Caio César Graciani Rodrigues, D.Sc.

Petrópolis, RJ, Brazil +55 (24) 99832 6245 / +55 (24) 2233 6102 caiocgr@lncc.br or c.cesargr@gmail.com

Current Position	Postdoctoral Fellow at the National Laboratory for Scientific Computing (LNCC), Petrópolis, RJ, Brazil, since May 2017. This project comprises the study of H_2 control for Markov jump linear system with multiplicative noises and partial information.	
Education	Math Major Fluminense Federal University (UFF) – Volta Redonda, RJ, Brazil	2007 - 2010
	 Master thesis Post-Grad in Computational Modeling in Science and Technology – Flue eral University (UFF) – Volta Redonda, RJ, Brazil Title: Efeitos de idade na propagação da tuberculose. Supervisors: Prof. Thadeu Josino Penna and Prof. Aquino Lauri de Ess In this work we have presented an agent-based computational model spreading of the tuberculosis (TB) disease on age-structured populations proposed is a merge of two previous models: an agent-based computation the spreading of tuberculosis and a bit-string model for biological agin results can be summarized as follows: The combination of TB with the populations. 	2011 – 2013 minense Fed- píndola. to study the s. The model nal model for g. The main e coexistence
	 The universal exponential behavior of mortalities curves is still pr The population distribution as function of age shows the preva mostly in elders, for high efficacy treatments. 	eserved. alence of TB
	 Doctor thesis National Laboratory for Scientific Computing (LNCC), Petrópolis, RJ, <i>Title:</i> Control and Filtering for Continuous-time Markov Jump Linear & Partial Mode Information. Supervisors: Prof. Marcos Garcia Todorov and Prof. Marcelo Dutra Fr. The thesis featured contributions to the H_∞ control and filtering for cor Markov jump linear system with partial mode information. In order to challenge regarding the lack of information of the current state of the M we have used a <i>detector-based formulation</i>. In what concern the chall developments, we highlight: Our strategy have allowed us to recover some recent results of mation scenarios in which we have an explicit solution, such as complete information, mode-independent and cluster observations 	2013 – 2017 Brazil Systems with agoso. tinuous-time overcome the farkov chain, lenges and it partial infor- the cases of s.
	• Our results comprise a new <i>bounded real lemma</i> followed by the out trollers and filters driven only by the informations given by the definition of the second se	esign of con-

- Both, the H_{∞} analysis and the design methods presented are established through the solutions of linear matrix inequalities.
- Numerical simulations are also presented encompassing the H_{∞} performance for particular structures of the detector process. From an application point of view, we have shown some examples related to the linearized dynamics for an unmanned aerial vehicle.

Skills	Languages: Portuguese – Mother tongue; English – reading and writing (advanced), oral (intermediate); French – Elementary Programming Languages: Matlab, C, C++. In addition, typesetting system: LaTeX.
Conference Presentations	M. G. Todorov, M. D. Fragoso and O. L. V. Costa. A new approach for the H_{∞} control of Markov Jump linear systems with partial information . Oral presentation at the 54th IEEE Conference on Decision & Control in Osaka, Japan, 2015.
	C. C. Graciani Rodrigues, M. G. Todorov, and M. D. Fragoso. A bounded real lemma for continuous-time linear systems with partial information on the Markovian jumping parameters. Oral presentation at the 54th IEEE Conference on Decision & Control in Osaka, Japan, 2015.
	C. C. Graciani Rodrigues, M. G. Todorov, and M. D. Fragoso. H_{∞} control for continuous-time Markov jump linear systems with partial mode information. Oral presentation at the <i>Congresso Brasileiro de Automática</i> , in Vitória, ES, Brazil, October 2016.
	C. C. Graciani Rodrigues, M. G. Todorov, and M. D. Fragoso. H_{∞} filtering for Markovian jump linear systems with mode partial information. Oral presentation at the 55th IEEE Conference on Decision & Control, in Las Vegas, USA, December 2016.
Review Articles	F. V. Vergés and M. D. Fragoso. Optimal linear mean square filter for the operation mode of continuous-time Markovian jump linear systems. In 56th IEEE Conference on Decision & Control, pages 5876–5881, Melbourne, Australia, 2017.
	F. D. Rossa and F. Dercole. A simple tree-based algorithm for deciding the stability of discrete-time switched linear systems. In 56th IEEE Conference on Decision & Control, pages 5298–5303, Melbourne, Australia, 2017.
Publications	C. C. Graciani Rodrigues, A. L. Espíndola, and T. J. Penna. An agent-based com- putational model for tuberculosis spreading on age-structured populations. Physica. A, 428:5259, 2015.
	C. C. Graciani Rodrigues, M. G. Todorov, and M. D. Fragoso. A bounded real lemma for continuous-time linear systems with partial information on the Markovian jumping parameters. In 54th IEEE Conference on Decision & Control, pages 4226–4231, Osaka, Japan, 2015.
	C. C. Graciani Rodrigues, M. G. Todorov, and M. D. Fragoso. H_{∞} control for continuous-time Markov jump linear systems with partial mode information. In <i>Congresso Brasileiro de Automática</i> , pages 1572–1577, Vitória, ES, Brazil, October 2016.
	C. C. Graciani Rodrigues, M. G. Todorov, and M. D. Fragoso. H_{∞} filtering for Markovian jump linear systems with mode partial information. In 55th IEEE Conference on Decision & Control, pages 640–645, Las Vegas, USA, December 2016.
	C. C. Graciani Rodrigues, M. G. Todorov, and M. D. Fragoso. H_{∞} control of continuous-time Markov jump linear systems with detector-based information. International Journal of Control, 90(10):2178–2196, 2017.