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1. Introduction

The Discrete Event System (DEVS) [1] is a well-known
formalism used to describe the behavior of complex sys-
tems. Its formal framework separates modeling from a
simulation process. The DEVS is a powerful modeling
and simulation (M&S) formalism, with a clear seman-
tics and modular approach. It is based on event and state
concepts (the simulation is event driven, which makes it
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faster). However, we based our works on the DEVS ex-
tension: the Generalized-DEVS (G-DEVS) [2]. In this
formalism, event and state trajectories are polynomials
(multi-values) instead of piecewise linear constants trajec-
tories like the DEVS, and thus represent complex contin-
uous phenomena more precisely. On the simulation side,
the G-DEVS keeps the DEVS semantics specification.
Nevertheless, the hierarchical simulation structure in the
DEVS/G-DEVS results from the user-specified model-
ing structure (e.g. multi-hierarchical imbrications’ reuse
of previous models)� we postulate that this feature is not
required at simulation run time. From that postulation,
we propose a new simulation structure that is simplified
(flattened) to increase execution speed.

An applicative goal of such a M&S structure can be
found in representing industrial processes (Workflow).
Indeed, this field is recent (early 1990s [3]) and not
fully standardized. The Workflow Management Coalition
(WfMC) works at standardizing this field� it provides
a consistent high-level framework to develop the busi-
ness process. The Workflow specification involves dif-
ferent tasks, items, applications, and actors that are es-
sential to its execution. This specification is quite intu-
itive (it can be automatically generated from a graphical
specification) and the user does not need to develop pro-
gramming code. The lack of Workflow M&S is, in addi-
tion to most vendor tools not conforming to the WfMC
standard, the missing formal simulation semantics associ-
ated with Workflow engines. Clearly, the Workflow M&S
is a semi-formal language to model user requirements and
then, most of the Workflow simulations engines are ad
hoc. Consequently, the Workflow does not guarantee for-
mal and clear semantics. This fact may lead to incom-
patibility and errors that are difficult to detect (such as
coding errors, codes that do not conform to the Workflow
specification, etc.). A solution could exist in more formal
modeling� however, Workflow users are not familiar with
formal specifications (e.g. DEVS). Thus we have pro-
posed in [4] to automatically transform high-level graphi-
cal Workflow specifications to G-DEVS models feeding
a new embedded efficient G-DEVS simulator. In addi-
tion, current complex industrial processes need to interop-
erate [5], being combined, and to cooperate with hetero-
geneous distributed components. High-level Architecture
(HLA) is a distributed simulation and execution standard
originally defined for interoperability of US military sim-
ulation tools and now employed in the civilian domain�
it can address actual enterprise requirements. From the
preceding enounced challenges and to address their re-
quirements, we introduce in this paper a HLA-compliant
Workflow Modeling Environment.

The paper is organized as follows. Section 2 gives an
overview of the G-DEVS, HLA, and Workflow. Section 3
details the specification of the new flattened G-DEVS
simulation structure proposed, gives the transformation
functions, and reports on performance results of this new
simulator. Section 4 presents the integration of the G-

DEVS flattened simulator in a HLA context. Section 5
introduces the application field of our environment and
gives the key points to transforming a Workflow graph-
ical specification into a G-DEVS executable model. In
addition, we describe the new HLA-compliant Workflow
Modeling platform. Finally, we conclude by introducing
our future works and conclusion.

2. Recall

2.1 G-DEVS

The G-DEVS emerged with the drawback that most clas-
sical discrete event abstraction models (e.g. DEVS) face:
they approximate observed input–output signals as piece-
wise constant trajectories. The G-DEVS defines abstrac-
tions of signals with piecewise polynomial trajectories [2].
Thus, the G-DEVS defines the coefficient event as a list
of values representing the polynomial coefficients that ap-
proximate the input–output trajectory. Therefore, a DEVS
model, from the founding point of view, is a zero order G-
DEVS model (the input–output trajectories are piecewise
constants).

The G-DEVS keeps the concept of the coupled model
introduced in DEVS [1]. Each basic model of a coupled
model interacts with the others to produce a global behav-
ior. The basic models are either atomic or coupled models
that are already stored in the library. The model coupling
is done with a hierarchical approach (owing to the closure
under coupling of the G-DEVS, models can be defined in
a hierarchical way).

On the simulation side, G-DEVS models employ an ab-
stract simulator, proposed in [1], which defines the simu-
lation semantics of the formalism. The architecture of the
simulator is derived from the hierarchical model structure
(e.g. Figure 1(a)). The processors involved in a hierarchi-
cal simulation are Simulators, which ensure the simulation
of atomic models, Coordinators, which ensure the routing
of messages between coupled models, and the Root Co-
ordinator, which ensures global simulation management.
The simulation runs by sending Imessage to all Coordina-
tors and Simulators, and continues by exchanging specific
messages (*message for an internal event, Xmessage for
an external event, and Ymessage for an output event) be-
tween the different processors. The specificity of the G-
DEVS model simulation is that the definition of an event
is a list of coefficient values as opposed to a unique value
in the DEVS.

2.2 DEVS Flattened Simulation Structure

To facilitate the introduction of the G-DEVS flattening,
we recall DEVS flattening techniques.

Kim et al. [6] presented a methodology of distributed
simulation for models specified in the DEVS formalism.
The methodology transforms a hierarchical DEVS model
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into a non-hierarchical one. This transformation reduces
the overload of information handled during a conventional
and classical hierarchical simulation of DEVS models and
facilitates the synchronization of a distributed simulation,
thus increasing the stability of the simulation engine. To
demonstrate the efficiency of the proposed methodology,
the authors developed a simulation environment in Visual
C++ and conducted a performance evaluation on the sim-
ulator applied to a large-scale logistics system. The re-
sults of the performance measurements show that the new
proposed methodology works efficiently and offers bet-
ter performances than the previous approaches in terms of
execution time.

Glinsky and Wainer [7] developed DEVStone� this
software was dedicated to the automation of the evalu-
ation of surrounding areas of simulations based on the
DEVS. DEVStone analyzes the performance of succes-
sive versions of the same simulation engine (e.g. further
to an update or further to a problem being solved), and
supplies common metrics to compare the environments
of different M&Ss. The studies realized with DEVStone
have notably allowed it to be concluded that generally the
technique of ‘flattened’ simulation (previously developed
by the authors) surpasses the hierarchical shape, reducing
the overhead of information handled by up to 50%, and
thus supplies improved answer times and a higher per-
centage of successes in the execution. Therefore, the use
of the non-hierarchical approach allows the simulation of
bigger models with better execution results. These results
are a consequence of the reduced number of messages ex-
changed in the flat mechanism of simulation.

2.3 High-Level Architecture

HLA is a software architecture specification that defines
how to create a global simulation composed of distrib-
uted simulations. In HLA, every participating simulation
is called federate. A federate interacts with other feder-
ates within a HLA federation, which is in fact a group of
distributed federates. The HLA set of definitions brought
about the creation of Standard 1.3 in 1996, which then
evolved into HLA 1516 in 2000 [8].

The interface specification of HLA describes how to
communicate within the federation through the implemen-
tation of the HLA specification: the Run-Time Infrastruc-
ture (RTI).

Federates interact using the services proposed by the
RTI. They can notably ‘Publish’ to inform the federation
about an intention to send information and ‘Subscribe’
to reflect some information created and updated by other
federates. The information exchanged in HLA is repre-
sented in the form of classical object-oriented program-
ming classes. The two kinds of objects exchanged in HLA
are Object Classes and Interaction Classes. The first kind
is persistent during the simulation, the other is only trans-
mitted between two federates. The data interchange ob-
jects format is specified as Extensible Markup Language

(XML), but this does not constrain the implementation.
More details on RTI services and distributed data in HLA
can be found in the HLA standardization book [8].

In addition, in order to respect the temporal causality
relations in the simulation, HLA proposes to use clas-
sical conservative or optimistic synchronization mecha-
nisms [9].

2.4 Workflow

Workflow is the modeling and computer-assisted manage-
ment of all the tasks to be carried out and the various ac-
tors invoked in the realization of a business process [3].
The purpose of the WfMC is to develop standards in the
field of Workflow in association with the main actors of
the domain [10, 11]. It defines the Workflow Reference
Model, presenting the components of a Workflow. It con-
tains the process definition tool, the administrator tool, the
Workflow client application, the invoked applications, and
the link between other Workflow environments. We focus
on the process definition phase to make it computerized.

A Workflow consists of procedures (also called tasks)
and logical expressions (controllers) that describe the
paths for items. A Workflow can be described by a graph-
ical representation (specification) in which tasks are rep-
resented by rectangles and controllers are represented by
nodes and arrows that drive the flows over tasks [10].

Many environments dedicated to the specification and
the simulation of Workflows exist. Most of them are based
only on ad hoc execution engines, so they do not profit
from the concepts offered by the simulation theory [1]. In
fact, this theory separates the modeling phase from sim-
ulation, allowing the reuse of validated specifications in
different domains.

The small part of environments settled on formal
specification is Petri nets based (e.g. Yasper [12], Yawl
[13], and so on). For instance, Yasper is composed of an
editor client to represent the process definition graphically
and a Petri nets-powered runtime engine. The initiators of
these tools argued the choice of using Petri nets by the
formal semantics nature (despite the graphical represen-
tation), the state-based concept instead of the event-based
concept, and the numerous existing analysis techniques.

We believe that a simulation tool based on the
DEVS/G-DEVS formalism can facilitate the modeling
thanks to modularity and pragmatism� it then supplies
simulation results with a better probability because of
the explicit time management, and finally the model de-
scription and validation process is open source, so mod-
els can be exported, compared, and reused. Nevertheless,
we agree that, from a computational point of view, no
computational power is added by the DEVS compared
to other modeling formalisms [14]. In detail, Zeigler et
al. [1] discussed the advantages that can be provided by
DEVS (or by extension, obviously, by G-DEVS) model-
ing. DEVS modeling can be more convenient for our pur-
pose (i.e. workflow modeling) than Petri nets modeling�

Volume 00, Number 0 SIMULATION 3



Zacharewicz, Hamri, Frydman, and Giambiasi

Figure 1. Flattening the G-DEVS simulation structure

firstly, it gives a more general framework for the M&S
of systems by explicitly handling the notion of time, in
particular the autonomous timed evolution of the model
(while an extension of the original definition is required
for Petri nets), secondly it proposes modular hierarchi-
cal modeling facilities by reusing previously developed
models, and events exchanged between models can con-
tain several pieces of information, and finally it offers a
formal definition of the simulator (simulator implemen-
tation and results can be mastered more easily and better
compared).

3. New DEVS/G-DEVS Simulation Structure

The previous works all agree in terms of the performance
of the ‘flattened’ DEVS structure with regard to the hi-
erarchical structure (i.e. Section 2.2). As a consequence,
in our G-DEVS simulator we chose to use a simulation
structure inspired by the hierarchical structure of abstract
simulation defined in Zeigler et al. [1], but containing only
two hierarchical levels. This structure is called ‘compact’
(e.g. Figure 1(b)).

From the works introduced in Kim et al. [6] and Glin-
sky and Wainer [7] and with the aim of decreasing the
exchange of messages between the intermediate coordi-
nators and the simulators, we suggest reducing the tree-
like structure of the intermediate coordinators between
the root coordinator and the simulators. To achieve this
goal, we chose to keep only one coordinator component to
which atomic simulator components will be connected in
direct succession. The reduction of the simulation struc-
ture is illustrated by the suppression of components that

are crossed out in Figure 1(a). This new structure, after
reduction, is presented in Figure 1(b).

Two main solutions can be distinguished to flatten
models for simulation.

The first solution consists of preserving the coupled
models with all their hierarchy as a storage format. Only
at simulation setting time does the environment explore
the tree-like structure of the considered model to get back
the atomic models on the leaves. This solution presents the
advantage of being competently applied to a classical im-
plementation of the DEVS (or G-DEVS) coupled model.
The drawback is it requires an algorithm of deep tree-like
data structure exploration, which can be slow in the case
of a complex coupled model. Previous works by Kim et
al. [6] and Glinsky and Wainer [7] have exploited this so-
lution.

The second solution consists of making a flattening
transformation on saving each model step or when
launching it for simulation. In that case, the consid-
ered models contain at most two hierarchical levels, be-
cause the included models resulting from the library
have been preliminarily flattened during saving. This so-
lution implements less complex exploration algorithms�
in return all included models must have been flattened
previously.

We select the second solution because the exploration
algorithm is less complex and so its execution on models
and coupling structures is faster. At the end, our solution
consists of archiving both a hierarchical model (for editing
and composing models) and a non-hierarchical model (for
simulation).
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Figure 2. LSIS_DME G-DEVS-coupled model class diagram

Figure 3. LSIS_DME model’s flattening function

3.1 LSIS_DME Model Class Diagram

The class diagram specified for the G-DEVS M&S envi-
ronment developed by Laboratory and Information Sys-
tems (LSIS), at the Université Paul Cézanne (called
LSIS_DME [15]), presented in Figure 2, is based on the
original DEVS model classes structure proposed by Zei-
gler et al. [1]. However, the tool integrates a specific
data structure for graphical model editing and for model
flattening. These functions, sets, and relations will be used
in the algorithms of Figures 3 and 4 detailed in the next
point.

3.1.1 LSIS_DME Atomic Model Classes Structure

The class model description of the LSIS_DME G-DEVS
atomic model (cf. Figure 2) possesses the classical func-
tions defined in the DEVS formalism [1]. It possesses

a specific attribute: phase (a state variable for graphic
representation). In addition, the attribute OtherState-
VariablesSet is employed to define other state vari-
ables that describe the model global state. It also possesses
an attribute eventOrder, which defines the degree of
the polynomial event and states in G-DEVS models. Fi-
nally, it contains an attribute graphicalData, which
stores the information relative to the graphical represen-
tation of the model (size of box, position, etc.). This last
attribute only has a meaning for reusing graphical models
and optionally to run a step by step animated state simu-
lation.

3.1.2 LSIS_DME Coupled Model Classes
Structure

Figure 2 also presents the LSIS_DME_Coupled_Model
class to implement a G-DEVS-coupled model. This class
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Figure 4. LSIS_DME model’s coupling flattening function

contains a list of influent ports: influentPortList-
WithHierarchy, which defines the influent input ports
of the models, each of these ports making reference to a
list of influenced ports: InfluencedPortList. With
regard to the original representation of Zeigler et al.
[1], this class contains in addition the specific attributes
includedModelWithoutHierarchyList and
nonHierarchicalInfluentPortList, which de-
scribe the non-hierarchical coupled model generated by
the flattening algorithm from the coupled model created
by the tool user. These data are stored in a list of objects.

3.2 Model Transformation Function

We focus now on the attributes of the coupled model
data structure of LSIS_DME (cf. Figure 2) related
to the flattening function. The attribute included-
ModelWithHierarchyList contains (itself) a set of
includedModel (atomic or coupled models). The at-
tribute includedModelWithoutHierarchyList
contains a list of non-hierarchical includedModel
(atomic). When creating a model, this last list is initially
empty.

The pseudo code in Figure 3 specifies the
flatteningModels function of LSIS_DME. This
function generates the set of atomic models to store in
includedModelWithoutHierarchyList from

the hierarchical models of includedModelWith-
HierarchyList. This function is called when saving
a model in the library or during an initialization preced-
ing the execution of a simulation. The flattening-
Models function goes through the includedModel-
WithHierarchyList set� for every included-
Model, a test is performed. If this sub-model is atomic, it
is copied in includedModelWithoutHierarchy-
List. If this sub-model is coupled, all the models
contained in this sub-model are found recursively (us-
ing a tree-like structure exploration) and copied in the
includedModelWithoutHierarchyList of the
considered model.

To summarize, models contained in the non-
hierarchical models list are not modified� they (or their
sub-models) are just copied in the non-hierarchical models
list. Indeed the includedModelWithHierarchy-
List is still used for modeling purposes, and remains
modular and hierarchical.

3.3 Model-coupling Transformation Function

Flattening a model also requires the transformation of the
included models coupling. Indeed, the coupling relations
of a flattened model have to refer only to the atomic mod-
els of the non-hierarchical model and to the unique cou-
pled model level.
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The pseudo code in Figure 4 considers the
CouplingTransformation function of the environ-
ment. This function generates a set of coupling relations
between the atomic models and the considered model
from the hierarchical coupling relations.

The coupling relations are defined as a set of influent
ports, where each element is linked to one or more
influenced ports. The coupling flattening algorithm is di-
vided into two parts: the influent ports of the coupling re-
lation are handled in the first part, and the influenced ports
are handled in the second part.

The first part of the algorithm identifies the influent
ports of the non-hierarchical model that will be inserted
into the nonHierarchicalInfluentPortList of
the model. Every influentPort of the Influent-
PortListWithHirearchyList is thus analyzed. If
it has the considered model or an atomic model as par-
ent, this coupling relation is directly copied in an in-
termediate list, the IntermediaryInfluentPort-
List, which contains all the coupling relations with
influent ports referring only to atomic or considered mod-
els. If the influentPort has an included model as
a parent, the contents of this included model must be
analyzed in order to determine the influent sub-models
of the considered influentPort and create a new-
InfluentPort for every included port influencing it.
The part concerning ports influenced by the influent-
Port is copied out in every newInfluentPort. Every
newInfluentPort is added to the Intermediary-
InfluentPortList.

The second part of the algorithm handles the
IntermediaryInfluentPortList. Every in-
fluenced port (influencedPort’) from the
influencedPortList of every influentPort’
must be analyzed. If the influencedPort’ struc-
ture has as a parent the considered model or an atomic
model, a simple copy is made in the influenced ports
list by newInfluentPort’. In the other case,
the influencedPortList of newInfluent-
Port’ is completed by every influenced port by the
influencedPort’ recursively found inside the sub-
models of the parent of influencedPort’. Then,
these structures are added to the definitive non-
HierarchicalInfluentPortList.

Finally, the internal-coupling relations between the
included atomic models are copied in the final non-
HierarchicalInfluentPortList.

3.4 Performances of ‘Flattened’ LSIS_DME
Simulators

In [4] and [15], we introduced an environment that we
called LSIS_DME (listed on Wainer’s website ‘DEVS
Tools’ [16]) for creating G-DEVS graphical models and
simulating them. We developed two simulation engines to
power this environment: a non-hierarchical simulator and

Figure 5. Logic gates model A

a hierarchical simulator. We realized performance com-
parison tests between those two engines to elect the most
efficient one for powering the final version of our M&S
environment. In this part, we propose the comparison re-
sult of our study.

The configuration of our test simulation platform was
a Pentium III 2.4 GHz with 512 MB of RAM under
Windows XP. Both simulators (hierarchical and non-
hierarchical) were implemented in Java. The measure-
ments were realized with the JRat tool [17], allowing us to
measure the performances in Java programs by including
specific classes that perform quantitative measurements
on the execution of code. We believe that all the consider-
ations enounced in this section and the next one are valid
for using LSIS_DME software.

1) Russian Dolls Imbrications

We executed the comparison study on G-DEVS-coupled
models whose characteristics expressed a representative
range of graphically conceivable models. They were real-
istic and could be proposed by a modeler (not automat-
ically generated with no connection to realistic models).
We focused in this paper on the study of two G-DEVS-
coupled models of logical gate circuits.

Various tests were realized for the same models with
different levels of hierarchy using ‘Russian Dolls’ Imbri-
cations (RDIs) for each atomic model. These imbrications
consist of recursively inserting an atomic model into a
coupled model with the same input and output ports on
the outer model automatically linked with the inner model
ports.

The first coupled model, A, characterizes a simple
model composed of logical gates (2 AND Gates, 1
OR gate and 1 NAND gate). The inner models pos-
sess few coupling relations with the input/output and be-
tween them. The logical model is depicted in Fig. 5. In
DEVS representation, we illustrate, for example, a four-
hierarchical RDI (for each atomic model) of model A in
Figure 6.

The coupled model B contains the same atomic models
(2 AND Gates, 1 OR gate, and 1 NAND gate), but it pos-
sesses a more important number of couplings between the
coupled sub-models. The logical model is depicted in Fig-
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Figure 6. Four-hierarchical RDI G-DEVS-coupled model A

Figure 7. Logic gates model B

ure 7. For example, we illustrate in DEVS-coupled repre-
sentation a four-hierarchical RDI of model B in Figure 8.
We confound the degree of encapsulation with the number
of dolls).

In detail, for each of these types of models we defined
a more or less hierarchical RDI of the model and coupling.
Note that the A and B flattened models (zero-level RDI)
contain the same four G-DEVS atomic models of logi-

cal components inter-coupled differently on a unique hi-
erarchical level. The tests were run with 1–12 hierarchical
RDI levels for each model. For each of these structures we
executed a significant number of replications to compare
them as objectively as possible. The simulations were set
with 100–1,000 input events planned.

2) Fractal Imbrications

In addition, to validate our approach, we have proposed a
second way of coupling models, which is perhaps more
practical according to modeler’s customs. In this ap-
proach, we have coupled recurrently models A or B in
Fractal (or Fractal-like) Imbrications (FI) to build coupled
models CMA and CMB. Therefore, the models (A or B)
have been coupled by 2, then 4, and so on recursively to
256 (Figure 9 depicts 64 models). Each coupling is adding
to a hierarchical level, so in the example depicted in Fig-
ure 9, the hierarchical level is 7 (2 levels for the initial
coupling by 2 and one more each for the 4, 8, 16, 32, and
64 models). Further to the figure, we have automatically
built up to nine hierarchical FI levels for the tests with
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Figure 8. Four-hierarchical RDI G-DEVS-coupled model B

256 atomic models. Coupling relations are not depicted
in Figure 9 in order to remain generic to the representa-
tion of CM* (A or B) models and not to complicate the
figure.

3) Simulation Results

Figures 10(a) and (b) report the tests performed on
LSIS_DME hosting JRat [17]. The execution time has
been registered according to the number of hierarchical
RDI levels (from 1–12) for the A and B models (four
atomic models) and from one to nine FI levels for CMA
and CMB (256 atomic models). The simulation has been
launched for 100, 500, and 1,000 events planned. Sev-
eral replications of the same configuration have been per-
formed for each case to determine an arithmetic mean.

The simulation shows a growth of the execution over-
head between a non-hierarchical structure (zero-RDI or
FI level) and when increasing (up to 12 levels) the RDI
or FI hierarchical structure of the considered model. In Figure 9. Seven hierarchical levels, FI DEVS CM* model
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Figure 10. Comparing the performances of flattened and hierarchical structures

Figure 10(a), the flattening considerably reduces the ex-
ecution time in the flattened structure, in particular for
numerous events planned. For example, for the model B
with 1,000 events planned, the simulation reduces by 13
seconds of execution when reducing from 12 levels to 1
level. These results are consistent with the previous stud-
ies recalled in Section 3.

3.5 Limitation of ‘Flattened’ LSIS_DME Simulators

Nevertheless, the graphical representation of the simula-
tion run shows, in Figure 10(b), that for complex mod-
els (CMA and CMB with FI hierarchical levels) the ten-
dency to decrease overheads when reducing the model im-
brications is slowed down. The gain of the flattening is
inflected with the number of events to treat (between 500
and 1,000 and up). That being the case, we should con-
sider the necessity of flattening the structure, because we
must compare the simulation duration cutback with the
flattening duration, done offline before simulation. We be-
lieve that the lack of gain is due to large lists of events
and lists of models handled. The time required for han-
dling, searching, and classifying information appears to
limit (but not to reverse) the performance in the case of
a large number of models and events to treat. The litera-
ture can give a solution to this kind of problem. Indeed,
the commonly admitted lack in the flattened simulation
structure is due to the management of lists of events and
models that contain many elements.

In more detail, the problem of large event schedulers
and model lists comes from the inserting, finding, remov-
ing, and sorting of a new element. It can be improved
thanks to customizable heuristics, depending on the life-
time of model states. An example of such a heuristic can
be given by the heuristic that consisted of defining one
scheduler for the close future (with an adjustable dead-
line) and a second event scheduler for the faraway fu-

ture proposed by Giambiasi et al. [18] and Miara and Gi-
ambiasi [19]. In that case, the number of schedulers and
their management depends on simulated models parame-
ters and on delays described in the models, but not on the
model structure described by the modeler. In addition, it is
clear that the number of messages exchanged in this kind
of approach is not increased and the number of events is
limited in each scheduler.

We should keep in mind that the most relevant results
for us remain in the use of human-made models with rel-
atively low complexity of behavior and structure. In addi-
tion, we consider a number of human-controlled events in
opposition to auto-generated events. The capacity to use
and reuse G-DEVS models from shared user libraries to
make them interoperable is also a core consideration.

Finally, our goal is to balance simulation performance
requirements with the necessity of interoperability of
the M&S platform with other software components. We
present in the next section the use of the HLA standard
to facilitate the interoperability of the simulation platform
with distributed components.

4. Generalized Discrete Event System/High-level
Architecture Components Mapping

We proposed in [4] to extend LSIS_DME in order to split a
G-DEVS model structure into distributed federate compo-
nent models (e.g. Figure 11). The global G-DEVS model
structure is recomposed into an HLA federation (i.e. a
distributed-coupled model). The environment maps a G-
DEVS Local Coordinator and Simulators into HLA fed-
erates and maps the Root Coordinator into the RTI. Thus,
the ‘global distributed’ model (i.e. the federation) is con-
stituted of intercommunicating federates. The G-DEVS
model federates intercommunication by publishing and
subscribing to HLA interactions that map the coupling re-
lations of the global distributed-coupled model. This in-
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Figure 11. G-DEVS distributed simulation structure

formation is routed between federates by the RTI with
respect to time management and the Federation Object
Model description [8]. In fact, in [20] and [21], we de-
veloped an algorithm for G-DEVS federation execution
with a conservative synchronization mechanism using a
positive Lookahead value gained from the HLA Least In-
coming Time Stamp (LITS) value.

5. Transforming a Workflow Specification into a
G-DEVS Model

Workflows are most commonly graphically modeled. The
drawback of this representation is the fact that it is not
based on strong formal concepts. Thus, it does not al-
low the properties of semantic verification and validation
of the model. Furthermore, these models are often simu-
lated by ad hoc engines that cannot be compared in terms
of correctness and efficiency in relation to others. From
this postulation, in [22], we proposed the definition of a
unified language for the specification of a Workflow that
is to be applied as a common output of Workflow ed-
itors. This language supports algorithms to transform a
Workflow model into a classical formal specification for
simulation independently of the Workflow editor.

5.1 Workflow Representation

The WfMC proposed an XML representation of the
Workflow established as a standard in the Workflow com-

munity [11]. Instances of XML Workflow process model
structures’ correctness can be certified by referring to the
WfMC Workflow Document Type Definition (DTD). This
XML representation is not fully convenient for the XML
specification of production Workflow. Thus, we proposed
in [22] a simple language to represent the components in-
volved in that kind of Workflow.

An XML Workflow process model is composed of task
components, which handle items with resources, and con-
troller components that route items between tasks. Items
pass over a sequence of these components. These compo-
nents are linked by directed arcs in order to define a graph-
ical component-based model specification. Examples of
complex process descriptions addressed by the definition
of the Workflow blocks library have been presented in
[22]. Figure 12 presents a print screen of the environment
with Workflow sample models.

The Workflow blocks the description presented in
Zacharewicz et al. [22] and challenges the descriptions by
Russell et al. [13] and Van Der Aalst et al. [23] and Van
Der Aalst and van Hee [24]. This description defines clas-
sical task blocks and routing sequence blocks, for example
see Figure 12 (the most relevant blocks have been detailed
in [22]). In addition to the coexisting Workflow cited, this
description proposes blocks to explicitly manage the stock
levels of goods at run time and blocks containing algo-
rithms for resources allocation in tasks.

These concepts have been implemented into the
Workflow modeling tool LSIS_WME (developed at
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Figure 12. LSIS Workflow Model Editor (WME)

LSIS). This tool allows us to graphically describe a
Workflow (the interface shown in Figure 12 presents the
interface of this software) and to store the model in an
XML format. This software has been presented in detail
in [22], and we invite the reader to refer to this document
for more details.

Finally, emerging works on human or machine behav-
ior modeling by DEVS model blocks, as defined by Seck
et al. [25], have been tested in the environment. There-
fore, the simulation can provide statistical studies on the
Workflow reaction regarding human behavior tuning� this
last step is still under our scope of study.

5.2 G-DEVS Representation

In [22], we proposed a method to transform the (semi-
formal) Workflow graphical models into (formal) G-
DEVS-coupled models by connecting G-DEVS atomic
models representing the Workflow basic components. The
choice of the G-DEVS as a formal M&S language is based
on the following reasons. First of all, a G-DEVS model
takes advantage of formal properties and can be simu-
lated with the efficiently improved structure described
in Section 3. With the aim of modeling and simulating
Workflow, our requirements were based on the capacity
to capture all characteristics of goods processing. Goods

change state during their course in the Workflow, and we
were looking at capturing and following up this informa-
tion. In more detail, they need to be described by many
attributes, including their product references, routes, du-
ration, progress, and so on. This complex state is evolv-
ing during progress. In addition, we have implemented
stock level and resource allocation strategies with tun-
able algorithms, because these solutions were not explic-
itly specified or even worse not taken into consideration
in previous approaches. For all of these purposes, the G-
DEVS has been chosen as particularly convenient because
it is based on the concept of a multiple attributes event. In
our environment the products are described by multiple
attributes of a G-DEVS event. In addition, the G-DEVS-
coupled models allow us to easily compose a workflow
by coupling: tasks, resources, routing sequences, and
stocks components� the behavior of each component is
described in the G-DEVS atomic model. In addition, we
have developed G-DEVS blocks for queue management
[15] and resource allocation that reveal, by simulation,
the problem of bad allocation or wrong dimensioning of
stocks.

In Figure 13 we detail the G-DEVS behavioral model
of the AND-JOIN controller pattern block that is instan-
tiated from a Workflow model (e.g. the number of in-
put ports is instantiated from the Workflow model). This
model receives items assimilated to G-DEVS events (rep-
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Figure 13. G-DEVS AND-JOIN workflow block model

resenting data associated to physical and non-physical
products on its multiple input ports). The items received
are stocked in a list (a complex state variable Tab_Item
is employed) until the controller component receives an
item on each of its input ports (the counting state variable
nba is incremented)� then an item is generated on the sin-
gle output port. The attribute values of this new item are
a composition configurable by the Workflow modeler of
the input item data.

The LSIS_WME tool and its simulation results have
been efficiently employed to assist human decision mak-
ing in modifying wafer process flows in STMicroelectron-
ics. It makes it possible to prevent errors due to an incor-
rect modification of the process flow. It also allows quan-
titative comparisons of several modifications of a process
to be made to sort the most efficient ones.

On top of LSIS_WME and LSIS_DME, the HLA com-
pliance also opens our environment to other heteroge-
neous component integrations, which may even be non-
DEVS or non-G-DEVS, to join a global distributed in-
formation system platform. Consequently this platform
matches actual requirements for interoperability in enter-
prises [26].

We defined a general methodology [5] in converging
Model-driven Architecture [27], Model-driven Interoper-
ability [28], and the HLA Federation Development and
Execution Process (FEDEP) [29] in order to formalize
the transformation of Enterprise conceptual requirements
into Workflow process models and then into a G-DEVS-
coupled model. This method has been applied, notably, to

facilitate the transformation of Workflow models of elec-
tronic components manufacturing processes operated by
the company STMicroelectronics.

6. HLA-compliant G-DEVS Workflow
Environment

6.1 Components Interoperability

We demonstrated in [20] and [21] that G-DEVS models
can be run from several computers, thanks to the capa-
bility of LSIS_DME to create HLA federates. This capa-
bility matches with the distribution requirements of the
actual industrial processes. Thus, we have implemented
the flattened G-DEVS simulation structure presented in
this paper and its HLA compliance detailed in [22] as the
run-time engine of a new distributed Workflow environ-
ment. Then, the key is to generalize the HLA compliance
to the whole Workflow environment by adding other fed-
erates to the federation in order to define a Distributed
Workflow Reference Model in terms of the WfMC. The
resulting platform is described in Figure 14. We note that
the flattened hierarchy of G-DEVS models joining the
federation are coherently synchronized in the context of
HLA distributed execution, all other federates connected
to the RTI also need to implement a synchronization algo-
rithm.
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Figure 14. Workflow G-DEVS/HLA M&S platform

Therefore, we included the Workflow modeling tool
LSIS_WME presented in Figure 12 (developed at LSIS)
into a federate (i.e. Figure 14, Interface 5). The models
defined in the XML generated by this federate are in-
tegrated into HLA objects and shared with LSIS_DME
(Figure 14, Interface 1).

In detail, LSIS_WME publishes objects to HLA that
represent the components of the Workflow model and to
which LSIS_DME subscribes. These objects are stored
in the Workflow federation Federation Object Model
(FOM). The updates of information are routed by the
RTI. If the Workflow model is modified by the user of
LSIS_WME, LSIS_DME is informed of these changes.
It can take them into account in its G-DEVS model and
reruns the simulation with the new coupled model struc-
ture and new atomic models edited settings (DEVS expert
users can also directly access advanced DEVS editing fa-
cilities on LSIS_DME models (Figure 14, Interface 1)).

On the other hand, during the simulation the LSIS_DME
updates, in a HLA object, the log of events giving the
results of the simulation. The LSIS_WME subscribes to
these results to give the simulation animation and provides
updates to the users. For this reason, this software can be
seen as the modeling, control, and administration tool of
the Workflow environment.

Interoperability is a core concern of the networked en-
terprise [26]� this platform addresses this requirement by
proposing an open standard interface (thank to the HLA
compliance) to plug other software components. In more
detail, the HLA capability to integrate programs with-
out recoding facilitates the needs of today’s flexible en-
terprise that needs to interoperate its Information Sys-
tems and to communicate in a distributed networked
environment.

Indeed, software and humans acting in the loop are re-
quired in the existing Workflow process of wafer man-
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ufacturing. Finally we address the Workflow definitions
[10], where client and invoked applications can be called
during the run time in order to process computations not
tackled by the models and their simulators. The details are
given below.

On one hand, we have proposed the integration of hu-
mans in the loop to make qualitative choices during sim-
ulation. For that purpose, we implemented Web interfaces
called during the simulation by the Workflow engine in
order to specify, for instance, some routing of items in the
process. Data exchanged during the call are HLA objects
(i.e. Figure 14, Interface 2).

On the other hand, some complex mathematical com-
putations of data handling (e.g. access to specific data-
bases, specific software use, etc.) are not taken into ac-
count in the transition/output functions of the G-DEVS
model described with LSIS_DME. In that case the sim-
ulation is interrupted and data are transferred to specific
software by publishing to an object (i.e. Figure 14, In-
terface 3). This software computes and sends back data
to the process definition tool by publishing to HLA ob-
jects/interaction.

Concretely, we have implemented and tested the plat-
form described in Figure 14, in the context of microelec-
tronics manufacturing. It actually contains a LSIS_WME
model editor and control viewer of the execution, one
LSIS_DME M&S tool to simulate the process, several MS
Excel databases, Java-based user interfaces for microelec-
tronic quality control, and Java software called to automat-
ically store the time duration and stock levels. The distrib-
uted simulation results obtained on the platform have been
submitted to experts for validation.

Finally, we also open to interfacing, in terms of data
interoperability, the environment with other Workflow en-
vironments using the concept of bridge federates [30] (i.e.
Figure 14, Interface 4). The structure of the information
exchange is HLA specified and information can be eas-
ily shared with respect to the confidentiality definition of
publishing and subscribing rights for data. In this last in-
terface, each time we create a new connection with an-
other workflow system, we should determine the data that
should be shared and the ones that must stay confidential
between Workflows. Concretely, the two workflows will
be two HLA federates in a new federation and the users
will need to define the HLA objects to be exchanged be-
tween federates.

6.2 Environment Future Works

The complete development of the proposed environment
still requires the addition of other clients and invoked
applications to the Workflow environment by integrat-
ing them in HLA federates. We plan to integrate other
heterogeneous tools developed in the specific context of
STMicroelectronics by adding code to them to make them

HLA-compliant. In addition, we have initiated works on
the interoperability of information systems of enterprises.
In these works, we are proposing ontological mapping of
the business knowledge. HLA is helping to manage the
exchange of information between heterogeneous and dis-
tributed enterprise systems interconnected as a System of
Systems. These works are detailed in [5].

Furthermore, domain experts often define Workflow
task durations in terms of time windows rather than mean
values. Thus, it would be possible to model Workflow
with a Min–Max DEVS to get more realistic models [31].

7. Conclusion

This paper presented a flattened G-DEVS model simu-
lation structure. It detailed the flattening transformation
algorithm involved in LSIS_DME. We have performed
comprehensive tests on the LSIS_DME flattened simu-
lator. The results reveal that the flattening of the simu-
lation structure shortened the simulation duration. How-
ever, the efficiency of the flattening remains dependent
on the number of events handled and the complexity of
the model. As perspectives, we will propose to divide the
event list into several lists, to distinguish events in near
occurrence time and the far future. Such heuristics, which
have shown their efficiency in scheduling problem solv-
ing, should considerably reduce the size of the event lists
and improve sorting duration each time an occurred event
should be handled in this list. In addition, in order to prove
the efficiency of the flatten simulator with regard to the
hierarchical one, we could compute the algorithmic com-
plexity of each simulator. Once this is known, previously
to conduct the simulation on a computer, we should for-
mally estimate the heap memory and the execution time of
each technique (flattened, hierarchical). This will be pos-
sible by giving a detailed study on the computational com-
plexity of the algorithms used and data structure of the
simulation (sort events, number of coordinators, number
of event lists that depends on the number of coordinator,
etc.).

We proposed to employ the new flattened structure for
simulating complex Workflow models in the G-DEVS for-
malism. Consequently, G-DEVS Workflows models can
be verified faster by simulation. Furthermore, we intro-
duced a new HLA-compliant Workflow environment us-
ing the flattened G-DEVS structure that speeds the lo-
cal execution and so orchestrates the distributed compo-
nents faster. We have verified, on this occasion, that the
use of the HLA specification facilitates connecting the G-
DEVS components defined in the paper with other het-
erogeneous HLA-compliant components in the Workflow
environment.

Finally, the application field of research on Workflow
and, more generally, process modeling has been a fast
growing research domain during recent years, and it is
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still a promising domain, in particular for service orches-
tration in the enterprise. The European International Vir-
tual Laboratory for Enterprise Interoperability [32] has re-
cently defined interoperability as a science for enterprise
modeling� this confirms the actual high interest of enter-
prises for distributed and interoperable information sys-
tems solutions (systems of systems, enterprise 2.0). We
believe the crossing of research domains, Workflow M&S
and HLA, will facilitate supporting the next-generation of
information systems for interoperating networked enter-
prises.

8. References

[1] Zeigler, B.P., H. Praehofer and T. G. Kim. 2000. Theory of Modeling
and Simulation, 2nd edition, Academic Press, New York.

[2] Giambiasi, N., B. Escude and S. Ghosh. 2000. G-DEVS A Gen-
eralized Discrete event specification for accurate modeling of
dynamic systems. Transactions of the SCS International, 17(3):
120–134.

[3] Courtois, T. 1996. Workflow: la gestion globale des processus. Logi-
ciels and Systèmes, 11: 46–50.

[4] Zacharewicz, G., Hamri, A., Trojet, W., Frydman, C., and Giambi-
asi, N. 2006. G-DEVS/HLA Environment for Distributed Sim-
ulations of Workflows. In International Conference on Model-
ing and Simulation—Methodology, Tools, Software Applications
(M&S-MTSA’06), Calgary, Alberta, Canada.

[5] Zacharewicz, G., D. Chen and B. Vallespir. 2009. Short-lived ontol-
ogy approach for agent/HLA federated enterprise interoperability
international. In IEEE Proceedings of International Conference
I-ESA China 2009 Interoperability for Enterprise Software and
Applications, Beijing, 22–23 April, pp. 329–335.

[6] Kim, K., W. Kang, B. Sagong and H. Seo. 2000. Efficient distributed
simulation of hierarchical DEVS models: transforming model
structure into a non-hierarchical one. 33rd Annual Simulation
Symposium, Washington, DC, p. 227.

[7] Glinsky, E. and G.A. Wainer. 2005. DEVStone: a benchmarking tech-
nique for studying performance of DEVS modeling and simu-
lation environments. In 9th IEEE International Symposium on
Distributed Simulation and Real Time Applications, Montreal,
Canada.

[8] IEEE Institute of Electrical and Electronic Engineers. 2001. High
Level Architecture (HLA) – Federate Interface Specification,
IEEE Standard for Modeling and Simulation (M&S), Standard
1516.2-2000, March.

[9] Fujimoto, R.M. 1998. Time management in the high level architec-
ture. Transactions of the SCS Simulation, 71(6): 388–400.

[10] WfMC Workflow Management Coalition. 1999. Terminology and
Glossary. WfMC-TC-1011, 3.0, February.

[11] WfMC Workflow Management Coalition. 2005. Workflow Process
Definition Interface—XML Process Definition Language.
WFMC-TC-1025, October.

[12] Van Hee, K., R. Post and L. Somers. 2005. Yet another smart process
editor. In ESM 2005, Porto, 24–26 Oct.

[13] Russell, N., A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der
Aalst. 2004. Workflow data patterns, QUT technical report, FIT-
TR-2004-01, Queensland University of Technology, Brisbane.

[14] Weisel, E.W., M.D. Petty and R.R. Mielke. 2005. A comparison of
DEVS and semantic composability theory. In Proceedings of the
Spring 2005 Simulation Interoperability Workshop, San Diego
CA, 3–8 April, pp. 956–964.

[15] Hamri, M, and G. Zacharewicz. 2007 LSIS_DME: an environment
for modeling and simulation of DEVS specifications. In 14th

Conference on Simulation and Planning in High Autonomous
systems, Buenos Aires, pp. 55–60.

[16] Wainer, G. 2005. Listing of M&S tools based on the DEVS formal-
ism website. http://www.sce.carleton.ca/faculty/wainer/standard/
tools.htm (accessed April 2009).

[17] Drost, J. 2001. ShiftOne JRat (Runtime Analysis Toolkit), Logiciel
GNU, http://jrat.sourceforge.net/

[18] Giambiasi, N., A. Miara and D. Muriach D. 1979. SILOG: a practi-
cal tool for large digital network simulation. In 16th Annual ACM
IEEE Conference on Design Automation, San Diego, CA, IEEE
Press, Piscataway, NJ, pp. 263–271.

[19] Miara, A. and N. Giambiasi. 1978. Dynamic and deductive fault
simulation. In Proceedings of the 15th Conference on Design Au-
tomation Conference, Las Vegas, NV, IEEE Press, Piscataway,
NJ, pp. 439–443.

[20] Zacharewicz, G., N. Giambiasi and C. Frydman. 2005. Improving
the DEVS/HLA environment. In DEVS Integrative M&S Sympo-
sium, DEVS’05, Part of the SCS Spring-Sim’05, San Diego, CA,
3–7 April.

[21] Zacharewicz G., N. Giambiasi and C. Frydman. 2006. Lookahead
computation in G-DEVS/HLA environment. Simulation News
Europe, 16(2): 15–24.

[22] Zacharewicz, G., C. Frydman and N. Giambiasi. 2008.
G-DEVS/HLA environment for distributed simulations of
workflows. Transactions of the SCS Simulation, 84(5): 197–213.

[23] Van der Aalst, W.M.P., A.H.M. ter Hofstede, B. Kiepuszewski and
A.P. Barros. 2000. Advanced workflow patterns. In O. Etzion and
P. Scheuermann (eds), 7th International Conference on Coopera-
tive Information Systems (CoopIS 2000) (Lecture Notes in Com-
puter Science, Vol. 1901), Springer, Berlin, pp. 18–29.

[24] Van der Aalst, W.M.P., and K.M. van Hee. 2002. Workflow Man-
agement: Models, Methods, and Systems, MIT Press, Cambridge,
MA.

[25] Seck, M., N. Giambiasi, C. Frydman and L. Baâti. 2007. DEVS for
human behavior modelling in CGFs. Journal of Defense Model-
ing and Simulation, 4(3): 1–33.

[26] Chen, D., and G. Doumeingts. 2003. European initiatives to de-
velop interoperability of enterprise applications – basic concepts,
framework and roadmap. Journal of Annual Reviews in Control,
7(2): 151–160.

[27] OMG (Object Management Group). 2003. MDA Guide Version
1.0.1, Document number: omg/20030601.

[28] Bourey, J.P., R. Grangel Seguer, G. Doumeingts and A.J. Berre.
2007. Report on model driven interoperability. Deliverable
DTG2.3, INTEROP NoE (April), p. 91.

[29] IEEE Institute of Electrical and Electronic Engineers. 2000. IEEE
Standard for Mode-ling and Simulation (M&S) High Level Ar-
chitecture (HLA) – Federate Interface Specification. IEEE Stan-
dard for Modeling and Simulation (M&S) Standard 1516.2.

[30] Bréholée, B., and P. Siron. 2003. Design and implementation of a
HLA inter-federation bridge. In Proceedings of the EUROSIW,
Stockholm, Sweden, 16–19 June.

[31] Hamri M., N. Giambiasi and C. Frydman. 2006. Min–max DEVS
modeling and simulation. Simulation Practice and Theory, 14:
909–929.

[32] V-LAB. 2007. http://interop-vlab.eu/the-scientific-activities (ac-
cessed April 2009).

Gregory Zacharewicz is Associate Professor at the Bordeaux 1
University (IUT MP). His research interests include DEVS, G-
DEVS, Distributed Simulation, HLA, and Workflow. He recently
focused on enterprise modeling and interoperability.
http://www.ims-bordeaux.fr/IMS/pages/pageAccueilPerso.php?
email=gregory.zacharewicz

16 SIMULATION Volume 00, Number 0



A GENERALIZED DISCRETE EVENT SYSTEM/HIGH-LEVEL ARCHITECTURE FLATTENED STRUCTURE

Maâmar El-Amine Hamri is Associate Professor in Paul
Cézanne University of Marseille. He conducts his research at
LSIS (Laboratory of Information Sciences and Systems) labora-
tory. He is interested in DEVS, its extensions and software devel-
opments for discrete event modeling and simulation.
http://www.lsis.org/�maamar_el-amine_hamri.html

Claudia Frydman is full Professor in Paul Cézanne University
of Marseille. She has been active for many years in knowledge

management and currently her research is focusing particularly
on researches on knowledge-based simulation.
http://www.lsis.org/�claudia_frydman.html

Norbert Giambiasi is full Professor in Paul Cézanne University
of Marseille and Director of LSIS (Laboratory of Information
Sciences and Systems). He has been active for many years in
simulation and currently his research is focusing especially on
DEVS and relative developments.
http://www.lsis.org/�norbert_giambiasi.html

Volume 00, Number 0 SIMULATION 17


