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Outline

• Problem characterization
• DEVS formalism
• The CD++ tool
• Modeling complex systems using DEVS
• Examples of application
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• FOCUS => Newcomers

Some of the slides here presented are part of         
Prof. B. Zeigler’s collection (with permission!)

http://www.acims.arizona.edu



Motivation

� Analysis of complex natural/artificial real systems.

� Continuous systems analysis
� Different mathematical formalisms
� Simulation: solutions to particular problems under 

certain  experimental conditions of interest
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� Classical methods for continuous systems simulation
� Based on numerical approximation
� Require time discretization
� Inefficient in terms of execution times
� Complex composition; difficulties in integration, 

multiresolution models



Evolution in simulation technology

• Reduced cost of modern computers
• Enhanced tools
• Statistical packages; application libraries
• Ease to use, flexibility
• Ease of analysis tasks
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• Ease of analysis tasks
• Parallel/Distributed systems
• Enhanced visualization tools
• Standards (graphics, runtime support, distributed 

software)



Discrete-Event M&S

• Based on programming languages (difficult to test, 
maintain, verify). 

• Beginning ’70s: research on M&S methodologies
• Improvement of development task
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• Focus in reuse, ease of modeling, development 
cost reductions



Separation of concerns in DEVS

Real World Simulator

modeling simulation

Device for
executing model

Experimental Frame 

Data: Input/output
relation pairs
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modeling
relation

simulation
relation

Each entity formalized 
as a Mathematical Dynamic 

System
(mathematical manipulations

to prove system properties)

Structure generating behavior
claimed to represent real world 

Model

Conditions under which the system 
is experimented with/observed



Current needs

� Interoperability:
� computer-based and non-computer-based systems

� support a wide range of models and simulations
� hybrid interoperability

� Reuse:
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� Reuse:
� model and simulation reuse (computer-based and otherwise) 

� centralized and distributed data and model repositories

� Performance:
� Computational (local to each simulation)
� Communication (among multiple simulations)



Current practices

• Ad-hoc techniques, ignorance of previous recommendations 
for software engineering.

• Tendency to encapsulate models/simulators/experimental 
frames into tightly coupled packages, (written in 

programming languages such as Fortran, C/C++, Java).

Slide 8

• Difficulties: testing, maintainability of the applications, 
integration, software reuse.

• Relatively few examples of storing previously developed 
simulation infrastructure commodities such that they can be 

adapted to developing interoperability test 
requirements



DEVS M&S methodology

• DEVS can be used to solve the previously mentioned 
issues:

– Interoperability and reuse
– Hybrid systems definition
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– Engineering-based approach
– Facilities for automated tasks 
– Reduced life cycles
– High performance/distributed simulation



• DEVS = Discrete Event System Specification

• Formal M&S framework

• Separates Modeling from Simulation

• Supports full range of dynamic system representation capability

The DEVS M&S Framework
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• Supports full range of dynamic system representation capability

• Supports hierarchical, modular model development

• Provides Well Defined Coupling of Components

• Supports  

– Hierarchical Construction
– Stand Alone Testing
– Repository Reuse

(Zeigler, 1976/84/90/00)



Models

A Layered view on M&S

Applications
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Middleware/OS (Corba/HLA/P2P; 
Windows/Linux/RTOS…)

Simulators (single/multi CPU/RT)

Hardware (PCs/Clusters of PC/HW boards…)



Models

Applications

A Layered view on M&S
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Middleware/OS (Corba/HLA/P2P; 
Windows/Linux/RTOS…)

Simulators (single/multi CPU/RT)

Hardware (PCs/Clusters of PC/HW boards…)



Advantages of DEVS

• Models/Simulators/EF: distinct entities with their own 
software representations.

• Simulators can perform single host, distributed and real-time 
execution as needed (DEVS simulators over various 

middleware such as MPI, HLA, CORBA, etc.).

• Experimental frames appropriate to a model distinctly       
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• Experimental frames appropriate to a model distinctly       
identified; easier for potential users of a model to uncover 

objectives and assumptions that went into its creation.

• Models/ frames developed systematically for interoperability

• Repositories of models and frames created and maintained     
(components for constructing new models). Models/frames 

stored in repositories with information to enable reuse.



DEVS Toolkits

� ADEVS (University of Arizona)
� CD++ (Carleton University)
� DEVS/HLA (ACIMS)
� DEVSJAVA (ACIMS)
� GALATEA (USB – Venezuela)
� GDEVS (Aix-Marseille III, France)
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� GDEVS (Aix-Marseille III, France)
� James (University of Rostock, Germany)
� JDEVS (Université de Corse - France)
� PowerDEVS (University of Rosario, Argentina)
� SimBeams (University of Linz – Austria)
� SmallDEVS (University of Brno, Czech Republic)
� VLE (Université du Litoral - France)

� New efforts in China, France, Portugal, Spain, Russia.



KAIST

1976 1984 1986 1992 1995 1997 1998 20001999 2001

DEVS
formalism

Hierarchical
Modular
DEVS

Theory of DEVS M&S 

DEVS-Scheme

OO DEVS M&S Environment

DEVSim++

D-DEVSim++

DEVSimJava

DEVSimHLA

RT-
DEVSim++

DEVSim-
Agent

HDEVSim

DEVSim-
COM
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Theory of DEVS M&S 
OO DEVS M&S Environment
Using Scheme (LISP Dialect)

C++  based 
DEVS M&S Environment

Distributed DEVSim++
Web based 

DEVS M&S Environment
HLA-Compliant DEVSim++

Real-time DEVSim++ 

DEVS M&S  Environ. for Hybrid System
DEVS M&S Environ for Mobile Agent

Component-based DEVS M&S Env

Ph.D. Thesis

M.S. Thesis

Developed at KAIST 

Public S/W

Technology transfer



DEVS Formalism (cont.)

• Discrete-Event formalism: time advances using a continuous time base. 

• Basic models that can be coupled to build complex simulations.

• Abstract simulation mechanism

 Atomic Models: 
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 Atomic Models: 
 

M = < X, S, Y, δδδδint, δδδδext, λλλλ, D >. 

      

Coupled Models: 
 

CM = < X, Y, D, {Mi}, EIC, EOC, IC, select >  

 
 



DEVS atomic models semantics

λ (λ (ss)  )  (2)(2)

y  y  (3)(3)x  x  (5)(5)

ss’ ’ = = δδ ext ext ((s,e,x)s,e,x)

(6)(6)
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D(s)  D(s)  (1)(1)
ss

DEVS =  DEVS =  < X, S, Y, < X, S, Y, δδint int , , δδext ext , D, , D, λ >λ >

ss’ ’ = = δ δ int int ((ss))

(4)(4)



λ (λ (ss)  )  (2)(2)

y  y  (3)(3)x  x  (5)(5)

ss’ ’ = = δδ ext ext ((s,e,x)s,e,x)

(6)(6)

DEVS atomic models semantics
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D(s)  D(s)  (1)(1)
ss

DEVS =  DEVS =  < X, S, Y, < X, S, Y, δδint int , , δδext ext , D, , D, λ >λ >

ss’ ’ = = δ δ int int ((ss))

(4)(4)



Dynamic behavior



Components

couplings

Internal Couplings
External Input Couplings
External Output Couplings

Coupled Models
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repair
shop

out

sent

finished

repaired

faulty

generator
(genr)

transducer
(transd)

out report

stop

start

start



DN  
< X , Y, D, {Mi }, {Ii }, {Z i,j }>

DEVS 
< X, S, Y, δint, δext, δcon, ta, λ >

Closure Under Coupling
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DEVS 
< X, S, Y, δint, δext, δcon, ta, λ >

Every DEVS 
coupled model 

has a DEVS 
Basic equivalent



Quantized DEVS (QDEVS)

� Continuous signal represented by crossing of an equal spaced set 
of boundaries, separated by a quantum size

� Check for boundary crossing for every change in the model

� Outputs generated only when a crossing occurs

4/25/2009 Slide 22

� Substantial reduction of the message updates frequency



Cell-DEVS models

4/25/2009 Slide 23

• Discrete-Events cell spaces

• Cells: atomic models. Automated coupling.

• Asynchronous execution using explicit delay functions

• Abstract simulation mechanism.



Cell-DEVS Atomic Models

4/25/2009 Slide 24

Transport Delay Inertial Delay

• N inputs to a given cell
• Local computing function
• Inertial or Transport delays 
• Outputs only if the cell state changes

TDC= < X,Y, θ, N, d, ττττ, δint, δext, λ, D>



Coupled Cell-DEVS

GCC = < Xlist , Ylist , X, Y, n, {t1,...,tn}, N, C, B, Z >

4/25/2009 Slide 25



The CD++ toolkit

At om ic
C o u p le d

P ro ce s s o r
Mo d e l 1. .*

+ ch i ld

1. .*

P ort

0 . . *0 . . *
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Ato m icC e l l

T ra n s p o rtD e la yC e llIn e rtia lDe la yC e ll

C o u p le d C e l l

F la tC o u p le d C e l l• Basic tool following DEVS formalism.
• Extension to include Cell-DEVS models.
• High level specification language for model definition.



CD++ simulator

Simulator Coordinator

Model Processor
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CellCoordinator

FlatCellCoordinator

Independent simulation mechanisms

(“Abstract” simulator)

. Hierarchical

. Flat

. Distributed/Parallel

. Real-Time



Auto-Factory DEVS model
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DEVS Graphs Modeling 
environment
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Engine Assembly Atomic

Model EngineAssem::EngineAssem(const string &name):Atomic(name), 
in_piston(addInputPort( "in_piston") ), in_engineBody(addInputPort( 
"in_engineBody") ), done(addInputPort("done") ), out( addOutputPort("out")), 
manufacturingTime( 0, 0, 10, 0 ) { } // Model constructor

Model &EngineAssem::externalFunction( const ExternalMessage &msg ) {

if( msg.port() == in_piston ) {    // parts received one by one

elements_piston.push_back( 1 ) ;

if( elements_piston.size() == 1 && elements_engineBody.size()>=1)

holdIn(active, manufacturingTime );
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for(int i=2;i<=msg.value;i++) //pushback if more than 1 received

elements_piston.push_back( 1 ) ;

}

if( msg.port() == in_engineBody ) { ...

}

Model &EngineAssem::internalFunction( const InternalMessage & ) { 
passivate(); 

}

Model &EngineAssem::outputFunction( const InternalMessage &msg ) {

sendOutput( msg.time(), out, elements.front()); 

}



Auto Factory execution

X/00:000/top/in/2 to chassis

X/00:000/top/in/2 to body

X/00:000/top/in/2 to trans

X/00:000/top/in/2 to enginesubfact

D/00:000/chassis/02:000 to top

D/00:000/body/02:000 to top

D/00:000/trans/02:000 to top

X/00:000/enginesubfact/ in/2 to piston

X/00:000/enginesubfact/ in/2 to enginebody  ...

Y/02:000/chassis/out/1 to top
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Y/02:000/chassis/out/1 to top

D/02:000/chassis/... to top

X/02:000/top/done/1 to chassis

X/02:000/top/in_chassis/1 to finalass ...

*/02:000/top to enginesubfact

*/02:000/enginesubfact to enginebody

Y/02:000/enginebody/out/1 to enginesubfact

D/02:000/enginebody/... to enginesubfact

X/02:000/enginesubfact/done/1 to enginebody

X/02:000/in_enginebody/1 to engineassem

D/02:000/enginebody/02:000 to enginesubfact

D/02:000/engineassem/02:000 to enginesubfact ...



Auto Factory 
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DEVS Success Stories

• Prototyping and testing environment for embedded system design (Schulz, 
S.; Rozenblit, J.W.; Buchenrieder, K.; Mrva, M.)

• Urban traffic models (Lee, J.K.; Lee, J-J.; Chi, S.D.; et al.)

• Watershed Modeling (Chiari, F. et al.)

• Decision support tool for an intermodal container terminal (Gambardella, 
L.M.; Rizzoli, A.E.; Zaffalon, M.) 

• Forecast development of Caulerpa taxifolia, an invasive tropical alga (Hill, 
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• Forecast development of Caulerpa taxifolia, an invasive tropical alga (Hill, 
D.; Thibault, T.; Coquillard, P.) 

• Intrusion Detection Systems (Cho, T.H.; Kim, H.J.) 

• Depot Operations Modeling (B. Zeigler et al. U.S. Air Force)



DEVS Success Stories

• Supply chain applications (Kim, D.; Cao H.; Buckley S.J.)

• Solar electric system (Filippi, J-B.; Chiari, F.; Bisgambiglia, P.) 

• M&S activities at JITC, AZ (B. Zeigler, J. Nutaro et al.)

• Representation of hardware models developed with heterogeneous 
languages (Kim, J-K.; Kim, Y.G.; Kim, T.G.)
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• DEVS/HLA Research funded by DARPA received Honorable Mention in 
1999 DMSO Awards



DEVS Bus Concept

DEVSDEVS

Discrete 
Event
Formalisms

Discrete 
Event
Formalisms

Discrete Time
Systems

Discrete Time
Systems

Diff Eq.
Systems
Diff Eq.
Systems

DEVSDEVS DEVSDEVS
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RTIRTI

messagemessage

HLAHLA HLAHLA

messagemessage messagemessage

HLAHLA



Medusa:

Hi Fidelity
Radar / Weapon

JM:
•Detailed Surface Ship Models
•Sub/Surface Enemy Assets

Space Manager
and Logger:

JM:
• Space Based Sensors
• Space Based Communication
• Land/Air Enemy Assets

Pragmatic Event Cue
Emission Propagation

Space Manager
and Logger:

Pragmatic Event Cue

UA/Lockheed distributed experimentation
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Scheduling

LMGES -- NJ LMMS -- CA

DEVS/HLA
• quantization
• predictive filtering
• GIS/aggregation

(with acoutics)
Pragmatic Event Cue
Emission Propagation



Component Model Reuse Matrix

xxxxLaser Model

x

Space 
Based 

Discriminati
on

x

x

Space 
Based 
Laser

x

x

x

Missile 
Defense 

(Theater / 
National)

x

x

Integrated 
System 
Center

x

Common 
Aero 

Vehicle

x

x

x

Joint 
Composite 
Tracking 
Network

xMissile 
Model

xxIR Sensor 
Model

xxxxRadar Model

Space 
Operations 

Vehicle

Coast Guard 
Deep Water

Arsenal 
Ship

Global 
Positioning 
System  III

Critical 
Mobile 
Target

Project

Model
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xxx
Command 

Control 
Model

x

xx

x

x

x

x

x

x

xxxxxx
Waypoint & 

Heading Nav 
Model

xxxx
Orbital 

Propagate 
Model

x

x

x x

xx
Ballistic 

Trajectory 
Model

xWeather 
Model

xxxx
Earth & 
Terrain 
Model

xxComm.
Model



U. of New Mexico Virtual Lab for
Autonomous Agents

Middleware 
DEVS Simulator

IDEVS SimEnv

V-Lab: DEVS M&S environment for robotic agents with physics, 
terrain and  dynamics (Mars Pathfinders for NASA). 
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Computer Network

Middleware 
(HLA,CORBA,JMS)

Reported gains in development times thanks to the use of DEVS



quanti
zation

signal
events

signal
pheno

process
pheno

DEVS framework for control of steel production 
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events pheno
mena

pheno
mena

Large Scale:
• Conceptual model contains 25,000 objects for 33 goals, 27 tasks,etc.
• Approximately 400,000 lines of code.  
• 14 man-years: 6 knowledge engineers and 12 experts

One advantage of DEVS is compactness: high reduction in data volume

Effective analysis and control of the
behavior of blast furnaces at high resolution



α-1 simulated computer
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Physical Systems

Heat Spread Surface Tension
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� Binary solidification



Fire Spread Modeling
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

20

 t  (ti, Ta) 

 active 

 Tf  = 333 K 
 Tig  = 573 K

 T (K) 

  unburned   burned   burning 



Watershed modeling

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
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Metabolic pathways:
Glycolisis

Glucose

G lucose-6-phosphate

F ructose-6-phosphate

Fructose-1,6-bisphosphate

Dihydroxyacetone phosphate G lyceraldehyde-3-phosphate

ADP

ADP

ATP

ATP

Step1

Step2

Step3

Step4
Step5

• Sequence of reactions used by cells 
to metabolize glucose 

• Role: to produce energy

• Glycolysis generates about 15% of 
energy produced by aerobic 

respiration

4/25/2009ISMM - AIS 2007 - Buenos Aires, Argentina Slide 44

Dihydroxyacetone phosphate
(DHP) ( GDP) (PGAL)

1,3-Diphosphoglycerate
(DPG A)

3-Phosphoglycerate
(3-PGA)

2-Phosphoglycerate
(2-PGA)

Phosphoenolpyruvate
(PEP)

Pyruvate

ATP

ADP

ADP

ATP

NADH

NAD+

Step7

Step6

Step8

Step9

Step10

X 2

Step4to5

• A sequence of ten reactions 

• Converts one glucose molecule into 
two pyruvate molecules 

• Produces NADH and ATP. 

• Specific enzymes control each of the 
different reactions.



Step 1 Atomic Model

Step1 = < S, X, Y, δint, δext, ta, λ >
S = {atpc, glucosec, ifhex, counter, phase, sigma}
X = {glucose, ATPi, hexokinase}
Y = {glucose_6_phosphate, ADP, H}
δint, δext, ta and λ using CD++ implementation.

Model &Step1::externalFunction
       ( const ExternalMessage &msg ) {

if( msg.port() == glucose ) {
glucosec = glucosec + msg.value() ;
if ( (atpc > 0 ) && (ifhex == true))
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if ( (atpc > 0 ) && (ifhex == true))
holdIn( active, Prep_Gluc );

}
else if( msg.port() == ATPi ) {

atpc = atpc + msg.value() ;
if ( (glucosec>0) && (ifhex==true) )

holdIn( active, Prep_ATPi );
}
else if ( msg.port() == hexokinase ) {

ifhex = true ;
if ( (glucosec > 0 ) && (atpc > 0) )

holdIn( active, Prep_Hexo );
}

}

STEP1 ADP

ATP

Glucose

Hexokinase

H

Glucose 6-phosphate



Step 1 Test

SpringSim ‘05 4/25/2009http://www.sce.carleton.ca/faculty/wainer

At time 40:00: after four glucose molecules entered the cell; four more outputs of each of
the ADP, glucose_6_phosphate, and H molecules.



Coupled Animation of Glycolysis
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Glycolisis 3D visual results

4/25/2009ISMM - AIS 2007 - Buenos Aires, Argentina Slide 48



Tumor Victory

05/22/08European Conference on Modelling and Simulation Slide 49

After 38 times steps, the 
immune cells have cleared 
away proliferative cells on 
the north side of the tumor.

After 64 times steps, the 
tumor overwhelms the 

immune system.



Pursuer/evader modeling
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Temperature

Vibrio Parahaemolyticus bacteria
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Initial After 1.5 hr After 4 hrs

Bacteria 
concentration



Ants seeking food Ants found pheromone path

Ants following pheromone paths
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Sources of food Ants returning to nest

t=1 t=2 t=3 t=4



Path Planning Evolution

(a) (b)
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(a) (b)

(c) (d)
Different phases of the algorithm: (a) Configuration of obstacles, (b) 
Boundary detection, (c) Information for CA Expansion, (d) Optimal 

collision-free path



Flow Injection Analysis (FIA)
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– P pumps carrier solution A into valve I that connects to reactor R
– By turning valve I, sample B is injected into R
– Reactions in R between A and B are sensed by detector D

FIA manifold. P: pump; A,B: carrier and reagent 
lines; L: sample injection; I: injection valve; R: 
reactor coil; D: flow through detector; W: waste 
line.



Heart tissue behavior

-40

-20

0

20

40

 données expémentales et approximation polynomiale

• Heart muscle excitable;
responds to external 
stimuli by contracting 
muscular cells.

• Equations defined by 
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0 0.5 1 1.5 2 2.5

x 10
4

-100

-80

-60

• Equations defined by 
Hodgkin and Huxley 
• Every cell reproducing 

the original equations
• Discrete time
• Discrete event approximation
• G-DEVS, Q-DEVS



Test cases: a heart tissue model

• Automated discretization of the continuous signal
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A Watershed model 
 

Surface vegetation   

Rain 
Water 

  
  l(t)   

Effective water 
  

      le(t)   

Acumulated water 
  

Ac(t) 
  

Excedent water 
flowing  

  
to neighbor 
lands 

  
lvs(t) 

  
  

Water received 
by  

  
from the 
neighbors 

  
lve( t) 
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Land absortion 
water 

  
f(t) 

  
WSHED - Topology - Time 0 95-100

90-95

85-90

80-85

75-80

70-75

65-70

60-65

55-60

50-55

45-50

40-45

35-40

30-35

25-30

WSHED - Quantum Hys 1.0 - After 10' 95-100

90-95

85-90

80-85

75-80

70-75

65-70

60-65

55-60

50-55

45-50

40-45

35-40

30-35

25-30



Flow Injection Analysis Model 

No Quantum, 120ms 
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Q-DEVS 0.1, 120ms 

 
Quantum Standard 0.7 Dynamic 1 - 0.05, 120ms 

 
 



ATLAS SW Architecture
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Modelling a city section
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• 24-line specification
• 1000 lines of CD++ specifications automatically 
generated   



Describing a city section
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Defining a city section in MAPS
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Exporting to TSC
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Visualizing outputs
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Modeling AODV routing

� Variant of the classical Lee’s Algorithm. 

� S: node; D: a destination; black cells: dead. 

� S broadcasts RREQ message to all its neighbors 
(wave nodes). 

� Wave nodes re-broadcast, and set up a reverse 
path to the sender. 
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path to the sender. 

� The process continues

until the message reaches

the destination node D. 

� Shortest path is selected



Simulation results
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Execution results
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Internetworking Routing

• 3D Cell-DEVS model
• Plane 1: wireless network, Plane 2: wired.
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Host

ANSS’05 4/25/2009http://www.sce.carleton.ca/faculty/wainer Slide 69/38



Network Prototyping

� Real time simulation 

on embedded linux 

microcontrollers

� Rapid design and 

ANSS’05 4/25/2009http://www.sce.carleton.ca/faculty/wainer Slide 70/38

� Rapid design and 

testing potential 

network devices



Modelica/CD++
model circuit
Modelica.Electrical.Analog.Sources.PulseVoltage 

V(V=10, width=50, period=2.5);
Modelica.Electrical.Analog.Basic.Resistor R1(R=0.001);
Modelica.Electrical.Analog.Basic.Inductor I1(L=500);
Modelica.Electrical.Analog.Basic.Inductor I2(L=2000);
Modelica.Electrical.Analog.Basic.Capacitor C(C=10);
Modelica.Electrical.Analog.Basic.Resistor R2(R=1000);
Modelica.Electrical.Analog.Basic.Ground Gnd;
equation
connect(V.p, R1.p);
connect(R1.n, I1.p);
connect(R1.n, I2.p);
connect(I2.n, C.p);
connect(I2.n, R2.p);
connect(C.n, I1.n); connect(C.n, I1.n); 
connect(R2.n, C.n);
connect(I1.n, V.n);
connect(V.n, Gnd.p);
end circuit;



M/CD++ Execution Example

C ap ac ito r .v  cu rv e s  co m p ar iso n
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M/CD++ Execution Example

Inductor1.i curves comparison
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Sample Model Execution

• Multiple model controller allowed to   
operate as designed, and switch 

among plant identifying models 

• Controller was able to find it and 
use its parameters 
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• Error existed only at the period 
coinciding w/each jump in 

plant 
parameters  

• Only at time 355 did a false model 
switch occur (due to two 

models having almost 
zero error 

)



Incremental Prototyping

• We show how to develop incrementally a model 
based on simple components. 

• The application executes in a simulated environment 
(i.e., all of the components remain executing in a 
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(i.e., all of the components remain executing in a 
virtual world). 

• Simple model of an elevator with both hardware and 
simulated components. 



 

Button Controller  

 
Elevator 

Controller 
Unit 

Elevator Box  

Engine  

btn_1 
btn_2 
btn_3 
btn_4 
 

 

 
 
 

Elevator  
Control Unit 

button_1  

button_2 

button_3  

button_4  

sensor_1  

sensor_2 

sensor_3  

sensor_4  

floor_ display  

direction_ display  

led_1  

le d_2  

led_3 

led_4  

direction  

activate  

An elevator control system

INPUTS

Time       Deadline   In-port  Out-Port     Value

00:11:500  00:11:700  btn_3    led3          1
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Display Controller  

Sensor 
Controller 

led1 
led2 
... 
dir_display 
flr_display 

00:11:500  00:11:700  btn_3    led3          1

00:14:600  00:14:800  sensor_2 flr_display   1

00:19:500  00:19:700  sensor_3 flr_display   1

00:25:100  00:25:300  btn_4    led4          1

00:30:000  00:30:200  sensor_4 flr_display   1

00:36:300  00:36:500  btn_3    led3          1
00:41:400  00:41:600  sensor_3 flr_display   1

OUTPUTS
Time        Deadline    Out-port       Value
00:11:510   00:11:700   led3           1
00:11:510               dir_display    1
00:14:610   00:14:800   flr_display    2
00:19:510   00:19:700   led3           0
00:19:510               flr_display    3
00:19:510               dir_display    0
00:25:110   00:25:300   led4           1
00:25:110               dir_display    1
(…)



   Button Controller  
  

  Elevator  
  Controller  

  Unit  
  

RT-CD++ 

Microcontroller   

Elevator Box  
  

Engine  
  

button_1  
  button_2  
  butt on_3  
  button_4  
  

components:  elevBox   ec@ECU   dis@Display

in   : button_1  button_2  button_3  button_4
out  : flr_display
link : button_1 button_1@ec
link : button_2 button_2@ec
(…)
link : sensor_1@elevBox sensor_1@ec
link : sensor_2@elevBox sensor_2@ec
(…)
link : floor_disp@ec  flr_display@dis
link : floor_disp@ec  floor_disp

Replacing components
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Display Controller  
  

Sensor  
Controller  

  

f  lr_  display  
  

link : floor_disp@ec  floor_disp
link : dir_disp@ec    dir_display@dis
link : led_1@ec       led_1@dis
(...)
[elevBox]
components:  sb@SensorController   eng@Engine
in   : activate  direction
out  : sensor_1 sensor_2 sensor_3 sensor_4
link : activate    activate@eng
link : direction   direction@eng
link : sensor_1@sb sensor_1
(...)
link : current_floor@eng sensor_triggered@sb
(...)

Time          Out-por Value
00:08:170  flr_display   2
00:19:540  flr_display   1
00:30:130  flr_display   2
00:35:140  flr_display   3
00:40:150  flr_display   4
00:58:290  flr_display   3

(…)



   

Button Controller  
  

  Elevator  
  Controller  

  Unit  
  

Display Controller  
  

- RT-CD++ 
  

M icrocontroller 
  

Elevator Box  
  

Engine  
  

b utton_  1 
  b utton_  2 
  b utton_  3 
  b utton_  4 
  

display  
  

   
Button Controller  

  

  Elevator  
  Controller  

  Unit  
  

Display Controller  
  

- RT-CD++  

M icrocontroller 
  

Sensor Controller  
  

a ctivate  
  direction  

  

Replacing components
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Sensor  
Controller  

  

- RT-CD++ 
  

Engine  
  

 
  

result  
  

components:  eng@Engine
in   : activate_in direction_in
out  : result
link : activate_in    activate@eng
link : direction_in   direction@eng

Time        Port      Value
00:06:120 direction 1
00:06:130 activate 1
00:15:930 activate 0
00:56:800 direction 2
00:56:810 activate 1
01:01:130 activate 0
01:22:710 direction 2

Time        Out-port      Value
00:06:130  result         1
00:15:930  result         0
00:56:810  result         2
01:01:130  result         0
(…)



Building a Robot Controller
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Integration Tests

4/25/2009 Slide 80



Integration Tests
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Parallel CD++

� Execute DEVS models in parallel
� Layered architecture based on different 

middleware
� Expansion to RTI: few lines of code
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Hardware: Cluster of Processors/Myrinet

Middleware: Warped/MPI

Parallel Simulation Engine

CD++ Models
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CANet4
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Partitioned Fire Model test

Ottawa Montrea
l
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• Fire model (1-
machine)

Total Execution Time (Fire Model- 1&2 Machines)
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Fire Spreading Simulation Mashup

• Finalist at IEEE Services 
Computing Contest

• Service integrates 
prediction of forest fires, prediction of forest fires, 

weather data and 
Google Maps





Mashup (Google Maps)



CD++ Visualization Engines



3D Visualization GUI 3D Visualization GUI 3D Visualization GUI 3D Visualization GUI 
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1. Change geometry, color and size of the nodes
2. Navigation
3. Edit individual node



DEVSView
• Visual models extracted from CD++ simulation log file; 

visual state machines defined using the DEVSView user 
interface.
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CD++/Maya
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Simulated results

• Creation of a 3D version of 
the simulation

• Interpreted by the MEL 
scripts
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Evacuation Results
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Evacuation Model

4/25/2009 Slide 97



3D Visualization Scenario
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Advanced Visualization 
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Boulevard St. Laurent (MTL)

http://www.cims.carleton.ca/pose
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Evacuation in St. Laurent Blvd.
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SAT Evacuation Animation
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VIDEOS: youtube.com/arslab

Slide 104



Slide 105



Concluding remarks

• DEVS formalism: enhanced execution speed, improved model 
definition, model reuse.

• Hierarchical specifications: multiple levels of abstraction.
• Separation of models/simulators/EF: eases verification. 
• Experimental frameworks: building validation tools
• Modeling using CD++: fast learning curve
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• Modeling using CD++: fast learning curve
• Parallel execution of models: enhanced speed
• The variety of models introduced show the possibilities in defining 

complex systems using Cell-DEVS.
• User-oriented approach. Development time improvement: test and 

maintenance. 
• Incremental development



Further Information

http://cell-devs.sce.carleton.ca
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