

open international conference on modeling and simulation

(OICMS), Clermont-Ferrand, France, 12–15 June 2005,

pp.273–279.

22. Van Tendeloo Y and Vangheluwe H. The modular architec-

ture of the Python(P)DEVS simulation kernel. In: Proceedings

of the 2014 spring simulation multiconference, Tampa, USA,

13–16 April 2014, pp.387–392. San Diego, CA: SCS.

23. Fritzson P, Aronsson P, Lundvall H, et al. The

OpenModelica modeling, simulation, and software develop-

ment environment. SNE 2005; 44: 8–16.

24. Wainer G. CD++: a toolkit to develop DEVS models. Softw

Pract Exp 2002; 32: 1261–1306.

25. Muzy A and Wainer G. Comparing simulation methods for

fire spreading across a fuel bed. In: Proceedings of

AIS’2002, Lisbon, Portugal, 7–10 April 2002, pp.219–224.

San Diego, CA: SCS.

26. Shang H and Wainer G. A model of virus spreading using

Cell-DEVS. In: Sunderam VS, van Albada GD, Sloot PMA,

et al. Computational Science ICCS 2005 (Lecture Notes in

Computer Science, vol. 3515). Berlin: Springer, 2005,

pp.373-377.

27. Wainer G and Giambiasi N. Application of the Cell-DEVS

paradigm for cell spaces modelling and simulation.

Simulation 2001; 76: 22–39.

28. Kgwadi M, Shang H, and Wainer G. Definition of dynamic

DEVS models: dynamic structure CD++. In: Proceedings of the

2008 spring simulation multiconference, Ottawa, ON, Canada,

13–16 April 2008, pp.10:1–10:4. San Diego, CA: SCS.

29. Kim S, Sarjoughian HS, and Elamvazhuthi V. DEVS-Suite:

a simulator supporting visual experimentation design and beha-

vior monitoring. In: Proceedings of the 2009 spring simulation

multiconference (ed. GA Wainer), San Diego, USA, 22–27

March 2009, pp.161:1–161:7. San Diego, CA: SCS.

30. Sarjoughian H and Zeigler B. DEVSJava: basis for a DEVS-

based collaborative M&S environment. Simulation 1998; 30:

29–36.

31. Chezzi CM, Tymoschuk AR, and Lerman R. A method for

DEVS simulation of e-commerce processes for integrated

business and technology evaluation (WIP). In: Proceedings

of the 2013 spring simulation multiconference, San Diego,

USA, 7–10 April 2013, pp.13:1–13:6. San Diego, CA: SCS.

32. Palaniappan S, Sawhney A, and Sarjoughian HS. Application

of the DEVS framework in construction simulation. In:

Proceedings of the 38th winter simulation conference,

Monterey, USA, 3–6 December 2006, pp.2077–2086.

Piscataway, NJ: IEEE.

33. Ferayorni AE and Sarjoughian HS. Domain driven simula-

tion modeling for software design. In: Proceedings of the

2007 summer computer simulation conference, San Diego,

USA, 15–18 July 2007, pp.297–304. San Diego, CA: SCS.

34. Seo C, Zeigler BP, Coop R, et al. DEVS modeling and simu-

lation methodology with MS4Me software. In: Proceedings of

the 2013 spring simulation multiconference, San Diego, USA,

7–10 April 2013, pp.33:1–33:8. San Diego, CA: SCS.

35. Kim T, Lee C, Christensen E, et al. System entity structuring

and model base management. IEEE Trans Syst Man Cybern

1990; 20: 1013–1024.

36. Zeigler BP, Seo C, Coop R, et al. Creating suites of models

with System Entity Structure: global warming example. In:

Proceedings of the 2013 spring simulation multiconference,

Virginia Beach, USA, 23–26 April 2013, pp.32:1–32:8. San

Diego, CA: SCS.

37. Zeigler B, Seo C, and Kim D. System entity structures for

suites of simulation models. Int J Model Sim Sci Comput

2013; 4: 1340006.

38. Bergero F and Kofman E. PowerDEVS: a tool for hybrid sys-

tem modeling and real-time simulation. Simulation 2011; 87:

113–132.

39. Kofman E, Lapadula M, and Pagliero E. PowerDEVS: A

DEVS-based environment for hybrid system modeling and

simulation. Technical report, School of Electronic

Engineering, Universidad Nacional de Rosario, 2003.

40. Capocchi L, Santucci JF, Poggi B, et al. DEVSimPy: a colla-

borative Python software for modeling and simulation of

DEVS systems. In: Workshop on enabling technologies:

infrastructure for collaborative enterprises, Paris, France,

27–29 June 2011, pp.170–175. Piscataway, NJ: IEEE.

41. Van Mierlo S, Van Tendeloo Y, Barroca B, et al. Explicit

modelling of a Parallel DEVS experimentation environment.

In: Proceedings of the 2015 spring simulation multiconfer-

ence, Alexandria, USA, 12–15 April 2015, pp.860–867. San

Diego, CA: SCS.

42. Van Tendeloo Y and Vangheluwe H. PythonPDEVS: a dis-

tributed Parallel DEVS simulator. In: Proceedings of the

2015 spring simulation multiconference, Alexandria, USA,

12–15 April 2015, pp.844–851. San Diego, CA: SCS.

43. Quesnel G, Duboz R, Ramat E, et al. VLE: a multimodeling

and simulation environment. In: Proceedings of the 2007

summer simulation multiconference, San Diego, USA, 15–

18 July 2007, pp.367–374. San Diego, CA: SCS.

44. Hwang MH. X-S-Y, https://code.google.com/p/x-s-y/ (2012,

accessed 16 November 2016).

45. Tewoldeberhan TW, Verbraeck A, Valentin E, et al. An eva-

luation and selection methodology for discrete-event simula-

tion software. In: Proceedings of the 2002 winter simulation

multiconference, San Diego, CA, 8–11 December 2002,

pp.67–75. Piscataway, NJ: IEEE.

46. Fujimoto RM. Parallel and distribution simulation systems.

1st ed. New York, NY: John Wiley & Sons, 1999.

120 Simulation: Transactions of the Society for Modeling and Simulation International 93(2)



47. Glinsky E and Wainer G. Definition of real-time simulation

in the CD++ toolkit. In: Proceedings of the 2002 summer

simulation multiconference, San Diego, USA, 14–18 July

2002. San Diego, CA: SCS.

48. Martin D, McBrayer T, Radhakrishan R, et al. Time warp

parallel discrete event simulator. Technical report, Computer

Architecture Design Laboratory, University of Cincinnati,

USA, 1997.

49. Barroca B, Mustafiz S, Van Mierlo S, et al. Integrating a

neutral action language in a DEVS modelling environment.

In: Proceedings of the 8th international ICST conference on

simulation tools and techniques, Athens, Greece, 24–26

August 2015, pp.19–28. Brussels, Belgium: ICST.

50. Sun Y and Hu X. Partial-modular DEVS for improving per-

formance of cellular space wildfire spread simulation. In:

Proceedings of the 2008 winter simulation multiconference,

Miami, USA, 7–10 December 2008, pp.1038–1046. Piscataway,

NJ: IEEE.

51. Posse E. Modelling and simulation of dynamic structure

discrete-event systems. PhD Thesis, School of Computer

Science, McGill University, 2008.

52. Ousterhout JK. Scripting: higher-level programming for the

21st century. Computer 1998; 31: 23–30.

53. Chen B and Vangheluwe H. Symbolic flattening of DEVS

models. In: Proceedings of the 2010 summer simulation

multiconference, Ottawa, Canada, 11–14 July 2010, pp.209–

218. San Diego, CA: SCS.

54. Van Tendeloo Y and Vangheluwe H. Activity in

PythonPDEVS. In: Proceedings of ACTIMS 2014, Zurich,

Switzerland, 16–18 January 2014, pp.2:1–2:10. Red Hook,

NY: Curran Associates, Inc.

Author biographies

Yentl Van Tendeloo is a PhD student at the Department

of Mathematics and Computer Science, University of

Antwerp, Belgium.

Hans Vangheluwe is a full professor at the Department

of Mathematics and Computer Science, University of

Antwerp, Belgium. He is also an adjunct professor at

McGill University, School of Computer Science, Montréal,

Canada, where he was previously a full professor.

Van Tendeloo and Vangheluwe 121




