Step-by-step installation and test procedure guide for Simulation Service

Gabriel Wainer Loïc Quinet Julien Chazal

2Abstract

2Introduction

31. Simulation Service Installation Guide

41.1. Installing the Axis server

51.2. Installing Apache Ant

51.3. Deploying the WS-DCD++

61.4. Compiling the simulator

71.5. Addition of Java Archives

71.6. Starting the WS-CD++ service

91.7. Configuration example: fixing the path

91.8. Gcc-2.95.3 installation guide

122. Step-by-step test procedure

132.1. Personal script

152.2. The Graphical User Interface of CD++ Plug-in for Eclipse

162.3. Results

17References

Abstract

This paper presents all the steps needed for installing Simulation Service web Service to run distributed simulation for DEVS. It also includes a step-by-step procedure for doing tests.
Introduction

DCD++ [Mad06] is a distributed simulation engine based on CD++. It enables the execution of DEVS and Cell-DEVS models on distributed hardware, which can be distributed-memory clusters or separate machines connected together through any kind of network connectivity. The basic principle of DCD++ is to expose the functionality of CD++ on each machine as a web service that interacts with the services running on the other machines, as well as with the client, in order to receive the model definition from the client, execute the model, provide the user with the ability to check the status of the simulation, and retrieve the simulation results at the end of the execution. This guide provides an overview of the steps to be taken for the installation of DCD++ on one machine. It also includes a step-by-step procedure which shows what tests to do and what DEVS or Cell-DEVS to use for it.

1. Simulation Service Installation Guide
In distributed environment, each node runs an instance of the simulation service; which in turn consists of different components interacting with each other to execute the model. Figure 1 shows a block diagram of the major components constituting the simulation service.

[image: image1.emf]JNI

Wrapper

Proxy

(C++)

Web Service

components

(Java)

Axis engine

CD++

Simulation

Components (C++)

Message Queues

(Linux Kernel)

CD++

Simulation

Components (C++)

CD++

Simulation

Components (C++)

Figure 1: Major components of the DCD++ web service

The installation of WS-CD++ include performing the following tasks:

1- Installing the Apache-Axis web service engine: this requires the installation and configuration of:

· Java Runtime Environment/Development kit (JRE/JDK): WS-CD++ was tested with JDK1.5.0_06.

· Apache Tomcat application server: WS-CD++ was tested to work with apache-tomcat-5.5.17

· Apache Axis server: WS-CD++ was tested with Axis-1_3.

2- Installing Apache Ant. Ant-1.6.5 was tested to work with WS-DCD++.

3- Deploying the WS-CD++ within the Axis server.

4- Compiling the simulator.

5- Addition of specific Java archives.

6- Starting the WS-CD++ service.

This guide shows the installation of Simulation Service on a machine with a Linux distribution. WS-CD++ was tested on a Red Hat 2.4 and a Red Hat 2.6.

1.1. Installing the Axis server

The default installation directory for the WS-CD++ service is considered to be the home directory of the installation user account, referred to as $HOME.

· JDK can be downloaded from the link: http://java.sun.com/javase/downloads/index.jsp

To install JDK:

1. Download the JDK rpm.bin file into a local directory.

2. Logon using the root account.

3. Extract and install the contents of the downloaded file:

 - Change the attributes of the downloaded file:

chmod a+x jdk-1_5_0_<version>-linux-i586-rpm.bin

· Extract the rpm file:

./jdk-1_5_0_<version>-linux-i586-rpm.bin
4. Set the $JAVA_HOME environment variable to refer to the top-level directory where the JDK was installed.

· The Tomcat application server can be downloaded from the link: http://tomcat.apache.org/download-55.cgi

To install the Tomcat server:

1. Download the core installation files apache-tomcat-5.5.17.tar.gz

2. gunzip apache-tomcat-5.5.17.tar.gz
3. tar –vxf apache-tomcat-5.5.17.tar
4. Set the $CATALINA_HOME environment variable to refer to the top level directory where the tomcat server was installed.

· The Apache Axis server can be downloaded from the link: http://www.apache.org/dyn/closer.cgi/ws/axis/1_3/

To install the Axis server:

1. Download the file axis-bin-1_3.tar.gz.

2. gunzip axis-bin-1_3.tar.gz
3. tar –vxf axis-bin-1_3.tar
4. copy the contents of folder axis-1_3/webapps/axis (part of the axis top-level directory) to the location: $CATALINA_HOME/webapps/

1.2. Installing Apache Ant

Ant can be downloaded from the link: http://ant.apache.org/

Download the ant package and uncompress it:

1. gunzip apache-ant.1.6.5.tar.gz

2. tar –vxf apache-ant.1.6.5.tar
3. Set the variable $ANT_HOME to the top level installation directory of Ant.

Update the PATH variable to include the run commands/scripts of JDK, ant, and tomcat:

$PATH=$PATH:$CATALINA_HOME/bin:$JAVA_HOME/bin:$ANT_HOME/bin

1.3. Deploying the WS-DCD++

Notice: the Simulation Service project is located on the CVS server of the laboratory (ars-cvs.sce.carleton.ca). Please ask Professor Wainer to create an account to have an access to the project. Then, the project can be retrieved by using the following procedure:

1. Add the following two lines in the startup script of your home directory:

export CVS_RSH=ssh
export CVSROOT=:ext:username@ars-cvs.sce.carleton.ca:/usr/local/cvsroot

2. Go inside the directory where you want to import the Simulation Service project:
cd ~ (in your user account)

3. Execute the following command to get the dcd++ module (ws_dcd++):
cvs co ws_dcd++
4. A new directory is created on your user account, called ws_dcd++. Please rename it by “SimulationService”

Update the location URL of the node to reflect the IP address of the machine used to run the service. Edit the file:

$HOME/SimulationService/src/SimulationService/stubs/CDppPortTypeServiceLocator.java

Comment the line:

private java.lang.String

CDppPortType_address=
“http://localhost:8080/axis/services/CDppPortType";

And replace it with:

private java.lang.String

CDppPortType_address = "http://host_ip_address:8080/axis/services/CDppPortType";

Where host_ip_address is the ip address of the machine used to host the simulation service.

Note: This is important since the simulation service will compare its URL to those available in the grid configuration file (supplied by the user).

Pay attention at the libwrapperproxy.so file. It’s needed to run Simulation Service. Browse the Simulation Service directory and check if this file is located in the following directory:

$HOME/SimulationService/build/SimulationService/wrapper/

If it’s not the case, copy the libwrapperproxy.so file in the latest directory.
Now it’s time to compile and deploy Simulation Service.
Navigate to the folder:

cd $CATALINA_HOME/webapps/axis/WEB-INF/classes

Create a new directory to hold the simulation service classes:

mkdir SimulationService

Navigate to the service main directory :
cd $HOME/SimulationService

Compile the code of the simulation service :
ant dist

This will compile the code and copy the generated classes to the directory:

$CATALINA_HOME/webapps/axis/WEB-INF/classes/SimulationService

1.4. Compiling the simulator

Once Simulation Service has been well installed on the machine, it’s necessary to compile the CD++ simulator. To do this, browse SimulationService directory:

cd $HOME/SimulationService/workspace

The DCDPP and PCDPP directories contain the distributed and parallel CD++ simulator. For each directory, it’s needed to compile the simulator, as follow:

cd $HOME/SimulationService/workspace/DCDPP

make

cd $HOME/SimulationService/workspace/PCDPP

make

Notice: an important error could happen by typing the make command. It may be caused by the gcc version which is installed on the machine. If the machine doesn’t have the 2.95.3 gcc version installed, go to part 1.7. Gcc-2.95.3 installation guide to install it. Once this version is installed, repeat this step (1.4. Compiling the simulator).
1.5. Addition of Java Archives

Before starting the Simulation Service web service, it’s essential to add some specific Java archives (.jar):
· activation.jar: http://java.sun.com/products/javabeans/jaf/downloads/index.html
· axis-ant.jar: http://www.biojava.org/download/tools/jars-archive/axis-ant.jar

· axis.jar: http://www.biojava.org/download/tools/jars-archive/axis.jar

· commons-discovery-0.2.jar: http://www.biojava.org/download/tools/jars-archive/commons-discovery.jar

· commons-logging-1.0.4.jar: http://www.biojava.org/download/tools/jars-archive/commons-logging.jar

· jaxrpc.jar: http://www.biojava.org/download/tools/jars-archive/jaxrpc.jar

· log4j-1.2.8.jar: http://www.biojava.org/download/tools/jars-archive/log4j-1.2.4.jar

· mail.jar: http://www.biojava.org/download/tools/jars-archive/mail.jar

· saaj.jar: http://www.biojava.org/download/tools/jars-archive/saaj.jar

· wsdl4j-1.5.1.jar: http://www.biojava.org/download/tools/jars-archive/wsdl4j.jar

Download all these Java archives and copy them in the directory:
$CATALINA_HOME/webapps/axis/WEB-INF/lib

Update the $CLASSPATH environment variable by putting these Java archives in it:

CLASSPATH=.:$JAVA_HOME/jre/lib:$AXIS_LIBS/activation.jar:$AXIS_LIBS/axis-ant.jar:$AXIS_LIBS/axis.jar:$AXIS_LIBS/axis-schema.jar:$AXIS_LIBS/commons-discovery-0.2.jar:$AXIS_LIBS/commons-logging-1.0.4.jar:$AXIS_LIBS/jaxrpc.jar:$AXIS_LIBS/log4j-1.2.8.jar:$AXIS_LIBS/mail.jar:$AXIS_LIBS/saaj.jar:$AXIS_LIBS/wsdl4j-1.5.1.jar

1.6. Starting the WS-CD++ service

Start the axis server:

startup.sh

Deploy the simulation service:

Navigate to the folder:

$HOME/SimulationService/deploy

While the Axis server is running execute the following command:

java org.apache.axis.client.AdminClient deploy.wsdd

This will cause the simulation service to be deployed and make it accessible to the clients.

To verify the installation:

Open a web browser and type the following URL:

http://host_ip_address:8080/axis/servlet/AxisServlet
Where host_ip_address is the ip address of the hosting machine; you should be able to see the CDppPortType service in the list of the deployed services.

If Simulation Service must be used to run distributed simulations betweens several machines, especially several machines located everywhere on the web, ensure that the 8080 port is open and can be accessed from the outside of the local network. Usually the only port which is visible and accessible from the outside of a LAN is the 80 port: for security reasons, network administrators allow this port (and message ports). If the Simulation Service web service isn’t accessible, ask your network administrator to open the 8080 port on server (or on his routers) of the LAN (8080 port doesn’t match witch the 80 port, theses ports are different).

1.7. Configuration example: fixing the path

Here is an excerpt of a .bashrc file, which contain all features to fix the environment execution.

1.8. Gcc-2.95.3 installation guide

This part presents how to install gcc-2.95.3, which is needed for compiling the CD++ simulator.

First, check which version of GCC is installed on the current machine, by typing:

gcc -v

Here is an example of the result of the latest command:

Reading specs from /usr/lib/gcc-lib/i686-redhat-linux/2.95.3/specs

gcc version 2.95.3 20010315 (release)

The following guide presents how to install an old version of gcc in the same default directory but set some of the parameters while configuring gcc to append the version number to the binaries names (ex. gcc-2.95.3 instead of gcc) so that the default one won't be overwritten.
Notice: you must be logged as root to install gcc-2.95.3.

The source gcc-2.95.3 files can be downloaded from: ftp://ftp.gnu.org/pub/gnu/gcc/gcc-2.95.3/
Download and extract the files:

gcc-2.95.3-core.tar.gz “core c compiler and assembler”
gcc-2.95.3-g++.tar.gz “C++ libraries”
Create a directory “gcc-build” where gcc will be build (Caution: this has to be different than the gcc source directory and is not part of the source tree):
mkdir gcc-buid “SHOULD BE DIFFERENT THAN THE GCC SOURCE DIRECTORY/TREE”
cd gcc-build

Execute the following command to configure gcc with the proper parameters:

Notice: Pay extra attention to the escape characters since they are necessary to append the proper version number

../gcc-2.95.3/configure --prefix=/usr \

--enable-languages --enable-languages=c,c++ \

--enable-threads=posix \

--enable-version-specific-runtime-libs \

--program-transform-name="s/\\\\(.*\\\\)/\\\\1-2.95.3/" | tee c.log

Notice: if the Linux distribution of the machine is a Red Hat, it’s required to specify it by adding some options. Thus, the latest command becomes:
../gcc-2.95.3/configure --prefix=/usr \

--host=i686-redhat-linux \
--build=i686-redhat-linux \
--enable-languages --enable-languages=c,c++ \

--enable-threads=posix \

--enable-version-specific-runtime-libs \

--program-transform-name="s/\\\\(.*\\\\)/\\\\1-2.95.3/" | tee c.log

Execute the following command to “make” gcc:
make bootstrap | tee make_bootstrap.log

Execute the following command to finalize the setup:
make install | tee make_install.log

Create symbolic link to the old gcc compiler

ln -s /usr/bin/gcc-2.95.3 cc-2.95.3

The old gcc version will be installed with the “2.95.3” suffix , to verify the installation type:

gcc-2.95.3 -v

g++-2.95.3 -v

and check if the version numbers are 2.95.3. The default gcc and g++ compiler should still work normally,

gcc -v

g++ -v

should print the version numbers of the default compilers.

The final step is to set some environment variables, so that the GNU tools (like autoconfig and make) can detect the old gcc version:

CC=cc-2.95.3 && \

CXX=c++-2.95.3 && \

export CC CXX
2. Step-by-step test procedure

In order to do a distributed simulation, you need to have the Axis Server launched and Simulation Service deployed on all the machines:

 SHAPE * MERGEFORMAT

You also need the model files. For example, if you want to launch the fire spread model [Ame01], you’ll need a .ma file, a .val file and a grid configuration file (.xml). The grid configuration file is very important because it’s the place where is described the distribution of the simulation between two or more machines.

Here is an example of a grid configuration file for a distributed test between Ottawa (Canada) and Clermont-Ferrand (France):

 SHAPE * MERGEFORMAT

The machine number 0 is always the master node and always must be described in first. Other machines are slave nodes.

The model partition part allows you to split our model into parts and give one of them to each node.

Two ways are available to run the tests: You can use a java script that you write yourself or use the graphical user interface of the CD++ Plug-in for Eclipse.

2.1. Personal script

Here is an example of a Java script for the Fire Spread Model:

[image: image4]

[image: image5]
simNum defines the number of simulations. sampleDir is the directory where the model files must be. resultDir is the directory where the resulting log files will be put.

If it isn’t a CELL DEVS only model like sand pile, you’ll need to set a maximum execution time: wrapper.setExecutionTime(sessionID,"00:02:00:000");

The resulting log files will be in the resultDir directory. You can find the statistics of each simulation in the files.

2.2. The Graphical User Interface of CD++ Plug-in for Eclipse

The first thing to do is to log on the server. The server address is defined in the Server Address field and can be changed in this place. After a click on the Log On button, the user enters his login and password and a new session is created on the server. It is also possible to log on an existing session with its identification number.
According to the type of simulation, different files are needed. The file that can be uploaded on the server are a model definition file (.MA file), a grid config file, a partition file, an event file, a support file, one or more DEVS models (defined by couples of .h and .cpp files) and one or more include files. To put files needed on the remote machine, the user must press Select button in the GUI. A file chooser dialog window appears with which the user has to search and choose the file he wants to add. Once the file is chosen, the user must press the Set button in the same section. The file is sent to the remote machine. A message is displayed in the GUI status bar to show if the send has been accomplished or not. When files are added in the DEVS Model Files or Include File section, they are then shown in the corresponding list box. To add other files, the user has just to repeat these operations.
Clicking on Start Simulation launch the simulation on the server with the files sent on it and the option chosen (Distributed or Parallel simulation, parsing info file, execution time and interval). The simulation stop by itself when it is finish or after the execution time set in the Set Execution Time field. It is also possible to stop the simulation with the Stop Simulation button. There is also a simulation state bar that shows the different states of the simulation: “IDLE”, “Compiling”, “Running” or “Done”.

When the simulation is terminated, the button Retrieve Session Log allows the user to retrieve the file and save it on his computer. He can then log off or directly exit.

2.3. Results

For an easier exploitation of the results, we have made some scripts that allow regrouping all the statistics of a group of simulations in one CSV file. They’re in the test folder of Simulation Service.

Use SessionStats.java if you’ve made your tests with the GUI and SessionStats2.java if you’ve used a java script.

For information, a session of tests has been realized by using the fire spread model [Ame01] and the sand-pile model [Saa03]. The results of these tests are accessible on the paper “Simulation Service performance analysis across the Atlantic Ocean” [Wai07].
References
[Ame01] Ameghino, J.; Troccoli, A.; Wainer, G. “Models of complex physical systems unsing Cell-DEVS”. Proceedings of the 34th Annual Simulation Symposium, Seattle, WA. USA. 2001.

[Mad06] Madhoun, R. “Web Service-based distributed simulation of Discrete Event Models”. Thesis, Carleton University, Ottawa, ON. Canada. 2006.

[Saa03] Saadawi, H.; Wainer, G. “Modeling a sand pile application using Cell-DEVS”. Proceedings of the 2003 Summer Computer Simulation Conference. Montreal, QC. Canada. 2003.

[Wai07] Wainer, G.; Chazal, J.; Quinet, L. “Simulation Service performance analysis across the Atlantic Ocean”. Simulation Service test results, Carleton University, Ottawa, ON. Canada. 2007.

export JAVA_HOME=$HOME/jdk1.5.0_07

export CATALINA_HOME=$HOME/apache-tomcat-5.5.23

export ANT_HOME=$HOME/apache-ant-1.7.0

export AXIS_HOME=$CATALINA_HOME/webapps/axis

export AXIS_LIBS=$AXIS_HOME/WEB-INF/lib

export CLASSPATH=.:$JAVA_HOME/jre/lib:$AXIS_LIBS/activation.jar:$AXIS_LIBS/axis-ant.jar:$AXIS_LIBS/axis.jar:$AXIS_LIBS/axis-schema.jar:$AXIS_LIBS/commons-discovery-0.2.jar:$AXIS_LIBS/commons-logging-1.0.4.jar:$AXIS_LIBS/jaxrpc.jar:$AXIS_LIBS/log4j-1.2.8.jar:$AXIS_LIBS/mail.jar:$AXIS_LIBS/saaj.jar:$AXIS_LIBS/wsdl4j-1.5.1.jar

export PATH=$PATH:$CATALINA_HOME/bin:$ANT_HOME/bin

cd $HOME/SimulationService

startup.sh

cd $HOME/SimulationService/deploy

java org.apache.axis.client.AdminClient deploy.wsdd

<?xml version="1.0"?>

<Grid>

<MACHINES>

 <MACHINE>

 <MACHINE_RANK>0</MACHINE_RANK>

<MACHINE_URI>http://193.55.95.51:8080/axis/services/CDppPortType</MACHINE_URI>

 </MACHINE>

 <MACHINE>

 <MACHINE_RANK>1</MACHINE_RANK>

<MACHINE_URI>http://134.117.53.108:8080/axis/services/CDppPortType</MACHINE_URI>

 </MACHINE>

</MACHINES>

<MODEL_PARTITIONS>

 <PARTITION machine="0">

 <ZONE>fire(0,0)..(14,29)</ZONE>

 </PARTITION>

 <PARTITION machine="1">

 <ZONE>fire(15,0)..(29,29)</ZONE>

 </PARTITION>

</MODEL_PARTITIONS>

</Grid>

package testFire;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.FileReader;

import java.io.FileWriter;

import javax.activation.DataHandler;

import javax.activation.FileDataSource;

import SimulationService.stubs.CDppPortType;

import SimulationService.stubs.CDppPortTypeService;

import SimulationService.stubs.CDppPortTypeServiceLocator;

public class TestFire {

 public static void main(String[] args) throws Exception {

		

 final int simNum = 20;

 String homeDir = System.getProperty("user.home");

 java.net.InetAddress localMachine = null;

 try {

 localMachine = java.net.InetAddress.getLocalHost();

 } catch (Exception e) {

 e.printStackTrace();

 }

		

 String hostName = localMachine.getHostName();

 if(hostName.indexOf("node") == -1) homeDir = System.getProperty("user.home");

 else homeDir = System.getProperty("user.home") + "/" + hostName;

		

 String sampleDir = homeDir + "/SimulationService/samples/fire";

 String resultDir = homeDir + "/result";

 for(int nb = 1; nb <= simNum; nb++) {

 System.out.println("---> Simulation " + nb + " beginning");

 java.net.URL serviceURL = new java.net.URL("http://134.117.53.108:8080/axis/services/CDppPortType");

 CDppPortType wrapper ;

 CDppPortTypeService service = new CDppPortTypeServiceLocator();

 wrapper = service.getCDppPortType(serviceURL);

 if(wrapper != null) {

 int sessionID = wrapper.authenticate("Rami", "mtvoHaWPDJ6zXXLehMRhPSsOO1o=", false,-1);

 System.out.println("Session ID is " + sessionID);

	java.io.File maFile = new java.io.File(sampleDir + "/fire.ma");

	DataHandler dhMAFile = new DataHandler(new FileDataSource(maFile));

	System.out.println(wrapper.setMAFile(sessionID,"fire.ma", dhMAFile));

	java.io.File valFile = new java.io.File(sampleDir + "/fire.val");

	DataHandler dhValFile = new DataHandler(new FileDataSource(valFile));

	System.out.println(wrapper.setSupportFile(sessionID,"fire.val", dhValFile));

 java.io.File gcFile = new java.io.File(sampleDir + "/grid_fire_lab1.xml");

 DataHandler dhGC = new DataHandler(new FileDataSource(gcFile));

 System.out.println(wrapper.setGridConfigFile(sessionID, "grid_fire_lab1.xml", dhGC));

 System.out.println("The client is going to start the simulation");

 System.out.println(wrapper.startSimulationService(sessionID));

 Thread.sleep(500);

 String status = "";

 while(!(status = wrapper.getStatus(sessionID)).equals("DONE")) {

 System.out.print(".");

 Thread.sleep(2000);

 }

						

 System.out.println("\nGoing to retrieve the session log file");

 Thread.sleep(5000);

 DataHandler dhLog = wrapper.retrieveSessionLogFile(sessionID);

 java.io.File receivedLogFile = new java.io.File(dhLog.getName());

 if (receivedLogFile.exists()) {

 java.io.File savedLogFile = new java.io.File (resultDir + "/test_fire_lab1_" + nb +".log");

 BufferedReader in = new BufferedReader(new FileReader(receivedLogFile)) ;

 BufferedWriter out = new BufferedWriter(new FileWriter(savedLogFile));

			

 int c = -1;

 while((c=in.read()) != -1) out.write((char) c);

 in.close();

 out.close();

 System.out.println("Session log file retrieved");

 }

			

 Thread.sleep(5000);

 try {

 System.out.println(wrapper.deleteSession(sessionID, sessionID));

 } catch (Exception e) {

 }			

 Thread.sleep(5000);

 }

 System.out.println("---> End of simulation " + nb + "\n\n");

 }

 System.out.println("-----------End-------------\n");

 }

}

- 17 -

_1215351138.vsd
Web Service components
(Java)

JNI

Wrapper
Proxy
(C++)

CD++

Simulation Components (C++)

Axis engine

CD++

Simulation Components (C++)

CD++

Simulation Components (C++)

Message Queues
(Linux Kernel)

