
BIM Voxelization Method Supporting Cell-Based
Creation of a Path-Planning Environment
Qiankun Wang1; Weiwei Zuo, Ph.D.2; Zeng Guo, Ph.D.3; Qianyao Li4;

Tingting Mei, Ph.D.5; and Shi Qiao, Ph.D.6

Abstract: Cell-based path planning is studied and applied worldwide. Building information models (BIMs) can be used as the envi-
ronment for path planning. However, studies providing an applicable and detailed approach to converting a BIM to cells are rarely re-
ported. This study proposes a voxel-based method that can automatically convert a BIM to cells. This technique, verified for accuracy and
applicability, can quickly and conveniently create a cell-based path-planning environment based on a given BIM before testing and apply-
ing path-planning methods. With this method, researchers and practitioners can focus more on research and the application of path plan-
ning instead of the creation of a cell-based environment, which is time-consuming and tedious. DOI: 10.1061/(ASCE)CO.1943-
7862.0001864. © 2020 American Society of Civil Engineers.

Author keywords: Building information modeling; Cell-based path planning; Space discretization; Voxelization introduction.

Background

Numerous studies have been conducting path planning, which has
been widely applied in the architectural, engineering, and construc-
tion (AEC) industry. Research related to path planning includes
construction vehicle moving path simulation (Zhang et al. 2007),
in-site material transport planning (Park et al. 2012; Wang et al.
2019), indoor moving-path navigation (Lin et al. 2013; Yuan and
Schneider 2010), evacuation simulation and evaluation (Cheng
et al. 2018; Marzouk and Daour 2018), and equipment disassembly
simulation (Tan et al. 2017). Prior to a path-planning analysis,
the path-planning space must be properly depicted, which can be
addressed by a cell-based representation. A cell-based representa-
tion is an environment consisting of numerous cells. It can suitably
simulate and analyze the two-dimensional (2D) or near 2D moving
patterns of trucks, mobile cranes, and people (ElNimr et al. 2016;
Park et al. 2012; Zhang et al. 2007). By distributing the cells in a

three-dimensional (3D) space, the 3D moving patterns can also
be depicted, including laborers’ stair climbs and materials being
transported by elevators or tower cranes (Lin et al. 2013; Wang
et al. 2019). In addition, by appending semantic information to cells,
other tasks can be supported, such as pedestrian simulation (Hsu and
Chu 2014) and a fire-evacuation analysis (Shi et al. 2009), or other
nonpath-planning tasks, such as workspace planning (Elmahdi et al.
2011) and workspace soft clash detection (Moon et al. 2014).

To create a cell-based path-planning environment, two tasks
have to be completed: a cell allocation and cell navigability test.
The former allocates cells in the path-planning space, whereas
the latter determines if a cell can be navigated by a moving object.
Voxelization, which is a common method for approximating
3D objects with cubics (voxels), can potentially create a cell-based
path-planning environment because when voxelization finishes,
the upper face of each voxel forms a cell (Fig. 2). In addition,
voxelization can potentially facilitate the cell navigability test
because navigability depends on whether a cell is intersected by
obstacles and whether the voxel-based intersection test is efficient
(Echegaray and Borro 2012). Building information models (BIMs),
which contain both physical and functional information in 3D
or nD digital models, provide a preferable virtual environment for
path planning.However, inmost situations, themodels are not created
in a voxel-based manner. Therefore, an applicable method to auto-
matically convert BIM models to voxels has to be developed. With
this method, researchers and practitioners can focus more on the
research and the application of path planning instead of the creation
of a cell-based environment, which is time-consuming and tedious.

Related Research

Research on voxelization is mainly conducted in computer graph-
ics (Stolte and Kaufman 2001; Yang et al. 2017a; Zhang et al. 2018;
Zhao et al. 2004). In the AEC industry, voxel-assisted techniques
are also widely-applied, including 3D point cloud processing
(Krijnen and Beetz 2017; Shirowzhan et al. 2018), structure recog-
nition (Sun et al. 2018), a morphological analysis of building com-
ponent materials (Yang et al. 2017b), and a finite-element analysis
(Castellazzi et al. 2015). These studies use two voxel generation

1Professor, School of Civil Engineering and Architecture, Wuhan Univ.
of Technology, Wuhan City, Hubei Province 430070, China. Email:
wangqk@whut.edu.cn

2School of Civil Engineering and Architecture, Wuhan Univ. of
Technology, Wuhan City, Hubei Province 430070, China. Email:
542814313@qq.com

3Lecturer, School of Civil Engineering andArchitecture,Wuhan Univ. of
Technology, Wuhan City, Hubei Province 430070, China (corresponding
author). ORCID: https://orcid.org/0000-0001-6633-0035. Email: zeng.guo@
qq.com

4Ph.D. Candidate, School of Civil Engineering and Architecture,
Wuhan Univ. of Technology, Wuhan City, Hubei Province 430070, China.
Email: qianyao.li@qq.com

5Lecturer, School of Civil Engineering and Architecture, Wuhan Insti-
tute of Technology, Wuhan City, Hubei Province 430205, China. Email:
22243571@qq.com

6Post-Doctor, School of Civil Engineering and Architecture, Wuhan
Univ. of Technology, Wuhan City, Hubei Province 430070, China. Email:
dinojoe@whut.edu.cn

Note. This manuscript was submitted on March 22, 2019; approved on
January 16, 2020; published online on May 11, 2020. Discussion period
open until October 11, 2020; separate discussions must be submitted for
individual papers. This paper is part of the Journal of Construction En-
gineering and Management, © ASCE, ISSN 0733-9364.

© ASCE 04020080-1 J. Constr. Eng. Manage.

 J. Constr. Eng. Manage., 2020, 146(7): 04020080 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
ar

le
to

n 
U

ni
ve

rs
ity

 o
n 

05
/1

8/
20

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.

https://doi.org/10.1061/(ASCE)CO.1943-7862.0001864
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001864
mailto:wangqk@whut.edu.cn
mailto:542814313@qq.com
https://orcid.org/0000-0001-6633-0035
mailto:zeng.guo@qq.com
mailto:zeng.guo@qq.com
mailto:qianyao.li@qq.com
mailto:22243571@qq.com
mailto:dinojoe@whut.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1061%2F%28ASCE%29CO.1943-7862.0001864&domain=pdf&date_stamp=2020-05-11


strategies: identical-sized voxelization and self-adapting voxeliza-
tion (Fig. 1 and Table 1).

The identicalsized voxelization strategy generates voxels with
an identical size to represent the voxelized objects/spaces. Voxels
with identical sizes can be generated using two methods: surface-
based voxelization and slice-based voxelization. In surface-based
voxelization, the surface of the objects is first voxelized and then
the generated voxels are used to define others. For instance, to
extract the free indoor spaces of a CityGML model, Xiong et al.
(2016) voxelized the surface of these components and passed se-
mantic information from the surface voxels to their neighbors to

cluster them as various indoor spaces. Sun et al. (2018) proposed
a compositional building structural recognition method that also
starts with building surface voxelization. To voxelize a boundary-
representation model, Young and Krishnamurthy (2018) proposed
a method in which the boundary of the model is first divided into
triangle meshes, followed by the application of a two-level process
to identify the boundary and inner voxels. In the slice-based method,
the objects are sliced into sections; voxels are first generated on
those sections and then merged as the voxelized object. Bandi and
Thalmann (1998) proposed a method that uses several horizontal
planes equidistant to one another to cut the 3D environment (model).

Fig. 1. (Color) Identical-size and self-adapting representation: (a) identical-sized voxelization strategy; (b) self-adapting voxelization strategy; and
(c) voxelization errors of the identical-sized/oct-tree based voxelization versus LEGO-based voxelization.

Table 1. Comparison of voxelization strategies

Voxelization strategy

Voxel width and depth Voxel height

Occupied voxels Vacant voxels Occupied voxels Vacant voxels

Identical-sized voxelization Identical Identical Identical Identical
Self-adapting voxelization

Octree-based Identical Changeable Identical Changeable
LEGO-based Identical No voxel Changeable No voxel

© ASCE 04020080-2 J. Constr. Eng. Manage.

 J. Constr. Eng. Manage., 2020, 146(7): 04020080 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
ar

le
to

n 
U

ni
ve

rs
ity

 o
n 

05
/1

8/
20

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



The sliced volumes are then projected to the horizontal planes
with grid cells. If some cells are covered by the projections, they
are either unnavigable or surmountable depending on the elevation
of the volumes. Although not explicitly stated in this method, the
combination of the cell and the distance between the planes deter-
mine a voxel.

The self-adapting voxelization strategy generates voxels by
considering the size of the voxelized objects. The voxels generated
during voxelization are not identical in size. Self-adapting voxel
methods come in two forms: the octree-based method and the
LEGO-based method. The octree-based method adopts octrees to
voxelize objects/models. An octree is a hierarchical tree structure
with each of its internal nodes consisting of eight children and is
used to partition a 3D space by recursively subdividing it into eight
octants (Chen and Huang 1985). The advantage of octree-based
voxelization is that it is efficient in voxelizing a not fully-occupied
3D space because the vacant space can be quickly excluded from
further voxelization. This method has also been used in some studies
for voxelization: Bischoff et al. (2005) used a hierarchical octree
data structure to generate voxels to assist polygon model restoration;
de Queiroz and Chou (2016) used an octree to voxelize point-cloud
data. However, the disadvantage of this method is that the neighbor-
ing relationship of different voxels is hard to determine because of
the tree structure. To address this concern, Mu et al. (2010) proposed
a pedigree coding method that can rapidly determine the neighbor-
ing relationship of two voxels from an octree. The LEGO-based
method divides the objects/models into LEGOs. A LEGO is a build-
ing block developed by the LEGO company in Denmark (Min et al.
2018). Yuan and Schneider (2010) proposed a LEGO-based method
for indoor path planning. They divided the indoor spaces into LEGO
blocks and considered the upper face of the LEGOs as the cells for
navigation. The advantage of this method is that the heights of the
LEGOs are self-adapting, and a 3D element can contain consider-
ably fewer LEGO voxels, compared with the equal-sized or octree-
based techniques, facilitating calculation in path planning.

Summary

Current research provides valuable voxelization strategies appli-
cable in various areas. However, the aforementioned strategies have
some limitations in representing a path-planning environment: the
identical-sized voxels cannot fit the objects or models well unless
the size of each individual voxel is reduced, which then leads to an
increase in the number of voxels and extends the elapsed time for
voxelization. The octree-based method from the self-adapting

voxelization strategy can efficiently detect voxels that are not oc-
cupied by any element within a few iterations; however, the method
is not efficient enough to detect voxels occupied by elements be-
cause the iteration does not stop until the voxel size reaches its min-
imum. The LEGO-based approach is suitable for representing a
path-planning environment because it can approximate the element
more accurately than the two aforementioned approaches, as shown
in Fig. 1(c); however, neither an executable and detailed approach
to the LEGO-based voxelization of BIM models nor the perfor-
mance of this method is introduced. To address the limitations in
a LEGO-based voxelization, this study elaborates on the voxeliza-
tion algorithm in the context of BIM and conducts tests to verify the
efficiency and applicability of the method.

The structure of this paper is arranged as follows: after the in-
troduction of the background and related research in the introduction
part, a four-step BIM model voxelization method is elaborated in
the “BIM Model Voxelization Method” section. A validation test is
then conducted to test the correctness, speed, and applicability of the
proposed method in the “Validation Test” section, and the results of
the test are illustrated and discussed in the “Result and Discussion”
section. Finally the conclusion, contribution, and limitation of this
study are summarized in the “Conclusion” section.

BIM Model Voxelization Method

Given a right-handed Cartesian coordinate system whose x-, y-,
and z- axis points are forward, right, and upward, respectively, a
LEGOlized voxel is an axis-aligned bounding box (AABB) with a
fixed width (x-scale), depth (y-scale), and variable height (z-scale).
To represent the location of the voxel, several parameters are intro-
duced: (1) the location point, which is the voxel vertex with mini-
mum x, y, and z (left, Fig. 2); (2) the column faces, which are the
two voxel faces perpendicular to the x-axis (middle, Fig. 2); (3) the
row faces, which are the two voxel faces perpendicular to the y-axis
(middle, Fig. 2); (4) the cell face, which is the upper face of the
voxel representing a cell for path planning (if the cell can be used
by the moving object); (5) the lower face, which is the bottom face
of the voxel (middle, Fig. 2); and (6) the voxel origin, which is the
location of the first voxel, and is often set as the minima of the
AABB enveloping the entire BIM models (right, Fig. 2). To facili-
tate the voxelization process, each column face and row face is in-
dexed by an integer. Given a voxel vox with the location point
lcðxlc; ylc; zlcÞ, the voxel origin is oðxo; yo; zoÞ, and the cell size
is cs; therefore, the index of the column and row face intersecting
at lc is calculated using Eq. (1), as follows:

Fig. 2. (Color) Some parameters of a LEGO-based voxel.

© ASCE 04020080-3 J. Constr. Eng. Manage.

 J. Constr. Eng. Manage., 2020, 146(7): 04020080 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
ar

le
to

n 
U

ni
ve

rs
ity

 o
n 

05
/1

8/
20

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



ci ¼
�
xlc − xo

cs

�

ri ¼
�
xlc − xo

cs

�
ð1Þ

where ci = index of the aforementioned column face; and ri = index
of the aforementioned row face.

A voxel also has an index. The voxel index is determined by the
face indexes of the column and row faces intersecting at the loca-
tion point. For example, the aforementioned voxel vox has an index
denoted by [ci, ri]. The first element of the voxel index is called a
column index, and the second element is called a row index.

Given a BIM model consisting of numerous elements, the voxe-
lization of the elements is conducted one by one. The method of
voxelizing a BIM element consists of four steps: element solid dis-
traction, solid face triangulation, triangle mesh voxelization, and
mesh voxel merging (Fig. 3).

Element Solid Distraction

In many BIM applications, the space occupation of their elements
are represented by solids, and the solids can be accessed by the
corresponding application program interfaces (APIs). In this step,
the solids of a given element are directly obtained by APIs for fur-
ther process.

Solid Face Triangulation

After the solids are generated from the given elements, the surface
of each solid is converted into triangle meshes. A triangle mesh is
a 3D mesh consisting of numerous triangular facets. In computer
graphics, triangle meshes can represent the approximation of
complex surfaces (Dunn and Parberry 2005). Some studies cited
in “Related Research” used triangle meshes to generate voxels

(Sun et al. 2011; Xiong et al. 2016; Young and Krishnamurthy
2018). In the present study, triangle meshes are also used as inputs
to voxelize the corresponding solid. Some 3D computer-aided de-
signs or BIM software applications provide built-in functions for
triangulation and thus can be applied directly for this task.

In this study, each triangular facet from the triangle mesh exhibits
two properties: (1) the coordinates of the three vertices, and (2) a
normal of the facet pointing outward from the corresponding solid.
The first property can be obtained after triangulation, but the second
property cannot always be obtained. In this situation, the face host-
ing themeshes can be used to determine the normal. Given a triangu-
lar facet with three vertices—v1ðx1; y1; z1Þ, v2ðx2; y2; z2Þ, and
v3ðx3; y3; z3Þ—its normal is determined as follows. First, a cross
product between the vectors v12 ¼ v2 − v1 and v13 ¼ v3 − v1 is
created. The result (veccp) is a vector orthogonal to the triangle with
the direction either the same as or opposite that of the correct triangle
normal. Second, the coordinate of the triangle centroid is calculated.
Third, the centroid is projected to the face, and the normal of the
projection (np) is determined by using the related API function—
for instance, the project method of Revit API version 2017. Finally,
the dot product between np and veccp is calculated. If the value is
larger than 0, which means that the angle between np and veccp is
less than π=2, veccp is the correct facet normal; otherwise, the
inverse of veccp, which is −1 × veccp, is the correct facet normal.

Triangle Mesh Voxelization

This step, which converts the triangle mesh of each solid to
voxels, consists of two substeps: grid-point generation and voxel
generation.

A Grid-Point Generation
A grid point (GP) is the potential intersection between a voxel and
a triangular facet. It determines the location and shape of the
voxel. There are four types of GPs: the vertex GP (VGP), column

Fig. 3. (Color) Process of element voxelization.

© ASCE 04020080-4 J. Constr. Eng. Manage.

 J. Constr. Eng. Manage., 2020, 146(7): 04020080 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
ar

le
to

n 
U

ni
ve

rs
ity

 o
n 

05
/1

8/
20

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



GP (CGP), row GP (RGP), and inner GP (IGP) [Fig. 4(a)]. AVGP is
the intersection between one of the facet vertices and the voxel; a
CGP is the intersection between one column face of a voxel and an
edge of the facet; an RGP is the intersection between one row face of
a voxel and an edge of the facet; and an IGP is the intersection of a
column face and a row face of a voxel and the facet. AGP may have
multiple types. However, in this study, a GP is allowed to have only
one type. The GP type with x and y values of xgp and ygp, respec-
tively, is listed in Table 2.

Fig. 4. (Color) Triangle-based element voxelization: (a) grid points on nonvertical triangle; (b) grid points on vertical triangle; (c) grid point
generation for nonvertical triangle facets; (d) determining the affection range of each GPs; and (e) affection range of each GPs of vertical triangle
in odd situations.

Table 2. Grid type of a vertex grid with multiple types

ygp-yo

xgp-xo

Divisible by s Not divisible by s

Divisible by s IGP RGP
Not divisible by s CGP VGP

Note: xo, yo = the x and y coordinates of the origin of the voxel space; s = the
voxel size; IGP = inner grid point; RGP = row grid point; CGP = column
grid point; and VGP = vertex grid point.

© ASCE 04020080-5 J. Constr. Eng. Manage.

 J. Constr. Eng. Manage., 2020, 146(7): 04020080 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
ar

le
to

n 
U

ni
ve

rs
ity

 o
n 

05
/1

8/
20

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Grid-Point Generation for Nonvertical Triangular Facets. A
nonvertical triangular facet is a facet with the z-value of its normal
not equal to zero. The process of determining the GP is presented in
Fig. 4(c). Its pseudocode, presented in Fig. 5, includes Eqs. (2)–(9)

colst ¼
�
xL − xo

cs

�
þ 1

coled ¼
�
xR − xo

cs

�
− 1 ð2Þ

xc1 ¼ col × csþ xo

xc2 ¼ xc1

yc1 ¼
yM − yc
xM − xc

× ðxc1 − xcÞ þ yc

yc2 ¼
yR − yL
xR − xL

× ðxc2 − xLÞ þ yL

zc1 ¼ zL − xnðxc1 − xLÞ þ ynðyc1 − yLÞ
zn

zc2 ¼ zL − xnðxc2 − xLÞ þ ynðyc2 − yLÞ
zn

ð3Þ

ðxc; ycÞ ¼

8>>><
>>>:

ðxL; yLÞ; colst ≤ col ≤
�
xM − xo

cs

�
− 1

ðxR; yRÞ;max

��
xM − xo

cs

�
; colst

�
≤ col ≤ coled

ð4Þ

rowst ¼
�
minðyc1; yc2Þ − xo

cs

�
þ 1

rowed ¼
�
maxðyc1; yc2Þ − xo

cs

�
þ 1 ð5Þ

xi ¼ xc1

yi ¼ rowi × csþ yo

zi ¼ zL − xnðxi − xLÞ þ ynðyi − yLÞ
zn

ð6Þ

rowst ¼
�
yB − yo

cs

�
þ 1

rowed ¼
�
yU − yo

cs

�
− 1 ð7Þ

Fig. 5. Pseudocode of nonvertical triangular facet grid-point generation.

© ASCE 04020080-6 J. Constr. Eng. Manage.

 J. Constr. Eng. Manage., 2020, 146(7): 04020080 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
ar

le
to

n 
U

ni
ve

rs
ity

 o
n 

05
/1

8/
20

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



xr1 ¼
yM − yr
xM − xr

× ðyr1 − yrÞ þ xr

xr2 ¼
yU − yB
xU − xB

× ðyr2 − yBÞ þ xB

yr1 ¼ rowr × csþ yo

yr2 ¼ yr1

zr1 ¼ zB − xnðxr1 − xBÞ þ ynðyr1 − yBÞ
zn

zr2 ¼ zB − xnðxr2 − xBÞ þ ynðyr2 − yBÞ
zn

ð8Þ

ðxr; yrÞ ¼

8>>><
>>>:

ðxByBÞ; rowst ≤ rowr ≤ max

��
yI − yo
cs

�
; rowst

�

ðxU; yUÞ;max

��
yI − yo
cs

�
; rowst

�
≤ rowr ≤ rowed

ð9Þ

Grid-Point Generation for Vertical Triangular Facets. A verti-
cal triangular facet is a facet with the z-value of its normal equal
to zero. The horizontal projection of this kind of facet is a line
section so that two different GPs may have the same x- and
y-coordinates. In this study, the two GPs with the same x- and
y-coordinates in a vertical triangle form a GP pair (GPP) [Fig. 4(b)].
A GPP also comes in four types: vertex GPP (VGPP), column
GPP (CGPP), row GPP (RGPP), and inner GPP (IGPP), and its
type is determined by any of the GP forming it. Notably, the
triangular facet may have a VGP with x- and y- coordinates differ-
ent from those of any other GPs; in this case, the VGP can be
regarded as two overlapping potential VGPs to confer only two
GPs to any GPP.

Determining the GPPs of a vertical triangular facet is similar to
determining the GPs of a nonvertical triangular facet. The pseudo-
code with Eqs. (10)–(13) is shown in Fig. 6

xc1 ¼ col × csþ xo

xc2 ¼ xc1

yc1 ¼
yM − yc
xM − xc

× ðxc1 − xcÞ þ yc

yc2 ¼
yR − yL
xR − xL

× ðxc2 − xLÞ þ yL

zc1 ¼
zM − zc
xM − xc

× ðxc1 − xcÞ þ zc

zc2 ¼
zR − zL
xR − xL

× ðxc2 − xLÞ þ zL ð10Þ

ðxc;yc; zcÞ ¼

8>>><
>>>:

ðxL;yL; zLÞ; colst ≤ col ≤
�
xM − xo

cs

�
− 1

ðxR;yR; zRÞ;max

��
xM − xo

cs

�
; colst

�
≤ col ≤ coled

ð11Þ

xr1 ¼
xI − xr
yI − yr

× ðyr1 − yrÞ þ xr

xr2 ¼
xU − xB
yU − yB

× ðyr2 − yBÞ þ xB

yr1 ¼ rowr × csþ yo

yr2 ¼ yr1

zr1 ¼
zI − zr
xI − xr

× ðxr1 − xrÞ þ zr

zr2 ¼
zU − zB
xU − xB

× ðxr2 − xBÞ þ zB ð12Þ

ðxr;yr;zrÞ¼

8>>><
>>>:
ðxByB;zBÞ; rowst ≤ rowr ≤

�
yI −yo
cs

�
−1

ðxU;yU;zUÞ;max

��
yI −yo
cs

�
; rowst

�
≤ rowr ≤ rowed

ð13Þ

Voxel Generation
Voxel generation relies on previously generated GPs or GPPs.
Before elaborating on this step, the index of a GP/GPP requires
an introduction. Given a GP (xgp, ygp, zgp), the cell size cs, and
the voxel origin (xo, yo, zo), its index, denoted by ½colgp; rowgp�,
is calculated using Eq. (14). The index of a GPP is the same as
that of any of its GP

Fig. 6. Pseudocode of vertical triangular facet grid-point generation.

© ASCE 04020080-7 J. Constr. Eng. Manage.

 J. Constr. Eng. Manage., 2020, 146(7): 04020080 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
ar

le
to

n 
U

ni
ve

rs
ity

 o
n 

05
/1

8/
20

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



colgp ¼
�
xgp − xo

cs

�

rowgp ¼
�
ygp − yo

cs

�
ð14Þ

Voxel Generation for Nonvertical Triangles. For a voxel from a
nonvertical triangle, the generated GPs exert different effects: VGP
affects the voxels whose indexes are the same as that of the VGP
[e.g., GP1 in Fig. 4(d) affects Voxels 1-1]; CGP/RGP affects the
voxels that share the same column/row faces as it does [e.g., GP2/
GP3 in Fig. 4(d) affects Voxels 2-1, 2-2/3-1, and 3-2]; and IGP
affects the voxels horizontally around it [e.g., GP4 in Fig. 4(d) af-
fects Voxel 4-1, 4-2, 4-3, and 4-4]. The indexes of voxels affected
by GP [col, row] are listed in Table 3. For a nonvertical triangle, a
voxel is valid only if it is affected by three GPs or more because
at least three GPs are present in the intersection area between the
triangular facet and the voxel. For instance, Voxels 5-2, 5-3, and
5-4 in Fig. 4(d) are valid because they are affected by three GPs,
whereas Voxel 5-1 is invalid because only one GP (GP5) affects it.
The elevation of the lower face and that of the cell face of a voxel
are the minimum and the maximum z-values of the GPs affecting it,
respectively. The collection of all valid voxels forms the voxeliza-
tion of the triangular facet.
Voxel Generation for Vertical Triangles. For a voxel from the
vertical triangular facet, there are two special situations: (1) the
facet overlaps with a column plane, and the x-value of the facet
is positive; and (2) the facet overlaps with a row plane, and the
y-value of the facet is positive. In the first, the column index of
each voxel affected by GPP is that of the GPP–1; that is, the GPPs
only affect the voxels on their left. To illustrate, in Fig. 4(e), VGPP
5 affects Voxel 5 instead of Voxel 5’, while IGPP 4 affects only
Voxels 5 and 6 instead of Voxels 5, 6, 5’, and 6’. In the second, the
GPPs only affect the voxels below them. To illustrate, in Fig. 4(e),
VGPP 1 affects Voxel 1 instead of Voxel 1’, while IGPP 1 affects
Voxels 1 and 2 instead of Voxels 1, 2, 1’, and 2’. In the situation
otherwise, the voxels affected by GPPs are the same as those af-
fected by GPs. Table 4 lists the voxel indexes affected by various
GPPs. A voxel is valid only if it is affected by two or more GPPs
because the intersection between the voxel and a vertical triangle
contains at least two GPPs. The elevation of the lower and cell face
of a voxel is determined in a manner similar to that for nonvertical
triangular facets, and the collection of all voxels forms the voxe-
lization of the vertical triangular facet.

Triangle Voxel Merging

Voxel Merging in a Solid
The voxels from the previous step are only on the surface of
the solid, and some of them may intersect with one another; there-
fore, the inner part of the solid needs to be filled, and the intersec-
tions among the voxels need to be removed. Given a solid and its
voxels, voxel merging is conducted as follows: first, the voxels are
grouped by their indexes; and second, the voxels are merged group
by group. Voxel merging within a group is depicted in Fig. 7 and is
explained as follows:
1. Two types of voxels—entrance voxels and exit voxels—are

found in (1) in the figure. To inteprete them, imagine that there
is a bulk of rays coming from an area under the solid. The rays
can enter the solid via the lower faces of a voxel hosted by a
vertical triangular facet or a nonvertical triangular facet with
a z-component of its normal pointing downwards, hence the
two voxels are entrance voxels. Meanwhile, the rays start to
leave the voxel only when it reaches the lower face of the voxels
hosted by nonvertical triangular facets with the z-component of
its normal pointing upward—hence, the name, exit voxels.

2. The sorting rules in (2) in Fig. 7 are as follows. The voxels are
ordered by their lower face elevations in ascending order. If two
voxels have the same lower face elevation, the entrance voxel
should be ordered before the exit voxel to ensure that the afore-
mentioned rays pass the entrance voxels first before entering
the solid.

3. In (3) in Fig. 7, two pointers—the main pointer and the
subpointer—are identified. The voxel pointed by the main pointer
is the main voxel, whereas that pointed by the subpointer is the
subvoxel. The subvoxel is the potential merging target of themain
voxel. If the current subvoxel can be merged by the main voxel,
the subpointer subsequently moves to the next voxel to create a
new subvoxel, and the main pointer remains unchanged. If the
current subvoxel cannot be merged by the main voxel, the main
pointer moves to the subvoxel to make it a newmain voxel, mean-
while the subpointer moves to the voxel next to the new main one
and that voxel becomes the new sub voxel. This process continues
until the main pointer points to the last voxel in the group.

4. Voxel merging in (4) of Fig. 7 starts at the first voxel in the
group. Given a main voxel and subvoxels voxmain, voxsub, with
lower and cell face elevations of l1, l2, and c1, c2, respectively.
After merging, the main voxel has a lower face elevation of min
ðc1; c2Þ and a cell face elevation of max ðc1; c2Þ. The type of
main voxel inherits that of the voxel with a larger cell face ele-
vation. For instance, if max ðc1; c2Þ ¼ c2, then the new main
voxel is similar in type to that of voxsub; otherwise, the main
voxel type remains unchanged.

5. Voxels in (4.1) and (4.2) are merged but not the voxels in (4.3) in
Fig. 7. The reasons are as follows: in (4.1) in Fig. 7, Voxels v8
(main voxel) and v7 (subvoxel) are disconnected. The inter-
mediate zone between v8 (an entrance voxel) and v7 (an exit
voxel) indicates that imaginary rays have entered the solid

Table 4. Indices of voxels affected by GPP [col,row]

VGPP CGPP RGPP IGPP

Triangular facet overlapping with a column face and xn > 0 [col-1,row] — — [col-1,row], [col-1,row-1]
Triangular facet overlapping with a row face and yn > 0 [col,row-1] — — [col,row-1], [col-1,row-1]
None of the above [col,row-1] [col, row],

[col-1,row]
[col,row],
[col,row-1]

[col,row], [col-1,row]
[col,row-1], [col-1,row-1]

Note: xn, yn ¼ x and y values of the normal of the triangular facet;VGPP = vertices grid point pair;CGPP = column grid point par; RGPP = row column grid
pair; and IGPP= inner grid point pair.

Table 3. Indices of voxels affected by GP [col, row]

VGP CGP RGP IGP

[col,row-1] [col,row],
[col-1,row]

[col,row],
[col,row-1]

[col,row], [col-1,row]
[col,row-1], [col-1,row-1]

Note: IGP = inner grid point;RGP = row grid point;CGP = column grid
point; and VGP = vertex grid point.

© ASCE 04020080-8 J. Constr. Eng. Manage.

 J. Constr. Eng. Manage., 2020, 146(7): 04020080 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
ar

le
to

n 
U

ni
ve

rs
ity

 o
n 

05
/1

8/
20

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



but have not left yet, suggesting that this zone is the inner part
of the solid. Thus, the two voxels should be merged to fill this
zone. The reason for merging v8 (currently v8 is merged with
v7) and v6 in (4.2) in Fig. 7 is that they intersect each other, and
the reason for not merging v8 (currently v8 has merged v7 and
v4) and v3 in (4.3) in Fig. 7 is that v8 is currently an exit voxel.
Its next voxel, v3, is an entrance voxel. The rays coming from v8
remain outside the voxel until they reach v3. Therefore, the re-
gion between the two voxels is outside the solid and should not
be merged. The rule for voxel merging between two disjoint
voxels is summarized in Table 5.

Voxel Merging Across a Solid
An element may contain multiple solids. After the voxels within a
solid are merged, voxels from a different solid also need to be
merged. The two voxels from different solids need to be merged
only where they intersect with each other.

Validation Test

To validate the proposed method, a validation test is conducted us-
ing three subtests: a correctness test, which evaluates the accuracy
of the proposed method; a speed test, which measures the elapsed
time of the method; and an applicability test, which determines and
verifies the advantage of the method. All subtests are run on a lap-
top with an Intel i7 7700HQ CPU (4 cores 2.8GHz) and 16GB
RAM. The API is from Autodesk Revit 2017.

Fig. 7. (Color) Merging of triangular voxels.

Table 5. Voxel merging strategy

Voxel under
(main voxel)

Voxel upper (subvoxel)

Entrance voxel Exit voxel

Entrance voxel Merge Merge
Exit voxel Not merge Merge

© ASCE 04020080-9 J. Constr. Eng. Manage.

 J. Constr. Eng. Manage., 2020, 146(7): 04020080 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
ar

le
to

n 
U

ni
ve

rs
ity

 o
n 

05
/1

8/
20

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Correctness Test

The correctness test focuses on the accuracy of voxel generation.
This test runs on a model created by Autodesk Revit, as shown
in Fig. 8(a). The test model contains a floor slab and six types of
objects: an axis-aligned cubold, a tilt cubold, concave polyhedrons,
gate-like shapes, a hexahedron, and a sphere. These objects re-
present axis-aligned elements, nonaxis-aligned elements, irregular
elements, and elements with curved surfaces at a construction site.

For the purpose of the accuracy test, the proposed method in this
study is compared with two other voxelization techniques: the
identical-size strategy (Strategy 1) and octree-based voxelization
strategy (Strategy 2). Given the element, the identical-sized strategy
is as follows: the bounding box of the given element is first obtained,
and the box is divided into several voxels with identical heights,
widths, and depths. The voxels are then scanned individually, and
ElementIntersectsSolidFilter is used to test if the current voxel
intersects the element. All intersecting voxels are then collected
as the voxelization of the given element; in the octree-based strategy,
the bounding box is first chosen as the root node of the tree and then
divided into eight boxes (voxels) of equal sizes as their child nodes.
Each subnode is then checked to determine whether it intersects the
element. The node that intersects the element is further divided until
the size is smaller than or equal to the threshold set by the user. The
voxels intersecting the element are considered as the output. For
convenience of expression, the voxels generated using the proposed
method are referred to as test voxels, and those generated using
Strategies 1 and 2 are referred to as base voxels.

The accuracy of the proposed method is determined by the dis-
crepancies between the total volumes of the test voxels and of the
two base voxels of each element. The discrepancies, denoted by
dvelem, are calculated using Eq. (15), wherem and n are the number
of test and base voxels in the element; vti is the volume of the ith
test voxel; and vbj is the volume of the jth base voxel. The cell size
of a path-planning environment is often given by the user, so

therefore, the base voxels and the test voxel share the same width
and depth. In this test, the width and depth of any voxel is set as
300 × 300 mm. In this situation, the size of the voxel is only af-
fected by its height. As the voxelization accuracy increases with the
decrease of the voxel size, the height of the base voxels starts at
300 mm and decreases to 100 mm with a step of 100 mm. During
this process, the dvelem as well as the elapsed time of the proposed
method and Strategies 1 and 2 are measured sequentially. To min-
imize occasion errors, at each voxel height, the elapsed time of the
three methods are recorded 10 times to get the averages. The level
of detail of the triangle is set to the highest that Revit can reach to
minimize the errors caused by element triangulation

dvelem ¼
P

m
i¼1 vti −

P
n
j¼1 vbjP

n
j¼1 vbj

ð15Þ

Speed Test

This test focuses on the elapsed time of the method on various tri-
angular facets. In this test, the model rme_advanced_sample_
project, one of the sample projects of Revit, is chosen for the speed
test because it contains numerous mechanical facilities with non-
planar surfaces, as shown in Fig. 9(a). The number of triangular
facets can be modified by adjusting the level of detail of the triangu-
lation, enabling the evaluation of the performance of the voxeliza-
tion method under various numbers of triangular facets.

Applicability Test

This test aims to verify that the proposed voxel-based representa-
tion can increase the efficiency of a cell navigability analysis. In
this test, the proposed method is compared with four other meth-
ods: the AABB method, the ray-based method, the cut-project
method, and the solid-based method. The AABB method considers
the AABB of a BIM element as its space occupation (Chavada et al.
2012). The navigability of a cell can be evaluated by generating
an AABB resembling the moving object above it and checking
whether it intersects with the AABBs of the other elements. This
method has been used in numerous studies (Lin et al. 2013; Mirzaei
et al. 2018; Moon et al. 2014; Tan et al. 2017). The ray-based
method proposed by ElNimr et al. (2016) allows each cell to project
rays to its neighbors. If a ray hits a component before reaching any
neighbor, the cell is unnavigable. The solid-based method by Wang
et al. (2018a, b) generates a solid based on a cell. If the solid in-
tersects any element, the cell is inaccessible (unnavigable). The cut-
project method introduced by Wang et al. (2019) includes three
steps: first, two cutting planes parallel to the supporting surface
of the movable object are used to cut all BIM elements; second,
the solids are projected between the two planes to the cells on
the supporting surface; third, the cells intersected with the projec-
tions are regarded as unnavigable.

In this test, the moving object is considered as a labor crew
whose space occupation at any time interval while the object is in
motion is a 600×600×2,000mm bounding box (Chinese National
Standard 1988). Because the bottom elevation of the feet is elevfoot,
the moving object can surmount obstacles with top elevations lower
than elevfoot þ 400 mm and can bend lower to move across the
obstacles with bottom elevations above elevfoot þ 1,600 mm.
At any time interval while the object is in motion, the object keeps
the vertical center axis of the bounding box aligned with the location
point of a cell from a support element. In this test, the support el-
ements are designated as floor slabs. Two test models are identified:
(1) the correctness test model appending several walls with a height

Fig. 8. Correctness test result: (a) test model for correctness test; and
(b) test result.

© ASCE 04020080-10 J. Constr. Eng. Manage.

 J. Constr. Eng. Manage., 2020, 146(7): 04020080 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
ar

le
to

n 
U

ni
ve

rs
ity

 o
n 

05
/1

8/
20

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



of 300; and (2) the speed test model. The first test model is used to
evaluate the performance of the five methods (the proposed method
and the four aforementioned methods) in a simple environment,
and the second test model is used to further test their performances
in a complicated environment.

The unnavigable cells are detected by converting the BIM ele-
ments to C-obstacles introduced by Lei et al. (2013). An obstacle
with a height of more than 400 mm is expanded as a C-obstacle,
depending on the size of the moving object. The advantage of this
strategy is that it can markedly decrease the number of cells for
the unnavigable test, as shown in Fig. 10(a). For obstacles less than
400 mm in height (surmountable obstacles), they are not expanded
because the moving object can go over it. Therefore, the surmount-
able cells are those only covered by the surmountable obstacles, as
shown in Fig. 10(b).

Result and Discussion

Result and Discussion of the Correctness Test

The test result is presented in Fig. 8(b). As shown in the figure, as
the voxel height decreases, the accuracy of the base voxel increases,
thereby decreasing the discrepancies between the volumes of the

test voxels. This trend proves the accuracy of the proposed method.
The identical-sized and octree-based methods require a longer
elapsed time to achieve accuracy, whereas the proposed method
requires considerably less time to achieve the same level of
accuracy.

Result and Discussion of Speed Test

The results of the test are presented in Figs. 9(b and c). In Fig. 9(b),
the following results can be found: (1) the element face triangula-
tion uses up most of the total elapsed time; (2) as the number of
triangular facets increase, the time required for voxel triangulation
increases as well; and (3) the elapsed time for the voxel generation
increases with the number of voxels.

Result and Discussion of the Applicability Test

The test result for Project 1 is presented in Fig. 11. Notable results
include the following:
• In the AABB method, no free voxel is found because this meth-

od regards the AABB of the element as its space occupation.
The walls on the floor slab diagonals have AABBs covering
all floors; therefore, the cells, are surmountable if not unnavig-
able. In addition, based on Fig. 11(b), all elements above the

Fig. 9. (Color) Speed test modeling and results: (a) model for speed test; (b) result of speed test; and (c) model after voxelization.

© ASCE 04020080-11 J. Constr. Eng. Manage.

 J. Constr. Eng. Manage., 2020, 146(7): 04020080 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
ar

le
to

n 
U

ni
ve

rs
ity

 o
n 

05
/1

8/
20

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



floor slab have the same layout as those of the unnavigable cells
because all have the same size as that of AABB.

• With reference to Fig. 11(b), ray casting seems relatively inac-
curate because evaluating the navigability of a cell by using only
several rays yields misleading results. In Fig. 11(f), the two rays
from a cell can reach the neighbor cells without hitting the ob-
stacle. On the basis of ray casting, it is navigable; however, the
cell clearly intersects the obstacle and is unnavigable. Although
more rays can be cast to increase accuracy, the errors cannot be
eliminated because the rays cannot seamlessly fill the 3D space.

• The cut-project, solid-based method, and the proposed method
generate the same results, which are verified by observing the
layout of the cells. Thus, in this test, the three methods generate
the correct result.

• On the basis of the elapsed time of the methods, the voxel-based
method requires the shortest time (0.1094 s) and generates the
correct result. Therefore, this method is desirable for a cell-
navigability analysis.
The inaccuracy of the AABB and ray-casting methods is verified

in the previous test. Thus, the proposed method, cut-project, and
solid-based methods are further tested under Model 2. The test result
is presented in Fig. 12. In this test, the results of the proposed and
cut-project methods are similar, whereas that of the solid-based
method is slightly different. The reason is that the built-in clash de-
tection mechanism of Revit tends to ignore some clashes. In this test,
geometry overlaps (clashes) [Fig. 12(c)] between a door and a solid,
resembling a moving object, and cannot be detected for reasons that
have yet to be determined because the clash detection mechanism of
Revit is unknown. By contrast, in the voxel-based and cut-project
methods, this error does not occur. Therefore, these two methods
are stricter than the solid-based method in the Revit environment.

With regard to speed, the average elapsed time of the voxel-
based method is the shortest. The voxel-based method only requires

0.7001 s to complete the cell navigability test, which is consider-
ably shorter than that of the cut-project method (42.1685 s) and that
of the solid-based method (665.7224 s) [Fig. 12(d)].

In summary, the voxel-based method exhibits the best perfor-
mance in accuracy and speed. As such, it is more applicable than
the other methods evaluated in this study.

Conclusion

This study proposes a method to discretize a BIM model into a
collection of voxels for path-planning tasks. The advantages of this
method are as follows:
• By converting the model into voxels, the cells can be automa-

tically generated because the upper surface of a voxel can be
regarded as a cell;

• The voxels are reusable in a model so that the voxels are gen-
erated only once in the whole path-planning process;

• The elapsed time of a cell-navigability analysis is significantly
shortened because the computation-intensive geometry opera-
tion is avoided in this stage; and

• The properties of the voxels are extensible so that more customized
information can be included for various tasks. In conclusion, this
method can increase the efficiency of a path-planning analysis.
This study contributes to the existing body of knowledge by

providing an executable BIM model voxelization method to gen-
erate a cell-based path-planning environment. With the proposed
method, researchers and practitioners can conveniently convert
existing models to voxels. Moreover, by designating the BIM el-
ements supporting the moving objects, the cell faces of the voxels
hosted by these elements can immediately form a path-planning
environment. In addition, a cell navigability test can be conducted
quickly and accurately, which is proved in the applicability test.

Fig. 10. (Color) Detection of unnavigable and surmountable cells: (a) unnavigable cells detection; and (b) surmountable cells detection.

© ASCE 04020080-12 J. Constr. Eng. Manage.

 J. Constr. Eng. Manage., 2020, 146(7): 04020080 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
ar

le
to

n 
U

ni
ve

rs
ity

 o
n 

05
/1

8/
20

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Therefore, the proposed method can facilitate multiple tasks, such
as (1) testing various path-search algorithms (Taneja et al. 2016);
(2) incorporating cellular automata and agent-based modeling to
simulate moving objects (Kneidl et al. 2013; Zhang et al. 2019);
(3) other cell-based tasks, such as space usage analysis and opti-
mization (Kumar and Cheng 2015); and (4) indoor people position-
ing and tracking (Xu et al. 2018).

However, the proposed method still has several limitations:
• The result of the speed test shows that element face triangulation

uses most of the total elapsed time because the determination of
the correct triangle normal involves time-consuming geometric op-

erations. Accordingly, future studies should include the enhance-
ment of the method for determining the correct triangle normal;

• The realization of voxelization in the prototype adopts a CPU-
based sequential process. Parallel processing techniques based
on multicore CPU or GPU can potentially induce a significant
increase in the speed of voxelization; and

• The approximation of nonplanar faces may affect the accuracy
of voxelization. The accuracy of triangulation, as reported by
Wang et al. (2018, b), has yet to be done by studies. All afore-
mentioned limitations need to be addressed in further re-
search.

Fig. 11. (Color) Test result for Model 1: (a) Revit model of Project 1; (b) result of AABBmethod; (c) result of ray-based method; and (d) result of cut-
project method/solid-based method/proposed method; (e) cell number and time elapsed of each method; and (f) error analysis of ray-casting methods.
(a–d) the green, blue, and red areas represent free, surmountable, and unnavigable cells, respectively.

© ASCE 04020080-13 J. Constr. Eng. Manage.

 J. Constr. Eng. Manage., 2020, 146(7): 04020080 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
ar

le
to

n 
U

ni
ve

rs
ity

 o
n 

05
/1

8/
20

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Data Availability Statement

Data generated or analyzed during the study are available from the
corresponding author by request. Information about the Journal’s
data sharing policy can be found at http://ascelibrary.org/doi/10
.1061/%28ASCE%29CO.1943-7862.0001263.

Acknowledgments

The research is supported by “The Fundamental Research Funds
for the Central Universities (WUT: 203106006).” The authors
are grateful to Mr. Jeremy Tammik who provided valuable
suggestions on using the Revit API for element triangulation.

Fig. 12. (Color) Test result for Model 2: (a) result of the proposed method; (b) result of solid-based method, cut-project method; (c) cell numbers and
elapsed time of each method; and (d) example of clashes Revit cannot detect. The green, blue, and red areas of (a) and (b) represent the free,
surmountable, and unnavigable cells, respectively.

© ASCE 04020080-14 J. Constr. Eng. Manage.

 J. Constr. Eng. Manage., 2020, 146(7): 04020080 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
ar

le
to

n 
U

ni
ve

rs
ity

 o
n 

05
/1

8/
20

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.

http://ascelibrary.org/doi/10.1061/%28ASCE%29CO.1943-7862.0001263
http://ascelibrary.org/doi/10.1061/%28ASCE%29CO.1943-7862.0001263


The authors also thank the two anonymous reviewers whose con-
structive instructions helped improve the research output.

References

Bandi, S., and D. Thalmann. 1998. “Space discretization for efficient hu-
man navigation.” Comput. Graphics Forum 17 (3): 195–206. https://doi
.org/10.1111/1467-8659.00267.

Bischoff, S., D. Pavic, and L. Kobbelt. 2005. “Automatic restoration of pol-
ygon models.” ACM Trans. Graphics 24 (4): 1332–1352. https://doi.org
/10.1145/1095878.1095883.

Castellazzi, G., A. M. D’Altri, G. Bitelli, I. Selvaggi, and A. Lambertini.
2015. “From laser scanning to finite element analysis of complex
buildings by using a semi-automatic procedure.” Sensors 15 (8):
18360–18380. https://doi.org/10.3390/s150818360.

Chavada, R., N. Dawood, and M. Kassem. 2012. “Construction workspace
management: The development and application of a novel nD planning
approach and tool.” J. Inf. Technol. Constr. 17 (13): 213–236.

Chen, H. H., and T. S. Huang. 1985. “Octrees: Construction, representa-
tion, and manipulation.” In Vol. 579 of Proc., Cambridge Symp.,
448–458. New York: International Society for Optics and Photonics.
https://doi.org/10.1117/12.950833.

Cheng, J. C. P., Y. Tan, Y. Z. Song, Z. Y. Mei, V. J. L. Gan, and X. Y. Wang.
2018. “Developing an evacuation evaluation model for offshore oil and
gas platforms using BIM and agent-based model.” Autom. Constr.
89 (May): 214–224. https://doi.org/10.1016/j.autcon.2018.02.011.

Chinese National Standard. 1988. Human dimensions of Chinese adults.
GB10000-1988. Beijing: Standard Press of China.

de Queiroz, R. L., and P. A. Chou. 2016. “Compression of 3D point
clouds using a region-adaptive hierarchical transform.” IEEE Trans.
Image Process. 25 (8): 3947–3956. https://doi.org/10.1109/TIP.2016
.2575005.

Dunn, F., and I. Parberry. 2005. 3D math primer for graphics and game
development (Chinese edition). Beijing: Tsinghua University Press.

Echegaray, G., and D. Borro. 2012. “A methodology for optimal voxel size
computation in collision detection algorithms for virtual reality.” Virtual
Reality. 16 (3): 205–213. https://doi.org/10.1007/s10055-011-0199-5.

Elmahdi, A., I.-C. Wu, and H.-J. Bargstädt. 2011. “4D grid-based simula-
tion framework for facilitating workspace management.” In Proc., 11th
Int. Conf. on Construction Applications of Virtual Reality, 403–412.

ElNimr, A., M. Fagiar, and Y. Mohamed. 2016. “Two-way integration
of 3D visualization and discrete event simulation for modeling mobile
crane movement under dynamically changing site layout.” Autom.
Constr. 68 (Aug): 235–248. https://doi.org/10.1016/j.autcon.2016.05
.013.

Hsu, J. J., and J. C. Chu. 2014. “Long-term congestion anticipation and
aversion in pedestrian simulation using floor field cellular automata.”
Transp. Res. Part C 48 (48): 195–211. https://doi.org/10.1016/j.trc
.2014.08.021.

Kneidl, A., D. Hartmann, and A. Borrmann. 2013. “A hybrid multi-scale
approach for simulation of pedestrian dynamics.” Transp. Res. Part C
37 (3): 223–237. https://doi.org/10.1016/j.trc.2013.03.005.

Krijnen, T., and J. Beetz. 2017. “An IFC schema extension and binary seri-
alization format to efficiently integrate point cloud data into building
models.” Adv. Eng. Inf. 33 (Aug): 473–490. https://doi.org/10.1016/j
.aei.2017.03.008.

Kumar, S. S., and J. C. P. Cheng. 2015. “A BIM-based automated site
layout planning framework for congested construction sites.” Autom.
Constr. 59 (Nov): 24–37. https://doi.org/10.1016/j.autcon.2015.07
.008.

Lei, Z., H. Taghaddos, U. Hermann, and M. Al-Hussein. 2013. “A meth-
odology for mobile crane lift path checking in heavy industrial
projects.” Autom. Constr. 31 (May): 41–53. https://doi.org/10.1016/j
.autcon.2012.11.042.

Lin, Y.-H., Y.-S. Liu, G. Gao, X.-G. Han, C.-Y. Lai, and M. Gu. 2013. “The
IFC-based path planning for 3D indoor spaces.” Adv. Eng. Inf. 27 (2):
189–205. https://doi.org/10.1016/j.aei.2012.10.001.

Marzouk, M., and I. A. Daour. 2018. “Planning labor evacuation for
construction sites using BIM and agent-based simulation.” Saf. Sci.
109 (Nov): 174–185. https://doi.org/10.1016/j.ssci.2018.04.023.

Min, K., C. Park, H. Yang, and G. Yun. 2018. “Legorization from
silhouette-fitted voxelization.” KSII Trans. Internet Inf. Syst. 12 (6):
2782–2805.

Mirzaei, A., F. Nasirzadeh, M. Parchami Jalal, and Y. Zamani. 2018.
“4D-BIM dynamic time–space conflict detection and quantification
system for building construction projects.” J. Constr. Eng. Manage.
144 (7): 04018056. https://doi.org/10.1061/(ASCE)CO.1943-7862
.0001504.

Moon, H., V. R. Kamat, and L. Kang. 2014. “Grid cell-based algorithm for
workspace overlapping analysis considering multiple allocations of
construction resources.” J. Asian Archit. Build. Eng. 13 (2): 341–348.
https://doi.org/10.3130/jaabe.13.341.

Mu, B., M. Pan, and J. Deng. 2010. “Fast large scale voxelization using
projection volume and octree.” Geogr. Geo-Inf. Sci. 26 (4): 27–31.

Park, M., Y. Yang, H. S. Lee, S. Han, and S. H. Ji. 2012. “Floor-level
construction material layout planning model considering actual travel
path.” J. Constr. Eng. Manage. 138 (7): 905–915. https://doi.org/10
.1061/(ASCE)CO.1943-7862.0000493.

Shi, J. Y., A. Z. Ren, and C. Chen. 2009. “Agent-based evacuation model of
large public buildings under fire conditions.” Autom. Constr. 18 (3):
338–347. https://doi.org/10.1016/j.autcon.2008.09.009.

Shirowzhan, S., S. M. E. Sepasgozar, H. Li, and J. Trinder. 2018. “Spatial
compactness metrics and constrained voxel automata development for
analyzing 3D densification and applying to point clouds: A synthetic
review.” Autom. Constr. 96 (Dec): 236–249. https://doi.org/10.1016/j
.autcon.2018.09.018.

Stolte, N., and A. Kaufman. 2001. “Novel techniques for robust voxeliza-
tion and visualization of implicit surfaces.” Graphical Models. 63 (6):
387–412. https://doi.org/10.1006/gmod.2001.0559.

Sun, X., Q. Li, and B. Yang. 2018. “Compositional structure recognition of
3D building models through volumetric analysis.” IEEE Access.
6: 33953–33968. https://doi.org/10.1109/ACCESS.2018.2842721.

Sun, X., B. Yang, and L. I. Qingquan. 2011. “Structural segmentation
method for 3D building models based on voxel analysis.” Acta Geod.
Cartographica Sin. 40 (5): 582–586.

Tan, Y., Y. Song, X. Liu, X. Wang, and J. C. P. Cheng. 2017. “A BIM-based
framework for lift planning in topsides disassembly of offshore oil and
gas platforms.” Autom. Constr. 79 (Jul): 19–30. https://doi.org/10.1016
/j.autcon.2017.02.008.

Taneja, S., B. Akinci, J. H. Garrett, and L. Soibelman. 2016. “Algorithms
for automated generation of navigation models from building informa-
tion models to support indoor map-matching.” Autom. Constr. 61 (Jan):
24–41. https://doi.org/10.1016/j.autcon.2015.09.010.

Wang, Q., B. Gao, T. Li, H. Wu, J. Kan, and B. Hu. 2018a. “A triangular
mesh generator over free-form surfaces for architectural design.”
Autom. Constr. 93 (Sep): 280–292. https://doi.org/10.1016/j.autcon
.2018.05.018.

Wang, Q., Z. Guo, K. Mintah, Q. Li, T. Mei, and P. Li. 2019. “Cell-based
transport path obstruction detection approach for 4D BIM construction
planning.” J. Constr. Eng. Manage. 145 (3): 04018141. https://doi.org
/10.1061/(ASCE)CO.1943-7862.0001583.

Wang, Q. K., Z. Guo, T. T. Mei, Q. Y. Li, and P. Li. 2018b. “Labor crew
workspace analysis for prefabricated assemblies’ installation: A 4D-
BIM-based approach.” Eng. Constr. Archit. Manage. 25 (3): 374–411.
https://doi.org/10.1108/ECAM-09-2016-0210.

Xiong, Q., Q. Zhu, Z. Du, S. Zlatanova, Y. Zhang, Y. Zhou, and Y. Li. 2016.
“Free multi-floor indoor space extraction from complex 3D building
models.” Earth Sci. Inf. 10 (1): 69–83. https://doi.org/10.1007/s12145
-016-0279-x.

Xu, W., L. Liu, S. Zlatanova, W. Penard, and Q. Xiong. 2018. “A pedestrian
tracking algorithm using grid-based indoor model.” Autom. Constr.
92 (Aug): 173–187. https://doi.org/10.1016/j.autcon.2018.03.031.

Yang, X., S. Y. Chen, and Z. P. You. 2017a. “3D voxel-based approach to
quantify aggregate angularity and surface texture.” J. Mater. Civ.
Eng. 29 (7): 04017031. https://doi.org/10.1061/(ASCE)MT.1943-5533
.0001872.

© ASCE 04020080-15 J. Constr. Eng. Manage.

 J. Constr. Eng. Manage., 2020, 146(7): 04020080 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
ar

le
to

n 
U

ni
ve

rs
ity

 o
n 

05
/1

8/
20

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.

https://doi.org/10.1111/1467-8659.00267
https://doi.org/10.1111/1467-8659.00267
https://doi.org/10.1145/1095878.1095883
https://doi.org/10.1145/1095878.1095883
https://doi.org/10.3390/s150818360
https://doi.org/10.1117/12.950833
https://doi.org/10.1016/j.autcon.2018.02.011
https://doi.org/10.1109/TIP.2016.2575005
https://doi.org/10.1109/TIP.2016.2575005
https://doi.org/10.1007/s10055-011-0199-5
https://doi.org/10.1016/j.autcon.2016.05.013
https://doi.org/10.1016/j.autcon.2016.05.013
https://doi.org/10.1016/j.trc.2014.08.021
https://doi.org/10.1016/j.trc.2014.08.021
https://doi.org/10.1016/j.trc.2013.03.005
https://doi.org/10.1016/j.aei.2017.03.008
https://doi.org/10.1016/j.aei.2017.03.008
https://doi.org/10.1016/j.autcon.2015.07.008
https://doi.org/10.1016/j.autcon.2015.07.008
https://doi.org/10.1016/j.autcon.2012.11.042
https://doi.org/10.1016/j.autcon.2012.11.042
https://doi.org/10.1016/j.aei.2012.10.001
https://doi.org/10.1016/j.ssci.2018.04.023
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001504
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001504
https://doi.org/10.3130/jaabe.13.341
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000493
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000493
https://doi.org/10.1016/j.autcon.2008.09.009
https://doi.org/10.1016/j.autcon.2018.09.018
https://doi.org/10.1016/j.autcon.2018.09.018
https://doi.org/10.1006/gmod.2001.0559
https://doi.org/10.1109/ACCESS.2018.2842721
https://doi.org/10.1016/j.autcon.2017.02.008
https://doi.org/10.1016/j.autcon.2017.02.008
https://doi.org/10.1016/j.autcon.2015.09.010
https://doi.org/10.1016/j.autcon.2018.05.018
https://doi.org/10.1016/j.autcon.2018.05.018
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001583
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001583
https://doi.org/10.1108/ECAM-09-2016-0210
https://doi.org/10.1007/s12145-016-0279-x
https://doi.org/10.1007/s12145-016-0279-x
https://doi.org/10.1016/j.autcon.2018.03.031
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001872
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001872


Yang, X., X. Luo, H. Li, X. Luo, and H. Guo. 2017b. “Location-based
measurement and visualization for interdependence network on con-
struction sites.” Adv. Eng. Inf. 34 (Oct): 36–45. https://doi.org/10
.1016/j.aei.2017.09.003.

Young, G., and A. Krishnamurthy. 2018. “GPU-accelerated generation
and rendering of multi-level voxel representations of solid models.” Com-
put. Graphics. 75 (Oct): 11–24. https://doi.org/10.1016/j.cag.2018.07.003.

Yuan, W., and M. Schneider. 2010. “Supporting 3D route planning in in-
door space based on the LEGO representation.” In Proc., 2nd ACM
SIGSPATIAL Int. Workshop on Indoor Spatial Awareness, 16–23.
New York: Association for Computing Machinery.

Zhang, C., A. Hammad, T. M. Zayed, G. Wainer, and H. Pang. 2007.
“Cell-based representation and analysis of spatial resources in

construction simulation.” Autom. Constr. 16 (4): 436–448. https://doi
.org/10.1016/j.autcon.2006.07.009.

Zhang, P., N. Li, Z. Jiang, D. Fang, and C. J. Anumba. 2019. “An agent-
based modeling approach for understanding the effect of worker-
management interactions on construction workers’ safety-related
behaviors.” Autom. Constr. 97 (Jan): 29–43. https://doi.org/10.1016/j
.autcon.2018.10.015.

Zhang, Y., S. Garcia, W. Xu, T. Shao, and Y. Yang. 2018. “Efficient
voxelization using projected optimal scanline.” Graphical Models.
100 (Nov): 61–70. https://doi.org/10.1016/j.gmod.2017.06.004.

Zhao, D., C. Wei, B. Hujun, Z. Hongxin, and P. Qunsheng. 2004.
“Real-time voxelization for complex polygonal models.” In Proc.,
12th Pacific Conf. on Computer Graphics and Applications, 43–50.

© ASCE 04020080-16 J. Constr. Eng. Manage.

 J. Constr. Eng. Manage., 2020, 146(7): 04020080 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
ar

le
to

n 
U

ni
ve

rs
ity

 o
n 

05
/1

8/
20

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.

https://doi.org/10.1016/j.aei.2017.09.003
https://doi.org/10.1016/j.aei.2017.09.003
https://doi.org/10.1016/j.cag.2018.07.003
https://doi.org/10.1016/j.autcon.2006.07.009
https://doi.org/10.1016/j.autcon.2006.07.009
https://doi.org/10.1016/j.autcon.2018.10.015
https://doi.org/10.1016/j.autcon.2018.10.015
https://doi.org/10.1016/j.gmod.2017.06.004

