
Web-based Distributed Network Analyzer
using a System Entity Structure over a
Service-oriented Architecture
Taekyu Kim
Center for Modeling and Simulation Studies,
Security Management Institute,
Dongheung Bldg 9F, Samsung-Dong 78-1, Gangnam-Gu, Seoul, 135-871,
Republic of Korea
taekyu@gmail.com

Chungman Seo
Bernard P. Zeigler
Arizona Center for Integrative Modeling and Simulation,
Electrical and Computer Engineering Department, The University of Arizona,
Tucson, AZ 85721,
USA
uracbul@gmail.com� zeigler@ece.arizona.edu

As a network’s uses, and especially the number of internet users, increases rapidly, an efficient
system for managing large-network traffic datasets becomes an important issue. Although there
are several network traffic analysis tools, such as tcpdump, Ethereal, and other applications, these
tools have weaknesses, namely the limited size of files, the use of command line execution, the
large memory and huge computational power requirements. In addition to these scalability limita-
tions, both tcpdump and Ethereal have security issues. Files captured by these tools keep all of the
packet information, such as internet protocol (IP) addresses, port numbers, and packet sizes. As
well as basic network traffic information, the captured files contain secure information: user iden-
tification numbers (IDs) and passwords. Therefore, the captured files should not be allowed to be
leaked out. However, network analyses need to be performed outside the target networks in some
cases. This paper presents an approach to efficiently and quickly analyze a large number of network
behaviors. This is achieved by applying System Entity Structure (SES) theory. To speed up evalu-
ation time, a web-based distributed simulation approach over Service-oriented Architecture (SOA)
is applied. Discrete Event System Specification/Service-oriented Architecture (DEVS/SOA) is used
to deploy workloads into multi-servers, increasing overall system performance. A web-based dis-
tributed simulation contains two fundamental processes: distributing and analyzing among loosely
coupled models through message-passing methods. The distributed simulation – allocating distrib-
uting models inside networks and assigning analyzing models outside networks – also allows the
analysis of network behaviors out of networks while keeping important information secured.

Keywords: distributed simulation, service-oriented architecture, discrete event system specification,
system entity structure, intrusion detection system

SIMULATION, Vol. 00, Issue 0, Xxxxxxxx 2009 000–000
c� 2009 The Society for Modeling and Simulation International
DOI: 10.1177/0037549709354112
Figures 2, 14, 25–28 appear in color online:
http://sim.sagepub.com

1. Introduction

As a network’s uses, and especially the number of internet
users, increases rapidly, an efficient system for managing
large-network traffic datasets becomes an important issue.
Although there are several network traffic analysis (NTA)
tools, such as tcpdump, Ethereal, and other applications,

Volume 00, Number 0 SIMULATION 1

 SIMULATION OnlineFirst, published on November 12, 2009 as doi:10.1177/0037549709354112



Kim, Seo, and Zeigler

these tools are limited. Tcpdump is a powerful tool that
allows us to sniff network packets and perform statistical
analyses out of those dumps. One major drawback to tcp-
dump is the size of the flat file containing the text output.
The other weakness is that tcpdump runs under the com-
mand line. Ethereal is a tool for network protocol analysis,
software and protocol development, and educational pur-
poses. Because it is an open source project, many network
professionals around the world use Ethereal, and many re-
searchers support it by adding enhancements. The func-
tionality of Ethereal is very similar to the functionality
of tcpdump, but it runs under a graphical user interface
(GUI) front end. Ethereal has been supported by many
network professionals, so it has many functions, such as
protocol analysis, throughput analysis, and other statisti-
cal analyses. Ethereal is like a two-sided coin. It is very
powerful, but also very complicated. Ethereal requires an
initial learning curve but is a complete tool, and it is lim-
ited to running on local machines. In addition, Ethereal
uses complete data for every analysis. Accessing a big
data set requires memory overhead and is an inefficient
use of computational power. Although Ethereal is easier
to use than tcpdump, it still limits the size of the target-
analyzing files. Our experiments show that Ethereal can-
not analyze more than two days of network activities in
personal computers. To examine more than two days of
activities, network managers must control Ethereal by it-
erating capturing and analyzing processes periodically to
avoid excessive system memory uses.

In addition to the scalable problem (the size limitation
of the capture files), both tcpdump and Ethereal have se-
curity issues. Capture files, which are evaluated by either
tcpdump or Ethereal, include all of the packet information,
such as internet protocol (IP) addresses, protocol types,
packet size, and other fundamental attributes. As well
as basic network packet information, user identification
numbers (IDs) and passwords are also contained in the
captured files. Because the captured files hold secure in-
formation, tcpdump and Ethereal are allowed to monitor
network behaviors and to capture raw network traffic in-
side networks with special privileges on some platforms.
However, network analyses need to be performed outside
target networks in some cases. This means that monitoring
and capturing network behaviors are executed inside tar-
get networks, and evaluating network activities are com-
pleted out of the networks. To accomplish this distrib-
uted analysis, functionality should be deployed into multi-
ple machines. At the same time, high priority information
must be secured.

The main objective of this study is to propose an ap-
proach to deal with a large number of network behav-
iors being quickly and efficiently analyzed. The System
Entity Structure (SES) facilitates implementing a system
to achieve this goal. The SES is a theory for design-
ing structured information hierarchically and efficiently.
Specifically, the SES is very useful for data engineer-
ing. Firstly, we design a behavior that represents general

network activities. The behavior design is based on the
SES theory. Customers’ requests are not always same.
For example, some customers want to evaluate network
protocol uses. On the other hand, some users want to
measure network throughput. Depending on various re-
quirements (pragmatic frames), systems need to be op-
timized for fast and effective analyses. The SES helps
systems to be adaptively optimized. Accurate reactions
to users’ applications facilitate systems holding the right
data only. Therefore, we could analyze long-term network
activities, which Ethereal cannot evaluate. To speed up
evaluation time, we apply a web-based distributed simu-
lation methodology. A web-based distributed simulation
contains two fundamental processes: distributing mod-
els into multi-servers and simulating among loosely cou-
pled models through message-passing methods. Discrete
Event System Specification/Service-oriented Architecture
(DEVS/SOA) facilitates deploying workloads into multi-
servers and consequently increasing overall system per-
formance.

This paper includes theoretical background informa-
tion in Section 2. The same section introduces Discrete
Event System Specification (DEVS) formalism, the SES
theory, and pragmatic frames for representing data en-
gineering and web services. Section 3 states the prob-
lems found in previous studies. Section 4 illustrates de-
sign issues for implementing a distributed simulation for
a NTA system, the distributed SES-based Network an-
alyZER (SES/NZER), in detail. Section 5 presents the
DEVS/SOA. We present the models built, simulating a
distributed NTA system (protocols evaluation, network
throughput measurement, and intrusion detection systems
(IDSs)) based on DEVS formalism in Section 6. The ex-
perimental results are presented in Section 7. Lastly, we
conclude this paper by addressing future research works.

2. Theoretical Background

This section presents the relevant theoretical background
for web-based distributed simulation for network behav-
ior analyses over a service-oriented architecture. Firstly,
we present the DEVS, which is a mathematical formal-
ism for modeling and simulation (M&S). The SES is
introduced. The SES theorem is used for representing
real-world states (network behaviors). Web service and
Service-oriented Architecture (SOA) is provided, respec-
tively.

2.1 Discrete Event System Specification

The DEVS is a formalism providing a means of speci-
fying a mathematical object called a system [1]. It also
allows the building of modular and hierarchical model
compositions based on the closure-under-coupling para-
digm. The DEVS modeling approach captures a system’s
structure from both the functional and physical points of

2 SIMULATION Volume 00, Number 0



WEB-BASED DISTRIBUTED NETWORK ANALYZER USING A SYSTEM ENTITY STRUCTURE

view. A system is described as a set of input/output events
and internal states along with behavior functions regard-
ing event consumption/production and internal state tran-
sitions. Generally, models are considered as either atomic
or coupled. The atomic model can be illustrated as a black
box having a set of inputs (X) and a set of outputs (Y).
The Atomic model includes a description of the interface,
as well as the data flow between itself and other DEVS
models. The atomic model also specifies a set of internal
states (S) with some operation functions (i.e., the exter-
nal transition function (�ext), the internal transition func-
tion (�int), the output function (�), and the time advance
function (ta(�))) to describe the dynamic behavior of the
model.

The external transition function (�ext) carries the in-
put and changes the system states. The internal transi-
tion function (�int) changes the internal variables from the
previous state to the next when no events have occurred
since the last transition. The output function (�) gener-
ates an output event to outside models in the current state.
The time advance (ta(�)) function adjusts the simulation
time after generating an output event. The atomic model
is specified as follows:

M � �X� S� Y� �int� �ext� �� ta�
where X is the set of external input events, S is the set of
sequential states, Y is the set of outputs, �int : S � S : is
the internal transition function, and �ext : Q � Xb � S :
is the external transition function, where Q = {(s, e)	 s

 S, 0 � e � ta�s�}� is the set of total states, e is the
elapsed time since last state transition, Xb is a set of bags
over elements in X, � : S � Y : is the output function
generating external events at the output, and ta : S �
R�0� : is the time advance function.

Basic models may be joined in the DEVS formalism
to form a coupled model. A coupled model is the major
class that embodies the hierarchical model composition
constructs of the DEVS formalism [1]. A coupled model
is made up of component models, and the coupling re-
lations that establish the desired communication links. A
coupled model illustrates how to couple (connect) several
component models together to form a new model. Two
significant activities involved in coupled models are spec-
ifying its component models and defining the couplings
that create the desired communication networks. A cou-
pled model is defined as follows:

DN � �X� Y� D� �Mi �� �Ii�� �Zi� j �
�

where X is a set of external input events, Y is a set of
outputs, and D is a set of components names� for each i in
D, Mi is a component model and Ii is the set of influences
for I� for each j in Ii , Zi� j is the i-to-j output translation
function.

A coupled model template contains the following in-
formation [2]:

� the set of components�

� the set of input ports through which external events
are received�

� the set of output ports through which external events
are sent.

The coupling specification consisting of:

� the external input coupling (EIC) connects the input
ports of the coupled model to one or more of the
input ports of the components�

� the external output coupling (EOC) connects the
output ports of the components to one or more of
the output ports of the coupled model�

� the internal coupling (IC) connects the output ports
of the components to the input ports of the other
components.

2.2 System Entity Structure

The basic concept of the SES is that a system entity rep-
resents the real system enclosed within a certain choice of
system boundary. Many system entities and experimental
frames are dealt with in a real system. Thus, it is necessary
to organize the model and experimental frames around the
structure. The entity structure is a template from which
the decomposition trees of the existing models can be ex-
tracted. Moreover, the entity structure is a template for
constructing models from those already existing. The key
components that the SES consists of are as follows:

Entity: An entity is intended to represent a real world ob-
ject that either can be independently identified or is pos-
tulated as a component in some decomposition or a real
world object.

Aspect: An aspect represents one decomposition of an en-
tity. The children of an aspect are entities representing
components in a decomposition of its parents.

Specialization: A specialization is a mode of classifying
entities and is used to express alternative choices for com-
ponents in the system being modeled. The children of a
specialization are entities representing variants of their
parent.

To construct a desired simulation model to meet the
design objective, the pruning operation is used to reduce
the SES to a pruned entity structure (PES) [3]. The PES
can be transformed into a composition tree and eventu-
ally synthesized into a simulation model. Professor Zei-
gler proposed the SES [3, 4], which is a theory to design
systems hierarchically and structurally. The SES includes
entities and their relationships.

Volume 00, Number 0 SIMULATION 3



Kim, Seo, and Zeigler

Figure 1. Architecture for model and simulation-based data engi-
neering methodology [6]

Figure 1 illustrates the SES basic methodology of the
conceptual relationship between the SES representing on-
tologies and the implementation in the eXtensible Markup
Language (XML) [5]. First of all, the SES, which can
describe the components in the source data, is devel-
oped. The SES structure produces important information
to build the Document Type Definition (DTD) or schema.
Entity, aspect, multi-aspect, and specialization build the
primary components in the DTD or schema. At the ontol-
ogy level, the modeler develops one or more SESs depend-
ing on the models, and the SESs are merged to create an
ontology in order to satisfy the pragmatic frames of inter-
est in a given application domain. A SES can be specified
in various ways, and then it is transformed to an XML
schema or an XML DTD or XML Schema Definition
(XSD) at an implementation level. The pruning operation
of SESs creates PESs, and the PESs transform to simula-
tion models.

2.3 Web Services

A web service [7] is a software system for communicating
between a client and a server over a network with XML
messages called Simple Object Access Protocol (SOAP)
[5, 8]. The web service makes the request for machine-
to-machine or application-to-application communication
possible with neutral message passing, even though each
machine or application is not in the same domain. Such
interoperability among heterogeneous applications is re-
alized by the web service providing a standard means of
communication and platform independency.

Web services technologies architecture [9] is based
on exchanging messages, describing web services, and
publishing and discovering web service descriptions. The

messages are exchanged by SOAP messages conveyed by
IPs. Web services are described by Web Services Descrip-
tion Language (WSDL) [10], which is an XML-based lan-
guage providing the required information, such as mes-
sage types, signatures of services, and the location of ser-
vices, for clients to consume the services. Publishing and
discovering web service descriptions are managed by Uni-
versal Description Discover and Integration (UDDI) [11],
which is a platform-independent and XML style registry.
In other words, three roles are classified in the architec-
ture: that is, a service provider, a service discovery agency
(UDDI), and a service requestor. The interaction of the
roles involves publishing, finding, and binding operations.
A service provider defines a service description for a web
service and publishes it to a service discovery agency. This
operation is a publishing operation between the service
provider and the service discovery agency. A service re-
questor uses a finding operation to retrieve a service de-
scription locally or from a discovery agency and uses the
service description to bind it with a service provider and
invoke or interact with the web service implementation.
Figure 2 illustrates the basic web services architecture de-
scribing the three roles and operations with WSDL and
SOAP.

Whereas a web service is an interface described by
a service description, its implementation is the software
module provided by the service provider (server) in a
network-accessible environment. It is invoked by or in-
teracts with a service requestor (client).

Web services are invoked in many ways, but the
most common use of web services is categorized into
three methods, namely the Remote Procedure Call (RPC),
the SOA [12], and the Representational State Transfer
(REST) [13]. RPC web services was the first web services
approach that had a distributed function call interface de-
scribed in the WSDL operation. Although it is widely used
and upheld, it does not support a loosely coupled concept
due to the services being mapped directly to language-
specific functions calls. A web service is an implemen-
tation of SOA concepts, which means a message is an
important unit of communication regarded a ‘message-
oriented’ service. This approach supports a loose coupling
concept focusing on the contents of the WSDL. Web ser-
vice focuses on the existence of resources rather than mes-
sages or operations. Web service considers the WSDL as a
description of SOAP messaging over the Hypertext Trans-
fer Protocol (HTTP). The WSDL is implemented as an ab-
straction on top of the SOAP. REST is a style of software
architecture for distributed hypermedia systems, such as
the world wide web [14]. As such, it is not strictly a
method for building web services. REST is an approach
for getting information content from a web site by read-
ing a designated web page that contains an XML file that
describes and includes the desired content. REST is sim-
pler to use than the well-known SOAP approach, which
requires writing or using a provided server program and a
client program.

4 SIMULATION Volume 00, Number 0



WEB-BASED DISTRIBUTED NETWORK ANALYZER USING A SYSTEM ENTITY STRUCTURE

Figure 2. Web services architecture

Because the SOA environment provides languages and
platforms in a neutral system, the DEVS/SOA is used
to solve interoperability problems in the System of Sys-
tems (SOS) [15], as well as to provide a distributed
computing environment [16]. Seo and Zeigler [17] de-
veloped an interoperable DEVS/SOA system to simulate
DEVS models in different languages (e.g. DEVSJAVA
[18] and aDEVS [19]). The interoperable DEVS/SOA re-
quires DEVS simulator services, neutral message pass-
ing between the DEVS simulator services, and a DEVS
namespace [20]. It provides the multi-layered interoper-
ability introduced in Tolk et al. [21].

There are some researches using a SOA environ-
ment and Common Object Request Broker Architecture
(CORBA) to implement distributed and parallel simula-
tion. Wutzler and Sarjoughian [22] introduced the Shared
Abstract Model (SAM) to simulate DEVS models in dif-
ferent languages. The SAM emphasizes model interoper-
ability through the abstract model realized by CORBA to
provide communication channels between abstract mod-
els. This approach has limitations of partitioning and al-
locating a complex model on different machines. Yoo et
al. [23] used web services to implement Optimization
via Simulation (OvS) through Parallel Replicated Dis-
crete Event Simulation (PRDES). The web service can
contain an optimization module or a simulation module.

The web services with simulation modules are like busi-
ness processes. They receive input data from the opti-
mization module and send simulation results to a repos-
itory in the supporting server. Wainer et al. [24, 25] pro-
posed a distributed simulation engine named DCD++ us-
ing the DEVS, Cell-DEVS formalisms, and web service
technologies. The distributed simulation engine utilizes
web services to pass the models, simulation protocols, and
simulation messages. It employs the Java Native Interface
to allow the web service in a Java program to call and
to be called by native applications and libraries in other
languages (CD++). Each web service has a master coor-
dinator or a slave coordinator, and a simulator to reduce
message overheads.

2.4 Intrusion Detection System

In this section, we discuss an advanced concept, namely
intrusion detection evaluation. Widespread use of net-
worked computers has made computer security a serious
issue. Every networked computer, to varying degrees, is
vulnerable to malicious computer attacks that can result in
a range of security violations, such as unauthorized user
access to a system or the disruption of system services.
Traditionally, computer security approaches have focused
on preventing such attacks from occurring through the use

Volume 00, Number 0 SIMULATION 5



Kim, Seo, and Zeigler

of firewalls and security policies. However, for most sys-
tems, complete attack prevention is not realistically attain-
able due to system complexity, configuration and admin-
istration errors, and abuse by authorized users. For this
reason, attack detection has been an important aspect of
recent computer security efforts [26, 27].

IDSs are designed to detect computer attacks. They
monitor the activities of computers and networks for at-
tacks that are inevitable, despite security precautions. If
attacks are discovered, IDSs can alert administrators, de-
fend against the attacks, or provide information that may
help prevent future attacks. IDSs are not all equal in ca-
pability or reliability. A particular system may only de-
tect a specific subset of possible attacks. In addition, it
may have a different level of detection accuracy or a dif-
ferent false alarm rate than other systems. Results from
IDS evaluations allow users to make informed decisions
on what system to use and are extremely important for
guiding research. IDSs have become an essential compo-
nent of computer security to detect these attacks before
they inflict widespread damage. A review of current ap-
proaches to intrusion detection is available in Bishop et
al.’s article [28]. Some approaches detect attacks in real
time and can stop an attack in progress. Others provide
after-the-fact information about attacks and can help to
repair damage, understand the attack mechanism, and re-
duce the possibility of future attacks of the same type.
More advanced IDSs detect never-before-seen, new, at-
tacks, while the more typical systems detect previously
seen, known attacks.

While advances in network IDS development have led
to more stable network security, fast and effective analysis
methods are needed to save maintenance budgets and re-
cover from problems caused by attacks and anomalous be-
havior errors. These critical issues are yet to be addressed
due to the lack of appropriate frameworks. Indeed, IDS re-
searchers have difficulty in testing their algorithms before
applying them to real systems. In IDS testing, the main
problems are:

� Problem 1. Limitation of data storage:

– there are multitudes of events in networks and
hosts�

– each event includes many attributes of packet
information.

� Problem 2. Lack of analysis methods:

– difficulty in generating attacks�

– difficulty in implementing complete IDSs.

� Problem 3. Excessive resource consumption:

– existing systems require huge computational
resources in time (central processing unit
(CPU)) and space (memory).

A data engineering-based M&S framework is intended
to support the testing and evaluation of network IDSs.
Data engineering, supported by network ontology mod-
eling, enables our approach to be efficient in managing
and processing huge amounts of network traffic data. As
an example, the Knowledge Discovery and Data Mining
(KDD)’99 dataset was generated by the Lincoln Labora-
tory at the Massachusetts Institute of Technology (MIT)
for the purpose of testing network IDSs. The dataset
includes various attacks packet events, as well as nor-
mal transmissions. From this dataset, network traffic gen-
erators are produced automatically in response to cus-
tomers’ (IDS developers and testers) requirements. Dif-
ferent customers may need different attributes for their
particular IDSs (pragmatic frames). Including unneces-
sary data in packet information consumes computational
power and memory. This is the reason why we employ
a data engineering-based simulation framework for IDSs.
Our goal is to support a simulation framework for test-
ing and evaluating network IDSs. Ontology/data engineer-
ing methodology empowers our design to be efficient for
managing and using large-size data.

3. Problem Statements

The goals of a NTA are to help network administrators
to manage very complicated network topology and to in-
crease efficiency for secure and effective data transfer.
Network use, especially the number of internet users, is
increasing rapidly. In addition, a high quality of service
is required, and large-packet data need to be exchanged
among servers and clients to meet recent needs, in par-
ticular the high quality of services. As such, this high
quality requirement results in sudden network traffic in-
creases. As a result, designing efficient systems for man-
aging large-network traffic data becomes an important is-
sue. The ontology/data engineering methodology is used
to build an effective system for analyzing large amounts
of network traffic data. The SES/NZER is used to develop
a system that allows easy and efficient information shar-
ing among organizations. The SES and XML modeling
approaches allow systems to easily handle a huge amount
of data, and the two approaches facilitate the M&S study,
because the architecture of the SES is a hierarchical tree
structure. In addition, the characteristics of XML, such
as scalability and portability, are very good for managing
metadata. We compare execution times and measure sys-
tem memory (random-access memory (RAM)) usages be-
tween Ethereal and the SES/NZER. We use a half day, one
day, and two days of data to evaluate system performance
variations. Table 1 shows the measurements of memory
use and execution times for network protocol analyses. Ta-
ble 2 illustrates the experimental results for the throughput
evaluations.

The loading time of Ethereal refers to the time taken
to invoke the captured data file. The loading time of the

6 SIMULATION Volume 00, Number 0



WEB-BASED DISTRIBUTED NETWORK ANALYZER USING A SYSTEM ENTITY STRUCTURE

Table 1. Memory usages and execution times for protocol analysis

Ethereal SES/NZER

Half day One day Two days Half day One day Two days

Loading time 1 min 18 s 2 min 28 s N/A 5 min 28 s 10 min 44 s 20min 59sec

Num of events 1,063,803 2,045,700 N/A 1,063,803 2,045,700 4,091,400

Memory usage 706 MB 1323 MB N/A 98 MB 98 MB 98MB

Analyzing time 25 s 50 s N/A 5 min 29 s 10 min 58 s 22min 59sec

Table 2. Memory usages and execution times for throughput analysis

Ethereal SES/NZER

Half day One day Two days Half day One day Two days

Loading time 1 min 18 s 2 min 28 s N/A 5 min 32 s 11 min 27 s 22min 14min

Num of events 1,063,803 2,045,700 N/A 1,063,803 2,045,700 4,091,400

Memory usage 706 MB 1323 MB N/A 104 MB 104 MB 104MB

Analyzing time 19 s 55 s N/A 5 min 17 s 9 min 56 s 22min 13min

SES/NZER is the time spent generating PES XML doc-
ument files regarding users’ requests. The SES/NZER
takes a greater amount of time than Ethereal to load the
data to evaluate. In addition, Ethereal is faster to an-
alyze data than the SES/NZER. We noticed that both
loading time and analyzing time increase linearly corre-
sponding to the total number of events during the cap-
turing period. Tables 2 and 3 indicate that Ethereal is
faster than the SES/NZER. However, Ethereal is a com-
plete tool, so it should be run on a single machine only.
On the other hand, the SES/NZER is scalable to distrib-
uted environments. A web-based distributed SES/NZER
may reduce both loading data time and analyzing time
by deploying workloads. Ideally, run time decreases as
an inverse ratio of the number of servers. Ultimately, the
SES/NZER can be faster than Ethereal under distributed
environments. The important things we must see are the
values of memory use measurements. For half-day data,
Ethereal requires 706 MB of system memory (RAM).
As data size increases, the memory requirement of Ethe-
real increases linearly. However, the SES/NZER needs
98 MB of a system memory for half-day data, and the
memory requirement of the SES/NZER never increases
in correspondence to source data sizes. The SES/NZER
keeps the system stable. For two-day captured data, Ethe-
real cannot load the data and consequently cannot an-
alyze the network activities. Ethereal is shut down due
to memory overflow problems. On the other hand, the
SES/NZER can evaluate network behaviors, although it
takes time. Figure 3 illustrates the structural comparison
between Ethereal and the SES/NZER for one-day data
analyses. Tables 1 and 2 and Figure 3 present the rea-
son why developing a web-based distributed SES/NZER
is a promising research area of network analysis fields
for increasing computational power. Deploying workloads
naturally tends to make efficient use of memory caches,

Figure 3. Structural comparison between Ethereal and the
SES/NZER

as well as speeds up both data loading time and analysis
time.

The fact that the SES/NZER is more efficient in sys-
tem memory requirements than Ethereal facilitates the
SES/NZER in analyzing a large amount of data. However,
the SES/NZER is weak in evaluation speed. One solu-
tion to achieve feasible speed-up and efficiency is parallel
processing. Parallel processing consists of dividing data
into two or more smaller datasets, assigning datasets into
multiple processors, and processing multiple datasets in

Volume 00, Number 0 SIMULATION 7



Kim, Seo, and Zeigler

Figure 4. Divide and conquer SES/NZER

multiple processors simultaneously. Divide and conquer
(D&C) is an important algorithm design paradigm. D&C
was first introduced by Karatsuba [29] as an algorithm for
multiplying two n-digit numbers with an algorithmic com-
plexity O(n) on nlog2 3. The D&C scheme is also widely
used in parallel processing designs for reducing the com-
plexity of processors. D&C solves a problem easily by di-
viding a problem into two or more smaller problems. Each
of these smaller problems is solved, and the solutions for
the smaller problems are combined to produce a solution
for the original problem. Figure 4 shows a D&C scheme
for the SES/NZER.

The first step is the dividing process. A large amount of
source data are segmented by n numbers of small datasets.
Fragmented individual datasets are assigned to n numbers
of processors. Each processor analyzes its corresponding
dataset. The workload of each processor may be reduced
as an inverse ratio of the number of processors. Subse-
quently, all of the analyzed results of the processors are in-
tegrated together. This integrating of all of the results and
concluding with a final output is the conquering process.
This D&C approach requires not only segmentation over-
heads for dividing data, but also communication over-
heads for conquering all of the results. Even though there
are overhead disadvantages, this method includes two
strengths that overcome the disadvantages. One advantage

Table 3. SES/NZER versus distributed SES/NZER

SES/NZER Distributed SES/NZER

Locality Local host Distributed hosts

Parallelism None High

Process time Slow Fastest

Overheads No additional Data segment overheads
overhead Communication overheads

is that this approach enables applications, which need to
process a large amount of data and require high compu-
tational power in time (CPU) and in space (memory), to
be run on inexpensive personal computers rather than on
high-cost server machines. The other advantage is quick
evaluation time. Multiple processors execute their work si-
multaneously. Therefore, parallel processing methods re-
duce processing time compared to sequential processing
methods. In addition, the D&C approach may be applied
to distributed environments. Processors are deployed into
multiple machines that are connected by loosely coupled
links. Loosely coupled systems are harder to implement
than tightly coupled systems, because systems should be
synchronized for validation issues. However, once it is im-
plemented, each processor is independent to other proces-
sors, and none of the processor’s activities affect other
processors’ behaviors. In this paper, we use web service
schemes over SOA to construct distrusted environments.
This web-based distributed simulation increases indepen-
dency and decreases complexity in each host. Table 3 il-
lustrates comparisons between the SES/NZER and a web-
based distributed SES/NZER.

4. Design Issues

In this paper, we show two kinds of network behavior
analyses: generic network behavior analyses and special-
ized analyses. For generic purpose network behavior eval-
uation, a protocol analysis and throughput analysis are
examined. In addition, IDSs are evaluated for special-
ized cases. Figure 5 represents the hierarchical system
structure. A web-based distributed SES/NZER fulfills ei-
ther analyzing generic network traffic activities (protocol
analysis or throughput analysis) or evaluating an IDS.

Simplifying the complexity of models is necessary
in order to meet the required level of simulation per-
formance, since complexity constrains modeling to be
severely limited [1]. The complexity of a model can be
measured by the resources required by a particular simu-
lator to correctly interpret it. That is, complexity is mea-
sured relative to a particular simulator, or class of simu-
lators. Even though computers continue to become faster
and increase in memory, they are still not good enough to
make our models into reality. Successful modeling can be
seen as valid simplification. Simplifying or reducing the
complexity enables models to be executed in our limited

8 SIMULATION Volume 00, Number 0



WEB-BASED DISTRIBUTED NETWORK ANALYZER USING A SYSTEM ENTITY STRUCTURE

Figure 5. Distributed SES/NZER system hierarchy

resource (time and size) simulation environments. How-
ever, simplified models must be valid within some exper-
imental frame of interest. An experimental frame repre-
sents a specification of the conditions under which the
system is observed or experimented with. As such, an ex-
perimental frame is the operational formulation of the ob-
jectives that motivate a M&S project. Figure 6 shows the
pair of models involved. They are base and lumped mod-
els in an experimental frame.

The base model requires more resources in time and
size for interpretation than the lumped model. Moreover,
the base model is more valid within a larger set of ex-
perimental frames (with respect to a real system) than the
lumped model. As such, the lumped model might be just
as valid as the base model within a particular frame of in-
terest (a particular pragmatic frame). The concept of mor-
phism, a relation that places elements of system descrip-
tion into correspondences, provides criteria for judging
the equivalence of base and lumped models with respect
to an experimental frame. Base models include many el-

Figure 6. Base/lumped model equivalence in experimental frame

ements, but all of the elements in a base model are not
always required in pragmatic frames. Mapping a method-
ology from a base model to lumped models reduces the
number of elements included so that it increases compu-
tational power in time and size.

Volume 00, Number 0 SIMULATION 9



Kim, Seo, and Zeigler

Figure 7. SES for network traffic behavior

4.1 Network Behavior Design (Base Model)

In this section, we design network behaviors using SES
theory. The SES represents network traffic behaviors for
the purpose of a host-based analysis. Nine elements,
which are an event time, a source IP address, a source
Media Access Control (MAC) address, a source port num-
ber, a destination IP address, a destination MAC address, a

destination port number, a protocol, and packet length, are
examined in a NTA. These nine essential elements are in-
cluded in network packet headers. Categorizing these nine
elements is important for fast and accurate network behav-
ior evaluation and analysis. We use the SES methodology
to classify network packet information in the hierarchical
tree structure. Figure 7 is a hierarchical SES tree structure
representing network packet behaviors.

10 SIMULATION Volume 00, Number 0



WEB-BASED DISTRIBUTED NETWORK ANALYZER USING A SYSTEM ENTITY STRUCTURE

The root entity NetworkTrafficAnalysis is the top-
level entity that analyzes network traffic, and using the
NetworkTrafficAnalysis_spec, the NetworkTrafficAnalysis
can be implemented with the HostBaseAnalysis or the
NetworkBasedAnalysis. Since the aim of this example is
to analyze network traffic on hosts, we do not branch
the NetworkBasedAnalysis any further. The HostBased-
Analysis is composed of four entities: the Hosts, the Time,
the Protocols, and the PacketInfo. The Hosts is composed
of multi-Host, and the Host has an attribute identifying
the number of hosts, and that value is set as two be-
cause the Host is always composed of the SrcHost and
the DestHost. The SrcHost is composed of two entities,
such as the Addresses and the Ports. The Addresses can
be specialized as the IPAddress or the MACAddress using
the Addresses_spec. Both the IPAddress and the MACAd-
dress have their own attribute of the ip_address and the
mac_address. The Ports is composed of multi-Port, and
the Port has an attribute, the port_number. The DestHost
has the same tree structure as the SrcHost. One of the
HostBasedAnalysis’s children is the Time, and the Time
has an attribute of the event_time. Another child entity of
the HostBasedAnalysis is the Protocols, and the Protocols
have the protocol_type attribute. The Protocols can be im-
plemented with the Transmission Control Protocol (TCP),
the User Datagram Protocol (UDP), the HTTP, or the File
Transfer Protocol (FTP) using the Protocol_spec. Those
four entities have their own attribute, the protocol_name.
We filter and capture network traffic data related to four
very common protocols. The last entity of the HostBased-
Analysis’s children is the PacketInfo. In this study, we aim
to analyze throughputs so that the packet_size is the only
attribute of the PacketInfo entity.

This SES represents based models of both simulation
for network traffic analysis (SimForNTA) and simulation
for the IDSs in Figure 5. For the use of generic NTA simu-
lation, we monitor network activities and capture the fun-
damental packet information in a subnet of the Arizona
Center for Integrative Modeling and Simulation (ACIMS)
laboratory [30] in the department of electrical and com-
puter engineering at the University of Arizona. We use
the Ethereal [31], which is a well-known network pro-
tocol analyzer, for capturing network behaviors. Unlike
generic network behavior analyses, source data for IDS
simulation must include attack packet transmissions, as
well as normal packet transmissions. However, generating
attack packets is strictly prohibited even if it is for acad-
emic research purposes. Therefore, for the purpose of IDS
simulation, we use a KDD’99 dataset [32]. The MIT Lin-
coln Laboratory supported by the Defense Advanced Re-
search Projects Agency (DARPA) project [33] simulated
and generated a network traffic dataset, including attacks,
in 1998. This dataset has been widely used in the area of
computer network IDS research and is now regarded as
the standard. In addition, it is well known by the name
KDD’99 dataset, because KDD [34] processed the net-
work traffic data generated by the MIT’s Lincoln Labora-

tory and opened a contest. Many network researchers and
artificial intelligent researchers use this dataset for their
IDSs. The dataset includes two weeks (five days/week)
simulation data. Every day’s data set is huge, e.g., the first
week’s Monday data has 60,000 events. According to the
SES in Figure 7, the KDD’99 dataset is re-structured by
extracting required data, which map to the entities of Fig-
ure 7, from the full KDD’99 dataset.

4.2 Pragmatic Frames (Lumped Models)

Target network behavior analyses are defined by cus-
tomers. Every analysis should have a different set of infor-
mation with regards to users’ requests. These different re-
quests are pragmatic frames. Keeping unnecessary infor-
mation decreases computational performance. For speed
and effectiveness, customers’ requirements need to cre-
ate corresponding SESs that keep accurate entities and
attributes. Consequently, users’ target analyses must be
modeled and simulated based on the new SES and their
XML document instances (PESs). Newly created SESs
based on customers’ requirements (pragmatic frames) rep-
resent lumped models in a modeling point of view. The
unified processes, creating new SESs, and setting up sim-
ulation environments dynamically by assigning a lumped
model instead of a base model, which is shown in Fig-
ure 6, increase efficiency and automated factors.

4.2.1 Generic Network Behavior Analyses

We illustrate two cases of generic network behavior analy-
ses: protocols analysis and network throughput measure-
ment. The first analysis, evaluating the number of pack-
ets per protocols, requires two attributes of protocol
names and IDs. The second analysis, measuring network
throughput, needs event times and packet sizes.

Once the customers or users request a protocol usage
analysis, a new SES is created automatically as given in
Figure 8. The SES, ProtocolAnalyses, has a multi-aspect
of ProtocolAnalysis. The entity, ProtocolAnalysis, is com-
posed of two entities, ID and Protocol. ID has an attribute,
id_number, and Protocol has an attribute, protocol_type.

Figure 9 shows a SES for the network throughput eval-
uation. The SES name is ThroughputAnalyses. Through-
putAnalyses has a multi-aspect of ThroughputAnalysis.
ThroughputAnalysis is composed of EventTime and Pack-
etSize. EventTime has an attribute, event_time, and Pack-
etSize has an attribute, packet_size.

4.2.2 Intrusion Detection Systems

This study examines two intrusion detecting agents for
a LAND attack and a Ping of Death (POD) attack. The
LAND attack is a Denial of Service (DoS) attack that
consists of sending a special poison spoofed packet to a

Volume 00, Number 0 SIMULATION 11



Kim, Seo, and Zeigler

Figure 8. SES for protocol analyses

Figure 9. SES for throughput analyses

computer, causing it to lock up. The LAND attack oc-
curs when an attacker sends a spoofed synchronous (SYN)
packet in which the source address is the same as the des-
tination address [35]. This is a rather old attack, and cur-
rent patches should stop them for most systems. Symp-
toms of the LAND attack are different by operating sys-
tems. The LAND takes affect by slowing down operat-
ing speed, crashing and shutting down systems, or deny-
ing users access to services on machines. The LAND at-
tack is recognizable because IP packets with an identical
source IP address and a destination IP address must never
exist on a properly working network. Therefore, we need
two attributes, a source IP address and a destination IP ad-
dress, to detect LAND attacks. In addition to the source IP
address and the destination IP address, an attribute, event
time, is needed for diagnosis purposes. Figure 10 illus-
trates a SES for LAND attack detection.

The POD attack is a type of DoS attack in which the
attacker sends a ping request that is larger than 65,536
bytes, which is the maximum size that IP allows. While
a ping larger than 65,536 bytes is too large to fit in one
packet that can be transmitted, TCP/IP allows a packet to

Figure 10. SES for LAND attack detection

Figure 11. SES for POD attack detection

be fragmented, essentially splitting the packet into smaller
segments that are eventually reassembled. The POD at-
tack is relatively easy to carry out and very dangerous due
to its high probability of success. Operating system ven-
dors have made patches available to avoid the POD, but
many web sites continue to block Internet Control Mes-
sage Protocol (ICMP) ping messages at their firewalls to
avoid similar DoS attacks. An attempted POD can be iden-
tified by noting the size of all ICMP packets and flagging
those that are larger than 64,000 bytes [35]. However, the
KDD’99 dataset does not have the attribute of packet size.
The ICMP does not have a port abstraction. The ICMP
(ping, trace) is a layer 3 protocol suite within the TCP/IP
suite, and ICMP does not test any layer 4 or above func-
tions� therefore, it has no TCP/UDP layer 4 port number.
So, we may detect POD attacks with three attributes: a
source host port number, a destination host port number,
and a protocol. Figure 11 presents an SES for POD attack
detection.

4.2.3 Mapping

Once a new SES is generated to correspond to a cus-
tomer’s requirements, the next step is producing new PESs

12 SIMULATION Volume 00, Number 0



WEB-BASED DISTRIBUTED NETWORK ANALYZER USING A SYSTEM ENTITY STRUCTURE

based on the new SES. Firstly, we need to extract correct
data values from large PES instances (XML documents)
of a source SES. Then, newly customized PESs are gen-
erated with the extracted attribute values from the source
PESs. However, the problem is the case in which the struc-
tures of two SESs, a source SES and a target SES, are dif-
ferent. In this case, it is constrained from generating the
new PESs by transforming directly from the source PESs.
As a result, we must apply an alternative operation. Map-
ping enables the retrieval of required data values from the
source PESs and assigns the correct values to the target
PESs.

Mappings could be in two kinds of forms: transfor-
mations and restructurings. Transformations are mappings
from one representation to another and are referred to as
general mappings. Restructurings are mappings whose do-
main and range are the same. This means that a restructur-
ing changes the structure of an object without changing
the form in which it is expressed. A concept of equiva-
lence must support such restructurings, i.e., the before and
after structures must be equivalent with respect to some
aspect of interest to the modeler. Such restructurings apply
to reducing the size of a tree, which enables optimization
for finding the best representation of some given informa-
tion within a representation domain. This general restruc-
turing process eliminates labels, including those of aspect,
multi-aspect, and specialization. Eliminating such labels
in a schema for a SES reduces the amount of overhead in
carrying payload information. The resulting SES is equiv-
alent to the original in the sense that the same family of
PESs is defined. However, this mapping has a limitation
in that it is ‘not reversible’, because such restructuring
removes information that may be needed in downstream
processing of the transmitted data.

We design the SES, NetworkTrafficAnalysis, for the
generic purposes of network traffic behavior analyses as
described in Figure 7. New SESs are generated to cor-
respond to customers’ requirements. However, the prob-
lem is that the structures of the two SESs, the Net-
workTrafficAnalysis and one of the ProtocolAnalyses, the
ThroughputAnalyses, the LANDs, or the PODs, have dif-
ferent structures. Performing mapping operations results
in PES outputs, and the outputs are instances in XML doc-
ument format. Then, the PES XML instance files are used
as a role of input source data for M&S purposes.

5. Discrete Event System Specification
Service-oriented Architecture

5.1 Virtual Time DEVS Simulation on SOA

DEVS simulation on a SOA [36, 37] consists of three lay-
ers, namely model distribution, simulation, and simulation
result return. To support these layers, two services, the
MainSerivce and Simulation, are implemented. MainSer-
vice has four services: the Upload DEVS model, the Com-
pile DEVS model, the Simulate DEVS model, and the Get

Figure 12. Overall architecture of DEVS simulation on SOA

result of the simulation. The Simulation service covers the
DEVS simulation protocols. It has nine services: Initialize
simulator, Run transition in simulator, Run lambda func-
tion in simulator, Inject message to simulator, Get time of
next event from simulator, Get time advance from sim-
ulator, Get console log from all the simulators, Finalize
simulation service, and Get result of simulation.

Figure 12 represents the overall sketch of DEVS simu-
lation on SOA. As seen in Figure 12, this system has two
components: a client and some servers. Each server has
two services (MainService and Simulation) and the DEVS
M&S environment. The beginning of DEVS simulation on
SOA is to upload DEVS models to each server. A client
assigns each model to an available server that has two ser-
vices for the DEVS simulation. A main server assigned
to a top DEVS model becomes a coordinator during the
DEVS simulation. When the main server receives a re-
quest for an upload service from the client, the main server
requests an upload service to the others. If the upload ser-
vice is completed, the client requests a compile service to
be performed in the main server. The main server does the
same procedure as the upload service. After finishing the
compile request, the client sends a simulation request to
the main server. These procedures are displayed by solid-
line arrows among the components. This is the top layer
of the DEVS simulation on SOA.

The main server generates and stores proxies of simula-
tion services to which DEVS models are assigned as soon
as the simulation request is received. Each simulation ser-
vice holds an atomic model or atomic models on the stor-
age. In the case of a coupled model, there is a mechanism
of coupled model abstraction [36] to an atomic model with
a DEVS state machine because there is no support of the

Volume 00, Number 0 SIMULATION 13



Kim, Seo, and Zeigler

Figure 13. Example of XML object message handler

coupled simulation on the simulation service. Each sim-
ulation service sends messages to the main server encap-
sulating a coordinator according to the DEVS simulation
protocols. This is a middle layer of the DEVS simulation
on SOA, which is displayed by dotted-line arrows among
the servers.

After the completion of the simulation, the client sends
a request for the simulation results to the main server.
In the DEVS simulation in this paper, a collector DEVS
atomic model collects the simulation results sent from
each DEVS model on each server. The main server sends
the request for simulation results to the server possessing
the collector DEVS model, receives the results, and sends
the results to the client. This is a third layer of the DEVS
simulation on SOA, which is displayed by dashed-line ar-
rows between the client and the main server.

In this version of DEVS simulation on SOA, the client
has equipment for displaying the simulation results in
graphic charts. The results are stored in a file named re-
sult.txt, processed to data format, which the charts use as
an input.

The upload of models is done through serialization and
SOA technologies, and message passing is done through
XML style message and SOA technologies. Figure 13 is
an example of a DEVS message to an XML-style mes-
sage conversion. A DEVS message is a language-specific
object class, and the web service does not have an appa-
ratus to send an arbitrary object message to another ser-
vice because the web service supports only fixed struc-
tured messages defined in the WSDL. A DEVS message
is too dynamic to be defined as one type of class in the
WSDL. So, an XML object message handler is employed
to transform an object DEVS message to an XML-style
message. As seen in Figure 13, the structure of the DEVS

message consists of at least more than one contents con-
taining a port and Entity object. Entity objects can be any
type of object inherited by the Entity. This DEVS message
is converted to an XML-style message by the XML object
message handler.

The DEVS simulation on SOA is a centralized sim-
ulation done through a central coordinator, which is lo-
cated at the main server. Simulation begins with the coor-
dinator requesting nextTN to all simulation services. Af-
ter receiving all responses from all simulation services,
the coordinator sends minTN to all simulation services.
If any simulation service matches with minTN, the simu-
lation service produces an output message propagated to
the coordinator and sent to a simulation service or simu-
lation services according to the coupling information. The
output message is an XML-style message produced by an
XML object message handler. After the message sending
is finished, the simulation time is updated, and the coordi-
nator requests a delta function to all simulation services.
If there are some simulation services receiving a message
from the external models, they execute the external transi-
tion function. After that, the coordinator repeats the above
procedures until the simulation termination condition is
met.

Figure 14 illustrates the DEVS simulation on SOA that
is applied to a network behavior analysis example, which
is the case when a client wants to analyze protocol uses
and evaluate network throughput. There is a data extrac-
tion web service server inside a subnet. The server for a
data extraction web service captures network behaviors
and stores the network activities in a database. There are
three servers: server 1 acts as a coordinator, server 2 an-
alyzes protocol uses, and server 3 measures the network
throughput out of the subnet. The four servers (one in

14 SIMULATION Volume 00, Number 0



WEB-BASED DISTRIBUTED NETWORK ANALYZER USING A SYSTEM ENTITY STRUCTURE

Figure 14. A network behavior analysis using DEVS/SOA

the subnet and three out of the subnet) are linked under
the DEVS/SOA environment. The two servers (the pro-
tocol analysis server and the throughput analysis server)
receive customized data for specific analysis from the
data extraction server. The customized data are relatively
size compared to the original data, which is stored in the
data extraction server. Deploying workloads into multi-
ple machines (assigning protocol analysis to server 2 and
throughput analysis to server 3) reduces the computa-
tional burden of servers. Small-size customized data de-
creases communication overheads among servers and a
small amount of data is effective in analyzing the data.
These two factors, distributed workloads and small-size
customized data, enable clients to obtain simulation re-
sults quickly and efficiently.

5.2 Real Time DEVS Simulation on SOA

The other approach of DEVS simulation on SOA is real-
time simulation in which the next time for occurring in-
ternal transition passes by real time. Real-time simulation
requires timely completion in physical time for the exe-
cution of a simulated model and it has been researched
in various domain areas. Real-time DEVS (RT-DEVS)
is employed to verify that the interactions among model
components are correct in their relation to real time. Un-
like virtual time simulation, time synchronizes simula-
tion protocol to simulate DEVS models on SOA, and

RT-DEVS simulation has the minimum network activ-
ity among simulators, because the simulators only invoke
web services at the time of the propagation of out mes-
sages. In addition, it is a decentralized simulation be-
cause there is no coordinator to supervise all RTSimula-
tors. Each RTSimulator follows a procedure to simulate
their DEVS model without intervention for synchroniza-
tion.

Figure 15 represents the overall structure of the RT-
DEVS simulation system on SOA. As seen in the figure,
each server participating in the simulation has two web
services similar to centralized simulation. However, some
functions in the simulation service, and classes such as the
RTCoordinator and the RTSimulator, are added to sup-
port real-time simulation. The RTCoordinator used in the
MainService and the RTSimulator used in the Simulation
are made of multi-threads. The RTCoordinator generates
proxies for Simulation services with DEVS models and
coupling information that contains port names and ad-
dresses in which DEVS models are placed, and runs the
RTSimulators in the Simulation services. Real-time sim-
ulation begins with a client program, such as centralized
simulation on SOA. The solid lines in Figure 15 represent
uploading files, compiling the files on each server, and ex-
ecuting RTSimulators on Simulation services. The dashed
lines show out-message passing routes.

Figure 16 depicts RT-DEVS simulation protocol. The
protocol starts with the initialization of the DEVS mod-
els in the RTSimulators. Each RTSimulator waits for pass-

Volume 00, Number 0 SIMULATION 15



Kim, Seo, and Zeigler

Figure 15. Overall architecture of RT-DEVS simulation system on SOA

Figure 16. Real-time simulation protocol

ing event time (tN), after which internal transition occurs.
If one of the RTSimulators has wall-clock time equal to
tN, the RTSimulator executes an internal transition func-
tion consisting of the lambda function, which produces
an out message, the propagation function, which sends
the out message to other RTSimulators according to cou-
pling information, and the delta function, which handles
internal and external events. RTSimulator2 in Figure 16
shows ‘send out message’ after internal transition and wait
again with tN regenerated by the delta function. Mean-

while, RTSimulator1 receives a message from the RTSim-
ulator2, executes the external transition function having
the delta function, and recalculates tN to wait. The inter-
action between RTSimulator2 and RTSimulator1 does not
affect RTSimulator3. The way to influence other simula-
tors is by sending messages.

Although RT-DEVS simulation has minimum network
traffic, in the case of network delay and a tiny value of tN,
the simulation might fail to get the correct results because
of the distorted protocol. To filter the problem, it is impor-

16 SIMULATION Volume 00, Number 0



WEB-BASED DISTRIBUTED NETWORK ANALYZER USING A SYSTEM ENTITY STRUCTURE

Figure 17. Distributed DEVS simulation

tant to know the threshold value of tN in order to for the
RT-DEVS simulation to complete or speed up. However,
it is difficult to select a safe threshold value of tN, since it
is dependent on simulation environments, such as system
performance, network throughput, etc.

6. Distributed Discrete Event System
Specification Models and Simulators

A distributed SES/NZER is different to classic single-
machine DEVS simulation. In this section, we illus-
trate how DEVS models, which are deployed in multi-
ple machines in networks, can be simulated. Distributed
DEVS models have components (DEVS atomic models
and DEVS coupled models) of a DEVS coupled model
that are distributed on several host computers. Figure 17
shows the distributed DEVS simulation that applies to
both virtual-time and real-time simulations.

For distributed DEVS simulation, there must be a con-
troller, a coordServer, which manages a whole simula-
tion cycle and synchronizes all of the distributed simula-
tors. The coordServer is responsible for passing messages
among distributed simulators, as well as for advancing the
DEVS models that are dispersed in the networks. The co-
ordServer could be in a host that also holds a distributed
simulator, or the coordServer could stay on an indepen-
dent machine. Distributed machines, which include DEVS
atomic models or DEVS coupled models, need simulators,
clientSimulators for atomic models or clientHieSimulator
for coupled models, on the machines. The clientSimula-
tor is responsible for simulating a local DEVS atomic
model. The clientHieSimulator is responsible for simulat-
ing a local DEVS coupled model, and there is a coupled-

Figure 18. DEVS modeling: SimForNTA

Simulator to take care of a local DEVS atomic model.
The coordServer creates simulatorProxys that facilitate
the coordServer communicating with the corresponding
clientSimulators or clientHieSimulators. In addition, all of
the distributed components, the coordServer, the simula-
torProxys, the clientSimulators, and the clientHieSimula-
tors, have their own thread. Figure 18 shows an example
of DEVS modeling for a SimForNTA.

The top level of a coupled model is a SimForNTA. The
SimForNTA is composed of two coupled models, NTA 1
and NTA 2, and three atomic models, Distribute 1, Dis-
tributor 2, and Collector. Two sub-coupled models (NTA
1 and NTA 2) include their own components (an Extractor
and an Analyzer). To achieve a fast analysis time, we ap-
ply the D&C approach. The whole job is divided by two,
and each divided work is assigned to different processors.
The Distributor 1 and the NTA 1 evaluate one half of the

Volume 00, Number 0 SIMULATION 17



Kim, Seo, and Zeigler

Figure 19. Distributed DEVS simulators and models for SimForNTA

whole work, and, at the same time, the Distributor 2 and
the NTA 2 examine the other half of the whole job. Subse-
quently, the Collector model gathers the analyzed results
from the two processes. We assign all of the models to
different computers that are connected in the networks.
Figure 19 illustrates a hierarchically structured distributed
DEVS simulator and the corresponding DEVS models.

In this example, the top level coupled model, the Sim-
ForNTA, two sub-coupled models, NTA 1 and NTA 2, and
three atomic models, Distributor 1, Distributor 2, and
Collector, are distributed into six computers. The coord-
Server for SimForNTA creates five simulatorProxys. Each
simulatorProxy helps the coordServer to communicate
with its corresponding clientSimulator or clientHisSimu-
lator. In distributed DEVS simulation, the top-level cou-
pling information is kept by the coordServer. The cou-
pling information is downloaded to each simulatorProxy,
and each clientSimulator or clientHieSimulator does not
know the coupling information. The coordinator controls a
whole simulation cycle and helps to pass messages among
clientSimulators or clientHieSimulators. If the Distributor
1 wants to send a message to the NTA 1, the clientSimu-
lator 1 sends the message to simulatorProxy 1 over net-
works. Consequently, the coordServer decides the target
host according to the top-level coupling information and
puts the message to the simulatorProxy 2. Finally, the
message is delivered to the NTA 1 in the clientHisSimu-
lator 1. Sending messages among DEVS models in a dis-
tributed computer requires network communication over-

heads. However, each clientHieSimulator keeps its local
coupling information. As a result, messages are transmit-
ted directly among coupledSimulators, not through simu-
latorProxys. For example, if the Extractor 1 needs to send
a message to the Analyzer 1, the coupledSimulator 1 puts
the message directly to the coupledSimulator 2. There-
fore, there are no network communication overheads in
this case.

Although coordServer, simulatorProxys, clientSimula-
tors, and clientHieSimulator have their own thread, the
slowest thread determines the overall simulation speed
in the D&C mechanism, because the D&C is a pipeline
with a divider, processors (in parallel), and a compiler,
so the slowest one of these stages determines the overall
speed. Therefore, speeding up all of the threads is impor-
tant and reducing the communication overhead over net-
works is also a critical issue in distributed simulation en-
vironments.

Even though a distributed SES/NZER follows a decen-
tralized distributed DEVS simulation scheme, couplings
among components (DEVS atomic models and DEVS
coupled models) keep the function as a single-machine
DEVS. For example, a coupled model, coupledModel, is
composed of three atomic models: atomicModel 1, atom-
icModel 2, and atomicModel3, so we could assign atom-
icModel 1 to host 1, atomicModel 2 to host 2, atomic-
Model 3 to host 3, and the coupledModel to host 4 or one
of the hosts that hold the atomic models. Therefore, the
coupledModel controls synchronization among the atomic

18 SIMULATION Volume 00, Number 0



WEB-BASED DISTRIBUTED NETWORK ANALYZER USING A SYSTEM ENTITY STRUCTURE

Figure 20. Basic DEVS simulation protocol

models. There must be message transmissions to control a
whole DEVS simulation cycle.

The most considerable factor in distributed simulation
over the web is how to reduce communication overheads.
A distributed SES/NZER is performed under loosely cou-
pled environments over the web and the DEVS is used for
the simulation engine. To advance the simulation cycle,
the basic DEVS simulation protocol requires five message
transmissions, nextTN, outTN, getOut, sendOut, and ap-
plyDelt, among a coordinator and simulators. The DEVS
protocol is described below and in Figure 20:

The coordinator sends a nextTN message to request the
next event time (tN) from each of the simulators.
All of the simulators reply with their tNs in an outTN mes-
sage back to the coordinator.
The coordinator sends to each simulator a getOut message
containing the global tN (the minimum of the tNs).
Each simulator checks if it is imminent, which means its
tN is equals to the global tN, and if so, returns an output
of its model in a message to the coordinator in a sendOut
message.
The coordinator uses the coupling specification to distrib-
ute the outputs as accumulated messages back to the simu-
lators in an applyDelt message to the simulators. For those
simulators not receiving any input, the messages sent are
empty.

The basic DEVS simulation protocol is illustrated in Fig-
ure 20. If a coupled model and all of the atomic models
are assigned in different machines that are connected in
networks, the DEVS protocol overheads may exceed the
advantage of the distributed simulation deploying work-
loads. Diminishing the number of DEVS protocol mes-
sages among computers results in decreasing communica-
tion overheads. Therefore, we may expect an overall speed
up. In an effort to reduce DEVS protocol overheads, we
apply two approaches: closure under coupling and mini-
mizing the number of states. The closure under coupling
allows us to use the networks of systems as components in

Figure 21. Closure under coupling

a larger coupled system, leading to hierarchical, modular
construction [1]. This means that every coupled model is
behaviorally equivalent to a basic atomic model.

Figure 21 presents the closure under coupling. The
coupled model NTA is composed of two atomic mod-
els: the Extractor and the Analyzer. The closure under
coupling makes these three DEVS components become
one component, the NTA atomic model. We translate the
coupling information of the coupled model, NTA, into a
flat-structured atomic model, NTA. By this translation,
the hierarchical structure of the DEVS model can be
flattened. Message exchanges consume a large amount of
time if the model structure is complex in distributed en-
vironments. On the other hand, if the model hierarchy is
flattened, communication overheads among models can
be minimized. Therefore, a flat-structured modeling ap-
proach facilitates reducing the number of messages, and
we can achieve better performance results [38, 39]. In
DEVS/SOA environments, a coorServer creates simula-
torProxys – as many as the number of total models. Even
though, the coupled model, NTA, and two atomic mod-
els, the Extractor and the Analyzer, are assigned into one
computer with single IP address, a coordServer creates
three simulatorProxys. Therefore, the coordServer needs
more processing time to decide a destined simulatorProxy
among three simulatorProxys for a message. If the atomic
model NTA replaces the three component DEVS models,
only one simulatorProxy is created by the coorServer. As
a result, we could obtain a speed up. Figure 22 shows
that the closure under coupling decreases the number of
simulatorProxys and simplifies the DEVS simulation ar-
chitecture. Figure 22(a) illustrates a simulation environ-
ment before DEVS models are refined, and the right figure
presents the refined DEVS model.

In addition to the effort of reducing the number of
DEVS models (atomic models and coupled models), we
decrease the number of state transitions in atomic models.
For each simulation cycle, there are five message trans-
missions between a coordServer and clientSimulators or
clientHieSimulators. The processing time for these DEVS
protocol message transmissions should not overwhelm the
processing time of the processor. An atomic model of the
SES/NZER loads PES XML documents and analyzes one
tuple of information at one state transition. This approach
needs many state transitions according to the number of
tuples in the PES XML files. For example, there are ten
PES XML files, and each PES XML file includes 1,300

Volume 00, Number 0 SIMULATION 19



Kim, Seo, and Zeigler

Figure 22. DEVS model comparison under the DEVS/SOA environment

Figure 23. State transition diagram in the SES/NZER

tuples of information. Then, there must be 13,020 state
transitions. The 13,020 transitions include 10 state transi-
tions (the extract state to the analyze state) after loading
the PES XML documents, 1,300� 10 iterative transitions
(the analyze state to the analyze state) for evaluating all of
the tuples in the 10 PESs, and 10 transitions (the analyze
state to the extract state) to load the PES files. Figure 23
shows these state transitions.

A coordinator sends and receives a total of 65,100 (5�
13,020) message transmissions only for DEVS protocol
processing. Although the size of a DEVS protocol mes-
sage is trivial, 65,050 message transmissions is a consider-
able number. For distributed simulation, if workloads are
distributed to five computers, the total number of DEVS
protocol messages is 325,500 (5 � 65,100). In this case,
the communication overhead is too great for only advanc-
ing simulation cycle. So, we fit the SES/NZER’s atomic
models to a distributed simulation. A NTA atomic model
of the distributed SES/NZER loads PES XML files and

Figure 24. State transition diagram in the distributed SES/NZER

evaluates a complete PES document at one state transi-
tion. Therefore, the total number of state transitions in this
example is 20. The 20 transitions include 10 state tran-
sitions (the extract state to analyze state) for loading 10
PES files and 10 state transitions (the analyze state to the
extract state) after examining all 10 datasets. Figure 24
illustrates an updated state transition diagram for the dis-
tributed SES/NZER.

Reducing the number of state transitions results in de-
creasing communication overheads, which are caused by
passing DEVS protocol messages. Respectively, we could
speed up the overall simulation time over network envi-
ronments. Lee’s PhD dissertation [40] discusses the effect
of quantization in distributed DEVS/High-level Assembly
(HLA) environments. In addition, communication latency
and an overhead reduction technique in distributed inter-
active simulation are introduced through an approach of
bundling the Protocol Data Unit (PDU) [41].

20 SIMULATION Volume 00, Number 0



WEB-BASED DISTRIBUTED NETWORK ANALYZER USING A SYSTEM ENTITY STRUCTURE

Figure 25. Testbed for distributed simulation using DEVS/SOA

7. Experimental Results

We set up a testbed for a distributed simulation environ-
ment in the ACIMS laboratory as shown in Figure 25. We
installed Apache Tomcat 6.0 on six computers (four desk-
top computers and two laptop computers) with the Win-
dows XP operating system. Apache Tomcat is a servlet
container that is used in the official Reference Implemen-
tation for the Java Servlet and JavaServer Pages technolo-
gies [42]. We installed an Apache Axis2/Java web service
engine [43]. Apache Axis2 is the core engine for web ser-
vices, and it is an implementation of the World Wide Web
Consortium (W3C) SOAP.

We monitored and captured network activities inside
the ACIMS laboratory subnet and we used the captured
data for generic network behavior analyses, such as pro-
tocol evaluation and throughput measurement. For the in-
trusion detection analyses, the KDD’99 dataset was used
as source data.

7.1 Network Traffic Analysis

This section presents the experimental results for a generic
network behavior analysis. We preset two analyses, pro-
tocol and throughput analyses, in a user’s request input
system (shown in Figure 26). According to target analy-
ses, the corresponding required attributes are selected au-
tomatically. Alternatively, users could choose attributes if
they wanted to evaluate their specialized target analyses.
Target analyses selections generate new SESs. The newly
generated SESs act like agents, so overall simulations are
controlled by these new SESs. The deciding time frames
are next and, finally, the customers select the degree of
parallelism, which is the number of computers for dis-
tributed simulations. Requests, which are combinations
of target time frames and the number of simulation ma-
chines, create new DEVS coupled models. Data is parti-

Table 4. Data size comparisons for NTAs

Data Original PES for protocol PES for throughput

Half day 2.83 GB 168 MB 200 MB

One day 5.44 GB 326 MB 387 MB

Two day 10.8 GB 646 MB 770 MB

tioned by the number of hosts, and each portion of the
data is assigned to corresponding computers. A simula-
tion model partitioning approach in distributed simulation
is proposed and implemented in Zhang’s PhD dissertation
[44]. The next step is assigning DEVS models into dis-
tributed computers. Once a top-level coupled model is se-
lected, this selection holds the top-level coupled model’s
following child components. After allocating models into
dispersed machines, a simulation starts to examine users’
requests. Figure 26(b) shows the processes of choosing a
top-level coupled model and assigning models into dis-
tributed servers.

The original data sizes for half a day, one day, and two
days are 2.83, 5.44, and 10.8 GB. Instead of keeping all
of the attributes, the PES XML documents for protocol
analysis hold two attributes: a packet ID and a protocol
type. So, the PES file sizes are 168, 326, and 646 MB.
Their sizes are about 6% of the original data size. The
PES files for throughput evaluation include two attributes,
an event time and a packet size, and their sizes are 200,
387, and 770 MB. The ratio is about 7%. Table 4 presents
the data size comparisons between original data and the
PES data for the NTAs.

In addition to measuring the data size, we examined
the execution times of half a day, one day, and two days of
data of both the protocol analysis and the throughput mea-
surement by varying the degree of parallelism (number of
computers for analysis). We experimented with four sorts
of server sets: a local machine, two machines (one dis-
tributing server and one analyzing server), four machines
(two distributing servers and two analyzing server), and
six machines (three distributing servers and three analyz-
ing servers). The execution time was composed of three
sub-times: the time for distributing the data to the servers,
the time for evaluating the received data at the analyz-
ing servers, and the time for collecting and displaying the
evaluated results at a client computer.

For three different datasets, we measured three kinds
of times: the distributing data time, the analyzing data
time, and the collecting resulting data time. We measured
the execution times at four different sets of computers: a
local computer, one distributing data computer and one
analyzing data computer, two distributing data comput-
ers and two analyzing data computers, and three distrib-
uting data computers and three analyzing data comput-
ers. We notice that the distributing times increase grad-
ually as the number of distributed computers increases.
Ideally, distributing times must decrease in the counter ra-

Volume 00, Number 0 SIMULATION 21



Kim, Seo, and Zeigler

Figure 26. Snapshot of the distributed SES/NZER

Table 5. Execution time comparisons between virtual-time and real-time simulations

Analysis Protocol analysis Throughput analysis

Simulation time Virtual time Real time Virtual time Real time

Distributing time 33 min 21 s 7 min 37 s 42 min 14 s 10 min 4 s

Analyzing time 3 min 56 s 36 s 3 min 58 s 37 s

Collecting time 2 s 1 s 1 s 1 s

Total 37 min 19 s 8 min 14 s 46 min 13 s 10 min 42 s

tio of the number of hosts. However, communication over-
heads (data messages and DEVS protocol messages) pre-
vent us from achieving optimal results. We see that an-
alyzing data times are reducing as the number of com-
puters is increasing. Unlike distributing times, analyzing
times are not affected by network communication over-
heads. Because collecting resulting data times are one or
two seconds in most cases, we could forgo the collect-
ing times for comparing execution times. We also experi-
mented with real-time simulation. Because each simulator
in each different machine has its own simulation time, and
the overall execution time is not affected by the commu-
nication overheads that are caused by the DEVS protocol
messages and data messages between a centralized coor-
dinator and distributed simulators, we achieve speed up
when comparing to virtual-time simulation.

Table 5 shows execution time comparisons between
virtual-time simulations and real-time simulations. In the
virtual-time DEVS/SOA simulation, all of the simula-
tion servers are controlled by a top-level coordination

server for advancing discrete events and passing mes-
sages among simulation servers, even though each simu-
lation server runs by itself and does not affect the other
simulation servers. This is a centralized approach, and
this simulation causes time delay. The overall simulation
speed fits to the slowest server’s evaluating time. In addi-
tion, there must be many sets of message transmissions,
nextTN, outTN, getOut, sendOut, and applyDelt, between
a top-level coordinating server and the model simulat-
ing servers for the DEVS protocol. These DEVS proto-
col messages are another cause of degrading simulation
speed. To overcome these limitations of virtual-time simu-
lation, RT-DEVS/SOA simulation is applied, and, finally,
we accomplish the goal of distributed simulation, and
speed up execution times, through real-time simulation.
Figure 27 illustrates the real-time simulation results for
both protocol and throughput analyses.

22 SIMULATION Volume 00, Number 0



WEB-BASED DISTRIBUTED NETWORK ANALYZER USING A SYSTEM ENTITY STRUCTURE

Figure 27. Real-time simulation results for network behavior analyses

7.2 Evaluations of Intrusion Detection Systems

Recall that we built two IDS agent models: the LAND
agent and the POD agent. As illustrated in Section 7.1.,
after customers’ requests, which select a target IDS, the
time frames (start time and end time) and a degree of par-
allelism (the number of distributed computers for analy-
sis) are applied through an input system. Users could as-
sign simulation models into multiple servers according to
the selected degree of parallelism. Firstly, we measured
the data sizes. The original source data size for two weeks

(five days a week) is 4.12 GB. The pruned data size for
the LAND IDS, which includes even times, source host
IP addresses, and the destination host IP addresses size, is
368 MB. The data size for the POD IDS is 437 MB. These
PES data sizes are about 9%t (LAND) and 10% (POD) of
the original KDD’99 dataset. Table 6 presents the data size
comparisons for IDS evaluations.

In addition, we observed the IDS evaluating times of
both the LAND attack and the POD attack using the two
weeks of the KDD’99 dataset. We differentiated the num-
ber of computers as for the experiment for generic NTA.

Volume 00, Number 0 SIMULATION 23



Kim, Seo, and Zeigler

Figure 28. Real-time experimental results of IDS analyses

Table 6. Data size comparisons for IDS evaluations

Original PES for LAND PES for POD

Source data 4.12 GB 368 MB 437 MB
(2weeks)

We achieved similar execution times to those in Sec-
tion 7.1. In the virtual-time simulation, we noticed that
distributing data times are increased as the number of
evaluating machines increased, which is due to overheads
(network packet transmission delays and DEVS protocol
message overheads). Next, we noticed that the analyzing
times are increased. In the real-time simulation, both the
distributing times and the analyzing times decreased as the
number of computers increased. Therefore, we achieved
fast total execution times in the real-time simulation. The
experimental results of the real-time simulation of IDS
analyses are presented in Figure 28.

Figure 28 illustrates that we achieved a speed up of the
total execution times in the real-time simulation. The ex-
perimental results in this section show that a distributed
SES/NZER reduces data sizes in terms of different cus-
tomers’ requests in both virtual-time and real-time simu-
lations. In addition, a distributed SES/ZER speeds up an-
alyzing times by dividing a whole workload into several
small jobs and deploying the small jobs into multiple ma-
chines. In addition, we achieved fast execution times in
real-time simulations, since real-time simulations reduce
the message transmission delay overheads that occur in
virtual-time simulations.

8. Discussion

This study proposes a web-based distributed simulation
for NTAs over a SOA. The main objective of this study

was to develop an approach for quick and efficient net-
work behavior analysis. To deal with large numbers of
network behaviors being quickly and efficiently analyzed,
the SES theory was applied. The SES facilitates imple-
menting a system to achieve our main goal. The SES is
a theory for designing structured information hierarchi-
cally and efficiently. Specifically, the SES is very use-
ful for data engineering. We designed a generic network
behavior in SES format. We must notice that every cus-
tomer has different requests (different applications). For
example, some customers want to evaluate network pro-
tocol uses. On the other hand, some users want to mea-
sure network throughput. Depending on various require-
ments (pragmatic frames), systems need to be optimized
for the pragmatic frames to speed up analysis time ef-
fectively. Two processes that create a new SES to corre-
spond to users’ requests and enable systems to be adap-
tively optimized are pruning operations and mapping the
newly generated SES with the pre-defined SES, which
represents a generic network packet behavior. Reactions to
pragmatic frames facilitate systems keeping accurate data
only, so we are able to reduce overall data size. There-
fore, we could analyze extensive long-term network ac-
tivities, which Ethereal cannot do. Although we enabled
large amounts of data to be examined, we still needed a
long evaluation time. To speed up the evaluation time, we
applied a web-based distributed simulation approach over
a SOA. Deploying workloads into multiple machines de-
creases the burdens of individual computers, and results
in the hosts, which have low computational powers (CPU
and memory), participating in large-scale simulations. As
a result, there is no longer any need for super comput-
ers. The DEVS/SOA facilitates deploying workloads into
multi-servers, and, consequently, increasing overall sys-
tem performance.

In this study, we built two IDS agent models, the
LAND attack agent and the POD attack agent, and evalu-

24 SIMULATION Volume 00, Number 0



WEB-BASED DISTRIBUTED NETWORK ANALYZER USING A SYSTEM ENTITY STRUCTURE

ated the two models. One advantage of the SES/NZER is
that it provides a simulation framework for testing IDSs.
The SES/NZER is available for IDS researchers to test
their algorithms. IDS researchers build their models cor-
responding to their IDS algorithms, and they request the
necessary attributes to evaluate their models. Other re-
quired models for simulations are provided. In addition
to this scalability, the SES/NZER should include more
pre-defined models, which are agents to detect various
intrusions. Intrusions are classified into five kinds: DoS
attacks, User to Root attacks, Remote to Local attacks,
Probe attacks, and Data attacks. If the SES/NZER were
capable of more functions, it could give more convenience
to users as a concrete tool. Intrusion detection algorithms
should reserve specific policies. Each attack signature (at-
tack detection policy) needs a different set of information
to detect a corresponding attack. If IDS developers want to
examine whether their IDS algorithms work well, the nec-
essary attribute values in the network packet headers must
be provided. According to researchers’ target IDS algo-
rithms, new SESs, which represent the required attributes,
have to be generated, and, subsequently, the new SESs are
used for pruning entities and mapping to the generic net-
work behavior SES, which is described in Figure 7. For
example, in detecting an Apache2 attack it is necessary
to scrutinize whether the packet headers with HTTP GET
requests with the header ‘User-Agent: sioux�r�n’ are over
a certain number [35]. A typical HTTP request contains
20 or fewer headers in most systems. Therefore, a corre-
sponding SES must hold three entities: the protocol type,
the source IP address, and the packet header information.
Similar to this Apache2 attack example, new SESs are
generated when researchers ask to analyze the other in-
trusions. In addition to these specific IDS cases, general
cases must be covered too, because new intrusions are be-
ing created constantly. To achieve accurate results for both
non-specified general analyses and totally new attacks, we
need to extend the generic network behavior SES shown
in Figure 7 by including more entities, such as the Inter-
net Header Length (IHL), the Type of Service (TOS), the
Time to Live (TTL), the header checksum, and other ob-
tainable attributes from the packet headers, into the SES.
As a result, IDS developers may have better opportunities
to evaluate precisely their algorithms.

9. Conclusion and Future Works

Recently, network uses have been increasing rapidly.
Therefore, the size of data, which is caused by network ac-
tivities, is getting larger. Network administrators or man-
agers need NTA tools that can produce results quickly
and accurately. There are several NTA tools, such as tcp-
dump, Ethereal, and other applications. However, these
tools have drawbacks, namely limited data size and com-
plications (large system memory and huge computational
power requirements). In addition to these problems, the

currently existing tools are limited to performing inside
networks, due to security issues. The dump files that are
monitored and captured by these tools include secure in-
formation, such as user IDs, passwords, and other infor-
mation. These secure attributes must be protected against
abnormal accesses, so observing network activities from
outside the networks should be prohibited. However, net-
work behaviors need to be analyzed outside the target net-
works in some cases.

This paper presents an approach to efficiently and
quickly analyzing network behaviors by applying SES
theory. We achieved both the evaluation of a large amount
of network traffic activity data and the performance of
a web-based distributed simulation over a SOA. In addi-
tion, we accomplished fast execution times through real-
time decentralized distributed simulation. However, there
are further research works: developing web services for
NTAs and implementing additional attack-detecting func-
tions for IDSs. The ultimate goal is to implement net-
work behavior analyses web services. This study aimed
for a decentralized distributed DEVS simulation to speed
up evaluation times by deploying workloads into multi-
computers. However, customers are still responsible for
building models for simulating their systems. Web ser-
vices, which are implementations of integrating an au-
tomated model constructing process with analyzing the
corresponding system process, provide more accommo-
dation to users. Another future work is implementing web
service systems that will perform analyses of customers’
data. Customers may provide data to multiple web ser-
vices asynchronously. Subsequently, web services evalu-
ate received data and give evaluated results back to cus-
tomers.

10. References

[1] Zeigler, B.P., T.G. Kim and H. Praehofer, 2000. Theory of Modeling
and Simulation, 2nd edn, Academic Press, New York.

[2] Cho, Y.K., B.P. Zeigler, H.J. Cho, H.S., Sarjoughian. H., and Sen, S.,
2000. Design consideration for distributed real-time DEVS. In
Proceedings of the AI and Simulation Conference, Tucson, AZ.

[3] Zeigler, B.P. 1984. Multi-Facetted Modeling and Discrete Event Sim-
ulation, Academic Press, New York.

[4] Zeigler, B.P. and G. Zhang, 1989. The system entity structure: knowl-
edge representation for simulation modeling and design. In L.E.
Widman, K.A. Loparo, and N.R. Nielsen (Eds.), Artificial Intel-
ligence, Simulation and Modeling, pp. 47–73, Wiley, New York.

[5] World Wide Web Consortium (W3C), eXtensible Markup Language
(XML), 2008, http://www.w3.org/XML/

[6] Zeigler, B.P. and P.E. Hammonds 2007. Modeling & Simulation-
Based Data Engineering: Introducing Pragmatics into Ontolo-
gies for Net-Centric Information Exchange, Elsevier.

[7] Champion, M., C. Ferris, E., Newcomer, E., and Orchard, D., 2002.
Web Services Architecture, W3C.

[8] World Wide Web Consortium (W3C), Simple Object Access Protocol
(SOAP), 2008, http://www.w3.org/TR/soap/

[9] World Wide Web Consortium (W3C), Web Service Architecture,
2008, http://www.w3.org/TR/ws-arch/

[10] World Wide Web Consortium (W3C), Web Services Descrip-
tion Language (WSDL), 2008, http://www.w3.org/TR/wsdl20-
primer/

Volume 00, Number 0 SIMULATION 25



Kim, Seo, and Zeigler

[11] Universal Description, Discovery and Integration (UDDI), 2008,
http://uddi.xml.org/

[12] Service-Oriented Architecture (SOA), 2008, http://www.sun.com/
products/soa/index.jsp

[13] Representational State Transfer (REST), 2008, http://rest.
blueoxen.net/cgi-bin/wiki.pl

[14] R.T. Feilding. 2000. Architectural Styles and the Design of Network
based Software Architectures, PhD Dissertation, UNIVERSITY
OF CALIFORNIA, IRVINE, CA.

[15] Mittal, S., J.L. Risco-Martín and B.P. Zeigler. Implementation of
formal standard for interoperability in M&S/systems of systems
integration with DEVS/SOA, C2 Journal, Vol 3. No. 1, 2009.

[16] Mittal, S., J.L.R. Martin and B.P. Zeigler. 2009. DEVS/SOA: A
cross-platform framework for net-centric modeling and simula-
tion in DEVS unified process. SIMULATION: Transactions of
SCS, 85(July), 419–450.

[17] Seo, C. and B.P. Zeigler 2009. Interoperability between DEVS sim-
ulators using service oriented architecture and DEVS namespace.
In A Joint Symposium DEVS Integrative M&S (DEVS) and High
Performance Computing (HPC) Proceedings of the Spring Simu-
lation Conference.

[18] DEVSJAVA, 2009, http://www.acims.arizona.edu
[19] ADEVS: an open source C++DEVS Simulation engine, 2009,

http://www.ornl.gov/�1qn/adevs/index.html
[20] Seo, C. 2009. Interoperability between DEVS Simulators using Ser-

vice Oriented Architecture and DEVS Namespace, PhD Disserta-
tion, University of Arizona, Tucson, AZ.

[21] Tolk, A., C.D. Turnitsa, S.Y. Diallo, and Leslie S. Winters, 2006.
Composable M&S web services for net-centric applications. The
Journal of Defense Modeling & Simulation, 3(1): 27–44.

[22] Wutzler, T. and H.S. Sarjoughian. 2007. Interoperability among
parallel DEVS simulators and models implemented in multiple
programming languages. SIMULATION: Transactions of SCS,
83(June): 473–490.

[23] Yoo, T., H. Cho and E. Yücesan. 2009. Web services-based par-
allel replicated discrete event simulation for large-scale simula-
tion optimization. SIMULATION: Transactions of SCS, 85(July):
461–475.

[24] Wainer, G.A., R. Madhoun, and K. Al-Zoubi. 2008. Distributed
simulation of DEVS and Cell-DEVS models in CD++ Ssing
web-services. Simulation Modelling Practice and Theory, 16(9):
1266–1292.

[25] Wainer, G.A., Liu, Qi, Chazal, J., Quinet, L., and Taore, M.K.,
2008. Performance analysis of web-based distributed simulation
in DCD++: a case study across the Atlantic Ocean. In Proceed-
ings of the ’08 Spring Simulation Conference, pp. 413–420.

[26] Puketza, N., Zhang, K., Chung, M., Mukherjee, B., and Olsson,
R.A., 1996. A methodology for testing intrusion detection sys-
tem. IEEE Transactions on Software Engineering, 22(10): 719–
729.

[27] Puketza, N., Zhang, K., Chung, M., Mukherjee, B., and Olsson,
R.A., 1997. A software platform for testing intrusion detection
systems. IEEE Software, 14(5): 43–51, September/October.

[28] Bishop, M., Cheung, S., Wee, C., 1997. The threat from the net.
IEEE Spectrum, 38(8): 56–63.

[29] Karatsuba, A. and Y. Ofman. 1963. Multiplication of multidigit
numbers on automata. Soviet Physics doklady, 7(7): 595–596.

[30] Arizona Center for Integrative Modeling and Simulation (ACIMS),
2008, http://www.acims.arizona.edu/

[31] Ethereal, Network Protocol Analyzer, 2008, http://www.ethereal.
com/

[32] The UCI KDD Archive, 1999, KDD 1999 Cup dataset, http://
kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[33] DARPA Intrusion Detection Evaluation, Lincoln Laboratory,
Massachusetts Institute of Technology, 2008, http://www.ll.mit.
edu/IST/ideval/index.html/

[34] KDD Cup 1999, http://www.sigkdd.org/kddcup/index.php?section=
1999&method=info

[35] Haines, J.W., R.P. Lippmann, D.J. Fried et al. 2001. MIT Lincoln
Laboratory, 2001. 1999 DARPA Intrusion Detection Evaluation:
Design and Procedure, DARPA Technical report, February.

[36] Mittal, S. 2007. DEVS Unified Process for Integrated Development
and Testing of Service Oriented Architectures, PhD Dissertation,
University of Arizona, Tucson, AZ.

[37] Mittal, S., J.L. Risco-Martin, and B.P. Zeigler. 2007. DEVS-
based simulation web services for net-centric T&E. In Proceed-
ings of the Summer Computer Simulation Conference SCSC’07,
July.

[38] Glinsky, E. and G. Wainer. 2002. Definition of real-time simulation
in the CD++ toolkit. In Proceedings of the SCS Summer Com-
puter Simulation Conference, San Diego, CA.

[39] Kim, K., Kang, W., Sagong, B., Seo, H., 2000. Efficient distributed
simulation of hierarchical DEVS models: transforming model
structure into a non-hierarchical one. In Proceedings of the 33rd
Annual Simulation Symposium, Washington DC.

[40] Lee, J.S. 2001. Space-Based Data Management for High Perfor-
mance Distributed Simulation, PhD Dissertation, University of
Arizona, Tucson, AZ.

[41] Vargas, J., DeMara, R.F., Georgiopoulos, M., Gonzalez, A.J., Mar-
shall, H. 2004. PDU bundling and replication for reduction of
distributed simulation communication traffic. The Journal of De-
fense Modeling and Simulation, 1(3): 171–183.

[42] Apache Tomcat, 2008, http://tomcat.apache.org/
[43] Apache Axis2 Web service engine, 2008, http://ws.apache.org/

axis2/
[44] Zhang, M. 2007. Toward a Flexible and Reconfigurable Distributed

Simulation: A New Approach to Distributed DEVS, PhD Disser-
tation, University of Arizona, Tucson, AZ.

Taekyu Kim is a senior research at the Center for Modeling
and Simulation Studies, Security Management Institute, Seoul,
Korea. He received PhD in Electrical & Computer Engineer-
ing (ECE) at the University of Arizona. He holds an MS (2006)
in ECE from the University of Arizona and a BS (2000) in
Computer Science and Engineering from the Chung-Ang
University, Seoul, Korea. His research interests include DEVS-
based hybrid system modeling, model based system design,
ontology methodology, data engineering, and Semantic Web.

Chungman Seo is a research engineer at the RTSync company
and a member of the ACIMS. He received his PhD in ECE from
The University of Arizona in 2009. His research interests include
DEVS-based web service integration� DEVS/SOA-based distrib-
ution DEVS simulation, and DEVS simulator interoperability.

Bernard P. Zeigler is a Professor of ECE at the University of
Arizona, Tucson and Director of the ACIMS. He is internation-
ally known for his 1976 foundational text Theory of Modeling
and Simulation, revised for a second edition (Academic Press,
2000). He has published numerous books and research publica-
tions on the DEVS formalism. In 1995, he was named Fellow of
the Institute of Electrical and Electronics Engineers (IEEE) in
recognition of his contributions to the theory of discrete event
simulation.

26 SIMULATION Volume 00, Number 0


