
An Introduction to Modeling and An Introduction to Modeling and
Simulation with DEVSSimulation with DEVSSimulation with DEVSSimulation with DEVS

Gabriel A. WainerGabriel A. Wainer
Department of Systems and Computer Department of Systems and Computer

EngineeringEngineering
Carleton University.Carleton University.
Ottawa, ON. Canada.Ottawa, ON. Canada.

http://www.sce.carleton.ca/faculty/wainerhttp://www.sce.carleton.ca/faculty/wainer

Outline

• Problem characterization
• DEVS formalism
• The CD++ tool
• Modeling complex systems using DEVS
• Examples of application

Slide 2

• FOCUS => Newcomers

Some of the slides here presented are part of
Prof. B. Zeigler’s collection (with permission!)

http://www.acims.arizona.edu

Motivation

� Analysis of complex natural/artificial real systems.

� Continuous systems analysis
� Different mathematical formalisms
� Simulation: solutions to particular problems under

certain experimental conditions of interest

Slide 3

� Classical methods for continuous systems simulation
� Based on numerical approximation
� Require time discretization
� Inefficient in terms of execution times
� Complex composition; difficulties in integration,

multiresolution models

Evolution in simulation technology

• Reduced cost of modern computers
• Enhanced tools
• Statistical packages; application libraries
• Ease to use, flexibility
• Ease of analysis tasks

Slide 4

• Ease of analysis tasks
• Parallel/Distributed systems
• Enhanced visualization tools
• Standards (graphics, runtime support, distributed

software)

Discrete-Event M&S

• Based on programming languages (difficult to test,
maintain, verify).

• Beginning ’70s: research on M&S methodologies
• Improvement of development task

Slide 5

• Focus in reuse, ease of modeling, development
cost reductions

Separation of concerns in DEVS

Real World Simulator

modeling simulation

Device for
executing model

Experimental Frame

Data: Input/output
relation pairs

Slide 6

modeling
relation

simulation
relation

Each entity formalized
as a Mathematical Dynamic

System
(mathematical manipulations

to prove system properties)

Structure generating behavior
claimed to represent real world

Model

Conditions under which the system
is experimented with/observed

Current needs

� Interoperability:
� computer-based and non-computer-based systems

� support a wide range of models and simulations
� hybrid interoperability

� Reuse:

Slide 7

� Reuse:
� model and simulation reuse (computer-based and otherwise)

� centralized and distributed data and model repositories

� Performance:
� Computational (local to each simulation)
� Communication (among multiple simulations)

Current practices

• Ad-hoc techniques, ignorance of previous recommendations
for software engineering.

• Tendency to encapsulate models/simulators/experimental
frames into tightly coupled packages, (written in

programming languages such as Fortran, C/C++, Java).

Slide 8

• Difficulties: testing, maintainability of the applications,
integration, software reuse.

• Relatively few examples of storing previously developed
simulation infrastructure commodities such that they can be

adapted to developing interoperability test
requirements

DEVS M&S methodology

• DEVS can be used to solve the previously mentioned
issues:

– Interoperability and reuse
– Hybrid systems definition

Slide 9

– Engineering-based approach
– Facilities for automated tasks
– Reduced life cycles
– High performance/distributed simulation

• DEVS = Discrete Event System Specification

• Formal M&S framework

• Separates Modeling from Simulation

• Supports full range of dynamic system representation capability

The DEVS M&S Framework

Slide 10

• Supports full range of dynamic system representation capability

• Supports hierarchical, modular model development

• Provides Well Defined Coupling of Components

• Supports

– Hierarchical Construction
– Stand Alone Testing
– Repository Reuse

(Zeigler, 1976/84/90/00)

Models

A Layered view on M&S

Applications

Slide 11

Middleware/OS (Corba/HLA/P2P;
Windows/Linux/RTOS…)

Simulators (single/multi CPU/RT)

Hardware (PCs/Clusters of PC/HW boards…)

Models

Applications

A Layered view on M&S

Slide 12

Middleware/OS (Corba/HLA/P2P;
Windows/Linux/RTOS…)

Simulators (single/multi CPU/RT)

Hardware (PCs/Clusters of PC/HW boards…)

Advantages of DEVS

• Models/Simulators/EF: distinct entities with their own
software representations.

• Simulators can perform single host, distributed and real-time
execution as needed (DEVS simulators over various

middleware such as MPI, HLA, CORBA, etc.).

• Experimental frames appropriate to a model distinctly

Slide 13

• Experimental frames appropriate to a model distinctly
identified; easier for potential users of a model to uncover

objectives and assumptions that went into its creation.

• Models/ frames developed systematically for interoperability

• Repositories of models and frames created and maintained
(components for constructing new models). Models/frames

stored in repositories with information to enable reuse.

DEVS Toolkits

� ADEVS (University of Arizona)
� CD++ (Carleton University)
� DEVS/HLA (ACIMS)
� DEVSJAVA (ACIMS)
� GALATEA (USB – Venezuela)
� GDEVS (Aix-Marseille III, France)

Slide 14

� GDEVS (Aix-Marseille III, France)
� James (University of Rostock, Germany)
� JDEVS (Université de Corse - France)
� PowerDEVS (University of Rosario, Argentina)
� SimBeams (University of Linz – Austria)
� SmallDEVS (University of Brno, Czech Republic)
� VLE (Université du Litoral - France)

� New efforts in China, France, Portugal, Spain, Russia.

KAIST

1976 1984 1986 1992 1995 1997 1998 20001999 2001

DEVS
formalism

Hierarchical
Modular
DEVS

Theory of DEVS M&S

DEVS-Scheme

OO DEVS M&S Environment

DEVSim++

D-DEVSim++

DEVSimJava

DEVSimHLA

RT-
DEVSim++

DEVSim-
Agent

HDEVSim

DEVSim-
COM

Slide 15

Theory of DEVS M&S
OO DEVS M&S Environment
Using Scheme (LISP Dialect)

C++ based
DEVS M&S Environment

Distributed DEVSim++
Web based

DEVS M&S Environment
HLA-Compliant DEVSim++

Real-time DEVSim++

DEVS M&S Environ. for Hybrid System
DEVS M&S Environ for Mobile Agent

Component-based DEVS M&S Env

Ph.D. Thesis

M.S. Thesis

Developed at KAIST

Public S/W

Technology transfer

DEVS Formalism (cont.)

• Discrete-Event formalism: time advances using a continuous time base.

• Basic models that can be coupled to build complex simulations.

• Abstract simulation mechanism

 Atomic Models:

Slide 16

 Atomic Models:

M = < X, S, Y, δδδδint, δδδδext, λλλλ, D >.

Coupled Models:

CM = < X, Y, D, {Mi}, EIC, EOC, IC, select >

DEVS atomic models semantics

λ (λ (ss)) (2)(2)

y y (3)(3)x x (5)(5)

ss’ ’ = = δδ ext ext ((s,e,x)s,e,x)

(6)(6)

Slide 17

D(s) D(s) (1)(1)
ss

DEVS = DEVS = < X, S, Y, < X, S, Y, δδint int , , δδext ext , D, , D, λ >λ >

ss’ ’ = = δ δ int int ((ss))

(4)(4)

λ (λ (ss)) (2)(2)

y y (3)(3)x x (5)(5)

ss’ ’ = = δδ ext ext ((s,e,x)s,e,x)

(6)(6)

DEVS atomic models semantics

Slide 18

D(s) D(s) (1)(1)
ss

DEVS = DEVS = < X, S, Y, < X, S, Y, δδint int , , δδext ext , D, , D, λ >λ >

ss’ ’ = = δ δ int int ((ss))

(4)(4)

Dynamic behavior

Components

couplings

Internal Couplings
External Input Couplings
External Output Couplings

Coupled Models

Slide 20

repair
shop

out

sent

finished

repaired

faulty

generator
(genr)

transducer
(transd)

out report

stop

start

start

DN
< X , Y, D, {Mi }, {Ii }, {Z i,j }>

DEVS
< X, S, Y, δint, δext, δcon, ta, λ >

Closure Under Coupling

Slide 21

DEVS
< X, S, Y, δint, δext, δcon, ta, λ >

Every DEVS
coupled model

has a DEVS
Basic equivalent

Quantized DEVS (QDEVS)

� Continuous signal represented by crossing of an equal spaced set
of boundaries, separated by a quantum size

� Check for boundary crossing for every change in the model

� Outputs generated only when a crossing occurs

4/25/2009 Slide 22

� Substantial reduction of the message updates frequency

Cell-DEVS models

4/25/2009 Slide 23

• Discrete-Events cell spaces

• Cells: atomic models. Automated coupling.

• Asynchronous execution using explicit delay functions

• Abstract simulation mechanism.

Cell-DEVS Atomic Models

4/25/2009 Slide 24

Transport Delay Inertial Delay

• N inputs to a given cell
• Local computing function
• Inertial or Transport delays
• Outputs only if the cell state changes

TDC= < X,Y, θ, N, d, ττττ, δint, δext, λ, D>

Coupled Cell-DEVS

GCC = < Xlist , Ylist , X, Y, n, {t1,...,tn}, N, C, B, Z >

4/25/2009 Slide 25

The CD++ toolkit

At om ic
C o u p le d

P ro ce s s o r
Mo d e l 1. .*

+ ch i ld

1. .*

P ort

0 . . *0 . . *

Slide 26

Ato m icC e l l

T ra n s p o rtD e la yC e llIn e rtia lDe la yC e ll

C o u p le d C e l l

F la tC o u p le d C e l l• Basic tool following DEVS formalism.
• Extension to include Cell-DEVS models.
• High level specification language for model definition.

CD++ simulator

Simulator Coordinator

Model Processor

Slide 27

CellCoordinator

FlatCellCoordinator

Independent simulation mechanisms

(“Abstract” simulator)

. Hierarchical

. Flat

. Distributed/Parallel

. Real-Time

Auto-Factory DEVS model

Slide 28

DEVS Graphs Modeling
environment

Slide 29

Engine Assembly Atomic

Model EngineAssem::EngineAssem(const string &name):Atomic(name),
in_piston(addInputPort("in_piston")), in_engineBody(addInputPort(
"in_engineBody")), done(addInputPort("done")), out(addOutputPort("out")),
manufacturingTime(0, 0, 10, 0) { } // Model constructor

Model &EngineAssem::externalFunction(const ExternalMessage &msg) {

if(msg.port() == in_piston) { // parts received one by one

elements_piston.push_back(1) ;

if(elements_piston.size() == 1 && elements_engineBody.size()>=1)

holdIn(active, manufacturingTime);

Slide 30

for(int i=2;i<=msg.value;i++) //pushback if more than 1 received

elements_piston.push_back(1) ;

}

if(msg.port() == in_engineBody) { ...

}

Model &EngineAssem::internalFunction(const InternalMessage &) {
passivate();

}

Model &EngineAssem::outputFunction(const InternalMessage &msg) {

sendOutput(msg.time(), out, elements.front());

}

Auto Factory execution

X/00:000/top/in/2 to chassis

X/00:000/top/in/2 to body

X/00:000/top/in/2 to trans

X/00:000/top/in/2 to enginesubfact

D/00:000/chassis/02:000 to top

D/00:000/body/02:000 to top

D/00:000/trans/02:000 to top

X/00:000/enginesubfact/ in/2 to piston

X/00:000/enginesubfact/ in/2 to enginebody ...

Y/02:000/chassis/out/1 to top

Slide 31

Y/02:000/chassis/out/1 to top

D/02:000/chassis/... to top

X/02:000/top/done/1 to chassis

X/02:000/top/in_chassis/1 to finalass ...

*/02:000/top to enginesubfact

*/02:000/enginesubfact to enginebody

Y/02:000/enginebody/out/1 to enginesubfact

D/02:000/enginebody/... to enginesubfact

X/02:000/enginesubfact/done/1 to enginebody

X/02:000/in_enginebody/1 to engineassem

D/02:000/enginebody/02:000 to enginesubfact

D/02:000/engineassem/02:000 to enginesubfact ...

Auto Factory

Slide 32

DEVS Success Stories

• Prototyping and testing environment for embedded system design (Schulz,
S.; Rozenblit, J.W.; Buchenrieder, K.; Mrva, M.)

• Urban traffic models (Lee, J.K.; Lee, J-J.; Chi, S.D.; et al.)

• Watershed Modeling (Chiari, F. et al.)

• Decision support tool for an intermodal container terminal (Gambardella,
L.M.; Rizzoli, A.E.; Zaffalon, M.)

• Forecast development of Caulerpa taxifolia, an invasive tropical alga (Hill,

Slide 33

• Forecast development of Caulerpa taxifolia, an invasive tropical alga (Hill,
D.; Thibault, T.; Coquillard, P.)

• Intrusion Detection Systems (Cho, T.H.; Kim, H.J.)

• Depot Operations Modeling (B. Zeigler et al. U.S. Air Force)

DEVS Success Stories

• Supply chain applications (Kim, D.; Cao H.; Buckley S.J.)

• Solar electric system (Filippi, J-B.; Chiari, F.; Bisgambiglia, P.)

• M&S activities at JITC, AZ (B. Zeigler, J. Nutaro et al.)

• Representation of hardware models developed with heterogeneous
languages (Kim, J-K.; Kim, Y.G.; Kim, T.G.)

Slide 34

• DEVS/HLA Research funded by DARPA received Honorable Mention in
1999 DMSO Awards

DEVS Bus Concept

DEVSDEVS

Discrete
Event
Formalisms

Discrete
Event
Formalisms

Discrete Time
Systems

Discrete Time
Systems

Diff Eq.
Systems
Diff Eq.
Systems

DEVSDEVS DEVSDEVS

Slide 35

RTIRTI

messagemessage

HLAHLA HLAHLA

messagemessage messagemessage

HLAHLA

Medusa:

Hi Fidelity
Radar / Weapon

JM:
•Detailed Surface Ship Models
•Sub/Surface Enemy Assets

Space Manager
and Logger:

JM:
• Space Based Sensors
• Space Based Communication
• Land/Air Enemy Assets

Pragmatic Event Cue
Emission Propagation

Space Manager
and Logger:

Pragmatic Event Cue

UA/Lockheed distributed experimentation

Slide 36

Scheduling

LMGES -- NJ LMMS -- CA

DEVS/HLA
• quantization
• predictive filtering
• GIS/aggregation

(with acoutics)
Pragmatic Event Cue
Emission Propagation

Component Model Reuse Matrix

xxxxLaser Model

x

Space
Based

Discriminati
on

x

x

Space
Based
Laser

x

x

x

Missile
Defense

(Theater /
National)

x

x

Integrated
System
Center

x

Common
Aero

Vehicle

x

x

x

Joint
Composite
Tracking
Network

xMissile
Model

xxIR Sensor
Model

xxxxRadar Model

Space
Operations

Vehicle

Coast Guard
Deep Water

Arsenal
Ship

Global
Positioning
System III

Critical
Mobile
Target

Project

Model

Slide 37

xxx
Command

Control
Model

x

xx

x

x

x

x

x

x

xxxxxx
Waypoint &

Heading Nav
Model

xxxx
Orbital

Propagate
Model

x

x

x x

xx
Ballistic

Trajectory
Model

xWeather
Model

xxxx
Earth &
Terrain
Model

xxComm.
Model

U. of New Mexico Virtual Lab for
Autonomous Agents

Middleware
DEVS Simulator

IDEVS SimEnv

V-Lab: DEVS M&S environment for robotic agents with physics,
terrain and dynamics (Mars Pathfinders for NASA).

Slide 38

Computer Network

Middleware
(HLA,CORBA,JMS)

Reported gains in development times thanks to the use of DEVS

quanti
zation

signal
events

signal
pheno

process
pheno

DEVS framework for control of steel production

Slide 39

events pheno
mena

pheno
mena

Large Scale:
• Conceptual model contains 25,000 objects for 33 goals, 27 tasks,etc.
• Approximately 400,000 lines of code.
• 14 man-years: 6 knowledge engineers and 12 experts

One advantage of DEVS is compactness: high reduction in data volume

Effective analysis and control of the
behavior of blast furnaces at high resolution

α-1 simulated computer

Slide 40

Physical Systems

Heat Spread Surface Tension

Slide 41

� Binary solidification

Fire Spread Modeling
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Slide 42

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

20

 t (ti, Ta)

 active

 Tf = 333 K
 Tig = 573 K

 T (K)

 unburned burned burning

Watershed modeling

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110

Slide 43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0
5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0
5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110

Metabolic pathways:
Glycolisis

Glucose

G lucose-6-phosphate

F ructose-6-phosphate

Fructose-1,6-bisphosphate

Dihydroxyacetone phosphate G lyceraldehyde-3-phosphate

ADP

ADP

ATP

ATP

Step1

Step2

Step3

Step4
Step5

• Sequence of reactions used by cells
to metabolize glucose

• Role: to produce energy

• Glycolysis generates about 15% of
energy produced by aerobic

respiration

4/25/2009ISMM - AIS 2007 - Buenos Aires, Argentina Slide 44

Dihydroxyacetone phosphate
(DHP) (GDP) (PGAL)

1,3-Diphosphoglycerate
(DPG A)

3-Phosphoglycerate
(3-PGA)

2-Phosphoglycerate
(2-PGA)

Phosphoenolpyruvate
(PEP)

Pyruvate

ATP

ADP

ADP

ATP

NADH

NAD+

Step7

Step6

Step8

Step9

Step10

X 2

Step4to5

• A sequence of ten reactions

• Converts one glucose molecule into
two pyruvate molecules

• Produces NADH and ATP.

• Specific enzymes control each of the
different reactions.

Step 1 Atomic Model

Step1 = < S, X, Y, δint, δext, ta, λ >
S = {atpc, glucosec, ifhex, counter, phase, sigma}
X = {glucose, ATPi, hexokinase}
Y = {glucose_6_phosphate, ADP, H}
δint, δext, ta and λ using CD++ implementation.

Model &Step1::externalFunction
 (const ExternalMessage &msg) {

if(msg.port() == glucose) {
glucosec = glucosec + msg.value() ;
if ((atpc > 0) && (ifhex == true))

4/25/2009ISMM - AIS 2007 - Buenos Aires, Argentina Slide 45

if ((atpc > 0) && (ifhex == true))
holdIn(active, Prep_Gluc);

}
else if(msg.port() == ATPi) {

atpc = atpc + msg.value() ;
if ((glucosec>0) && (ifhex==true))

holdIn(active, Prep_ATPi);
}
else if (msg.port() == hexokinase) {

ifhex = true ;
if ((glucosec > 0) && (atpc > 0))

holdIn(active, Prep_Hexo);
}

}

STEP1 ADP

ATP

Glucose

Hexokinase

H

Glucose 6-phosphate

Step 1 Test

SpringSim ‘05 4/25/2009http://www.sce.carleton.ca/faculty/wainer

At time 40:00: after four glucose molecules entered the cell; four more outputs of each of
the ADP, glucose_6_phosphate, and H molecules.

Coupled Animation of Glycolysis

4/25/2009ISMM - AIS 2007 - Buenos Aires, Argentina Slide 47

Glycolisis 3D visual results

4/25/2009ISMM - AIS 2007 - Buenos Aires, Argentina Slide 48

Tumor Victory

05/22/08European Conference on Modelling and Simulation Slide 49

After 38 times steps, the
immune cells have cleared
away proliferative cells on
the north side of the tumor.

After 64 times steps, the
tumor overwhelms the

immune system.

Pursuer/evader modeling

Slide 50

Temperature

Vibrio Parahaemolyticus bacteria

Slide 51

Initial After 1.5 hr After 4 hrs

Bacteria
concentration

Ants seeking food Ants found pheromone path

Ants following pheromone paths

Slide 52

Sources of food Ants returning to nest

t=1 t=2 t=3 t=4

Path Planning Evolution

(a) (b)

Slide 53

(a) (b)

(c) (d)
Different phases of the algorithm: (a) Configuration of obstacles, (b)
Boundary detection, (c) Information for CA Expansion, (d) Optimal

collision-free path

Flow Injection Analysis (FIA)

Slide 54

– P pumps carrier solution A into valve I that connects to reactor R
– By turning valve I, sample B is injected into R
– Reactions in R between A and B are sensed by detector D

FIA manifold. P: pump; A,B: carrier and reagent
lines; L: sample injection; I: injection valve; R:
reactor coil; D: flow through detector; W: waste
line.

Heart tissue behavior

-40

-20

0

20

40

 données expémentales et approximation polynomiale

• Heart muscle excitable;
responds to external
stimuli by contracting
muscular cells.

• Equations defined by

Slide 55

0 0.5 1 1.5 2 2.5

x 10
4

-100

-80

-60

• Equations defined by
Hodgkin and Huxley
• Every cell reproducing

the original equations
• Discrete time
• Discrete event approximation
• G-DEVS, Q-DEVS

Test cases: a heart tissue model

• Automated discretization of the continuous signal

Slide 56

A Watershed model

Surface vegetation

Rain
Water

 l(t)

Effective water

 le(t)

Acumulated water

Ac(t)

Excedent water
flowing

to neighbor
lands

lvs(t)

Water received
by

from the
neighbors

lve(t)

Slide 57

Land absortion
water

f(t)

WSHED - Topology - Time 0 95-100

90-95

85-90

80-85

75-80

70-75

65-70

60-65

55-60

50-55

45-50

40-45

35-40

30-35

25-30

WSHED - Quantum Hys 1.0 - After 10' 95-100

90-95

85-90

80-85

75-80

70-75

65-70

60-65

55-60

50-55

45-50

40-45

35-40

30-35

25-30

Flow Injection Analysis Model

No Quantum, 120ms

Slide 58

Q-DEVS 0.1, 120ms

Quantum Standard 0.7 Dynamic 1 - 0.05, 120ms

ATLAS SW Architecture

Slide 59

Modelling a city section

Slide 60

• 24-line specification
• 1000 lines of CD++ specifications automatically
generated

Describing a city section

Slide 61

Defining a city section in MAPS

Slide 62

Exporting to TSC

Slide 63

Visualizing outputs

Slide 64

Modeling AODV routing

� Variant of the classical Lee’s Algorithm.

� S: node; D: a destination; black cells: dead.

� S broadcasts RREQ message to all its neighbors
(wave nodes).

� Wave nodes re-broadcast, and set up a reverse
path to the sender.

Slide 65

path to the sender.

� The process continues

until the message reaches

the destination node D.

� Shortest path is selected

Simulation results

Slide 66

Execution results

Slide 67

Internetworking Routing

• 3D Cell-DEVS model
• Plane 1: wireless network, Plane 2: wired.

Slide 68

Host

ANSS’05 4/25/2009http://www.sce.carleton.ca/faculty/wainer Slide 69/38

Network Prototyping

� Real time simulation

on embedded linux

microcontrollers

� Rapid design and

ANSS’05 4/25/2009http://www.sce.carleton.ca/faculty/wainer Slide 70/38

� Rapid design and

testing potential

network devices

Modelica/CD++
model circuit
Modelica.Electrical.Analog.Sources.PulseVoltage

V(V=10, width=50, period=2.5);
Modelica.Electrical.Analog.Basic.Resistor R1(R=0.001);
Modelica.Electrical.Analog.Basic.Inductor I1(L=500);
Modelica.Electrical.Analog.Basic.Inductor I2(L=2000);
Modelica.Electrical.Analog.Basic.Capacitor C(C=10);
Modelica.Electrical.Analog.Basic.Resistor R2(R=1000);
Modelica.Electrical.Analog.Basic.Ground Gnd;
equation
connect(V.p, R1.p);
connect(R1.n, I1.p);
connect(R1.n, I2.p);
connect(I2.n, C.p);
connect(I2.n, R2.p);
connect(C.n, I1.n); connect(C.n, I1.n);
connect(R2.n, C.n);
connect(I1.n, V.n);
connect(V.n, Gnd.p);
end circuit;

M/CD++ Execution Example

C ap ac ito r .v cu rv e s co m p ar iso n

1 .00E -02

1 .20E -02

1 .40E -02

1 .60E -02

C
ap

ac
ito

r.
v

0 .00E + 0 0

2 .00E -03

4 .00E -03

6 .00E -03

8 .00E -03

0 .00 2 .00 4 .00 6 .00 8 .00 10 .00 1 2 .00

T im e (se c)

C
ap

ac
ito

r.
v

M C D + + in te rp o la te d b y D y m o la M C D + +

M/CD++ Execution Example

Inductor1.i curves comparison

8.00E-02

1.00E-01

1.20E-01

In
du

ct
or

1.
i

0.00E+00

2.00E-02

4.00E-02

6.00E-02

0.00 2.00 4.00 6.00 8.00 10.00

Time (sec)

In
du

ct
or

1.
i

MCD++ interpolated by Dymola MCD++

Sample Model Execution

• Multiple model controller allowed to
operate as designed, and switch

among plant identifying models

• Controller was able to find it and
use its parameters

4/25/2009 Slide 74

• Error existed only at the period
coinciding w/each jump in

plant
parameters

• Only at time 355 did a false model
switch occur (due to two

models having almost
zero error

)

Incremental Prototyping

• We show how to develop incrementally a model
based on simple components.

• The application executes in a simulated environment
(i.e., all of the components remain executing in a

4/25/2009 Slide 75

(i.e., all of the components remain executing in a
virtual world).

• Simple model of an elevator with both hardware and
simulated components.

Button Controller

Elevator

Controller
Unit

Elevator Box

Engine

btn_1
btn_2
btn_3
btn_4

Elevator
Control Unit

button_1

button_2

button_3

button_4

sensor_1

sensor_2

sensor_3

sensor_4

floor_ display

direction_ display

led_1

le d_2

led_3

led_4

direction

activate

An elevator control system

INPUTS

Time Deadline In-port Out-Port Value

00:11:500 00:11:700 btn_3 led3 1

4/25/2009 Slide 76

Display Controller

Sensor
Controller

led1
led2
...
dir_display
flr_display

00:11:500 00:11:700 btn_3 led3 1

00:14:600 00:14:800 sensor_2 flr_display 1

00:19:500 00:19:700 sensor_3 flr_display 1

00:25:100 00:25:300 btn_4 led4 1

00:30:000 00:30:200 sensor_4 flr_display 1

00:36:300 00:36:500 btn_3 led3 1
00:41:400 00:41:600 sensor_3 flr_display 1

OUTPUTS
Time Deadline Out-port Value
00:11:510 00:11:700 led3 1
00:11:510 dir_display 1
00:14:610 00:14:800 flr_display 2
00:19:510 00:19:700 led3 0
00:19:510 flr_display 3
00:19:510 dir_display 0
00:25:110 00:25:300 led4 1
00:25:110 dir_display 1
(…)

 Button Controller

 Elevator
 Controller

 Unit

RT-CD++

Microcontroller

Elevator Box

Engine

button_1
 button_2
 butt on_3
 button_4

components: elevBox ec@ECU dis@Display

in : button_1 button_2 button_3 button_4
out : flr_display
link : button_1 button_1@ec
link : button_2 button_2@ec
(…)
link : sensor_1@elevBox sensor_1@ec
link : sensor_2@elevBox sensor_2@ec
(…)
link : floor_disp@ec flr_display@dis
link : floor_disp@ec floor_disp

Replacing components

4/25/2009 Slide 77

Display Controller

Sensor
Controller

f lr_ display

link : floor_disp@ec floor_disp
link : dir_disp@ec dir_display@dis
link : led_1@ec led_1@dis
(...)
[elevBox]
components: sb@SensorController eng@Engine
in : activate direction
out : sensor_1 sensor_2 sensor_3 sensor_4
link : activate activate@eng
link : direction direction@eng
link : sensor_1@sb sensor_1
(...)
link : current_floor@eng sensor_triggered@sb
(...)

Time Out-por Value
00:08:170 flr_display 2
00:19:540 flr_display 1
00:30:130 flr_display 2
00:35:140 flr_display 3
00:40:150 flr_display 4
00:58:290 flr_display 3

(…)

Button Controller

 Elevator
 Controller

 Unit

Display Controller

- RT-CD++

M icrocontroller

Elevator Box

Engine

b utton_ 1
 b utton_ 2
 b utton_ 3
 b utton_ 4

display

Button Controller

 Elevator
 Controller

 Unit

Display Controller

- RT-CD++

M icrocontroller

Sensor Controller

a ctivate
 direction

Replacing components

4/25/2009 Slide 78

Sensor
Controller

- RT-CD++

Engine

result

components: eng@Engine
in : activate_in direction_in
out : result
link : activate_in activate@eng
link : direction_in direction@eng

Time Port Value
00:06:120 direction 1
00:06:130 activate 1
00:15:930 activate 0
00:56:800 direction 2
00:56:810 activate 1
01:01:130 activate 0
01:22:710 direction 2

Time Out-port Value
00:06:130 result 1
00:15:930 result 0
00:56:810 result 2
01:01:130 result 0
(…)

Building a Robot Controller

4/25/2009 Slide 79

Integration Tests

4/25/2009 Slide 80

Integration Tests

4/25/2009 Slide 81

Parallel CD++

� Execute DEVS models in parallel
� Layered architecture based on different

middleware
� Expansion to RTI: few lines of code

4/25/2009 Slide 84

Hardware: Cluster of Processors/Myrinet

Middleware: Warped/MPI

Parallel Simulation Engine

CD++ Models

4/25/2009 Slide 85

CANet4

4/25/2009 Slide 86

Partitioned Fire Model test

Ottawa Montrea
l

4/25/2009 Slide 87

• Fire model (1-
machine)

Total Execution Time (Fire Model- 1&2 Machines)

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Run#

T
im

e
(s

) 1 Machine

2 Machines (Internet)

2 Machines (UCLP)

Fire Spreading Simulation Mashup

• Finalist at IEEE Services
Computing Contest

• Service integrates
prediction of forest fires, prediction of forest fires,

weather data and
Google Maps

Mashup (Google Maps)

CD++ Visualization Engines

3D Visualization GUI 3D Visualization GUI 3D Visualization GUI 3D Visualization GUI

4/25/2009 Slide 92

1. Change geometry, color and size of the nodes
2. Navigation
3. Edit individual node

DEVSView
• Visual models extracted from CD++ simulation log file;

visual state machines defined using the DEVSView user
interface.

4/25/2009 Slide 93

CD++/Maya

4/25/2009 Slide 94

Simulated results

• Creation of a 3D version of
the simulation

• Interpreted by the MEL
scripts

4/25/2009 Slide 95

Evacuation Results

4/25/2009 Slide 96

Evacuation Model

4/25/2009 Slide 97

3D Visualization Scenario

4/25/2009 Slide 98

Slide 99

Advanced Visualization

4/25/2009 Slide 100

Boulevard St. Laurent (MTL)

http://www.cims.carleton.ca/pose

4/25/2009 Slide 101

Evacuation in St. Laurent Blvd.

4/25/2009 Slide 102

SAT Evacuation Animation

4/25/2009 Slide 103

VIDEOS: youtube.com/arslab

Slide 104

Slide 105

Concluding remarks

• DEVS formalism: enhanced execution speed, improved model
definition, model reuse.

• Hierarchical specifications: multiple levels of abstraction.
• Separation of models/simulators/EF: eases verification.
• Experimental frameworks: building validation tools
• Modeling using CD++: fast learning curve

Slide 106

• Modeling using CD++: fast learning curve
• Parallel execution of models: enhanced speed
• The variety of models introduced show the possibilities in defining

complex systems using Cell-DEVS.
• User-oriented approach. Development time improvement: test and

maintenance.
• Incremental development

Further Information

http://cell-devs.sce.carleton.ca

Slide 107

