Definición de extensiones a un lenguaje de microsimulación para tráfico urbano

[image: image90.png]

Apéndice F: Survey enviado para su publicación en ACM
TRANSIT SIMULATION USING CELLULAR AUTOMATA

Alejandra Davidson 
Andrea Díaz
Verónica Vázquez
Gabriel A. Wainer

Departamento de Computación

Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires

(1428) Pabellón I. Ciudad Universitaria. Buenos Aires. Argentina.

Contact e-mail: gabrielw@dc.uba.ar
Abstract
This work is devoted to present the use of Cellular Automata to analyze the traffic flow in urban centers. This formalism is useful to describe in a simple way the basic characteristics of the problem. The most interesting characteristics of the formalism are the simplicity and modularity with which the transit behavior can be represented, being able to add increasingly new aspects that approach to the reality. It will be shown that the models only contemplate the essential characteristics of the problem but very few incorporate other aspects that condition the flow of vehicles, presenting interesting aspects to be considered in future works.

1. Introduction

Simulation techniques are used to reproduce the dynamic behavior of a real system in order to get conclusions that can be applied to the real world. Simulation methods are extremely useful when it is not possible to experiment on a real system that cannot be subject to analytical methods.

Computer simulation allows to investigate quickly different scenarios; it can be applied in all stages of analysis and design; it can be applied without risk, and it allows to predict future states. Besides, it does not affect the real system (it could function normally, or perhaps, it does not exists).

Simulation has been widely applied in transit systems. This models are generally entrusted of define new legal constraints, test the effect of introducing controls in different sections, measure the consequences on transit flow, produced by an accident, public works or any kind of obstacles in the street, avoid the generation of transit jam, etc. 

The goal of this survey is to analyze the application of the Cellular Automata formalism to simulate transit behavior. A taxonomy is defined to classify existing models according with the behaviors these models reproduce.

1.1. Cellular Automata

Ulam and Von Neumann originally conceived cellular automata (CA) in the 1940s to provide a formal framework for investigating the behavior of complex, extended systems [VN66]. CAs are dynamical systems in which space and time are discrete. A cellular automaton consists of a regular grid of cells, each of which can be in one of a finite number of states. Every cell in the space is updated synchronously in discrete time steps according to a local, identical interaction rule. The state of a cell is determined by the previous states of a surrounding neighborhood of cells [Wol84b, TM87]. 

The infinite or finite cellular array (grid) is n-dimensional, where n=1,2,3 are used in practice. The identical rule contained in each cell is essentially a finite state machine, usually specified in the form of a rule table (also known as the transition function), with an entry for every possible neighborhood configuration of states. The neighborhood of a cell consists of the surrounding (adjacent) cells. For one-dimensional CAs, a cell is connected to r local neighbors (cells) on either side, where r is a parameter referred to as the radius (thus, each cell has 2r+1 neighbors, including itself). For two-dimensional CAs, two types of cellular neighborhoods are usually considered: 5 cells, consisting of the cell along with its four immediate neighbors, and 9 cells, consisting of the cell along with its eight surrounding neighbors. The term configuration refers to an assignment of states to cells in the grid. 

When considering a finite-sized grid, spatially periodic boundary conditions are frequently applied, resulting in a circular grid for the one-dimensional case, and a toroidal one for the two-dimensional case. Another option is to apply an open boundary condition; that is, the state of the boundary is defined outside the grid. A one-dimensional CA is illustrated in Figure 1 (based on [Mit96]). 


[image: image1.png]
Figure 1. One-dimensional, 2-state CA [Mit96].

Each cell can be in one of two states, denoted 0 and 1. The connectivity radius is r=1, meaning that each cell has two neighbors, one to its immediate left and one to its immediate right. Grid size is N=15. The transition function for updating the grid is shown on top. The grid configuration over one time step is shown at the bottom. Spatially periodic boundary conditions are applied, meaning that the grid is viewed as a circle, with the leftmost and rightmost cells each acting as the other's neighbor.

Non-uniform CAs can also be considered in which the local update rule (i.e., transition function) need not to be identical for all grid cells [Vth86, Sip94]. 

1.2. CA Formal specification 

Conceptual cellular automata can be defined as [WG98]:

CCA = < S, n, C, , N, T, , c.Z0+ >

where

S  Z  #S < is the alphabet used to represent the state of each cell;

n  N  is the space dimension of cells;

C = { Cc / c  Zn  Cc  S } is the definition of the state set for the cell space;

Notation 

The state of a cell c will be called CcS, being c  Zn, c = (i1,...,in) the position of the cell in the n-dimensional space.  ( k  [1,n], ik  Z is the position of the cell in the k-eth dimension.

For conceptual cellular automata case, ( k  [1,n], ik ((

 N is the size of the neighborhood;

N = { (vk1,...,vkn) / k k  [1,]) ( (i i  [1, n]), vki Z }represents the neighborhood;

T: C x c.Z0+ C is the global transition function

: Nc x c.Z0+  Cc   c n  is the local transition function. In this case, Cc[t+c] = (Cc+v1[t],...,C c+v [t]), where t  c.Z0+ (  (k k  [1,]), vk  N  ( c+vk = (i1+vk1, ..., in+vkn). For two-dimensional cellular automata [WG97], the local transition function can be defined as:

: S x c.Z0+ S. In this case, Cij [t+c] = (Ci0,j0[t],..., Ci, j[t]), with (ik = i+vki ( jk = j+vki) i, j ) ( ( (vki, vkj) N, k k  [1,]).; 

c.Z0+ = { 0, c, 2c, 3c, ...} = { i / i  N, i = c.j ( j  N } is the (discrete) time base of the cellular automata.

As we can see, the formalism models an n-dimensional cell (C) space. Time advances in discrete steps (the time base c.Z0+ is defined as a set of integer values differing in a constant time). The evolution of the automata is defined by a global transition function that changes the state of all the cell space. The behavior of this function depends on the results of the execution of the local transition function, executing in the cell's neighborhood. Conceptually, these functions are computed synchronous and parallel in each cell of the space.

The neighborhood is defined as a list of  n-dimensional neighbors. k identifies the number of the neighbor and i represents the dimension of one of its positions. In this case, neighbors are an n-tuple of positions relative to the source cell. This definition corresponds to homogeneous cellular automata. It can be replaced to consider inhomogeneous cellular automata, where N is an array of lists of neighborhoods.

N = {Nc / c  Zn }

where

Nc = { (vk1,...,vkn)c / k k  [1,c]) ( (i i  [1, n]), vki Z };

To make this formalism suitable for simulation, it is necessary to define executable models. These differ from conceptual automata in that the size of the cell space is finite and a special behavior should be defined for the cells belonging to the cell space boundaries.

Over the years CAs have been applied to study general phenomenological aspects of the world, including communication, computation, construction, growth, reproduction, competition and evolution (see, e.g., [TM87, Bur70, Smi69, PSZ96]). The main goal of this work is to show the application of cellular automata to simulate urban transit behavior. 

The rest of the work is organized as follows. The following section will present general features of cellular automata used for transit modelling, and a taxonomy organizing the existing solutions is introduced. After, several specializations are presented, focusing in one-lane and two-lane models. 

2. Transit models using cellular automata

Transit plays an important role nowadays because it allows the movements of people and products that have a great importance in a country economic situation. Besides, transit volume is growing up, and it is necessary to control, redirect and optimize it. As transit behavior is very complex to study, the application of simulation allows analyzing different scenarios for transit control strategies.

An important aspect of the transit flow models is the structure chosen to represent the streets, highways or transit lanes; this structure determines the kind of movements of vehicles. It permits to distinguish the difference between simple models that represent transit flow on one-lane roads, and the more complex that models bi-directional multi-lane roads with street intersections. The later models represent a more complete behavior, modeling for example, the exchange of vehicles between lanes and turning around a crossroad. Another important aspects to consider are the special characteristics that affect the movement of vehicles. This includes, for example, the representation of different kinds of vehicles, control signals, deviations and accidents.

Two classifications have been defined for transit models, based on the aspects mentioned above. The first one considers the street structure; the second, special characteristics affecting the vehicle movement. As these aspects are both independent from each other, they are complementary.

Existing cellular automata models that simulate transit behavior can be classified:

1) According to the structure of the streets (structural models)

A. One-Lane 

A.1.  One-Dimensional (without junctions)

A.2.  Two-Dimensional (with junctions)

B. Two-lane 

B.1. One-way

B.1.1. Symmetric rules 

B.1.1.1. Without road intersections

B.1.1.2. With road intersections

B.1.2.  Asymmetric rules 

B.1.2.1.  Without road intersections

B.1.2.2.  With road intersections

B.2.  Two way 

B.2.1. Without road intersections

B.2.2. With road intersections

C. Multi-Lane 

C.1. One-way

C.1.1.  Symmetric rules 

C.1.1.1.  Without road intersections

C.1.1.2.  With road intersections

C.1.2.  Asymmetric rules 

C.1.2.1.  Without road intersections

C.1.2.2.  With road intersections

C.2.  Two way 

C.2.1. Without road intersections

C.2.2. With road intersections

2) According to non-structural characteristics

A. Vehicle class

A.1. Cars

A.2. Trucks

A.3. Buses

A.4. Ambulances

A.5. Taxis

A.6. Bicycles

A.7. Motorcycles

B. Traffic Controls 

B.1. Semaphores

B.2. Traffic signals 

B.3. Train crosses

B.3.1. With barrier

B.3.2. Without barrier

B.3.3. Tracks (no crossing)

B.4. Lanes with fixed priorities 

B.5. Special lanes (Public transportation, emergency, etc.)

B.6. Street intersections

B.7. Transversal elevations

B.8. Transversal depressions

B.9. Continuous irregularity

C. Abnormal behavior of vehicles. 

C.1. Cars moving erratically

C.2. Cars moving in the middle of two lanes

C.3. Cars parking

C.4. Cars stopped

C.5. Cars going into reverse

D. Obstacles in the street

D.1. Public works

D.2. Holes in the street

D.3. Collisions and other kind of accidents

D.4. Cars parked improperly

D.4.1. Double hand

D.4.2. On the left hand

E. Pedestrians

E.1. Negligent

E.2. Careful

In one-lane models, vehicles move in only one direction and one behind other. Some models of this kind allow crossings between lanes. Others include crossroads (two-dimensional models). Two-lane models represent two parallel vehicle lines with the same or the opposite direction. If both lanes have the same direction, it is necessary to define rules to describe lane changes. If these rules are the same for all lanes we call then symmetric rules, otherwise they are asymmetric. Multi-lane models are generalizations of two-lane models.

3. One-Lane Models

This section is devoted to present several one-lane models. These are one-dimensional models without crossroads [CMB93]. Here, the state of a cell records whether a car currently occupies it. The vehicles are considered as having two states: stopped and slow forward motion (all vehicles move at the same speed). At any time step it is considered whether the car currently occupying a section of road will remain there or will move on to the next section. The neighborhood is defined by the cells forward or behind the origin. A car moves ahead on the road whether the next cell is empty, otherwise it stays at its position.

This model can be represented as OL = < S, n, C, , N, T, , c.Z0+ >, where

S = { 0, 1 } (0 represents an empty cell, 1 represents a vehicle); 

n = 1



N = { 0, -1, 1 } 


[image: image2.wmf]    -1     0     1


Figure 2. Cell's neighborhood

is defined as:

New State
Neighborhood

0
(C-1= 0 AND C0= 0 ) OR (C0= 1 AND C1= 0 )

1
(C-1= 1 AND C0= 0 ) OR (C0= 1 AND C1= 1 )

Other model of this type was presented in [NS92]. In this case it was considered that the vehicles have different speed (although there is a maximum) and they can go through a few cells at one time step. Each cell may be empty or occupied by a car with an integer velocity v {0, ..., vmax} where v represents the number of cells advanced at each step. The variable gap stores the number of unoccupied sites in front of a vehicle. pdeceleration is the probability to randomly decelerate, and rand is a random number between 0 and 1. One iteration consists of the four following sequential steps

:

1- Acceleration of free vehicles: IF (v<vmax) THEN v=v+1

2- Slowing down due to others cars: IF (v>gap) THEN v=gap

3- Randomization: IF (v>gap) AND (rand<pdeceleration) THEN v=v-1

4- Update of the position of the vehicles: x = x + v where v is the velocity computed in the previous steps.

Rules (1), (2) and (3) updates the velocity of the vehicle, and rule (4) updates its position.

This model can be represented as OLV = < S, n, C, , N, T, , c.Z0+ >, where 

S = { -1, 0, 1, 2, ..., vmax } (-1 represents an empty cell; i>0 represents a cell with a vehicle at i speed)

n = 1

 2*vmax + 1
N = { - vmax, -vmax+1, vmax+2,..., -2, -1, 0, 1, 2, ..., vmax-1, vmax } 


[image: image3.wmf]                         -v

max

  ...      -2      -1       0      1      2     ...     v

max


Figure 3. Cell's neighborhood

The rules to change the state of the cells can be applied in two steps, the first one update the velocity of the vehicles and the second one update its position in accordance with this new velocity.

Speed updating 

New State
Neighborhood

-1
C0 = -1

gap(0)
[C0>-1  AND C0<vmax  AND C0 +1 > gap(0) AND gap(0) > 0 AND NOT(brake) ] OR

[C0 > -1 AND C0 = vmax AND C0 > gap(0) AND gap(0) > 0 AND NOT(brake) ] OR

[C0 > -1 AND C0 < vmax AND C0 +1 > gap(0) AND gap(0) = 0 ] OR

[C0 > -1 AND C0 = vmax AND C0 > gap(0) AND gap(0) = 0 ]

gap(0)-1
[C0 > -1 AND C0 < vmax AND C0 +1 > gap(0) AND gap(0) > 0 AND brake ] OR

[C0 > -1 AND C0 = vmax AND C0 > gap(0) AND gap(0) > 0 AND brake ]

C0 
C0 > -1 AND C0 +1 ( gap(0) AND C0 < vmax AND brake 

C0 + 1
C0 > -1 AND C0 +1 ( gap(0) AND C0 < vmax AND NOT(brake) 

vmax
C0 = vmax AND C0 ( gap(0) AND NOT(brake)

vmax-1
C0 = vmax AND C0 ( gap(0) AND brake 

Here, brake represents a boolean function returning 'True' with pbrake probability, and gap(i) returns the number of unoccupied sites between the cell i and the first forward neighbor occupied by a vehicle. 

Position update 

New State
Neighborhood

C0 
C0 =0 

Ck 
k is the nearest occupied backward neighbor AND Ck>-1 AND Ck+k = 0 AND C0 = -1 

-1
[k is the nearest occupied backward neighbor AND Ck>-1 AND (Ck+k<0 OR Ck+k>0) AND C0 = -1]  OR (All backward positions are empty AND C0 = -1) OR [C0 > 0]

Here, the nearest occupied backward neighbor refers to a neighbor occupied by a car where its index number is the maximum between the negative indexes. All backward positions are empty is defined by 
[image: image4.wmf]1

}

1

,...,

{

-

=

L

-

-

Î

i

vmax

i

C

.
3.1. One lane models with semaphores

In [SN97], a model using traffic lights is introduced. Lanes are defined using nodes and connections. A connection is a street segment with one direction . Nodes represent the intersections or crossings. The input and exit nodes define each connection. The vehicles move from a connection to other, following a simple stochastic law that represents the presence of a semaphore.

A CA using the rules proposed in [NS92] models each connection. The speed of a vehicle is updated according to the rules of the previous model until it arrives to an intersection. If the vehicle can cross the intersection, it checks the semaphore. If it is green, the vehicle passes to the following connection. On the contrary, a virtual vehicle is placed in the first position of the next connection, forcing that the car brakes behind it. When the semaphore changes to green, the virtual car is eliminated.

The semaphores can be modeled as follows: 

1. Random: the semaphore changes from red to green with probability ptrans and the fraction of time (fgreen) that remains in green it is exactly ptrans. For this case, the speed is updated by: 

IF (rand <ptrans) THEN normal update ELSE gap = distance between the vehicle and the intersection.

2. Normal distribution: the green light period is given by fgreen = Tgreen/(Tgreen+Tred). 

3. Dirac's semaphores: the semaphore stays in green or red for one time unit, equally distributed in a cycle. The fraction of time for green light is fgreen=1/(1+Tred) with Tred(1 (and Tgreen=1); or 1 - (1/(1+Tgreen)) with Tred(1.

This model can be represented by OLVS = < S, n, C, , N, T, , c.Z0+ >

S = { -1, 0, 1, 2, ..., vmax } (as in the OLV model);

n = 1

 2*vmax + 1
N = { - vmax, -vmax+1, vmax+2,..., -2, -1, 0, 1, 2, ..., vmax-1, vmax } 

 is computed in two steps (as in the OLV model). The first step (computes velocity) is defined as: 

IF (dintersec>vmax OR gap( dintersec OR semaphore(t)=green)

     THEN apply the step 1 rules defined in OLV;

ELSE  

      C0 = dintersec;

Each cell knows the value of dintersec, which denotes the distance between itself and the nearest forward intersection. Cells located near a semaphore can monitor its color using a function (Semaphore()). For random semaphores this function returns a number indicating red or green at random. For the other types, the function computes the color according to the associated distribution.

The second step (position updating) is carried out as in OLV.

3.2. One lane models with special vehicles

The model presented in [NS92] was extended to consider that vehicles could have different vmax (maximum velocity); however, for each vmax, pbrake have the same value. Vehicles having slow maximum velocity represent a truck or any kind of slow means of transport. In this model, the state of a cell contains the maximum velocity of the vehicle inside it. The cell also knows the deceleration probability, but this information is not stored in the state because it is determined by vmax.

This model is defined by OLT = < S, n, C, , N, T, , c.Z0+ >

S = { (vcurrent, vmax) / vcurrent ({-1, 0, 1, 2, ..., vmax }, vmax ( {1, 2, ...,Max } }

n = 1

 2*Max + 1
N = { -Max , - Max +1, -Max +2,..., -2, -1, 0, 1, 2, ..., Max -1, Max }; 

 is applied in two steps. First, the speed of each vehicle is updated and then its position is computed. 

Speed update
New State
Neighborhood

(-1,0)
C0.vcurrent = -1

(gap(0),C0.vmax)
[C0.vcurrent > -1 AND C0.vcurrent < C0.vmax AND C0.vcurrent+1 > gap(0) AND gap(0) > 0 

           AND NOT(brake) ] OR

[C0.vcurrent > -1 AND C0.vcurrent = C0.vmax AND C0.vcurrent > gap(0) AND gap(0) > 0 

           AND NOT(brake) ] OR

[C0.vcurrent >-1 AND C0.vcurrent <C0.vmax AND C0.vcurrent+1>gap(0) AND gap(0)=0] OR

[C0.vcurrent > -1 AND C0.vcurrent = C0.vmax AND C0.vcurrent > gap(0) AND gap(0) = 0 ]

(gap(0)-1,C0.vmax)
[C0.vcurrent > -1 AND C0.vcurrent < C0.vmax AND C0.vcurrent +1 > gap(0) AND gap(0) > 0 

            AND brake ] OR

[C0.vcurrent > -1 AND C0.vcurrent = C0.vmax AND C0.vcurrent > gap(0) AND gap(0) > 0 

            AND brake ]

(C0.vcurrent ,C0.vmax)
C0.vcurrent > -1 AND C0.vcurrent +1 ( gap(0) AND C0.vcurrent < C0.vmax AND brake 

(C0.vactual + 1, C0.vmax)
C0.vcurrent > -1 AND C0.vcurrent +1 ( gap(0) AND C0.vcurrent < C0.vmax 

             AND NOT(brake) 

(C0.vmax, C0.vmax)
C0.vcurrent = C0.vmax AND C0.vcurrent ( gap(0) AND NOT(brake)

(C0.vmax-1, C0.vmax)
C0.vcurrent = C0.vmax AND C0.vcurremt ( gap(0) AND brake 

Position update 
New State 
Neighborhood

(C0.vcurrent, C0.vmax)
C0 =0 

(Ck.vcurrent, Ck.vmax)
k is the nearest occupied backward neighbor AND 

           Ck.vcurrent >-1 AND Ck.vcurrent +k = 0 AND C0.vcurrent = -1 

(-1,0)
[ k is the nearest occupied backward neighbor AND 

Ck.vcurrent >-1 AND ( Ck.vcurrent+k < 0 OR Ck.vcurrent+k > 0) AND C0.vcurrent = -1] OR

(All backward positions are empty AND Ck.vcurrent = -1) OR

[C0.vcurrent > 0]

Here, All backward positions are empty is defined by 
[image: image5.wmf]1

.v

 

actual

}

1

,...,

.

{

-

=

L

-

-

Î

i

v

C

i

C

max

i

.

3.3. One lane two-dimensional models

This section shows models representing one-lane streets with crossings in two dimensions. These models are an extension of the model presented in 3.1. To define the intersections, a new type of cells is defined. They will be called "crossing cells" and their behavior is described  as follows:


[image: image6.wmf] 1) Right_Up

       2) Right_Left

 3) Right

       4) Left


Figure 4. Two-dimensional crossings

Each crossing cell has two inputs and two outputs. A vehicle stays in the crossing if there is no empty place to go. Possible states for these cells are: empty, going to left or going to right. The state update for an occupied intersection is done using a random choice between the right or left direction. When two vehicles want to enter an intersection from two different inputs, the vehicle coming from right have higher priority.

A CA representing this model should consider different kinds of cells: Normal ones (described earlier), Crossing, crossing Inputs and crossing Exit. The behavior for these new types of cells is defined by BOL = < S, n, C, , N, T, , c.Z0+ >

S = { 0, 1, 2, 3 } (0: empty cell; 1: occupied; 2: crossing cell with vehicle going to left; 3: going to right).

n = 2

3.3.1. Crossing Cells



N = {(0,0); (1,0); (0,-1); (0,1); (-1,0) }


[image: image7.wmf]                  

Output

                              (1,0)

 Output

    (0,-1)  (0,0)    (0,1)

Input

                             (-1,0)

Input


Figure 5. Cell's neighborhood
is defined as: 

New State
Neighborhood

0
( C(0,0) = 0 AND C(0,1) = 0 AND C(-1,0) = 0 ) OR ( C(0,0) = 2 AND C(0,-1) = 0 ) OR 

( C(0,0) = 3 AND C(1,0) = 0 )

2
( C(0,0) = 2 AND C(0,-1) = 1 ) OR ( C(0,0) = 0 AND rand=2 AND C(0,1) = 1 ) OR

( C(0,0) = 0 AND rand=2 AND C(0,1) = 0 AND C(-1,0) = 1 )

3
( C(0,0) = 3 AND C(1,0) = 1 ) OR ( C(0,0) = 0 AND rand=3 AND C(0,1) = 1 ) OR

( C(0,0) = 0 AND rand=3 AND C(0,1) = 0 AND C(-1,0) = 1 )

These rules consider that vehicles coming from right have higher priority. Here, rand is 2 when going to left, 3 going up, and defines the direction taken by the vehicle inside the crossing. The function chooses a value at random, and the vehicle movement of the vehicles depends on it.

3.3.2. Input cells 
Input cells placed at the right side of a crossing have different behavior than those entrance cells of the lower side: the first ones have higher access priority. The cells on the right are defined by:


N = { (0,0); (-1,-1); (0,-1); (0,1)


[image: image8.wmf]               

          Right Entrance.

             

Cross

  (0,-1)  (0,0)    (0,1)

                         (-1,-1)

  

Another entrance


Figure 6. Right side neighbors
is defined as:
New State
Neighborhood

0
( C(0,0) = 0 AND C(0,1) = 0) OR ( C(0,0) = 1 AND C(0,-1) = 0 )

1
( C(0,0) = 0 AND C(0,1) = 1 ) OR ( C(0,0) = 1 AND C(0,-1) > 0 )

The lower bound is defined by:

;
N = { (0,0); (-1,0); (1,0); (1,1)

[image: image9.wmf]              Cross     (1,0)   (1,1)   Right entrance.

 

 Lower entrance

  (0,0)

                      

(-1,0)


Figure 7. Lower bound
Function is defined as:
New State
Neighborhood

0
( C(0,0) = 0 AND C(-1,0) = 0) OR ( C(0,0) = 1 AND C(1,0) = 0 AND C(1,1) = 0)

1
( C(0,0) = 0 AND C(-1,0) = 1 ) OR( C(0,0) = 1 AND (C(1,0) > 0 OR C(1,1) = 1) )

3.3.3. Exit cells
Exit cells placed at the left side of a crossing have different behavior than those exit cells of the upper side. The left side is defined by:
N = { (0,0); (0,-1); (0,1) 


[image: image10.wmf]        Left Exit.

  (0,-1)  (0,0)    (0,1)

Cross


Figure 8. Left side
is defined as:
New State
Neighborhood

0
( C(0,0) = 0 AND C(0,1) = 0) OR ( C(0,0) = 1 AND C(0,-1) = 0 )

1
( C(0,0) = 0 AND C(0,1) = 2 ) OR ( C(0,0) = 1 AND C(0,-1) = 1 )

The upper side is defined by:

N = { (0,0); (1,0); (-1,0) 

[image: image11.wmf]                          (1,0)

  Upper exit       (0,0)

                         (-1,0)

                 

Cross


Figure 9. Upper side.
is defined as:
New State
Neighborhood

0
( C(0,0) = 0 AND C(-1,0) = 0) OR ( C(0,0) = 1 AND C(1,0) = 0 )

1
( C(0,0) = 0 AND C(-1,0) = 3 ) OR ( C(0,0) = 1 AND C(1,0) = 1 )

3.4. Two-dimensional models with semaphores 

[T96] proposes a two-dimensional model that considers the presence of semaphores to solve the access to positions of the crossing of two streets. Cars are distributed on a square lattice of NxN sites with open boundaries with both in the horizontal and vertical directions. Cars are injected probabilistically from both the left and lower boundaries of the system, and flow out deterministically from both the right and upper boundaries.


[image: image12.wmf]Cars come out

Cars come in

Cars come out

Cars come in


Figure 10. Boundaries of the model

Up-directed and right-directed cars are exclusively distributed in a NxN square lattice and their direction is determined when they are injected in the system. Each cell is empty or occupied by one up or right-directed car. Cars move one step at a time if and only if the adjacent cell in the destination is empty. There is a semaphore controlling the whole system as up-directed car move only at even time steps and right-directed cars can only at odd time steps. To describe the system dynamic, two binary arrays are defined ( i, j  [1, N]:

· 
[image: image13.wmf]1

)

(

=

t

r

r

m

 if there is a right-directed car in the position 
[image: image14.wmf])

,

(

j

i

r

=

r

 at a time t; 
[image: image15.wmf]0

)

(

=

t

r

r

m

 otherwise.

· 
[image: image16.wmf]1

)

(

=

t

r

r

n

 if there is an up-directed car in the position 
[image: image17.wmf])

,

(

j

i

r

=

r

 at a time t; 
[image: image18.wmf]0

)

(

=

t

r

r

n

 otherwise.

This model contains three types of cells: input cells (at the lower and left edges of the system), exit cells (at the upper and right edges of the system), and the other. The rules to model the movements of vehicles are defined as follows:


[image: image19.wmf])

1

(

+

t

r

r

m

 = ((t) 
[image: image20.wmf])

(

t

r

r

m

 {
[image: image21.wmf])

(

t

x

r

r

r

+

m

+ 
[image: image22.wmf])

(

t

x

r

r

r

+

n

} 


+ ((t) {1 - 
[image: image23.wmf])

(

t

r

r

m

}{1 - 
[image: image24.wmf])

(

t

r

r

n

} 
[image: image25.wmf])

(

t

x

r

r

r

-

m


+ {1 - ((t)} 
[image: image26.wmf])

(

t

r

r

m






(1)


[image: image27.wmf])

1

(

+

t

r

r

n

 = {1-((t)} 
[image: image28.wmf])

(

t

r

r

n

 {
[image: image29.wmf])

(

t

y

r

r

r

+

n

+ 
[image: image30.wmf])

(

t

y

r

r

r

+

m

} 

+ {1-((t)} {1 - 
[image: image31.wmf])

(

t

r

r

m

}{1 - 
[image: image32.wmf])

(

t

r

r

n

} 
[image: image33.wmf])

(

t

y

r

r

r

-

m


+ ((t) 
[image: image34.wmf])

(

t

r

r

n






           (2)

where 
[image: image35.wmf]x

r

 and 
[image: image36.wmf]y

r

 denote unit vectors of right and up directions respectively (
[image: image37.wmf])

1

,

0

(

=

x

r

 and 
[image: image38.wmf])

0

,

1

(

=

y

r

). The binary function ((t) = t mod 2 represents the control by the semaphore. The condition 
[image: image39.wmf])

(

t

r

r

m



 EMBED Equation.3  [image: image40.wmf])

(

t

r

r

n

= 0 holds because one site can not be occupied both with up and right cars simultaneously.

The first term ((t) 
[image: image41.wmf])

(

t

r

r

m

 {
[image: image42.wmf])

(

t

x

r

r

r

+

m

+ 
[image: image43.wmf])

(

t

x

r

r

r

+

n

} in (1) denotes that a right-directed car remains at the site 
[image: image44.wmf]r

r

 if the right adjacent site is occupied by a right-directed or up-directed car. The injection of a right-directed car from the left adjacent site is given by the second term ((t) {1 - 
[image: image45.wmf])

(

t

r

r

m

}{1 - 
[image: image46.wmf])

(

t

r

r

n

} 
[image: image47.wmf])

(

t

x

r

r

r

-

m

. The last term {1 - ((t)} 
[image: image48.wmf])

(

t

r

r

m

 shows that a right-directed car does not move at odd time steps. The same decomposition of equation (2) can be done for the dynamics of up-directed cars.

Cars are injected from lower and left sides of the system. If the site of the edges of the system is empty, a car is injected with p probability. The injection of right-directed cars is given by replacing the injection (second term) in equation (1) with a probabilistic injection:


[image: image49.wmf])

1

(

+

t

r

r

m

 = ((t) 
[image: image50.wmf])

(

t

r

r

m

 {
[image: image51.wmf])

(

t

x

r

r

r

+

m

+ 
[image: image52.wmf])

(

t

x

r

r

r

+

n

} 


+  ((t) {1 - 
[image: image53.wmf])

(

t

r

r

m

}{1 - 
[image: image54.wmf])

(

t

r

r

n

} f(p)

+ {1 - ((t)} 
[image: image55.wmf])

(

t

r

r

m






(3)

Where

· 
[image: image56.wmf])

,

1

(

j

r

=

r

, with (1 ( j ( N). Right-directed cars are injected from the left edge.

· f(p) = {0,1} is a function that returns 1 with a probability p.

The injection of up-directed cars is defined by the following equation:


[image: image57.wmf])

1

(

+

t

r

r

n

 = {1-((t)} 
[image: image58.wmf])

(

t

r

r

n

 {
[image: image59.wmf])

(

t

y

r

r

r

+

n

+ 
[image: image60.wmf])

(

t

y

r

r

r

+

m

} 

+ {1-((t)} {1 - 
[image: image61.wmf])

(

t

r

r

m

}{1 - 
[image: image62.wmf])

(

t

r

r

n

} f(p)

+ ((t) 
[image: image63.wmf])

(

t

r

r

n






(4)

Where

· 
[image: image64.wmf])

1

,

(

i

r

=

r

, with (1 ( i ( N). Up-directed cars are injected from the lower edge.

· f(p) = {0,1} is a function that returns 1 with a probability p.

Cars flow out from the upper and right edges of the system deterministically following these rules:

For sites on the right edge:


[image: image65.wmf])

1

(

+

t

r

r

m

 =  ((t) {1 - 
[image: image66.wmf])

(

t

r

r

m

}{1 - 
[image: image67.wmf])

(

t

r

r

n

} 
[image: image68.wmf])

(

t

x

r

r

r

-

m


+ {1 - ((t)} 
[image: image69.wmf])

(

t

r

r

m






(5)

Where

· 
[image: image70.wmf])

,

(

j

N

r

=

r

, with (1 ( j ( N). Right-directed cars flow out from the right edge.

For sites on the upper edge:


[image: image71.wmf])

1

(

+

t

r

r

n

 = {1-((t)} {1 - 
[image: image72.wmf])

(

t

r

r

m

}{1 - 
[image: image73.wmf])

(

t

r

r

n

} 
[image: image74.wmf])

(

t

v

y

r

r

r

-


+ ((t) 
[image: image75.wmf])

(

t

r

r

n






(6)

Where

· 
[image: image76.wmf])

,

(

N

i

r

=

r

, with (1 ( i ( N). Up-directed cars flow out from the upper edge.

The system has no car at the initial time t=0. Cars are injected with equations (3) and (4) probabilistically, and run deterministically obeying equations (1) and (2). If cars reach the edges of the system, they flow out by equations (5) and (6).

This model can be represented as BS = < S, n, C, , N, T, , c.Z0+ >

S = { 0, 1, 2 } (0: empty cell; 1: vehicle going to the right; 2; vehicle going up).

n = 2

Here, there are three kinds of cells (entrance, exit and the others) with different behavior and neighborhood.

3.4.1. Input cells

The left and the inferior boundary contain the cells that allow the entrance of new vehicles. For each one of them is defined a neighborhood and different behavior. The left border is defined by:



N = { (0,0); (1,0); (-1,0); (0,1)



[image: image77.wmf]     (1,0)

    (0,0)    (0,1)

   (-1,0)


Figure 11. Left border

is defined as:
New State
Neighborhood

0
( C(0,0) = 1 AND C(0,1) = 0 AND ((time) ) OR

[ C(0,0) = 0 AND [ ( NOT(((time)) AND C(-1,0) ( 2 ) OR 

 ( NOT(f(p)) AND ((time) ) ] ] OR ( C(0,0) = 2 AND C(1,0) = 0 AND NOT(((time)) ) 

1
( C(0,0) = 0 AND ((time) AND f(p) ) OR ( C(0,0) = 1 AND (C(0,1) = 1 OR C(0,1) = 2 ) ) OR

( C(0,0) = 1 AND NOT(((time)) ) 

2
( C(0,0) = 0 AND C(-1,0) = 2 AND NOT(((time)) ) OR

( C(0,0) = 2 AND (C(1,0) = 1 OR C(1,0) = 2 ) ) OR ( C(0,0) = 2 AND ((time) )

The cells in the lower border are defined by:



N = { (0,0); (1,0); (0,-1); (0,1) 


[image: image78.wmf]               (1,0)

    

(0,-1)  (0,0)    (0,1)

               


Figure 12. Lower border

is defined as:
New State
Neighborhood

0
( C(0,0) = 2 AND C(1,0) = 0 AND NOT(((time)) ) OR 

[ C(0,0) = 0 AND [ ( ((time) AND C(0,-1) ( 1 ) OR  ( NOT(f(p)) AND NOT(((time)) ) ] ] OR ( C(0,0) = 1 AND C(0,1) = 0 AND ((time) ) 

1
( C(0,0) = 0 AND ((time) AND C(0,-1) = 1 ) OR ( C(0,0) = 1 AND (C(0,1) = 1 OR C(0,1) = 2 ) ) OR ( C(0,0) = 1 AND NOT(((time)) ) 

2
( C(0,0) = 0 AND f(p) AND NOT(((time)) ) OR ( C(0,0) = 2 AND (C(1,0) = 1 OR C(1,0) = 2 ) ) OR ( C(0,0) = 2 AND ((time) )

3.4.2. Output cells

The right and superior boundary contain the cells that allow the exit of vehicles. For each one of them is defined a neighborhood and different behavior. The right cells are defined by:



 N = { (0,0); (1,0); (-1,0); (0,-1) 


[image: image79.wmf]               (1,0)

  

  (0,-1)  (0,0)

              (-1,0)


Figure 13. Right cells.

is defined as:
New state
Neighborhood

0
( C(0,0) = 1 AND ((time) ) OR ( C(0,0) = 2 AND C(1,0) = 0 AND NOT(((time)) ) OR

[ C(0,0) = 0 AND ( C(-1,0) = 0 OR ( C(-1,0) = 2 AND ((time) ) )

 AND ( C(0,-1) = 0 OR ( C(0,-1) = 1 AND NOT(((time)) ) )]

1
( C(0,0) = 0 AND C(0,-1) = 1 AND ((time) ) OR ( C(0,0) = 1 AND NOT(((time)) ) 

2
( C(0,0) = 0 AND C(-1,0) = 2 AND NOT(((time)) ) OR 

( C(0,0) = 2 AND (C(1,0) = 1 OR C(1,0) = 2 ) ) OR ( C(0,0) = 2 AND ((time) )

The upper border is defined by:



N = { (0,0); (0,1); (-1,0); (0,-1) 

[image: image80.wmf]  

  (0,-1)  (0,0)   (0,1)

              (-1,0)


Figure 14. Upper border.

is defined by:

New state
Neighborhood

0
( C(0,0) = 1 AND C(0,1) = 0 AND ((time) ) OR ( C(0,0) = 2 AND NOT(((time)) ) OR

[ C(0,0) = 0 AND ( C(-1,0) = 0 OR ( C(-1,0) = 2 AND ((time) ) )

 AND ( C(0,-1) = 0 OR ( C(0,-1) = 1 AND NOT(((time)) ) )]

1
(C(0,0) = 0 AND C(0,-1) = 1 AND ((time)) OR (C(0,0) =1 AND (NOT(((time)) OR C(0,1) > 0 ) 

2
( C(0,0) = 0 AND C(-1,0) = 2 AND NOT(((time)) ) OR 

( C(0,0) = 2 AND (C(0,1) = 1 OR C(0,1) = 2 ) ) OR ( C(0,0) = 2 AND ((time) )

3.4.3. Other cells



N = { (0,0); (1,0); (0,-1); (0,1); (-1,0) }


[image: image81.wmf]                          (1,0)

           

  (0,-1)  (0,0)    (0,1)

                         (-1,0)


Figure 15. Other cell's neighborhood 

is defined as:
New state
Neighborhood

0
( C(0,0) = 0 AND C(0,-1) = 0 AND C(-1,0) = 0 ) OR

( C(0,0) = 1 AND C(0,1) = 0 AND ((time)) OR

( C(0,0) = 0 AND C(0,-1) = 1 AND NOT(((time)) ) OR

( C(0,0) = 2 AND C(1,0) = 0 AND NOT(((time)) ) OR

( C(0,0) = 0 AND C(-1,0) = 2 AND ((time) )

1
( C(0,0) = 0 AND C(0,-1) = 1 AND ((time) ) OR

( C(0,0) = 1 AND (C(0,1) = 1 OR C(0,1) = 2 ) AND ((time) ) OR

( C(0,0) = 1 AND NOT(((time)) ) 

2
( C(0,0) = 0 AND C(-1,0) = 2 AND NOT(((time)) ) OR

( C(0,0) = 2 AND (C(1,0) = 1 OR C(1,0) = 2 ) AND NOT(((time)) ) OR

( C(0,0) = 2 AND ((time) )

Here, time, returns the current time of the simulation, and ( is a function defined as: ((t) = t mod 2.

4. TWO LANE MODELS

In this section several models of two-lane transit are analyzed. The lanes can have equally or different direction of circulation of cars. 

When one-way models with several lanes are defined, some rules should define the lane changes. The resulting rules can be symmetrical or asymmetrical. Symmetrical models use the same rules for that passage. This model makes sense in freeways, where the drivers don't use the right lane for default, because in it slow cars that enter to the freeway through ramps circulate. This way, when they find a slow car in the right lane, they pass to the left one and they remain there until they come closer to the forward car or they want to leave the freeway. 

Asymmetric models don’t use the same rules for exchanging lanes. In these models, cars always try to return to the right lane, independently of their situation on the left lane.

4.1. Symmetric rules

In this case, cars remain on their lane as long as they don’t see anybody else. If they see somebody ahead on their own lane then they check on the other lane if they can switch lanes and do so if possible. Afterwards, if they are satisfied, they remain on this lane until they become dissatisfied again.

The most simple models use symmetrical rules on two unidirectional lanes without road intersections. In [RNSL96] a model is presented with these characteristics by means of a CA with the beginning and end borders of each lane connected (periodic boundary conditions). This model represents an extension of the model of [NS92] with vehicles of different maximum speeds Those rules have been used, and other have been added to represent lane changes. The update of the state of a car is carried out in 3 steps: 

1. The vehicle only moves sideways, it doesn't advance (it uses the rules that are defined next). 

2. The first 3 rules used for one lane are checked on each lane using the configuration obtained in the step 1. 

3. The position of the vehicles is updated (rule 4 of the one-lane model). 

From now on, gapo is the number of empty positions between the vehicle and the forward car in the other lane, and gapo,back is the number of empty positions behind the car in the other lane. A vehicle change lanes if the following conditions are fulfilled:

(T1) gap < l. Look ahead if somebody is in the way

(T2) gapo > lo. Look on the other lane if it is any better there.

(T3) gapo,back > lo,back. Look back on the other lane if it would get in somebody else's way.

(T4) rand < pchange, a car changes to the other lane with probability pchange 

Here, l, lo y lo,back represent the distance where the car will move forward or backward in its or the other lane.


[image: image82.png]
Figure 16.  Two-lane symmetrical rules.

Rule number four is introduced to randomize the lane changing decision. Assuming high density, all cars see somebody in front of them, but nobody on the left lane. In consequence, everybody decides to change to the left. Here, they decide to change to the right again, etc ("cooperative ping pong effect"). This model is represented in a similar way to [NS92] with different maximum speeds, and it is defined as TLS = < S, n, C, , N, T, , c.Z0+ >, where

S = { (vactual, vmax) / vactual ({-1, 0, 1, 2, ..., vmax }, vmax ( {1, 2, ...,Max } }

n = 2 

 l + Max + 1 + lo + lo,back + 1

N = ForwardNeighbors  BackwardNeighbors  AnotherLaneForwardNeighbors  

                    AnotherLaneBackwardNeighbors  { (0,0); (1,0) }, where


ForwardNeighbors= {(0,1); (0,2); (0,3);...; (0, l)}


BackwardNeighbors = {(0,-1); (0,-2); (0,-3);...; (0,-Max)}


AnotherLaneForwardNeighbors ={(1,1); (1,2); (1,3);...; (1,lo)}

AnotherLaneBackwardNeighbors ={(1,-1); (1,-2); (1,-3);...; (1,- lo,back)}


[image: image83.wmf]           (1,-l

o,back

)   ...      (1,-1) (1,0)   (1,1)     ...      (1,l

o

)

            (0,-Max)   ...     (0,-1)  (0,0)   (0,1)     ...      (0,l)


Figure 17.  Neighborhood representation.

Convention: Given a cell on some of the two lanes, the neighbors on the same lane have as first coordinate a 0 and those of the other lane a 1. Also following the same idea, the neighbor (1,0) always represents the cell of to the side on the other lane. This allows using the same neighborhood and the same rules for the cells of both lanes.

Function  is applied in three steps, in the first one the lane changes are carried out, in the second the speed is updated, and in the third the position changes according to the new speed. The rules for these last two steps, are identical to the defined ones for one lane - models [NS92] with different maximum speeds and they have been already defined. The new rules(corresponding to the first step) are presented next. 

Here, gap(i,j), is the number of empty positions among the cell (i,j) and its first busy forward neighbor (that whose vactual is bigger than –1). gapo(i,j) indicates the number of empty positions among the cell (i,j) and its first busy forward neighbor on the other lane. gapo,back(i,j) indicates the number of empty positions among cell (i,j) and its first neighbor back having occupied by a vehicle on the other lane. Change represents a boolean function returning true with probability pchange (probability of changing lanes). In that case, the car can change lanes provided the other conditions are verified.

Lane changing rules 
New state
Neighborhood

(-1,0)
C(1,0).vactual=-1 AND C(0,0).vactual>-1 AND change AND gap(0,0)< l AND gapo(0,0) > lo AND gapo,back(0,0) > lo,back

C(1,0)
C(1,0).vactual > -1 AND C(0,0).vactual = -1 AND change AND gap(1,0) < l AND gapo(1,0) > lo AND gapo,back(1,0) > lo,back

C(0,0)
[C(0,0).vactual >-1 AND NOT( C(1,0).vactual = -1 AND change AND gap(0,0) < l AND gapo(0,0) > lo AND gapo,back(0,0) > lo,back ) ]  OR

[C(0,0).vactual = -1 AND NOT( C(1,0).vactual > -1 AND change AND gap(1,0) < l AND gapo(1,0) > lo AND gapo,back(1,0) > lo,back ) ]

4.2. Asymmetric rules

In [RNSL96] a two lane - model with asymmetric rules is described. This consists on a modification to the symmetrical model that has been described in the previous section. The rules that have changed are: 

(T1) gap < l. Look ahead if somebody is in his way

(T2) gapo > lo. Look on the other lane if it is any better there

(T3) gapo,back > lo,back. Look back on the other lane if it would get in somebody else’s way.

(T4) rand < pchange, a car change to the other lane with probability pchange 

In this case, the lane changes towards the right should be differentiated of that go to the left. The conditions that should be verified for the first ones are T2, T3 and T4, while the movements toward the left should verify the four conditions. This modification allows that a car passes to the left lane when it wants to pass a car that hinders him the road, and after it returns to the right lane. 

The only change to the function  is that the cells of the left lane have a different behavior than those of the right. The rules for updating the vehicle speed and position do not change. 

Lane changing rules (right lane): 

New state
Neighborhood

(-1,0)
C(1,0).vactual = -1 AND C(0,0).vactual >-1 AND change AND Gap(0,0) < l AND gapo(0,0) > lo AND gapo,back(0,0) > lo,back

C(1,0)
C(1,0).vactual > -1 AND C(0,0).vactual = -1 AND change AND Gap(1,0) < l AND gapo(1,0) > lo AND gapo,back(1,0) > lo,back

C(0,0)
[C(0,0).vactual >-1 AND NOT( C(1,0).vactual = -1 AND change AND gap(0,0) < l AND gapo(0,0) > lo AND gapo,back(0,0) > lo,back ) ] OR

[C(0,0).vactual = -1 AND NOT( C(1,0).vactual > -1 AND change AND gap(1,0) < l AND gapo(1,0) > lo AND gapo,back(1,0) > lo,back ) ]

Lane changing rules (left lane): 

New state 
Neighborhood

(-1,0)
C(1,0).vactual = -1 AND C(0,0).vactual >-1 AND change AND Gapo(0,0) > lo AND gapo,back(0,0) > lo,back

C(1,0)
C(1,0).vactual > -1 AND C(0,0).vactual = -1 AND change AND Gapo(1,0) > lo AND gapo,back(1,0) > lo,back

C(0,0)
[C(0,0).vactual >-1 AND NOT( C(1,0).vactual = -1 AND change AND gapo(0,0) > lo AND gapo,back(0,0) > lo,back ) ] OR

[C(0,0).vactual = -1 AND NOT( C(1,0).vactual > -1 AND change AND gapo(1,0) > lo AND gapo,back(1,0) > lo,back ) ]

In [W95] asymmetric rules are modeled prohibiting that a car passes to other being in the right lane. To carry out it they extend the model of [NS92] with rules that define when it can be carried out the lane change. The rules used for lane changing can be splitted in two:

1. Lane changing decision
2. Update according to the one–lane model
The following conditions must be evaluated to decide a lane change:

    (4) vo,back< gapo,back (a car coming from behind in the other lane must be far enough) 

    To change from right to left 

(6)
vmax > gap (it must speed enough to pass the car of ahead). 

(7) 
gapo ( gap (the situation should not be worse in the other lane).

    To change from left to right there must be enough space on the right and on the left lane:

(8)
vmax < gap - voff

 

(9)
vmax < gapo - voff



Here, voff is used to change the flow or the density when the passing lane has more transit than the other one. If voff increases, then it diminishes the flow. 

The model can be defined TLA = < S, n, C, , N, T, , c.Z0+ >, where

S = { (vactual, vmax) / vactual ({-1, 0, 1, 2, ..., vmax }, vmax ( {1, 2, ...,Max } }

n = 2 

 4* Max + 2 

N = ForwardNeighbors  BackwardNeighbors  AnotherLaneForwardNeighbors  

AnotherLaneBackwardNeighbors  { (0,0); (1,0) }

      ForwardNeighbors = {(0,1); (0,2); (0,3);...; (0, Max)}

BackwardNeighbors = {(0,-1); (0,-2); (0,-3);...; (0,-Max)}

AnotherLaneForwardNeighbors = {(1,1); (1,2); (1,3);...; (1, Max)}

      AnotherLaneBackwardNeighbors {(1,-1); (1,-2); (1,-3);...; (1, Max)}


[image: image84.wmf]           (1,

Max)   ...      (1,-1) (1,0)   (1,1)     ...      (1, Max)

            (0,-Max)   ...     (0,-1)  (0,0)   (0,1)     ...      (0, Max)


Figure 18.  Neighborhood representation.

Function is applied in three steps: in the first one, the lane changes are carried out (without advancing the vehicle), in the second the speed of each vehicle is updated and in the third the position is updated according to the new speed. The rules for the last two steps are the same to the ones of the one-lane model with different maximum speeds. 

Lane changing (right lane): 

New state
Neighborhood

(-1,0)
C(1,0).vactual = -1 AND C(0,0).vactual >-1 AND C(1,gapo,back(0,0)-1).vactual < gapo,back(0,0) AND C(0,0).vmax > gap(0,0) AND gapo(0,0) ( gap(0,0) 

C(1,0)
C(1,0).vactual > -1 AND C(0,0).vactual = -1 AND C(0,gapo,back(1,0)-1).vactual < gapo,back(1,0) AND 

C(1,0).vmax < gap(1,0) – voff AND C(1,0).vmax < gapo (1,0) – voff 

C(0,0)
[C(0,0).vactual >-1 AND NOT(C(1,0).vactual = -1 AND C(1,gapo,back(0,0)-1).vactual < gapo,back(0,0) AND C(0,0).vmax > gap(0,0) AND gapo(0,0) ( gap(0,0) ) ] OR

[C(0,0).vactual = -1 AND NOT(C(1,0).vactual > -1 AND C(0,gapo,back(1,0)-1).vactual < gapo,back(1,0) AND 

C(1,0).vmax < gap(1,0) – voff AND C(1,0).vmax < gapo (1,0) – voff ) ]

Lane changing (left lane): 

New state
Neighborhood

(-1,0)
C(1,0).vactual = -1 AND C(0,0).vactual >-1 AND C(1,gapo,back(0,0)-1).vactual < gapo,back(0,0) AND 

C(0,0).vmax < gap(0,0) – voff AND C(0,0).vmax < gapo (0,0) – voff 

C(1,0)
C(1,0).vactual > -1 AND C(0,0).vactual = -1 AND C(0,gapo,back(1,0)-1).vactual < gapo,back(1,0) AND 

C(1,0).vmax > gap(1,0) AND gapo(1,0) ( gap(1,0)

C(0,0)
[C(0,0).vactual >-1 AND NOT(C(1,0).vactual = -1 AND C(1,gapo,back(0,0)-1).vactual < gapo,back(0,0) AND 

C(0,0).vmax < gap(0,0) – voff AND C(0,0).vmax < gapo (0,0) – voff) ] OR

[C(0,0).vactual = -1 AND NOT(C(1,0).vactual > -1 AND C(0,gapo,back(1,0)-1).vactual < gapo,back(1,0) AND C(1,0).vmax > gap(1,0) AND gapo(1,0) ( gap(1,0)) ]

This model is analyzed in [WNW97] where they intend to achieve a more realistic behavior. The new rules try to avoid transit accumulation in the left lane when the density of cars is high. This effect takes place with the previous conditions because rule (8) cannot be satisfied: cars cannot return to the right lane. To solve this problem, the following rules are proposed: 

(a) The 4 rules of the one–lane model 

(b) The 5 rules of the asymmetric two-lane model of [W95] 

(c) Keep rules (5), (6) and (7), eliminate (8),  and modify the (9):

vo,back,max ( gapo,back 

v ( gapo ( space in the right lane) 

Rules (c) are used with probability pl2r which is a small value (i.e., 0.02). For the others, (b) is used. Another change that may be included in the model is that below speed vban (for example, 3) it is allowed passing a car by the right lane with probability pbrake (1- pbrake). The model can be defined as  TLA2 = < S, n, C, , N, T, , c.Z0+ >

S = { (vactual, vmax) / vactual ({-1, 0, 1, 2, ..., vmax }, vmax ( {1, 2, ...,Max } }

n = 2 

 4* Max + 2

N = ForwardNeighbors  BackwardNeighbors  AnotherLaneForwardNeighbors  



AnotherLaneBackwardNeighbors  { (0,0); (1,0) } (defined as in Figure 18).

Function  is applied in three steps: in the first one, lane changes are carried out. After, the speed and position are updated. The rules for the last two steps are the same to the ones of the one-lane model [NS92] with different maximum speeds. The new rules are included following:

Lane changing (cells on the right): 

New state
Neighborhood

(-1,0)
C(1,0).vactual = -1 AND C(0,0).vactual >-1 AND C(1,gapo,back(0,0)-1).vactual < gapo,back(0,0) AND C(0,0).vmax > gap(0,0) AND gapo(0,0) ( gap(0,0) 

C(1,0)
[ NOT (pl2r) AND C(1,0).vactual > -1 AND C(0,0).vactual = -1 AND C(0,gapo,back(1,0)-1).vactual < gapo,back(1,0) AND C(1,0).vmax < gap(1,0) – voff AND C(1,0).vmax < gapo (1,0) – voff ] OR

[ pl2r AND C(0,0).vactual = -1 AND C(1,0).vactual > -1 AND C(0,gapo,back(1,0)-1).vmax ( gapo,back(1,0) AND C(1,0).vactual ( gapo(1,0) ]

C(0,0)
[C(0,0).vactual >-1 AND NOT(C(1,0).vactual = -1 AND C(1,gapo,back(0,0)-1).vactual < gapo,back(0,0) AND C(0,0).vmax > gap(0,0) AND gapo(0,0) ( gap(0,0) ) ] OR

[NOT (pl2r) AND C(0,0).vactual = -1 AND NOT(C(1,0).vactual > -1 AND C(0,gapo,back(1,0)-1).vactual < gapo,back(1,0) AND C(1,0).vmax < gap(1,0) – voff AND C(1,0).vmax < gapo (1,0) – voff ) ] OR

[ pl2r AND C(0,0).vactual = -1 AND NOT(C(1,0).vactual > -1 AND C(0,gapo,back(1,0)-1).vmax ( gapo,back(1,0) AND C(1,0).vactual ( gapo(1,0) ) ]

Lane changing (left cells): 

New state
Neighborhood

(-1,0)
[NOT (pl2r) AND C(1,0).vactual = -1 AND C(0,0).vactual >-1 AND C(1,gapo,back(0,0)-1).vactual < gapo,back(0,0) AND  C(0,0).vmax < gap(0,0) – voff AND C(0,0).vmax < gapo (0,0) – voff ] OR

[pl2r AND C(1,0).vactual = -1 AND C(0,0).vactual >-1 AND C(1,gapo,back(0,0)-1).vmax ( gapo,back(0,0) AND C(0,0).vactual ( gapo(0,0)]

C(1,0)
C(1,0).vactual > -1 AND C(0,0).vactual = -1 AND C(0,gapo,back(1,0)-1).vactual < gapo,back(1,0) AND 

C(1,0).vmax > gap(1,0) AND gapo(1,0) ( gap(1,0)

C(0,0)
[NOT (pl2r) AND C(0,0).vactual >-1 AND NOT(C(1,0).vactual = -1 AND C(1,gapo,back(0,0)-1).vactual < gapo,back(0,0) AND C(0,0).vmax < gap(0,0) – voff AND C(0,0).vmax < gapo (0,0) – voff ) ] OR

[pl2r AND C(0,0).vactual >-1 AND NOT(C(1,0).vactual = -1 AND C(1,gapo,back(0,0)-1).vmax ( gapo,back(0,0) AND C(0,0).vactual ( gapo(0,0) ) ] OR

[C(0,0).vactual = -1 AND NOT(C(1,0).vactual > -1 AND C(0,gapo,back(1,0)-1).vactual < gapo,back(1,0) AND 

C(1,0).vmax > gap(1,0) AND gapo(1,0) ( gap(1,0) ) ]

Here, voff, is a parameter of the model  and pl2r, is true with certain probability. 

4.3. Special vehicles

In [NWWS97] a model for the transit on two lanes with two groups different of asymmetric rules is analyzed. This model uses the vehicle speed for the behavior rules. Two aspects are considered: security and motivation to change lanes. Security means to leave enough space among the vehicles when carrying out the lane change. It is required that there is a place of gapo + gapo,back + 1 in the passing lane. This is represented with an interval of [-gapo,back, gapo], and for this model gapo has been used = v and gapo,back = vmax. 

On the other hand, the rules that motivate a vehicle to change lanes have been defined for two different models: in the first one it's forbidden to pass another car being in the right lane and in the second this action is allowed. The rules for the first model considers German freeways: 

vr ( v OR vl ( v 

(1)

vr > v AND vl > v 

(2)

Here, vr and vl represents the speeds of the next cars inside a distance, d, in the right and left lane, respectively. If there are no cars inside that distance, vr and vl take the infinite value. The rule (1) corresponds to the lane change toward the left, and it arises of not allowing to pass to another car being in the right lane. If there is a slow car in the left lane, it is necessary to place behind it to avoid passing it. The rule (2) corresponds to the lane change toward the right, and it arises of making the logical negation of the conditions that allow the inverse change. This means that the vehicle returns to the right lane as soon as the speeds of the cars of ahead are sufficiently high. 

The rules for the second model are those of freeways in the United States: 

vr ( v AND vr ( vl 

(3)

vr > v OR vr > vl 

(4)

The rule (3) corresponds to the lane change toward the left. Here, the left lane is only more attractive if the transit there is quicker than in the own one. The rule (4) corresponds to the lane change toward the right, and it arises of denying the rule (3). This means that a vehicle returns to the right lane if there is a quicker car in the right lane, or if the transit in the right lane is quicker than in the other one. 

As in previous models, the rules outlined only decide if the vehicle will change lanes. It is necessary to add those that allow the advance movements, and the security factor must be considered. The movement is done in two steps:

1. Lane changing decision. 

In the even steps, changes from right to left are done. All the vehicles satisfying motivation (rule 1) and security ([-vmax,v]), move simultaneously to the left. In the odd steps of time, changes from left lane to right are carried out. All motivated vehicles (rule 2) with security ([-vmax,v]), move simultaneously to the right. The separation in even and odd cycles allow the extension of the model to 3 lanes (in that situation, it may occur that a vehicle of the left lane and another on the right move to the same cell in the middle). The number of positions d, observed in rules (1) and (2), play a critical role. If d is large, there is a tendency to go to the left before coming closer to a slow car. This produces heavy “lane changing” in low densities. Parameter d can be used to adjust the change of density. 

2. Advance movement.

The same rules of the one–lane model are used. These rules are extended to achieve a more realistic behavior of the model, adding trucks, symmetry of the rules in high densities, and a certain delay. The delay in the rules is introduced because the maximum “lane changing” is reached with too low densities compared with the real data. A delay is added, (, to return to the right. The new rules would be: 

vr > v + ( AND vl > v + ( 

(7)

vr ( v OR vl ( v 


(8)

Another change is that the lane changing rules are symmetrical in high densities/low speeds. This arises because the transit never returns to an equivalent use of lane, after the lane change. This way, a vehicle with v = 0, only checks if the speed in the other lane is bigger than in its own lane and if so, it tries to change lane (according to the security approach). 

The last feature added to the model is the presence of slow cars or trunks, giving to 10% of vehicles a lower maximum speed. 

The model is defined as TLSP = < S, n, C, , N, T, , c.Z0+ >

S = { (vactual, vmax) / vactual ({-1, 0, 1, 2, ..., vmax }, vmax ( {1, 2, ...,Max } }

n = 2 

 4*Max + 2

N = ForwardNeighbors  BackwardNeighbors  AnotherLaneForwardNeighbors  


AnotherLaneBackwardNeighbors  { (0,0); (1,0) }, defined as in Figure 18.

Function is calculated in three steps: in the first one, lane changes are made, in the second the speed is updated, and finally the position is updated. The new rules are included following:

Lane changing (cells on the right, rules 1 and 2 with security)
new state
Neighborhood

(-1,0)
[C(0,0).vactual =-1 AND NOT( C(1,0).vactual > -1 AND C(1,0).vactual ( gapo(1,0) AND C(1,0).vmax ( gapo,back(1,0) AND C(0,gapo(1,0)+1).vactual > C(1,0).vactual AND C(1,gap(1,0)+1).vactual > C(1,0).vactual ) ] OR

[ C(1,0).vactual = -1 AND C(0,0).vactual >-1 AND C(0,0).vactual ( gapo(0,0) AND C(0,0).vmax ( gapo,back(0,0) AND (C(0,gap(0,0)+1).vactual ( C(0,0).vactual OR C(1,gapo(0,0)+1).vactual ( C(0,0).vactual ) ]

C(1,0)
C(0,0).vactual =-1 AND C(1,0).vactual > -1 AND C(1,0).vactual ( gapo(1,0) AND C(1,0).vmax ( gapo,back(1,0) AND C(0,gapo(1,0)+1).vactual > C(1,0).vactual AND C(1,gap(1,0)+1).vactual > C(1,0).vactual 

C(0,0)
C(0,0).vactual >-1 AND NOT(C(1,0).vactual = -1 AND C(0,0).vactual ( gapo(0,0) AND C(0,0).vmax ( gapo,back(0,0) AND (C(0,gap(0,0)+1).vactual ( C(0,0).vactual OR C(1,gapo(0,0)+1).vactual ( C(0,0).vactual ) )

Lane changing (left lane) 

new state
Neighborhood

(-1,0)
[C(0,0).vactual = -1 AND NOT( C(1,0).vactual > -1 AND C(1,0).vactual ( gapo(1,0) AND C(1,0).vmax ( gapo,back(1,0) AND (C(1,gap(1,0)+1).vactual ( C(1,0).vactual OR  C(0,gapo(1,0)+1).vactual ( C(1,0).vactual ) ) ] OR 

 [C(0,0).vactual >-1 AND C(1,0).vactual = -1 AND C(0,0).vactual ( gapo(0,0) AND C(0,0).vmax ( gapo,back(0,0) AND C(1,gapo(0,0)+1).vactual > C(0,0).vactual AND C(0,gap(0,0)+1).vactual > C(0,0).vactual ]

C(1,0)
C(0,0).vactual = -1 AND C(1,0).vactual > -1 AND C(1,0).vactual ( gapo(1,0) AND C(1,0).vmax ( gapo,back(1,0) AND (C(1,gap(1,0)+1).vactual ( C(1,0).vactual OR C(0,gapo(1,0)+1).vactual ( C(1,0).vactual ) 

C(0,0)
C(0,0).vactual >-1 AND NOT( C(1,0).vactual = -1 AND C(0,0).vactual ( gapo(0,0) AND C(0,0).vmax ( gapo,back(0,0) AND C(1,gapo(0,0)+1).vactual > C(0,0).vactual AND C(0,gap(0,0)+1).vactual > C(0,0).vactual ) ]

Lane changing (cells on the right, rules 3 and 4 with security)
new state
Neighborhood

(-1,0)
[C(0,0).vactual =-1 AND NOT (C(1,0).vactual >-1 AND C(1,0).vactual (gapo(1,0) AND C(1,0).vmax ( gapo,back(1,0) AND (C(0,gapo(1,0)+1).vactual > C(1,0).vactual OR C(0,gapo(1,0)+1).vactual > C(1, gap(1,0)+1).vactual) ) ] OR [C(1,0).vactual=-1 AND C(0,0).vactual>-1 AND C(0,0).vactual ( gapo(0,0) AND C(0,0).vmax ( gapo,back(0,0) AND (C(0,gap(0,0)+1).vactual ( C(0,0).vactual AND C(0,gap(0,0)+1).vactual ( C(1, gapo(0,0)+1).vactual) ]

C(1,0)
C(0,0).vactual =-1 AND C(1,0).vactual > -1 AND C(1,0).vactual ( gapo(1,0) AND C(1,0).vmax ( gapo,back(1,0) AND ( C(0,gapo(1,0)+1).vactual > C(1,0).vactual OR C(0,gapo(1,0)+1).vactual > C(1, gap(1,0)+1).vactual ) 

C(0,0)
C(0,0).vactual >-1 AND NOT(C(1,0).vactual = -1 AND C(0,0).vactual ( gapo(0,0) AND C(0,0).vmax ( gapo,back(0,0) AND (C(0,gap(0,0)+1).vactual ( C(0,0).vactual AND C(0,gap(0,0)+1).vactual ( C(1, gapo(0,0)+1).vactual) )

Lane changing rules for cells of the left lane: 

new state
Neighborhood

(-1,0)
[ C(0,0).vactual = -1 AND NOT( C(1,0).vactual >-1 AND C(1,0).vactual ( gapo(1,0) AND C(1,0).vmax ( gapo,back(1,0) AND C(1,gap(1,0)+1).vactual ( C(1,0).vactual AND C(1,gap(1,0)+1).vactual ( C(0, gapo(1,0)+1).vactual ) ]

OR [C(0,0).vactual >-1 AND C(1,0).vactual = -1 AND C(0,0).vactual ( gapo(0,0) AND C(0,0).vmax ( gapo,back(0,0) AND ( C(1,gapo(0,0)+1).vactual > C(0,0).vactual OR C(1,gapo(0,0)+1).vactual > C(0, gap(0,0)+1).vactual ) ]

C(1,0)
C(0,0).vactual = -1 AND C(1,0).vactual >-1 AND C(1,0).vactual ( gapo(1,0) AND C(1,0).vmax ( gapo,back(1,0) AND C(1,gap(1,0)+1).vactual ( C(1,0).vactual AND C(1,gap(1,0)+1).vactual ( C(0, gapo(1,0)+1).vactual 

C(0,0)
C(0,0).vactual >-1 AND NOT( C(1,0).vactual = -1 AND C(0,0).vactual ( gapo(0,0) AND C(0,0).vmax ( gapo,back(0,0) AND ( C(1,gapo(0,0)+1).vactual > C(0,0).vactual OR C(1,gapo(0,0)+1).vactual > C(0, gap(0,0)+1).vactual ) ) 

5. Bi-directional Models 

This section introduces two-lane models of with different directions that consider the use of the opposite lane to pass to a car. Either passing is allowed on both lanes, one or the other of the lanes or no passing is allowed. These three alternatives can be combined in different sections of the road, for example, the curves of a route may be represented with lanes that don't allow passing. 

5.1. Models without crossings

These models do not consider the vehicle behavior when arriving to intersections. In [SG98] these models are presented, using borders connected to each other (periodic boundary conditions). Each cell has a state v, such that v ( {- (vmax + 1),..., vmax + 1}, where: 

· 0 represent the absence of a vehicle; 

· +1 or -1 represents a stopped car; 

· +2, -2 represent a car moving with speed 1 in positive direction, and a car moving with speed 1 in negative direction, respectively; 

· Etc. 

Thus, both vehicles and lanes can be labeled “+” and “-“. A “+” vehicle on the “+” lane, is in its home lane, and a “+” vehicle on the “ –“ lane, is in the passing lane. Home and passing lanes are defined symmetrically for “-“ vehicles.

The rules for vehicle behavior use several parameters: l and lo indicate until where a car goes forward in its lane, and forward in the other lane, respectively. lpass, lsecurity y Dlimit define the space for a car in the lane to advance, the space in the passing lane without danger, and the maximum local density for a sure lane change. 

Variables va and va,o denote the speed of the car of ahead in the same lane and in the opposite one. Sign is a function returning “+1” or “-1”. H is a function returning true iif the vehicle is on its home lane. Oncoming, is a function returning true iif sign(va) ( sign(v). Dl (local density) is a function returning the number of busy positions forward of ldensity = (2vmax + l). 

Vehicle movement is a two-step process:

1) Vehicles change lanes

2) Vehicles advance

Rules for lane changing:

(1) if (H AND (gap < lpass) AND (gapo > lsecurity) AND (Dl ( Dlimit) AND (rand < pchange)) then change lane

The first condition affects vehicles on the home lane. If the vehicle in front is closer than lpass, they try to pass it. However, they will try only if there is room enough on the passing lane and the number of cars before the vehicle to be passed is small. If all these conditions are met, the vehicle passes with a probability of pchange. 

(2)         If ( NOT(H) AND ((gap < lsecurity) OR (gapo ( lpass )) ) then change lane

This condition concerns vehicles in the middle of passing. They return to their home lane if forced to by an oncoming vehicle, or if there is space on the home lane to return without braking.

Rules for advance movement

(3) If (|v| ( vmax) then v = v + sign(v)

Accelerate the vehicle to maximum velocity

(4)  If (oncoming AND (gap ( (2 vmax - 1))) then v = ( gap/ 2(
Rapidly decelerate the vehicle if there is an oncoming car too close.

(5) If (NOT(oncoming) AND (|v| > gap)) then v = sign(v)* (gap)

Decelerate the vehicle if it is close to another, both in their home lane

(6) If ( H AND |v| > 1 AND rand < pbrake AND NOT(oncoming)) then v=v-sign(v)

Randomly decelerate the vehicle if it is on its home lane

(7) If (H AND oncoming AND |v| > 1 ) then v = v - sign(v)

Breaks the symmetry between the lanes, thus preventing the emergence of a super jam.

A vehicle must have a constant acceleration while passing; pbrake is set to 0 during the pass. Moreover, if an oncoming car is detected, the passing car immediately returns to its own lane, reflecting that vehicles generally do not attempt to pass unless the pass can be completed. To model this phenomenon each vehicle measures the “local density” (cars in front the vehicle to be passed). If it is sufficiently low, the vehicles have a good chance of completing a pass, and it is allowed it to attempt it. 

The model is defined by TLP = < S, n, C, , N, T, , c.Z0+ >

S = { -vmax, ... ,-1, 0, 1, 2, ..., vmax }, where 0 represents an empty cell, +1 or -1 represent the presence of a stopped car, +2,-2 represent a car with speed 1 in positive (home lane) or negative (passing lane) direction respectively, etc. 

n = 2 

 lo + l + vmax + 2

N = ForwardNeighbors  BackwardNeighbors  AnotherLaneForwardNeighbors { (0,0); (1,0) }, where, ForwardNeighbors= {(0,1); (0,2); (0,3);...; (0, l)}, BackwardNeighbors = {(0,-1); (0,-2); (0,-3);...; (0,- vmax)}, AnotherLaneForwardNeighbors = {(1,1); (1,2); (1,3);...; (1, lo)}


[image: image85.wmf]                                                (1,0)   (1,1)     ...      (1, l

o

)

            (0,-v

max

)   ...     (0,-1)  (0,0)   (0,1)     ...      (0, l)


Figure 19.  Neighborhood representation.

Function is applied in three steps, as in the previous cases: 

Lane changing 
new state
Neighborhood

0
[ C(0,0) = 0 AND NOT( C(1,0) > 0 AND gap(1,0) < lpass AND gapo(1,0) > lsecurity AND Dl(1,0) ( Dlimit AND change ) ] OR

[ C(0,0) > 0 AND C(1,0) =0 AND gap(0,0) < lpass AND gapo(0,0) > lsecurity AND Dl(0,0) ( Dlimit AND change ] OR

[ C(0,0) = 0 AND NOT( C(1,0) < 0 AND (gap(1,0) < lsecurity OR gapo(1,0) ( lpass) ) ] OR

[ C(0,0) < 0 AND C(1,0) = 0 AND (gap(0,0) < lsecurity OR gapo(1,0) ( lpass) ]

-C(1,0)
[ C(0,0) = 0 AND C(1,0) > 0 AND gap(1,0) < lpass AND gapo(1,0) > lsecurity AND Dl(1,0) ( Dlimit AND change ] OR [ C(0,0) = 0 AND C(1,0) < 0 AND (gap(1,0) < lsecurity OR gapo(1,0) ( lpass) ) ]

C(0,0)
[ C(0,0) > 0 AND NOT( C(1,0) =0 AND gap(0,0) < lpass AND gapo(0,0) > lsecurity AND Dl(0,0) ( Dlimit AND change ) ] OR

[ C(0,0) < 0 AND NOT( C(1,0) = 0 AND (gap(0,0) < lsecurity OR gapo(1,0) ( lpass) ) ]

Here, lpass, lsecurity y Dlimit are parameters representing the number of empty positions to make successful and sure lane changing and Dl(i,j) is the number of busy positions on the lane of (i,j) and forward, considering 2*vmax+1 positions. 

Speed update
new state
Neighborhood

C(0,0) + sign(C(0,0))
[ |C(0,0)| < vmax AND Oncoming AND NOT(gap ( 2*vmax-1) AND 

NOT(|C(0,0) + sign(C(0,0))| > 1 AND C(0,0) + sign(C(0,0)) > 0 ) ] OR

[ |C(0,0)| < vmax AND NOT(Oncoming) AND NOT(|C(0,0) + sign(C(0,0))| > gap)

AND NOT(C(0,0) + sign(C(0,0)) > 0 AND |C(0,0) + sign(C(0,0)) | > 1 AND brake ) ]

C(0,0)
[ |C(0,0)| = vmax AND Oncoming AND NOT(gap ( 2*vmax-1) AND NOT(|C(0,0)| > 1 AND C(0,0) > 0) ]  OR

[ |C(0,0)| < vmax AND Oncoming AND NOT(gap ( 2*vmax-1) AND |C(0,0) + sign(C(0,0))| > 1 AND C(0,0) + sign(C(0,0)) > 0 ]  OR

[ |C(0,0)| = vmax AND NOT(Oncoming) AND NOT(|C(0,0)| > gap) AND NOT(C(0,0) > 0 AND |C(0,0) | > 1 AND brake ) ] OR [ |C(0,0)| < vmax AND NOT(Oncoming) AND 

NOT( |C(0,0)|+1 > gap ) AND C(0,0)+sign(C(0,0)) > 0 AND |C(0,0)+sign(C(0,0)) | > 1 AND brake ]

(gap/2(
[ Oncoming AND gap ( 2*vmax-1 AND NOT( (gap/2( > 1 AND (gap/2( > 0) ]

(gap/2(-sign(C(0,0))
[Oncoming AND gap ( 2*vmax-1 AND (gap/2( > 1 AND (gap/2( > 0 ]

C(0,0) – sign(C(0,0))
[ |C(0,0)| = vmax AND Oncoming AND NOT(gap ( 2*vmax-1) AND |C(0,0) |> 1 AND C(0,0) > 0 ] OR

[ |C(0,0)| = vmax AND NOT(Oncoming) AND NOT( |C(0,0)| > gap ) AND |C(0,0) |> 0 AND C(0,0)> 1 AND brake ]

gap*sign(C(0,0))
[ |C(0,0)| < vmax AND NOT(Oncoming) AND (|C(0,0)|+1 > gap) AND NOT(gap*sign(C(0,0)) > 0 AND |gap*sign(C(0,0))| > 1 AND brake ) ] OR

[ |C(0,0)| = vmax AND NOT(Oncoming) AND (|C(0,0)| > gap) AND NOT(gap*sign(C(0,0)) > 0 AND |gap*sign(C(0,0))| > 1 AND brake ) ]

gap*sign(C(0,0))- sign(C(0,0))
[ |C(0,0)| < vmax AND NOT(Oncoming) AND |C(0,0)|+1 > gap AND gap*sign(C(0,0)) > 0 AND |gap*sign(C(0,0))| > 1 AND brake ] OR

[ |C(0,0)| = vmax AND NOT(Oncoming) AND |C(0,0)| > gap AND gap*sign(C(0,0)) > 0 AND |gap*sign(C(0,0))| > 1 AND brake ]

Here, sign(C(0,0)) is a function returning 1 if C(0,0)>0 and 0 if C(0,0)<0. Oncoming is defined by: 

(k is first position ahead occupied by a car AND [ ( Ck < 0 AND C(0,0) > 0 ) OR ( Ck > 0 AND C(0,0) < 0 )] ).

Position updating 
new state
Neighborhood

C(k1,k2) 
[ C(0,0) = 0 AND k=(k1,k2) is the first position back occupied by a car AND Ck > 0 AND C(k1,k2)+k2 = 0 ] OR

[ C(0,0) = 0 AND k=(k1,k2) is the first position fordward occupied by a car AND Ck < 0 AND C(k1,k2)+k2 = 0 ]

0
[AllBackwardNeighborsEmpty AND C(0,0) = 0 AND AllForwardNeighborsEmpty] OR

[C(0,0) ( 0 AND C(0,0) ( 1 AND C(0,0) ( -1] OR

[ C(0,0) = 0 AND k=(k1,k2) is the first position backward occupied by a car AND Ck > 0 AND C(k1,k2)+k2 ( 0 ] OR

[ C(0,0) = 0 AND k=(k1,k2) is the first position forward occupied by a car AND Ck < 0 AND C(k1,k2)+k2 ( 0 ]

C(0,0)
C(0,0) = 1 OR C(0,0) = -1

Here, AllBackwardNeighborsEmpty, represents 
[image: image86.wmf]0

)

,

0

(

}

1

,...,

{

max

=

L

-

-

Î

i

v

i

C

; and AllForwardNeighborsEmpty, represents 
[image: image87.wmf]0

)

,

0

(

}

,...,

1

{

max

=

L

Î

i

v

i

C

. Also, The first position backward occupied by a car, is the neighbor on the same lane occupied by a car with the number of minimum negative index. For instance, if C(0,-1) =-1 and C(0,-2) =-1 but C(0,-3) =4, the first busy position backward is (0,-3). The first position forward occupied by a car”, is the busy neighbor on the same lane with the minimum positive index. For example, if C(0,1) =-1 and C(0,2) =-1 but C(0,3) =4 then the first position forward occupied by a car is (0,3). Finally, All positions back empty represents 
[image: image88.wmf]1

.v

 

actual

}

1

,...,

.

{

-

=

L

-

-

Î

i

v

C

i

C

max

i

.

6. Models with road intersections

In this section models with 2 lanes of different directions and intersections are included, allowing that the vehicles can follow right or to bend when arriving to a crossing. 

In [CQL95], [CLQ96] and [CDL97] the transit is modeled on two lanes with different directions, without allowing to use the lane of opposed direction to be ahead. These lanes are connected with others through the crossings. Each lane is modeled through a one–lane model. To define the behavior of the cells that are not adjacent to the crossings, the state of the previous and following cell should be evaluated. The state of the cell i in the step of time t+1 is represented by: si(t+1) = si-1(t)(1- si(t)) + si(t) si+1(t). Here sk(t) represents the state of cell in the step t  (here, sk(t) = 0 means a free site and sk(t) = 1 a vehicle present). Besides, si-1(t) represents the state of the cell from which a car could come and si+1(t) indicates the state of the destination cell.

Intersections are represented as a ring of cells with several attached lanes, as shown in the following figure.


[image: image89.png]
Figure 20. A generic ring

A vehicle in the ring has the priority over any entering car. A vehicle can either rotate counterclockwise or exit. Cars in the ring move only when the previous cell is free. The decision to exit the ring is attached to the cells and updated according to various strategies: a random wandering motion is produced when a decision flag is randomly updated at each time step. The ring paradigm can be easily combined with semaphores. It is enough to prevent the cars from entering the ring during some specific time intervals. Similarly, other priority models can be implemented.

This model can be represented as R = < S, n, C, , N, T, , c.Z0+ >

S = { 0,1 }

      n = 2
There are cells with different neighborhood and behavior. The cells inside the intersections are different of the input ones, and the exit cells. Finally, the cells in lanes not adjacent to the intersections have different behavior. 

1) Cells inside the ring 
These cells have two neighbors, corresponding to the previous and following positions counterclockwise. We call C0 to the cell whose behavior is being described, C(a,in) and C(a,out) to the behind and ahead. Each cell in the ring can or not have a neighbor corresponding to an input lane, C(c,in), and/or to an exit lane, C(c,out). Then, there are four types of crossing cells, which will be described following. 

Cells without inputs nor exists


N = { 0, (a,in) , (a,out)} 


New state
Neighborhood

0
(C(a,in) = 0 AND C0 = 0 ) OR C0 = 1

1
(C(a,in) = 1 AND C0 = 0 )

Cells with one exit


N = { 0, (a,in) , (a,out), (c,out)} 


New state
Neighborhood

0
(C(a,in) = 0 AND C0 = 0 ) OR C0 = 1

1
(C(a,in) = 1 AND C0 = 0 )

Cells with one input

N = { 0, (a,in) , (a,out), (c,in)} 


New state
Neighborhood

0
(C(a,in) = 0 AND C0 = 0 AND OR C(c,in) = 0) OR C0 = 1

1
(C(a,in) = 1 OR C(c,in) = 1) AND C0 = 0

Cells with one input and exit

N = { 0, (a,in) , (a,out), (c,in), (c,out)} 

      :

New state
Neighborhood

0
(C(a,in) = 0 AND C0 = 0 AND OR C(c,in) = 0) OR C0 = 1

1
(C(a,in) = 1 OR C(c,in) = 1) AND C0 = 0

2) Input Cells
Now we define the behavior of the cells belonging to an input lane, which are adjacent to an intersection. Here, C0 represents the cell being described, Cin represents the back neighbor (same lane), Cout the neighbor inside the ring, and C(a,in) the input cell to the ring that is neighbor of Cout.


N = { 0, in, out, (a,in)} 

:
New state
Neighborhood

0
(Cin = 0 AND C0 = 0 ) OR (C0 = 1 AND Cout = 0 AND C(a, in) = 0)

1
(Cin = 1 AND C0 = 0 ) OR (C0 = 1 AND (Cout = 1 OR C(a, in) = 1) )

3) Outgoing cell 
In this case, 


N = {0, in, out} 

:

New state
Neighborhood

0
(Cin = 0 AND C0 = 0 ) OR (C0 = 1 AND Cout = 0) OR (Cin = 1 AND C0 = 0 AND NOT (exit) ) 

1
(Cin = 1 AND C0 = 0 AND exit) OR (C0 = 1 AND Cout = 1 )

Here, Exit is a boolean function local to the cell, which determines if a vehicle will continue in the ring or will exit. If Exit is True, the vehicle exits from the ring to am empty destination. Otherwise, it remains moving inside the ring.

4) Cells not adjacent to any cell of the ring 

N = {0, in, out} 

      :

New state
Neighborhood

0
(Cin = 0 AND C0 = 0 ) OR (C0 = 1 AND Cout = 0)

1
(Cin = 1 AND C0 = 0 ) OR (C0 = 1 AND Cout = 1 )

7. Conclusion

This work presented several models of transit flow using the CA formalism. This approach has turned out to be useful to describe in a simple way the basic characteristics of the problem. 

The article presents an introduction to the topic of transit simulation using the formalism of Cellular Automata. Therefore, the model only contemplates the essential characteristics of the problem (quantity and direction of the lanes, movements among them) but very few incorporate other aspects that condition the flow of vehicles, as being the presence of crashes, works, potholes, train roads, etc. Another interesting aspects to consider in future works (still not defined using this paradigm) are: 

· The knowledge of the path followed by each driver as well as its departure times (for example, by using an origin and destination matrix). 

· The driver's behavior (habits).

· Make the acceleration behavior of the CA cars more realistic.

· Semaphore synchronization.

The most interesting characteristics of the formalism are the simplicity and modularity with which the transit behavior can be represented, being able to add increasingly new aspects that approach to the reality. But as a more generic solution is looked for, for example one that represents any quantity of lanes, the complexity of the pattern is increased. In the case of the single-lane CA it vas possible to connect the CA driving rules to more sophisticated driving models. Yet, the details that influence a driver are very hard to quantify in a rigorous manner in any case, and multi-lane transit is certainly much more complicated than single–lane traffic. It would be interesting to study the relationship cost-benefit between the increase of complexity and the approach to the reality of the obtained results. 

8. References

[vN66] J. von Neumann. Theory of Self-Reproducing Automata. University of Illinois Press, Illinois, 1966. Edited and completed by A.W. Burks. 

[Wol84b] S. Wolfram. Universality and complexity in cellular automata. Physica D, 10:1-35, 1984. 

[TM87] T. Toffoli and N. Margolus. Cellular Automata Machines. The MIT Press, Cambridge, Massachusetts, 1987. 

[Mit96] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA, 1996. 

[Vth86] G. Y. Vichniac, P. Tamayo, and H. Hartman. Annealed and quenched inhomogeneous cellular automata. Journal of Statistical Physics, 45:875-883, 1986. 

[Sip94]. M. Sipper, R. A. Brooks and P. Maes, editors Non-Uniform Cellular Automata: Evolution in Rule Space and Formation of Complex Structures. Artificial Life IV, pages 394-399, Cambridge, Massachusetts, 1994. The MIT Press. 

[Bur70] A. Burks, editor. Essays on cellular automata. University of Illinois Press, Urbana, Illinois, 1970. 

[Smi69] A. Smith. Cellular automata theory. Technical Report 2, Stanford Electronic Lab., Stanford University, 1969. 

[PSZ96] J.Y. Perrier, M. Sipper, and J. Zahnd. Toward a viable, self-reproducing universal computer. Physica D, 97:335-352, 1996. 

[WG97] Wainer, G.; Giambiasi, N. "Specification, modelling and simulation of Cell-DEVS models". Technical Report No. 97-007. Departamento de Computación. Universidad de Buenos Aires. Submitted for publication.

[WG98] Wainer, G.; Giambiasi, N. "N-dimensional Cell-DEVS models". Technical Report No. 98-017. Departamento de Computación. Universidad de Buenos Aires. Submitted for publication.

[CMB93] Paul Cockshott, George McCaskill, Peter Barric. Use of high speed cellular automata machine to simulate road traffic. 1993

[NS92] K. Nagel, M. Schreckenberg. A Cellular Automaton Model for Freeway Transit. J. Phys, France 2, 2221(1992).
[SN97] P. M. Simon , K. Nagel. A Simplified Cellular Automata Model for City Traffic. Report Nº 97-4707 LA-UR. LOS ALAMOS National Laboratory. 1997.

[T96] Shin-ichi Tadaki. Two-dimensional cellular automaton model of transit flow with open boundaries. Tech. Rep. Department of Information Science, Saga University. 1996.

[SG98] P. M. Simon , H. A. Gutowitz. A Cellular Automaton Model for Bi-Directional Transit. Physical Review E, vol. 57:2, pp. 2441-2444. 1998 

[RNSL96] M. Rickert, K. Nagel, M. Schreckenberg, A.Lafour. Two line transit simulation using cellular automata. Physica A,231:534,1996

[W95] Wager. Transit simulation using cellular automata comparison with reality. Proceedings of Conference transit and Granular Flow. 1995

[WNW97] Peter Wagner, Kai Nagel, Dietrich Wolf. Realistic Multi-line transit rules for cellular automaton Physica A, 234:687, 1997

[NWWS97] K. Nagel, D. Wolf, P. Wagner, P. M. Simon. Two-lane transit rules for cellular automata: A systematic approach. Physical Review E, 1997.

[CQL95] B. Chopard, P. Queloz, P. Luthi. Transit Models of a 2D road network. Proceedings of the 3rd CM users’ Meeting. October 1995, 

[CLQ96] B. Chopard, P. Luthi, P. Queloz. Cellular Automata Model of Car Transit in two-dimensional street networks. J. Phys. A, vol. 29, pp. 2325-2336, 1996.

[CDL97] B. Chopard, A. Dupuis, P. Luthi. A Cellular Automata Model for Urban Transit and its applications to the city of Genova. Proceedings of Transit and Granular Flow. 1997.

��

































�

�

246
276
Sección VI: Apéndices
                                                                                                                         Página

_972057804.unknown

_990014450.doc


                                      





Output





                                                (1,0)





                 Output





    (0,-1)  (0,0)    (0,1)    





Input











Input









_990114980.doc


                                                 (1,0)





                         Upper exit       (0,0)





                                                           (-1,0)











 





Cross









_991132862.unknown

_991135632.unknown

_991125195.doc
[image: image1.png]


_990943475.doc


Cars come out





Cars come in





Cars come out





Cars come in









_990114378.doc


                         Cross     (1,0)   (1,1)   Right entrance.











 Lower entrance











                                       





(-1,0)









_990114910.doc


                             





           Left Exit.





                                      (0,-1)  (0,0)    (0,1)   





Cross









_990114086.doc


                             





          Right Entrance.





                        





Cross





  (0,-1)  (0,0)    (0,1)











                   Another entrance









_983889688.doc


                                             (1,0)





                            





(0,-1)  (0,0)    (0,1)















_983889983.doc


                             





  (0,-1)  (0,0)   (0,1)















_983951475.doc


                                         (1,





 





Max)   ...      (1,-1) (1,0)   (1,1)     ...      (1, Max)





                                          (0,-Max)   ...     (0,-1)  (0,0)   (0,1)     ...      (0, Max)









_989140185.unknown

_990013122.doc


 





    1) Right_Up	 





       2) Right_Left





  





    3) Right	





 





       4) Left















_983954843.doc


                                                                              (1,0)   (1,1)     ...      (1, l





o





)





                                          (0,-v





max





)   ...     (0,-1)  (0,0)   (0,1)     ...      (0, l)









_983893150.doc


                                         (1,-l





o,back





)   ...      (1,-1) (1,0)   (1,1)     ...      (1,l





o





)





                                          (0,-Max)   ...     (0,-1)  (0,0)   (0,1)     ...      (0,l)









_983889816.doc


                                                 (1,0)





                             





  (0,-1)  (0,0)















_983814949.doc


                         -v





max





  ...      -2      -1       0      1      2     ...     v





max









_983889587.doc


                                                (1,0)





                             





             (0,0)    (0,1)















_983889205.doc


                                                 (1,0)





                             





  (0,-1)  (0,0)    (0,1)















_983714301.doc


                        -1     0     1









_959349284.unknown

_959349549.unknown

_959349905.unknown

_959352744.unknown

_962366992.unknown

_964161713.unknown

_964161751.unknown

_962367021.unknown

_964081242

_959353629.unknown

_959353866.unknown

_961761098

_959353785.unknown

_959353106.unknown

_959349933.unknown

_959350637.unknown

_959349601.unknown

_959349402.unknown

_959349425.unknown

_959349464.unknown

_959349349.unknown

_959349211.unknown

_959349112.unknown

_959349175.unknown

_959349069.unknown

_959348645.unknown

_959349025.unknown

_959348348.unknown

_959348600.unknown

_959345074.unknown

