
Specification-based Verification in a
Distributed Shared Memory Simulation Model

Worawan Marurngsith
Department of Computer Science,
Faculty of Science and Technology,
Thammasat University,
Pathum Thani, 12121,
Thailand
wmrs@cs.tu.ac.th

Roland N. Ibbett
Edinburgh Parallel Computing Centre,
University of Edinburgh,
Edinburgh, UK
R.N.Ibbett@ed.ac.uk

The emergence of chip multiprocessors is leading to rapid advances in hardware and software sys-
tems to provide distributed shared memory (DSM) programming models, so-called DSM systems. A
DSM system provides programming advantages within a scalable and cost-effective hardware so-
lution. This benefit derives from the fact that a DSM system creates a shared-memory abstraction
on top of a distributed-memory machine by caching data replicas locally. In this respect, a coher-
ence protocol is a vital component responsible for assuring data consistency across all replicas.
The design of coherence protocols impacts a DSM system in terms of both performance and accu-
racy. Performance is often measured via simulation and various verification techniques have been
proposed to deal with protocol accuracy. Nevertheless, integrating accuracy verification into a DSM
cluster simulation to ensure correct simulation results is still an open issue.

In this paper, we address three properties of a coherence protocol (safety, liveness, and inclu-
sion) without which errors may occur in the simulation results. We propose a specification-based
parameter–model interaction (SPMI) technique to detect these cases in a particular DSM cluster
simulator called DSiMCluster. Our experimental results demonstrate that with SPMI, DSiMCluster
can ensure the coherence protocol properties and provides a correct reflection of memory charac-
teristics in shared-memory and DSM multiprocessors.

Keywords: distributed shared memory, DSM cluster, coherence protocol, verification technique.

1. Introduction

Recent advances in providing distributed shared memory
(DSM) systems on clusters of multi-cores have shifted
towards performance optimization using innovative co-
herence protocols [1,2]. This phenomenon epitomizes the
rapid changes in the design and complexity of architec-

SIMULATION, Vol. 00, Issue 0, Xxxxxxxx 2009 000–000
c� 2009 The Society for Modeling and Simulation International
DOI: 10.1177/0037549709349843
Figures 1–14 appear in color online: http://sim.sagepub.com

tural alternatives. It also imposes a constraint on simula-
tion methodologies not only to cover new designs but also
to ensure the correctness of emulating these designs. This
is because, in order to have confidence in the simulation
results, it is often more time consuming to verify the cor-
rectness of behavioral emulations than to design them.

Over the years, a number of techniques have been pro-
posed to verify that coherence protocols will behave in ac-
cord with their specifications [3–5] and will maintain two
crucial properties, safety and liveness [6]. The safety (or
soundness) property means that the protocols always guar-
antee data consistency, while the liveness property assures

Volume 00, Number 0 SIMULATION 1

 SIMULATION OnlineFirst, published on October 22, 2009 as doi:10.1177/0037549709349843



Marurngsith and Ibbett

that there is no deadlock or livelock during the protocol’s
state transitions. Deadlock is a situation in which two or
more caches are indefinitely blocked while each of them
waits for resources or acknowledgments to be released
from another cache. Similarly, livelock is a situation in
which one or more caches are prevented from proceeding
further, yet each stays indefinitely in a state with no exit.
A survey of coherence-protocol verification techniques
based on three widely accepted approaches (i.e. state enu-
meration, (symbolic) model checking, and symbolic state
models) has shown the maturity in methodology to ver-
ify that a protocol specification has inherent safety and
liveness [6]. Moreover, some recent approaches [5, 7–10]
have extended one of these methodologies to verify more
complex protocols, e.g. adaptive or hierarchical protocol
or directory-based protocols [11, 12]. In effect, this work
allows the proof of correctness of a protocol specification
by focusing on the protocol semantics without any consid-
eration of architectural behavior.

Nevertheless, architectural characteristics, such as the
inclusion property, also play an important role in the cor-
rectness of execution results [13]. In a multiprocessor sys-
tem, a multiple-level cache hierarchy has an inclusion or
multi-level inclusion (MLI) property if ‘the contents of a
cache at level i + 1, Ci�1, is a superset of the contents of all
its child caches, Ci , at level i’ [14]. Therefore, when a co-
herence protocol invalidates the content of Ci�1, the cor-
responding content in Ci should also be invalidated. Sub-
sequently, this content should not be seen by the processor.

A technique to ensure that the interactions of simula-
tion components are coordinated around specific collab-
oration constraints in coupled discrete event simulation
(DEVS) models showed the possibility of verifying model
behavior on the fly [15]. Simulation-based research in co-
herence protocol characterization [16] compared simula-
tion results against measurements on a real system in order
to confirm that its simulation result was correct. Although
there are ways to include, in a simulation model an au-
tomatic verification technique (in [17,18] for example), a
technique to verify all three properties (safety, liveness,
and MLI) in a protocol specification and also to direct a
simulation based on the specification semantics, is not yet
available.

The analysis of related works has shown the feasibility
of developing a mechanism to verify a simulated compo-
nent during a simulation run. This on-the-fly verification
requires two components: (a) a well-formed specification
of a simulated component and (b) a mechanism to ob-
tain its semantics from the specification. The research de-
scribed here addresses the verification technique of a par-
ticular component in the DSM simulation, which emulates
different bus-based coherence protocols. From the related
works discussed above, some of the safety and liveness
properties can be verified by checking the specification.
However, the full extent of the emulated behavior has to
be verified during a simulation run by testing the simu-
lated results against some verification rules. To allow this

runtime testing, the functionalities of a protocol and the
assertions of the safety, liveness, and inclusion properties
have to be explicitly defined.

We propose a specification-based parameter–model in-
teraction (SPMI) technique to detect these cases in a par-
ticular DSM cluster simulator called DSiMCluster [19].
The rest of the paper is organized as follows. The next sec-
tion introduces the most widely used bus-based protocol,
Illinois, as an example to be used in the rest of the pa-
per. Section 3 presents a text-based description language
to identify the coherence protocol specification used in
DSiMCluster. In Section 4 we describe the techniques
used early in the design process to verify the specification
of the coherence protocols. Section 5 describes the ways
to apply the verified specification to drive a simulation.
Section 6 presents experimental results.

2. Illinois Protocol

The Illinois protocol (also known as the MESI protocol) is
the most common protocol that supports write-back cache�
it is widely used in multi-core processors [20]. The proto-
col is a write-invalidate protocol with four states, namely:
Invalid, Exclusive1, Private Dirty2, and Shared3. A cache
line in either the Exclusive or Private Dirty state owns
the data. Cache lines in the Shared state do not have a
specific owner. In an ownership-based protocol, the owner
forwards its data to a requester. This reduces the time to
access data in comparison to transferring it from the main
memory.

The state machine of the Illinois protocol is shown in
Figure 1. Each state in the state diagram refers to the state
of a physical cache line (or cache entry) implemented in
the Cache Entity simulation in DSiMCluster. All cache
lines are initially marked as Invalid. When an access miss
occurs to an Invalid line, data can be supplied either from
a remote cache or the main memory. If the data is supplied
from a remote cache, a read access causes the cache line
to be marked as Shared, while a write causes the line to
be marked as Private Dirty. In either case, the previous
owner changes its state to Shared or Invalid, respectively.
If the previous owner was in the Private Dirty state, the
data is also written back to memory at the same time as the
data is supplied to the requester. If data is supplied from
the main memory, the requesting cache line becomes the
owner, while the state is marked as Exclusive for a read
and as Private Dirty for a write.

For a write hit to a cache line in one of the owner states
(either in the Exclusive or Private Dirty state), the update
proceeds without delay. However, if the line is shared (in
Shared state), the update must be performed after the other
caches have marked their lines Invalid (i.e. it waits for the

1. Also called Valid Exclusive or Read Private.
2. Also called Modified.
3. Also called Read Shared.

2 SIMULATION Volume 00, Number 0



SPECIFICATION-BASED VERIFICATION IN A DSM SIMULATION MODEL

Figure 1. Cache state transitions for Illinois cache coherency protocol.

positive acknowledgments). The state of the updated line
is Private Dirty and the line becomes the owner.

From the definition of the Illinois protocol, there are
four possible sources of data inconsistency that can be ob-
served from the state of replica lines [7]. Firstly, if a Pri-
vate Dirty cache line co-exists with a Shared line, one of
them can hold incorrect data. Secondly, if two or more
cache lines are in the Exclusive state at the same time,
the replicas can be written concurrently causing an incon-
sistent view of the value. Thirdly, if two or more cache
lines are in the Private Dirty states at the same time, those
cache lines will have been written concurrently yet may
hold different data values. Lastly, if an Exclusive cache
line co-exists with a Shared line, one cache can be written
while another is reading, causing inconsistent values.

3. Protocol Specification

Fundamental to protocol verification is a symbolic or for-
mal representation to describe a protocol specification
which can be used for semantic comparison against the
actual behavior. Recent research on coherence protocol
verification has employed various specification languages
and tools relating to the techniques exploited, for exam-
ple, Mur� [21], the Spade formalism [4], Symbolic State
Models (SSM) [8], TLA+ [10], a table-based specification
[5], the extended finite state machine (EFSMs) [7], and
symbolic model verifier (SMV)-based languages [11]. In
general, a specification describes a coherence protocol as
a composition of three components: a finite set of states, a
finite set of actions or events, and a transition relation. In
EFSMs, the global conditions and a description of global
conditional actions are included. The conditional action
is used to express the actions in some protocols in which
different sources of a new cache line (i.e. from main mem-

ory or from a remote cache) cause a transition to different
outcome states. Moreover, the global condition is used to
describe the permissible global states that facilitate pro-
tocol verification. A protocol global state, i.e. the collec-
tion of individual cache states [7], denotes the reachable
state of all cache replicas as the outcome of a state transi-
tion. Thus, a record of global states can identify possible
sources of data inconsistency that can negate the safety
property.

Existing representations are sufficient to represent the
state machine of a protocol, thus allowing the possible
state transitions to be verified. However, as this work aims
to find a way to use the verified specification as a script (or
a mapping function) to directly drive a simulation, some
practical aspects of the protocol should also be included.
The attributes essential to describing an implementation
of a coherence protocol in a simulation model are (a) the
coherence protocol actions that are based on a priority
test of cache line ownership� (b) the state when a proto-
col transition is halted, waiting for bus arbitration or held
while waiting for an acknowledgment� and (c) the map-
ping functions needed to map the specification term to the
implementation term and direct a simulation using these
functions.

3.1 Description Language

To bridge this gap, a protocol state-transition descrip-
tion (PSD), a text-based description language designed
for describing both the pragmatic and semantic attributes
of a coherence protocol, has been developed. In seman-
tic terms, the PSD language describes a state machine of
a coherence protocol as a composition of a finite set of
states, a finite set of actions or events, and a transition re-
lation, similar to the existing work described above. The

Volume 00, Number 0 SIMULATION 3



Marurngsith and Ibbett

Figure 2. Organization of coherence protocols and components
in a 2-node SMP.

global conditions and conditional actions as presented in
EFSMs are also included in PSD. In pragmatic terms, the
PSD language can express the actions between a coher-
ence protocol and the interconnected components. Fig-
ure 2 shows the interconnection between two coherence
protocols and the framework components in a two-node
Symmetric Multiprocessors (SMP). Each coherence pro-
tocol is connected to a cache and the shared bus. To main-
tain cache coherence, a protocol snoops for read/write
events from the shared bus and also receives read/write
events from local caches.

In PSD, there are four groups of reserved words de-
scribing: the (architectural) components (e.g. BUS, CPU,
and MEM)� the predefined states of a cache line� the ac-
cepted events� and the transition-function identifiers. The
component reserved words are used to specify the source
or destination of an event, e.g. CPU identities that the
events are initiated from the CPU that is connected to
the local cache. Five predefined states of a cache line are
used as the generic states to map with any user-defined
protocol states. Read and write accesses to a cache line
cause eight possible events to be received by a coher-
ence protocol (Figure 3, b.1). These events identify the
location of the access (i.e. CPU for local caches and BUS
for remote caches). The transition-function identifiers are
the predefined internal transition functions. Each of these
function identifiers is used to describe a non-atomic ac-
tion (or a partially executed action) to be performed in
order to transit from one protocol state to another. These
functions are then mapped to the implementation of a co-
herence protocol in a simulation (see Section 4.1).

A unit of the PSD called a protocol definition is a text
file describing one particular protocol (Figure 3). Struc-
turally speaking, a protocol definition comprises three
sections, namely, a header, a list of protocol states, and a
verification definition. As highlighted in Figure 3, each of
these sections begins with a corresponding tag, followed
by its body, indicated by curly braces4. The complete lex-

4. A double slash, //, begins a comment that extends to the end of
the line.

ical and grammar rules of the PSD language are presented
in [22].

The first section, Header, is a declaration part that
introduces names into the protocol definition. It com-
prises four statements declaring the protocol name, state
names, ownership definition, and cache-to-protocol state-
mapping definition. Conceptually, the components of a
protocol obtained from a Header section are presented in
Figure 4. This figure shows that a Header section intro-
duces the protocol states (S1–S4). It also maps each pro-
tocol state to the corresponding cache state (CS1–CS4)
and defines whether the state implies ownership of a cache
line. A cache state, gb_INVALID, (the CS1state in the
figure) identifies the initial state of all cache lines� this is
also used as the initial state of a protocol. The Header sec-
tion of the Illinois protocol shown in Figure 3, a, lists the
four states of the protocol. The ownership flag (yes/no)
is mapped in the order defined in the protocol state list.

The second section, State, describes the actions or
events of each coherence state using Rule, Ignored, and
Priority statements. Conceptually, the State section is used
to construct the state machine of a protocol, as shown in
Figure 5. In this figure, the initial state S1 can transit to
states S2, S3, or S4 when Rule1 or Rule2 is invoked. For
example, when an event EV1 arrives at a cache line in state
S1, according to Rule1, the transition function F3 must be
performed first. The subsequent transition functions and
the outcome state depend on whether the predicate test of
the conditional function F3 is true or false. If the pred-
icate test is true, the protocol will perform functions F4
and F11 prior to changing the state of the cache line from
S1 to S2. Otherwise, the protocol will perform functions
F12 and F11 before changing the cache line state from S1
to S3.

Figure 3, b.1–b.3, shows a State section describing the
‘Shared’ state of the Illinois protocol. This State section
describes the state machine shown conceptually in Fig-
ure 5. A Rule statement defines a selection of transition
rules based on an incoming event from a particular com-
ponent. The body of a Rule indicates the names and num-
ber of transition functions a protocol has to perform before
reaching an outcome state. Transition function names are
reserved words that can be declared using either a con-
ditional or unconditional form. A conditional transition
function must be followed by round braces embracing a
predicate declaration, the name of functions to be chosen
according to the predicate test result. An unconditional
function, on the other hand, can omit this part. Short de-
scriptions of a conditional transition function (the Predi-
cate statement and the True/False functions) and a priority
declaration (the Priority function and Priority statement)
are also given.

The last section (Figure 3, c), Verification, is used as
a reference for the verification of the coherence protocol
both during the parsing steps and also during a simulation
run. This part comprises two statements declaring a set
of invalid global states and a set of invalid transitions. The

4 SIMULATION Volume 00, Number 0



SPECIFICATION-BASED VERIFICATION IN A DSM SIMULATION MODEL

Figure 3. Specification of the Illinois coherence protocol.

Figure 4. A conceptual view of the PSD header section.

Volume 00, Number 0 SIMULATION 5



Marurngsith and Ibbett

Figure 5. A conceptual views of the PSD State and Verification sections.

Figure 6. Invalid global states of the Illinois protocol.

invalid global state has been shown to be useful to indicate
the conditions where data inconsistency may occur [7].
In PSD, each condition, a so-called unsafe condition, is
represented by a set of invalid global-state flags. The total
number of flags in a set is equal to the total number of
states of the protocol. Each flag position is matched to the
order of the states of the State list defined in the Header
section.

Figure 6 shows how the invalid global-state flags are
defined in the Illinois protocol. Figure 6(a) depicts the
matching of the flag position to each protocol state defined
in the Header section. Figure 6(b) shows the description of
the invalid global-state flag (i.e. ‘*’ means that this state

is not considered, ‘1’ refers to when there is at least one
cache line in this state, and ‘M’ refers to when there is more
than one cache line in this state). Figure 6(c) describes
the four unsafe conditions of the Illinois protocol, each of
which is mapped to a set of invalid global-state flags of
the PSD specification. The set of invalid global-state flags
is used in the PSD specification for two purposes: (1) to
check the soundness property during a simulation run and
(2) to test the liveness property in the PSD parser.

The last statement of the Verification section is the
InvalidTransition statement. The invalid transi-
tion statement lists the transitions that are not permissible
in the protocol. As presented in the example protocol, the

6 SIMULATION Volume 00, Number 0



SPECIFICATION-BASED VERIFICATION IN A DSM SIMULATION MODEL

Illinois protocol performs transition functions correspond-
ing to the accepted events. However, after the transition
functions are performed, the transition from the Invalid
state to the Invalid state is not possible. The definition of
this invalid transition is shown in Figure 3, c.

3.2 The PSD Parser

The semantic values of a protocol specification are recog-
nized by a PSD parser. The central role of the PSD
parser is to produce a verified state machine from a PSD
specification. The PSD parser processes a specification in
four steps. The first two steps comprise the lexical and
syntactic analysis of a PSD specification. If no syntax er-
rors are found, the result of these steps is a well-formed
specification, i.e. the state machine of the coherence pro-
tocol. A well-formed specification must satisfy the entire
set of PSD test conditions (PC) listed below.

PC1 Every state has been mapped to a cache line state
and at least one protocol state is mapped to a gb
INVALID cache state.

PC2 The ownership flag must be defined.

PC3 When the ownership action is used, at least one of
the protocol states is set as the owner of a cache
line.

PC4 Every state must have an associated ‘State’ section.

PC5 A PSD specification must comprise a Header sec-
tion, one or more State sections, and a Verification
section.

Once a protocol specification has passed the syntac-
tic analysis step and has satisfied the five test condi-
tions listed above, the specification is considered as well
formed. The last two steps of the PSD parsing process aim
to verify the correctness of the well-formed specification.
Firstly, the specification is checked to ensure the sound-
ness or safety property. In summary, the test of soundness
is to check for any unsafe conditions that can cause an in-
consistent view of a memory value. If the specification has
successfully passed the test of soundness, the last step is
to test its liveness property. The liveness test ensures that
the specification does not cause a deadlock or livelock.
Thus, the state transition can proceed and eventually will
produce a result.

4. Verification

4.1 Verification of Soundness

During the PSD parsing steps, the conditions that might
lead to some errors in a simulation run are checked in
two steps, the test of soundness and the test of liveness

properties. A soundness property ensures that the im-
plementation cannot take an action that is inconsistent
with the specification [23]. There are two aspects to the
verification of soundness. The first is to ensure that the im-
plementation of the simulation works in accordance with
the state-transition specification. The second is to prevent
known conditions that might cause inconsistent values of
data to be seen by the processors.

4.1.1 State Machine Mapping

The state-machine mapping technique has been used to
ensure that the implementation of the simulation works in
accordance with the state-transition specification. As de-
scribed in the previous section, the state machine obtained
from a PSD specification includes the set of states and
rules that describe the transition functions to be performed
during a state transition. Figure 7(a) shows an example of
a state machine obtained from a three-state coherence pro-
tocol. When a CPU.readMiss event arrives at an Invalid
cache line, according to Rule 1 of the Invalid state, the pro-
tocol must perform functions A, B, and C to maintain data
coherence before transit to the Valid state.

To ensure that the DSiMCluster simulator works in ac-
cordance with this Rule, functions A, B, and C are used to
map the specification term into the implementation term.
As shown in Figure 7(b), after the DSiMCluster simula-
tor executes function A, the coherence protocol stays in a
temporary state TS1. A temporary state is used to provide
channels through which a transition operation can be car-
ried out using multiple steps. The protocol stays in a tem-
porary state until all of the partially executed operations
have been finished.

In a PSD specification, three PSD test conditions are
checked to ensure the correctness of the state machine.
The first condition (PC6) is to ensure that each protocol
state has been defined to respond to all possible events
received. The second condition (PC7) is to ensure that
the requested data will be provided for every read access.
Moreover, the third condition (PC8) is to check that the
updated data will be written to the cache line for every
write access.

PC6 At each State section, all eight protocol events must
be defined in either the Rule or the Ignore state-
ments.

PC7 The Rules of both the CPU.readHit and the
CPU.readMiss events must have the toCPU.
supplyData function defined.

PC8 The Rules of both CPU.writeHit and CPU.
writeMiss events must have the toBus.
broadcast and writeData functions defined.

Volume 00, Number 0 SIMULATION 7



Marurngsith and Ibbett

Figure 7. Mapping of specification term to implementation term.

4.1.2 Prevention of Unsafe Conditions

The second aspect of the verification of soundness is to
prevent known conditions that might cause inconsistent
values of data to be seen by processors. Two possible un-
safe conditions described in [8] and [7] have been checked
in the PSD parser. Firstly, the protocol should not perform
a state transition when it receives any unexpected events.
Secondly, the global state of a coherence protocol must be
permissible.

Prevention of unexpected events. The eight possible events
that can be received by a coherence protocol are defined
as reserved words in PSD. A PSD test condition, PC6, is
checked to ensure that each State section recognizes all
eight events either through a Rule or an Ignored statement.
Following this, another PSD test condition is checked
(PC9) in order to ensure that the events defined in the Rule
statement (i.e. events causing a state transition) are differ-
ent from the events defined in the Ignore statement (i.e.
events causing no transition).

PC9 Corresponding to PC6, for each State section, each
event must be defined only once, by either a Rule or
an Ignore statement.

Declaration of invalid global states. When there are multi-
ple replicas of data, processors may see different data val-

ues. Therefore, a coherence protocol maintains a coher-
ence state for each replica to tell the processors whether
their data is the most up-to-date one. However if a simu-
lation has implemented a protocol wrongly, or if the map-
ping functions of the PSD specification has been defined
wrongly, the results obtained from such a simulation can-
not be used to represent the real characteristics of memory
accesses. Figure 8 shows an example of such a case.

To ensure that DSiMCluster will detect the situations
where data inconsistency may be seen by processors, the
set of invalid global states is used. Global states that are
not permissible by the protocol definition are normally
classified as erroneous states [19]. As mentioned at the
end of Section 3.1, a purpose of defining unsafe conditions
(using the set of invalid global-state flags in the PSD) is
to check for soundness during a simulation run. There are
four erroneous states in the Illinois protocol [7] as listed
in Figure 6. (The definitions of Illinois states and the in-
valid global states used in Figures 8 and 9 are shown in
Figure 6.)

Figure 9 shows the process of soundness checking dur-
ing a simulation run in DSiMCluster. The checking is
performed in three steps. Firstly, the current global state
of each cache line is recorded during a memory access
(Figure 9(a)). Secondly, when the memory access has

8 SIMULATION Volume 00, Number 0



SPECIFICATION-BASED VERIFICATION IN A DSM SIMULATION MODEL

Figure 8. An example of a simulation error.

been completed, a set of test flags is produced using the
recorded global state (Figure 9(b)). Finally, before the
simulation can continue, the set of produced test flags
must not match with the invalid global state (i.e. it is not
invalid). The algorithm of the global state checking is as
follows:

for all test_flag
for all global_state_flag
{
Producing the test_flags
if (test_flag = global_state_flag)
then
{
/* Unsafe condition detected */
stop simulation

}
}

If the test flags match with the invalid global state, the
simulation is stopped as the unsafe condition has been de-
tected. Figure 9(c) illustrates this testing step. Note that if
any of the errors shown in this figure occur, DSiMCluster
will stop the simulation once the first unsafe condition is
detected (after step 2).

Three flags are used when recording the global state of
a cache line: 0, 1, and M. The flag ‘0’ means that there
are no replicas in this state. Flags ‘1’ and ‘M’ show that
there is only one replica or there are multiple replicas of
the cache line in this state, respectively. The order of the

states defined in the protocol state list (in the PSD Header
section) is mapped to the position of a flag in a global
state. At step 1 in Figure 9(a), the global state of variable
A is 0100. The recorded global state means that there are
no replicas of A cached in the Invalid, Shared, and Private
Dirty states, and there is one replica of A cached in the
Exclusive state.

In the PSD parser, three PSD test conditions are in-
cluded to check the definition of the invalid global states.
The first condition, PC10, is to ensure that at least one in-
valid global state has been defined in a PSD specification.
The second condition, PC11, is to test that when a local
cache line enters a state that allows only one replica, all
remote cache lines must exit the state. The third condition,
PC12, is to ensure that when two states must not co-exist,
then if a local cache line enters one of these states, remote
cache lines must not enter the prohibited state.

PC10 At least one invalid global state must be defined in
a PSD specification.

PC11 When a state is defined to have only one replica,
all CPU events that cause the transition to the state
must have corresponding BUS events that exit the
state.

PC12 When two states must not co-exist, all CPU events
that enter one of the two states must not have corre-
sponding BUS events that enter the other state.

Volume 00, Number 0 SIMULATION 9



Marurngsith and Ibbett

Figure 9. Process of unsafe condition checking during a simulation run.

If a well-formed specification satisfies the seven PSD
test conditions (PC6–PC12), the specification has passed
the test for soundness. In the last step of the PSD parser,
the specification is then verified for its liveness property.

4.2 Verification of Liveness

The previous section shows the usefulness of the in-
valid global-state definitions for testing soundness. As

mentioned at the end of Section 3.1, another purpose
of defining the invalid global states is to obtain all co-
existing state pairs that are valid, so that a liveness test
can be done on these pairs. Figure 10 shows the list of
eight valid co-existence state pairs of the Illinois protocol.
In the figure, a State1,State2 pair identifies that if a local
cache line is in State1, another remote cache can have its
replica in State2. The PSD parser uses each of these pairs
to check for the liveness properties in both the deadlock
and livelock testing steps.

10 SIMULATION Volume 00, Number 0



SPECIFICATION-BASED VERIFICATION IN A DSM SIMULATION MODEL

Figure 10. The valid co-existence state pairs of the Illinois protocol.

4.2.1 Deadlock Prevention

A deadlock may occur if, during a transition function (in-
volving partially executed operations), at least two caches
are waiting for resources or acknowledgments to be re-
leased from one of the others. Once the specification has
passed the test of soundness, it is guaranteed that these
caches must stay in the valid co-existence states. There-
fore, to prevent a deadlock, all possible co-existence states
are checked against two PSD test conditions. Firstly, for
all valid co-existence state pairs, the waits and supplies of
resources must be matched (PC13). Secondly, for all valid
coexistence state pairs, every broadcast operation must
have the packet acknowledgment sent from the cache in
the co-existence state (PC14).

PC13 For all co-existence states, every waitFor-
UpdateData function has a matched function,
toBUS.supplyData.

PC14 For all co-existence states, every toBUS.
broadcast and waitForAcknowledgment
function has a matched sendAcknowledgment.

4.2.2 Livelock Prevention

A livelock occurs when one or more caches stays in-
definitely in a state with no exit after performing a transi-
tion function in response to a valid event. To prevent live-
lock, two PSD test conditions are checked. Firstly, at least

one event of the local cache accesses will cause a transi-
tion which exits the current state (PC15). This condition is
to guarantee that there are no trapped states in a protocol
specification. Secondly, to prevent a livelock, all transi-
tions must be valid (PC16).

PC15 For each State section, there is a Rule defining one
of the four local-access events (CPU.readHit,
CPU.readMiss, CPU.writeHit or CPU.
writeMiss) in which the outcome state must exit
to another state.

PC16 For each Rule defined in a State section, the state
transition must not violate the invalidState-
Transition defined in the Verification section.

4.3 Verification of Multi-level Inclusion

In a multiprocessor system, a multiple-level cache hierar-
chy has an inclusion or MLI property if ‘the contents of
a cache at level i+1, Ci�1, is a superset of the contents of
all its child caches, Ci , at level i’ [14]. Therefore, when a
coherence protocol invalidates a content of Ci�1, the cor-
responding content in Ci should also be invalidated. Sub-
sequently, this content should not be seen by the processor.

In a system with multiple-level caches, the updating of
a cache state must be finished before the next access to the
upper level cache. Thus, the cache access is blocked un-
til the actions of the coherence protocol have been com-
pleted. In DSiMCluster, the state Coherence Stall

Volume 00, Number 0 SIMULATION 11



Marurngsith and Ibbett

Figure 11. The state machine represented using the CoherenceProtocol object.

is used to prevent the upper level cache from being ac-
cessed by the processor prior to the completion of the co-
herence actions. Once the coherence actions are finished,
the cache lines that have been invalidated by the coher-
ence actions are marked as invalidated by inclusion. The
following access misses to these cache lines are recorded
separately as inclusion misses. The record of inclusion
misses shows that if a simulation does not consider the
inclusion property (i.e. it allows a processor to access the
upper-level caches during coherence actions on the lower-
level cache), memory access characteristics obtained from
such a simulation will be incorrect. The percentages of in-
clusion misses show the extent of the errors that would
occur in a faulty simulation system.

5. Specification-based Parameter–Model
Interaction

An SPMI is proposed as a technique to verify and co-
simulate a coherence protocol within the DSiMClus-
ter framework [24]. This technique includes protocol
specification using a PSD language, and ways to direct
the model’s behavior using the semantics obtained from
this specification. This section provides the implementa-
tion details showing how the PSD specification has been
included and mapped to the DSiMCluster simulator.

The SPMI technique is a systematic means to add a
specific feature of a parameter to a simulation model using
the semantics obtained from a well-formed specification.
It comprises four major operations: (a) creating an ob-
ject which represents the PSD specification� (b) building
the specification semantics into the object using the PSD
parser� (c) connecting the object to a simulation model�
and (d) emulating the protocol behavior (described in Fig-
ure 13).

5.1 Coherence Protocol Object

The first operation in SPMI is to create an object
representing the PSD specification. The Coherence-
Protocol class is used as the central channel to inter-
connect between the protocol behavioral emulation and
the semantics obtained from a protocol specification.
The CoherenceProtocol represents the state ma-
chine obtained from parsing a PSD specification. Fig-
ure 11 shows the representation of a state machine us-
ing the CoherenceProtocol object and the connection of
the object to the Cache and Bus framework components.
This CoherenceProtocol class contains two impor-
tant member classes, namely, the TransitionRule
object and the CoherenceController object. Fig-
ure 12, b and c, illustrates the two objects and their in-
terconnection.

12 SIMULATION Volume 00, Number 0



SPECIFICATION-BASED VERIFICATION IN A DSM SIMULATION MODEL

Figure 12. Protocol objects and their connections.

5.2 Building the Specification Semantics

The semantic values of a protocol specification are recog-
nized by a PSD parser. The PSD parser has been imple-
mented as an external object to be plugged into the simula-
tion component called Cache Entity. The parser takes
a PSD specification and generates an object representing
the protocol (the CoherenceProtocol object) which
is returned to the DSiMCluster kernel. The parser works
in collaboration with a lexical scanner. The lexical scan-
ner performs lexical analysis by recognizing tokens and
passing these accepted tokens to the parser. The parser
then performs the syntactic analysis by matching the se-
quence of tokens against the PSD grammar rules. When
the grammar rules of transition functions are recognized,
the pointer to the corresponding transition function is al-
located to the protocol object. After the specification is
compiled, the protocol object will contain pointers to its
relevant transition functions each of which implements
the simulated behavior. During the compilation process,
the PSD parser verifies the soundness and liveness prop-
erties of the specification using the steps explained in Sec-
tions 4.1 and 4.2. If the specification has passed all 16 of
the PSD test conditions, the specification is ready to be
plugged into the simulation kernel.

5.3 Interconnection between Simulation
Components and the Protocol Objects

Once a specification semantic is successfully parsed
(the state-transition information has been stored in a

CoherenceProtocol object), the connection process
begins. Each simulation component (Cache Entity) makes
a copy of the CoherenceProtocol object, creates
a handle to its copy, and then passes this handle to
the constructor of a CacheOrganisation object.
A CacheOrganisation object5 creates Cache-
Ways and CacheLines according to the configuration,
and also creates a CoherenceController (Fig-
ure 12, c) linked to each CacheLine. The handle
of CoherenceProtocol is then attached to every
CoherenceController (Figure 12, a). Once all
Cache Entities have finished these steps, the Bus Entity6

communicates with each of the Caches to get their
CoherenceProtocol handles. The Bus Entity then
creates an instance of a CoherenceBus object and links
this object with the obtained CoherenceProtocol
handles (Figure 12, d). Figure 12 depicts the complete
connection of two protocol objects to the cache hierarchy
of a 1 � 2 DSM model which maintains cache coherence
at level 2 caches.

5.4 Emulation of the Coherence Protocol during a
Simulation Run

During a simulation run, Cache Entities play an important
role in emulating the behavior of the coherence protocols

5. I.e. an object representing the structure of cache, its contents, and
associativity according to the configuration.

6. A Bus Entity in the DSiMCluster represents a bus and its behav-
ior.

Volume 00, Number 0 SIMULATION 13



Marurngsith and Ibbett

Figure 13. Block diagram shows the steps of the protocol behavior emulation.

using the CoherenceProtocol objects. As shown in
Figure 13, the emulation process is activated by the simu-
lation clock signal sent to a Cache Entity. Coherence ac-
tions can be activated in two ways: (a) by a CPU access
causing a hit/miss action at a cache line (Figure 13, a), or
(b) by a BUS notified event snooped from the coherence
bus (Figure 13, b).

The Coherence Stall state of a Cache Entity is
used to direct a sequence of protocol actions that require
more than one clock cycle to finish, a so-called non-
atomic action (Figure 13, c). The Coherence Stall
state is used as a temporary state to provide channels
through which a transition operation can be carried out
using multiple steps. It is important to note that DSiM-
Cluster uses a two-phase clock to model a Cache Entity.
In this figure only the action of clock phase 0 has been
illustrated. In clock phase 1, each Cache Entity directs
its CoherenceProtocol object to snoop on the bus
and to send an acknowledgment to a bus transaction if re-
quired. This is to prevent the case of deadlock, in which
other caches could be waiting for a bus acknowledgment
forever.

6. Model Verification Data

The specifications of eight bus-based coherence proto-
cols have been developed and included in DSiMCluster.
Verification using the PSD parser has been presented in
[22]. The result of the parsing verification step has shown
that the PSD language is able to describe a state ma-
chine of a complicated protocol such as MOESI. Some
unsafe conditions have been declared and excluded from
the specification using the PSD test conditions during the
test of soundness and liveness properties.

However, these test conditions do not guarantee that the
protocols will produce the correct result, since errors may
creep into the definition of the transition functions. There-
fore, an experiment was run, firstly to validate the result

of one coherence protocol against measurement, and sec-
ondly to use the results obtained from the validated proto-
col to verify the result of the other protocols.

The experiment was performed in five steps. In the first
step, a workload obtained from the NAS NPB 2.3 bench-
mark was run on a SunFire 15K machine to select the
function which dominates the runtime. In the second step,
the benchmark program was modified in order to obtain
the input and output of the selected function. After the in-
put and output of the selected function had been obtained,
in the third step, the function was implemented as a DSiM-
Cluster workload format (DWF) file. In the fourth step,
the modified benchmark program (obtained from step 2)
was executed on the SunFire 5K machine and its cache
profiles were measured. The last step was to perform the
simulation experiment. In this step, the DWF workload
file (obtained from step 3) was simulated by DSiMClus-
ter. In all simulations, the DSiMCluster simulator was cus-
tomized to model a SunFire 15K configuration.

6.1 Experimental Design

A 1 � 4 DSM model with the SPMI technique was cho-
sen for preliminary model verification. In this test, three
different coherence protocols were used with the same
workload and compared with the results for one proto-
col against measurements obtained from a real system. To
carry out these tests, three protocols with different num-
bers of states and behavioral characteristics were selected:
Synapse, Illinois, and MOESI. As the SunFire maintains
cache coherence by using the MOESI protocol, the first
step is to validate the results of the MOESI specification.
The validated result is then used to verify the Synapse
and Illinois specifications. Each of these protocols was
examined using the OpenMP LU-decomposition work-
load obtained from the NAS NPB 2.3 benchmark [25].
All experiment runs used the class A benchmark, i.e. a
small-scale workload with a three-dimensional matrix size

14 SIMULATION Volume 00, Number 0



SPECIFICATION-BASED VERIFICATION IN A DSM SIMULATION MODEL

Figure 14. Comparison of simulation-measurement results.

of 64 � 64 � 64. The values of hardware counters of
the SunFire 15K machine were collected using the same
workload configuration, i.e. using four OpenMP parallel
threads running on four processors, one thread per proces-
sor. The results obtained from measurement were com-
pared against the simulation results.

Model configuration. The simulation is based on a 1 � 4
DSM model which has been configured after the node ar-
chitecture of the SunFire 15K server and Sun Fireplane
system interconnect [26]. In the target machine, each
processing node has a two-level cache. The level 1 Data
Cache (DC) is a 64 KB on-chip cache with a line size
of 32 bytes and a write-through, no-write-allocate policy.
The DC is indexed by virtual address and tagged by phys-
ical address. The level 2 or External Cache (EC) is an 8
MB external cache with a coherence control at a granular-
ity of 64 bytes. The level 2 cache is indexed and tagged by
physical address with a write-back, write-allocate policy.
The coherence policy of the SunFire system is MOESI,
maintained at level 2 cache using the bus provided by the
Sun Fireplane system interconnects [26].

DSiMCluster was configured to represent the SunFire
15K configurations described above. However, due to the
limitation of address length, half of the virtual and phys-
ical address space was simulated, i.e. a 32-bit virtual ad-
dress and 22-bit physical address.

6.2 Verification Results

Figure 14 shows a comparison of simulation results
against the results of measurement when running a partic-

ular function inside the LU program, called BUTS, which
dominates the runtime. Note that the measurement has
been scoped at a particular function to make the compari-
son of results feasible. We have verified the results of the
program running on DSiMCluster against the results from
running the program on the SunFire machine. Both runs
produce the same results, thus confirming that DSiMClus-
ter generates the correct execution sequences. Figure 14(a)
shows the total number of invalidation and cache miss
events occurring at the EC and level 1 DC. Figure 14(b)
shows the percentage difference between the simulation
results and the measurement results. Both the EC invali-
dation and DC misses results show similarity between the
simulation and the measurement results (�5–6% in both
cases). However, the EC misses show a noticeable differ-
ence (14.50 percentage points different). This is because,
in the SunFire 5K machine, EC is a unified cache (i.e. it
also accommodates instructions) while the simulation did
not emulate instruction caching. Therefore, the number of
EC misses obtained during the simulation is far smaller.
Nevertheless, as processors only read the content of in-
structions, they produced no invalidation events based on
violation of cache updates.

Table 1 summarizes the results obtained correspond-
ing to the assessment used in the verification process for
the safety, liveness, and inclusion properties. The protocol
specifications have been examined to prevent erroneous
cases for the safety and liveness properties as described
earlier. Moreover, in this experiment, the inclusion prop-
erty is checked during each simulation run. To do so, the
total number of events that invalidate a content of all the
level 2 caches (or EC) are counted and confirmed with

Volume 00, Number 0 SIMULATION 15



Marurngsith and Ibbett

Table 1. Verification results of three protocols.

Protocol Safety Liveness Inclusion
No of INV Critical state Trapped state Wait-Ack Percentage Percentage

global state matching pairs of EC INV of MLI INV

Synapse 2 Dirty None 14 13.02% 4.57%

Illinois 4 Dirty, VldExcl None 18 12.84% 4.87%

MOESI 7 Mod, Excl None 29 8.75% 5.17%

INV: invalidations� VldExcl: Vlaid Exclusive� Mod: Modified� Excl: Exclusive

the total number of subsequent invalidations that occur in
level 1 (as the percentage shown in the last two columns in
the table). All the simulation runs terminated successfully,
and produced the same results as the measurements.

These two figures highlight the fact that the SPMI tech-
nique allows DSiMCluster to reflect a correct projection
of the simulation results with a very small fraction of time
spent on specification parsing and erroneous cases detec-
tion. These results correspond to the measurement results
obtained from a real machine with the difference of less
than 10% in the data cache accesses.

7. Conclusion

The PSD-based objects represent different bus-based
cache coherence protocols. This latter group has been
designed to apply automatic verification to the DSiM-
Cluster model through a well-formed specification. The
specification of each of these objects has been defined
using the DEVS passive states. These objects stay in-
definitely in a state until they receive an external request
from the attached entity (i.e. the framework component to
which they are attached). Once a request has arrived, the
objects perform the corresponding state transition func-
tions and change their state. Consequently, behavior em-
ulation occurring during the state transition of these ob-
jects shares the timing information with the attached en-
tity. During normal execution cycles, an implementation
of a SPMI verification technique is used to simulate the
bus-based coherence protocols, thus keeping the cache co-
herent.

The experimental results have demonstrated how pos-
sible errors in protocol specifications that may impact
the soundness and liveness properties of the coherence
protocols can be detected early while parsing the PSD
specifications. A verification experiment using the DSiM-
Cluster simulation model against a SunFire 15K machine
has been presented. A workload of a particular function,
BUTS, obtained from the LU decomposition program of
the NPB 2.3 benchmark (class A) has been run on both
the real machine and the DSiMCluster model with simi-
lar configurations. The numbers of cache misses obtained
from both machines have been compared, resulting in a
difference of less than �5–6% on average, and 14.5% in
the worst case at the level 2 external cache. This result has

confirmed that the model is working correctly, so thus the
model is ready to be used for some further performance
evaluation experiments on a wider range of design para-
meters.

8. Acknowledgments

Worawan Marurngsith was a PhD student at the University
of Edinburgh supported by a Thammasat University schol-
arship. HASE has been supported by the UK EPSRC un-
der grants GR/R27129 and GR/S28143. We wish to thank
the Edinburgh Parallel Computing Centre (EPCC) for pro-
viding time on the SunFire15K machine (lomond) used in
the experiments. We also wish to thank all members of the
HASE group for their support.

9. References

[1] Marathe, J., F. Mueller and B.R. de Supinski. 2006. Analysis
of cache-coherence bottlenecks with hybrid hardware/software
techniques. ACM Transactions on Architecture and Code Opti-
mization, 3(4): 390–423.

[2] Moga, A. and M. Dubois. 2009. A comparative evaluation of hybrid
distributed shared-memory systems. Journal of Systems Archi-
tecture, 55(1): 43–52.

[3] Bennett, A.J., T. Field and P. Harrison. 1996. Modelling and valida-
tion of shared memory coherency protocols. Performance Evalu-
ation, 27–28: 541–563.

[4] Field, A., P. Harrison and K. Kanani. 1998. Automatic generation
of verifiable cache coherence simulation models from high-level
specifications. In Australian Computer Science Communications,
20: 261–275.

[5] Sorin, D.J., M. Plakal, A.E. Condon, M.D. Hill, M.M.K. Martin and
D.A. Wood. 2002. Specifying and verifying a broadcast and a
multicast snooping cache coherence protocol. IEEE Transactions
on Parallel and Distributed Systems, 13(6): 556–578.

[6] Pong, F. and M. Dubois. 1997. Verification techniques for cache co-
herence protocols. ACM Computing Surveys, 29(1): 82–126.

[7] Delzanno, G. 2003. Constraint-based verification of parameterized
cache coherence protocols. Formal Methods in System Design,
23(3):257–301.

[8] Pong, F. and M. Dubois. 2000. Formal automatic verification of
cache coherence in multiprocessors with relaxed memory mod-
els. IEEE Transactions on Parallel and Distributed Systems,
11(9): 989–1006.

[9] Stoy, J.E., X. Shen and Arvind. 2001. Proofs of correctness of cache
coherence protocols. In FME 2001: Proceedings of Formal Meth-
ods Europe 2001 on Formal Methods for Increasing Software
Productivity, Berlin, Germany, volume 2021 of Lecture Notes in
Computer Science, Springer Verlag, pp. 43–71.

16 SIMULATION Volume 00, Number 0



SPECIFICATION-BASED VERIFICATION IN A DSM SIMULATION MODEL

[10] Tasiran, S., Y. Yu and B. Batson. 2003. Using a formal specification
and a model checker to monitor and direct simulation. In
DAC’03: Proceedings of the 40th conference on Design automa-
tion, Anaheim, CA, USA, ACM Press, pp. 356–361.

[11] Lv, Y., H. Lin and H. Pan. 2007. Computing invariants for para-
meter abstraction. In MEMOCODE ’07: Proceedings of the 5th
IEEE/ACM International Conference on Formal Methods and
Models for Codesign, Washington, DC, USA, IEEE Computer
Society, pp. 29–38.

[12] Qu,W., Y. Guo, Z. Pang and X. Yang. 2008. Efficient verification
of parameterized cache coherence protocols. In ICYCS 2008:
Proceedings of the 9th International Conference for Young Com-
puter Scientists 2008, IEEE Computer Society, pp. 154–159.

[13] Chame, J. and M. Dubois. 1993. Cache inclusion and processor
sampling in multiprocessor simulations. In SIGMETRICS’93:
Proceedings of the 1993 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, San Diego,
CA, USA, ACM Press, pp. 36–47.

[14] Baer, J.-L. and W.-H. Wang. 1988. On the inclusion properties for
multi-level cache hierarchies. In ISCA ’88: Proceedings of the
15th Annual International Symposium on Computer architecture,
Honolulu, Hawaii, IEEE Computer Society Press, pp. 73–80.

[15] Yilmaz, L. 2004 Verifying collaborative behavior in component-
based DEVS models. Simulation: Transactions of the Society for
Modeling and Simulation International, 80(7): 399–415.

[16] Marathe, J., A. Nagarajan and F. Mueller. 2004. Detailed cache co-
herence characterization for OpenMP benchmarks. In ICS’04:
Proceedings of the 18th Annual ACM International Conference
on Supercomputing, Saint-Malo, France, ACM Press, pp. 287–
297.

[17] Martin, M.M.K., D.J. Sorin, B.M. Beckmann, M.R. Marty, M. Xu,
A.R. Alameldeen, K.E. Moore, M.D. Hill and D.A. Wood. 2005.
Multifacet’s general execution-driven multiprocessor simulator
(GEMS) toolset. ACM SIGARCH Computer Architecture News,
33(4): 92–99.

[18] Wainer, G., L. Morihama and V. Passuello. 2002. Automatic
verification of DEVS models. In SIW 2002: Proceedings of SISO
Spring Interoperability Workshop, Orlando, FL, USA, Simula-
tion Interoperability Standards Organization’s (SISO).

[19] Marurngsith, W. and R.N. Ibbett. 2009. DSiMCluster: a simulation
model for efficient memory analysis experiments of DSM clus-
ters. Simulation Transactions of the Society for Modeling and
Simulation International, 85(6): 355–374.

[20] Borodin, D. and B. Juurlink. 2008. A low-cost cache coherence
verification method for snooping systems. In DSD ’08: Proceed-

ings of the 11th Euromicro Conference on Digital System Design
Architectures, Methods and Tools, Parma, Italy, IEEE Computer
Society Press, pp. 219–227.

[21] Dill, D.L., A.J. Drexler, A.J. Hu and C.H. Yang. 1992. Protocol
verification as a hardware design aid. In ICCD ’92: Proceed-
ings of the 1992 IEEE International Conference on Computer
Design on VLSI in Computer & Processors, Cambridge, MA,
USA, IEEE Computer Society, pp.522–525.

[22] Marurngsith, W. 2006. Simulation Modelling of Distributed-Shared
Memory Multiprocessors, PhD Thesis, Institute of Computing
Systems Architecture, School of Informatics, University of Ed-
inburgh, Edinburgh, UK.

[23] Shen, X. 2000. Design and Verification of Adaptive Cache Coher-
ence Protocols, PhD Thesis, Massachusetts Institute of Technol-
ogy, USA.

[24] Marurngsith, W. and R.N. Ibbett. 2005. Specification-based
parameter-model interaction: towards a correct reflection of
memory characteristics in a DSM cluster simulation. In
SCSC’05: proceedings of The 2005 Summer Computer Simu-
lation Conference, Philadelphia, USA, The Society for Modeling
and Simulation International (SCS), pp.18–25.

[25] Jin, H., M. Frumkin and J. Yan. 1999. The OpenMP Implementation
of NAS Parallel Benchmarks and its Performance, NAS Techni-
cal Report NAS-99-011, NASA Ames Research Center, October
1999.

[26] Charlesworth, A. 2001. The sun fireplane system interconnect. In
Supercomputing ’01: Proceedings of the 2001 ACM/IEEE Con-
ference on Supercomputing (CDROM), Denver, Colorado, USA,
ACM Press, pp. 7–7.

Worawan Marurngsith received a PhD in Informatics and MSc
in Computer Science from the University of Edinburgh. She is
currently a full-time lecturer at the Department of Computer
Science, Thammasat University, Thailand.

Roland Ibbett is an Emeritus Professor of Computer Science
of the University of Edinburgh and a founding member of the
Edinburgh Parallel Computing Centre. Before moving to
Edinburgh in 1985 he was a member of the Computer Science
Department at the University of Manchester where he worked
on the MU5 project.

Volume 00, Number 0 SIMULATION 17


