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Abstract-Multiple trellb coded modulation of constant enve- 
lope frequency and phaqe modulated signal sets (MTCM/FPM) 
is investigated for performance on the AWGN channel and on 
the one-sided normal, Rayleigh- and Rician-fading channels. The 
Nakagami-m fading model is wed as an alternative to the Rician- 
fading model to calciilate the error probability upper bound for 
trellis coded schemes on the fading channel. The likenesses and 
the disparity between the upper bounds to the error probability 
for the two fading models is discussed. The design criteria for 
the one-sided normal fading channel, modeled by the Nakagami- 
m distribution, are observed to be the same as those for the 
Rayleigh-fading channel. For the MTCM/FPM schemes consid- 
ered in this study, it is demonstrated that the set partitioning 
designed to maximize symbol diversity (optimum for fading 
channels) is optimum for performance on the AWGN channel as 
well. The MTCM/FPM schemes demonstrate improved perfor- 
mance over MTCM/MPSK schemes and TCM/FPM schemes on 
the AWGN channel and the fading channel. The simultaneous 
optimization of set partitioning rules for AWGN and fading 
channels proves to be particularly advantageous for the Rician- 
fading channels with less severe fading conditions. 

I .  INTRODUCTION 
RELLIS coding using multidimensional signal sets has T been extensively investigated. Multidimensional trellis 

codes with lattice type signal constellations have been ana- 
lyzed for performance on the AWGN channel by Ungerboeck 
[l], Forney [2], Wei [3], and others. The advantages that accrue 
from the use of these codes on the AWGN channel are modest 
coding gains and decreased sensitivity to phase jitter, but these 
advantages are also accompanied by an increase in the error 
coefficient. The use of multidimensional signal sets also allows 
the transmission of non-integer number of bits per symbol. 

Multidimensional modulations may be realized by the trans- 
mission of a sequence of constituent 1-D or 2-D symbols. 
Thus, for example, 4-D and 8-D modulations are obtained 
from 2-D modulations by the transmission of groups of 2 
or 4 symbols. By applying this technique to trellis coding of 
M-ary PSK and M-ary AM signal sets, Divsalar and Simon 
introduced the concept of multiple trellis coded modulation 
(MTCM) [4]. In a sequence of papers on the subject, the au- 
thors have extensively investigated the performance of MTCM 
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on the AWGN channel [4], [7], and on the fadivg channel [SI, 

The basic MTCM encoder-modulator [4] consist? of a 
rate b / s  convolutional encoder, and a memoryless mapper- 
modidator Fcheme. The number of bits s out of the encoder 
is related to the multiplicity k of the MTCM scheme as 
s = klog,M. The s output bits are mapped into IC M-ary 
output symbols selected from an expanded signal set. The 
thourghput of the MTCM scheme is b / k  bps/Hz. The trellis 
structure consists of 2b transitions from each state in the trellis 
diagram, with each transition being represented by k M-ary 
symbols, chosen in such a way as to meet the code design and 
set partitioning criteria. Thus, 2'+' distinct k-tuples of M-ary 
symbols are required. 

On the AWGN channel, the superiority of MTCM/MPSK 
over conventional' TCM/MPSK, has been demonstrated for 
two-state trellis codes transmitting two symbols per trellis 
branch [4], and for higher number of states when more 
than two symbols per trellis branch are transmitted [7]. The 
performance gains obtained by MTCM/MPSK on the fading 
channel is illustrated by several examples in [6]. 

It  is well known that the design criterion for trellis codcs 
on the AWGN channel is the maximization of @(free). On 
the Rayleigh fading channel, under the conditions of ideal 
interleaving/deinterleaving, the criteria for optimum code de- 
sign are the Iength L,,, (defined as the number of symbols 
at nonzero Euclidean distance) of the shortest error event 
path, and the product of branch distances P along that path 
[5 ] .  On the Rician-fading channel with stronger direct signal 
components, the performance is affected by all three quan- 
tities mentioned above (&(free), L,,,, and P ) .  Hence, a 
code design and set partitioning technique optimum for the 
general Rician-fading channel must simultaneously satisfy the 
length and branch distance product criteria, and the d2(free) 
criterion. MTCM schemes transmitting multiple signals per 
trellis branch, provide the freedom to design codes with larger 
values of L,,, than that obtainable with TCM schemes. Two 
different set partitioning techniques have been proposed for 
MTCM/MPSK, to meet the code design criteria for the AWGN 
channel and the Rayleigh-fading channel [5]. With these set 
partitioning techniques, all the criteria mentioned above cannot 
be met simultaneously, and set partitioning based on meeting 
the maximum I+,,,, and P criteria leads to d'(f1c.c) lnwer than 
that obtaincd by mine set partitioning optimum for thc AWGN 
channel (61. Hcnce, thew partitioning techniqiies spplipd to 

[61. 

'The term tonivwtionnl TCM referz to the ( v i p n 4 1  schpmp of 
Ungerboeck [XI .  
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M-ary PSK are not optimum for the general Rician-fading 
channel. 

It turns out, however, that the criteria are met simultaneously 
when the multiple trellis code design rules optimum for 
the Rayleigh-fading channel are applied to a different signal 
set-the combined frequency and phase modulated (FPM) 
signal set. Conventional trellis coding of constant envelope 
M-ary signals employing frequency and phase modulation 
(TCMFPM) (e.g., 2FSK/MPSK, 4FSWMPSK) has been dis- 
cussed by Padovani and Wolf [ 101 with application to the 
AWGN channel. The symbols constituting the FPM signal 
set for the 2FSWMPSK schemes discussed in this paper are 
defined by [lo, eq.(5)] 

s ( t )  = cos[(w, f hr/T)t  - 4%] (1) 

where T is the symbol duration, and 4% E (0 ,2r /M, . . .  . 
2 .  ( M  - l ) r / M )  for 2FSIVMPSK schemes. The two FSK fre- 
quencies are defined by (w, + h r / T )  and (wc - h r / T )  rad/s, 
with h as the modulation index. The signal space is four 
dimensional, and is defined in [lo]. 

In this paper, MTCM of FPM signals (MTCM/FPM) is 
investigated for performance on the AWGN channel, and on 
the one-sided normal, Rayleigh- and Rician-fading channels. 
It is shown that MTCM/FPM provides improved performance 
compared to both TCM/FPM and MTCM/MPSK schemes. The 
performance of trellis coded schemes on the fading channel 
modeled by the Nakagami-m distribution is also analyzed. 
The Nakagami-m distribution has been suggested as an ap- 
proximation* of the Rician distribution for the fading channel 
[ l l ] ,  [14]. In this paper, the Nakagami-m fading model is 
utilized for two reasons: it includes the one-sided normal 
fading model corresponding to the value m = l / 2 ,  and the 
simple expression for the upper bound on the error probability 
can be used to assess the likenesses and disparities between the 
two fading channel models. In Section I1 of this paper the error 
probability bound for trellis coded schemes on the Nakagami- 
m fading channel is derived, and is compared with the error 
probability bound for the Rician-fading channel derived in 
[5]. Full interleaving (zero memory) and coherent detection 
with ideal channel state information are assumed. Section 111 
covers the performance analysis of multiple trellis coded FPM 
signals on the AWGN channel, and on the one-sided normal, 
Rayleigh- and Rician-fading channels. Section IV contains the 
discussion. 

trellis coded schemes such as MTCM/MPSK and MTCM/FPM 
using the Nakagami-m distribution and compared with the 
results for the Rician distribution. 

The average bit error probability for trellis coded signals is 
upper bounded by the union bound [5] 

x i € C  

where z and x denote the transmitted and decoded sequences 
that belong to the set C of codeword sequences, respec- 
tively; p(z) denotes the a priori probability of transmitting 
the sequence z; and P ( z  + 3) denotes the painvise error 
probability. The performance analysis will be restricted to 
studying the effect of fading on the amplitude of the received 
signal, with the assumption that the phase and the frequency 
recovery is perfect. 

On the fading channel, the painvise error probability is 
conditioned on the fading amplitude vector p = ( p l , p 2 , . . . ,  

pl,...,pn), and is upper bounded as 

where p1 is the normalized fading amplitude for the Ith 
transmission interval, and L is the length of the error sequence 
f # 2. Equation (3) holds under the assumptions of ideal 
interleavinddeinterleaving, coherent detection with perfect 
channel state information, and a Gaussian decoding metric 

The fading amplitude of each received channel symbol is 
[121. 

described by the Nakagami-m-distribution as 

- 
where R = p2 = 1 under normalized conditions, I?(.) is the 
gamma-function, and 

(5) 

The painvise error probability on the Nakagami-m fading 
channel is calculated using (3) and (4), as follows: 

E, 
4 N 0  

11. ERROR PROBABILITY BOUND FOR MTCM/MPSK . exp (- ~ p ~ l a  - i l l 2 )  dpi. (6) 
AND MTCM/FPM SCHEMES ON THE 

NAKAGAMI-m FADING CHANNEL 

The performance analysis of trellis coded MPSK schemes 
on the Rician-fading channel is discussed in [5], from which 

fading channel [6], under the conditions of ideal interleav- 
inddeinterleaving and high SNR, follow. In this section, the 
performance upper bound is derived for constant envelope 

mation is valid from the standpoint of error probability calculations. 

Letting t = mpf and Q = 1 + & 1x1 - i l l 2  

P(Z 3 2) 5 fJ 7 tm-le--at d t .  (7) code design criteria for optimum performance on the Rayleigh- 
1=1 0 r (m)  

By [13, 3.381(4))], (7) reduces to 

'Shortly, we shall show the limited conditions under which this approxi- 
1=1 
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with the overbar denoting averaging. Equation (8) can be 
written in the familiar form 

Finally, (8) may be substituted in (2) to yield 

- Pb 5 N ( z , 3 ) p ( z )  
(9) x ? € C  

where d2 = CL, d;, with df defined as 
z=1 

. (lo) For rn 2 1, the Nakagami-m distribution is considered by 
some [ 111, [ 141 as an approximation to the Rician distribution 
which is described as From the analysis in [5], it can be seen that d2 satisfies the 

conditions for a distance metric. 

at a high SNR, (8) reduces to 
In the case of the one-sided normal fading (m  = 1/2), and P 

From ( l l ) ,  one may observe that P ( z  + 3)  varies as the 
inverse of the product of the square root of E,/No and the 
roots of the squared Euclidean branch distances along the error 
event path. Therefore, the design criteria for the one-sided 
normal fading channel are the signal diversity and the product 
of branch distances (the same as those for the Rayleigh fading 
channel [5]). 

For m = 1 (Rayleigh fading), (10) evaluates to 

which is the same result as in [5, eq. (6b)l. Under high SNR 
conditions with Rayleigh fading (8) evaluates to 

where y is the ratio of the power in the scattered (fading) 
component to the power in the direct (specular) component. 
Here, y = 0 corresponds to the Rayleigh fading, and y = CO 

describes the AWGN channel. For “equivalence” between (4) 
and (18), the values m and y are related by 1111 

The equivalence is exact for rrt = l ( y  = 0) and ut = CO 

(y = x) only. This is also apparent from the results in (13) 
and (15) which are the same as those obtained using the 
limiting cases of the Rician distribution in 151. 

For intermediate values of m, (8) has to be examined 
further. For fixed m and sufficiently large E,7/N0, (8) asymp- 
totically becomes 

i.e., the same result as in [5, eq. (7)]. The painvise error 
probability is now observed to vary as the inverse of the 
product of E,/No and the squared Euclidean branch distances 
along the error event path. 

In order to show that (8) can also be used to represent the 
performance on the AWGN channel (m  = CO), we rewrite (8) 
as 

Then, at high SNR, the ainvise error probability varies 
inversely with ( z ~ / N o )  . This ImPlles that the effective 
diversity is the product of m (due to the channel) and L (due 
to the code). Compare (20) to the asymptotic expression for 
the Rician-fading Channel [51 

rn? . .  . 

L 

P ( z  --f 3) 5 n (1 + y ) p  
1=1 

- 
where y = P/m, and p = & 1x1 - ? z l 2 .  By using the identity 
lim,,o (1 + y)”’ = e, (14) reduces to 

Again, comparing (15) to (9), d2 = ELl df and 

d; = 1x1 - 2 ~ 1 ~ .  (16) 

Hence, d2 is now the sum of the squared Euclidean distances 
along the error event path, which is the appropriate result for 
the AWGN channel. 

in which the effective diversity is equal to L. It is clear 
that the Rician channel does not contribute a diversity of its 
own, as opposed to the Nakagami-m channel. This causes a 
discrepancy between the error probabilities for the two types 
of channels for 1 < mn < CO. The approximation is close 
only at low SNR’s, but becomes increasingly disparate as 
the SNR increases. This was also revealed by the numerical 
computation of the painvise error probability bound given by 
(8) and [5, eq. (4)], for the two types of channels, respectively. 

The difference between the two fading models which have 
been suggested to be equivalent in literature, was first shown 
by Crepeau [14] in the performance analysis of block-coded 
noncoherent FSK. 
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T 

Fig. 1. The 2FSW4PSK signal set sketched as a pair of two-dimensional 
4PSK signal sets at frequencies L C ’ ~  + h s / T  and J, - hrr/T rad/s. Squared 
Euclidean distances between signal points for selected values of It  and o are 
listed in Table I .  

0 
0.5 0.6 0.7 0.8 0.9 1.0 

h 

A i  versus h for the 2FSW4PSK signal set Fig. 2. 

111. MTCM/FPM: PERFORMANCE ANALYSIS 

In this section, MTCMFPM schemes (with IC = 2) are 
investigated for performance on the AWGN channel and 
the fading channels. The MTCM/(2FSW4PSK) scheme is 
investigated in detail, while the MTCM/(2FSW8PSK) scheme 
is discussed briefly at the end of this section. 

A.  MTCMf(ZFSK/4PSK) 

The 2FSW4PSK signal set, used in conjunction with the 
rate 416 trellis encoder, is shown in Fig. 1 as two 4PSK signal 
sets separated in frequency by Aw = 21r$, where T is the 
symbol interval. The minimum squared Euclidean distance Ai  
between the odd and even numbered signal points in an MPSK 
signal set depends only on 111, whereas in a 2FSK/4PSK signal 
set, A i  is also a function of h and the phase shift between the 
two 4PSK constellations. The dependence of Ai versus h for 
phase shifts of 0” and 45” is depicted in Fig. 2 [lo]. For any 
other value of $, Ai  lies between the values for these two 
curves. Note that the value of A i  does not increase indefinitely 
with increasing h. The maximum value of A i  equal to 2.0 is 
obtained for h = 1.0. 

Table I contains the squared Euclidean distances between 

TABLE I 
SOUARED EUCLIDEAN DISTANCES BETWEEN SIGNAL POINTS IN 
THE 2FSW4PSK SIGNAL SET AND I N  THE SPSK SIGNAL SET 

2FSW4PSK 8PSK 

~ ~~ ~~~ ~ ~~~~~ 

d 2 ( o .  1) 3.2733 1.0997 2.4244 2.0 0.5876 
#(0. 3 )  3.2773 2.9003 2.4244 2.0 3.4124 
#(0. 5 )  0.7269 2.9003 1.5756 2.0 3.4124 
d‘(O.7) 0.7269 1.0997 1.5756 2.0 0.5876 

A; 0.7269 1.0997 1.5756 2.0 0.5876 

the signal points and the values of Ai,  for the 8PSK signal 
set, and for the 2FSW4PSK signal set for selected values of 
h and phase shift 6, (a unit radius is assumed for the PSK 
constellations). 

First, let us illustrate the set partitioning for MTCM/MPSK 
for optimum performance on the AWGN channel (71 and on 
the fading channel [5], for an 8-ary scheme. In accordance 
with the Cartesian set product technique [l], let A0 denote the 
complete 8-ary signal set, and let A0 x AO, denoting a two-fold 
Cartesian product of A0 with itself, be the source set. 

The source set of 64 elements can be partitioned into 
subsets in accordance with the required performance criteria. 
Following [5], in the case of MTCM/MPSK, subsets should be 
chosen from the source set to meet the criterion of maximum 
d2(frre) on the AWGN channel, and for the fading channel, 
subsets are chosen to maximize the length L,,, and the branch 
distance product P along the error event path. The latter 
partition rule is asymptotically (large SNR) optimum not only 
for the Rayleigh-fading channel, but for the one-sided normal 
fading channel as well, since it follows from (11) that the 
design criteria for both channels are the same. These set 
partition rules applied to a two-state trellis with eight parallel 
branches are illustrated in Fig. 3, where Set Partition I (SP- 
1) is the design optimum for the AWGN channel, and Set 
Partition I1 (SP-11) is the design for the fading channel, that 
maximizes L,,, and P. 

However, as stated in the introduction, neither of these 
partitions are optimum for MTCM/MPSK in the case of Rician 
fading (0 < y < m). While it has been shown [6] that SP-I1 
yields a lower value of d2(frre) than SP-I, note that SP- 
I yields a lower value of L,,,(= 1) than SP-11, which has 
L,,, = 2. It will be shown, however, that when applied to 
MTCM/FPM, SP-I1 is optimum for both the AWGN channel 
and the fading channel, in the sense that all three design criteria 
(maximum &(free) L,,, and P )  are met simultaneously. 
To demonstrate this, the performances of the MTCMBPSK 
scheme and the MTCM/(2FSK/4PSK) scheme are evaluated in 
terms of d2(free) with both designs. If &(free) is larger or the 
same with SP-I1 when compared to SP-I, it may be concluded 
that SP-I1 is asymptotically optimum on both the AWGN and 
the fading channel; in the opposite case, two separate designs 
are needed-SP-I for the AWGN channel, and SP-I1 for the 
fading channel. 

The values of d2(free) in terms of A; are listed in Table 11, 
for various numbers of states. Referring to Fig. 3, for a two- 
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TABLE If 

ERROR EVENTS USING SET PARTITIONING I (SP-I) AND SFT PARTITIONING I1 (SP-11) 

Set Partition I 

SQUARED EUCLIDEAN DISTANCES IN TERMS OF 3; FOR TPF ONF BRANCH AND TWO-BRANCH 

-- -. . I_--- - 

dz  (free) = min ((1:. (1;) Ihz --2 

RPSK -1; > 1 2FSK/4PSK(h = 1.0. 0 = 0)  
0-  

d'( free) (1; 4 
A; < 1 

d: 
No. of 
states 

__ - - . - . ___ 
2 4 2 + z'l; 3.17 2 + 2 1 ;  4.0 

8 8 2 + 2 3 ;  3.17 2 + 2 1 ;  6.0 
16Hc. 8 4 + 2' l ;  5.17 2 + 4  6.0 

4 4 2 + 2A; 3.17 2 c 2 3 ;  4.0 

~ - _. _ _  
Set Partition I1 __ 

4 d2 (free) (lj #(free) = min(d;.d;)lh;=2 
'3; < 1 XPSK 3; > 1 2FSK/4PSK(h = 1.0. 0 = 0) 

d: 
No. of 
states 

- . . . . 

2 4 43; 2.34 2 + 2 3 ;  4.0 
4 4 4A; 2.34 2 4- 2 1 ;  4.0 
8 8 4'3; 2.34 2 + 2 1 ;  6.0 

1 6 ~ ~ .  8 6 3 ;  3.51 1 + 2 1 ;  8.0 
. - ._ -. - . - .- 

'HC- Half-connected. 

state trellis, the minimum squared distance for an error event 

d:(sp-II) = 4.0 for both schemes. For the two-branch error 
event path, the minimum squared distance is influenced by 
the inter-subset distances which depend on the value of 
A i  : d$sp-I) = 2 + 2Ai,  and d&p-II) = 4Ai.  Therefore, 
dip-I(free) = min{d&P-I), d$sp-I)} = min (4, 2 + 2A;) 

For the 8PSK scheme d&,-,)(free) = cl&,-,) = 3.17 
while d&,_,,)(free) = d$sp-,,)2.34 ( a loss of 1.315 dB). 
For the 2FSW4PSK scheme, d2(free) depends on Ai .  If 
Ai  < 1. d&p-I) < d$SP-I), hence d&,_,)(free) = 2 + 
2Ai ;  d;(sp-II) < d;(sp-II), hence d~,,-,,)(free) = 4Ai. 
Since d&p-II) (free) < dfSp-,) (free), two separate designs 
are needed for the AWGN channel and the fading channel. 
If A?, 2 1, d&,p-I) 5 d$sp-I) and d&,_,)(free) = 4; 
similarly, d:(sp-II) 5 d&sp-II) and d$.p-II)(free) = 4. Thus, 
for A i  2 1, i.e., h 2 0.5, the fading channel design SP-I1 
simultaneously satisfies the d2(free), Lmin and P criteria. 

For the four-state fully connected trellis (i.e., transitions 
emanating from one state go to all other states in the trellis), 
eight subsets are required. These subsets are obtained by 
an odd-even split of the elements in the subsets of Fig. 3. 
However, since the values of d:(sp-I) and d;(SP-II) remain 
equal to 4.0, no further coding gains accrue. 

For the eight-state fully connected trellis, with a further 
division of subsets, d2 l(sp-Ii = dT(Sp-11) = 8.0. Then 
d;sp-,)(free) = min(8, 2A0 + a}, and dfSP-,,)(free) = 
min(8,4Ai}. For Ai  2 1, d&,-,,)(free) 2 dfSp-,)(free), and 
SP-I1 simultaneously meets the d2(free), Lmin and P criteria. 
Note that for A i  = 2, d&,_,,)(free) is determined by the error 
event with d2(0 ,  4) + d2(0, 2) = 6.0. This error event is due to 
signals within the same MPSK subset and is independent of h. 

For the eight state trellis, d2(free) is not determined by the 
distance between the parallel transitions. Therefore, consider a 

along the one-branch parallel path ( k  = 2) is d;(sp-I) - - 

and d&(free) = min{ d;(sp-II), d2(sp-II)} 2 = min(4,4Ai}. 

16-state half-connected trellis (i.e., transitions emanating from 
each state go to only half the total number of trellis states). 
For this trellis, 

dt5,-,)(free) = min(8, 2Ai  + 4} A i  < 1 

A i  2 1 

A; < 1 

A i  2 1. 

= min(8, 2 + 4) 

d$,,-,,)(free) = min{ 8, 6Ai} 
= min(8, 2AE + 4} 

Again, for A i  2 1, SP-I1 simultaneously meets the d2(free), 
L,,,, and P criteria. 

Thus, it may be concluded that for MTCM/(2FSW4PSK) 
schemcs with A i  2 I, SP-I1 is optimum for both the AWGN 
channel and for the fading channel. In this paper, the analysis 
of MTCM/(2FSK/4PSK) is carried out for values of h giving 
A i  2 1, i.e., h 2 0.5, and consequently using SP-I1 only. The 
performance of MTCMBPSK is discussed with both designs, 
SP-I and SP-11. 

The calculation of upper bounds to d2(free) may be carried 
out by using pair-state transition diagrams, and the generalized 
transfer function technique proposed by Biglieri in [9] for 
conventional TCM systems. A plot of the squared free distance 
versus h (0.5 5 h 5 1.0) with O0 and 45" phase shift, for the 
eight-state trellis is shown in Fig. 4. The similarity between the 
two sets of curves in Fig. 4 and Fig. 2, reflects the influence 
of A i  on #(free). 

The values of d2(free) and P for the MTCM/(2FSW4PSK) 
scheme for selected values of h and q5 (= (7r/M)" for 
2FSWMPSK schemes), and for the MTCMBPSK scheme 
are illustrated in Table 111 as well as in Table 11. Due to the 
presence of parallel transitions in the trellis, the length L,,, 
is equal to 2 for both schemes. 

Comparing the two modulation schemes, it may be 
concluded that MTCM/(2FSW4PSK) provides coding gains 
(versus MTCM/8PSK) in d2(free) for both the SP-I and 
SP-I1 designs of the latter, and consequently outperforms it 
on the AWGN channel. For the two-state trellis, and h = 
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1 , 7  
3 , 1  
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7 , 5  
7 , 1  
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A =  
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D =  
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3 , 7  
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F =  

S ?t 

H 

I1 

Fig. 3. Two-state trellis codes for the rate 4/6 MTCM scheme ( k  = 2) with 
(a) Set Partition I (SP-I) and (b) Set Partition I1 (SP-11). 

0.5 (4 = 45'), the larger d2(free) results in a coding gain 
of 1010g104/3.17 = 1.01 dB. Note that the SP-I1 design 
of MTCMBPSK carries a penalty of 1.315 dB dut to the 
lower value of d2(free) when compared to the SP-I design 
as previously noted in [6]. For the 16-state trellis, with h = 1, 
the coding gain due to &(free) is 1010g,~8/5.17 = 1.9 dB 
versus MTCM/SPSK (with the SP-I design). Coding gains are 
also observed for the four-state and the eight state trellises. 

As far as the performance on the fading channel is 
concerned, the MTCM/(2FSK/4PSK) scheme provides a larger 
value of P versus MTCM/SPSK, only for the two-state 
trellis. This improvement corresponds to a coding gain 
in the range of 1.02 dB (for h = 0.5, 4 = 45') to 

2 c Y 

N 

U 

I I I I I 

0.5 0.6 0.7 0.8 0.9 1.0 
h 

Fig. 4. r12(free) versus h for the 2FSW4PSK signal set with Oo and 45' 
phase shift, for the eight-state trellis code of the rate 4/6 MTCM scheme 
( k  = 2 )  with Set Partition I .  

2.39 dB (for h = 1.0, 4 = 0') on the Rayleigh-fading 
1/2L - 

10log10 (3.2/2)ll4 = 0.51 dB (for h = 0.5, 4 = 45") to 
1.19 dB (for h, = 1.0, 4 = 0') on the one-sided normal fading 
channel. Further gains on the fading channel with y > 0 result 
due to the additional contribution from the increased d2(free). 

When MTCM/FPM is compared to TCM/FPM, coding gains 
are observed for the two-state trellis due to the increased values 
of &(free) [for example, with h = 0.5, 4 = 45" the gain 
is 1010g104/3.1 = 1.11 dB]. Larger gains are obtained with 
increasing values of h. For the 16-state trellis the increased 
value of d2(free) for h = 1.0, yields a gain of 1.25 dB. 
Coding gains are not observed for the four-state and the eight- 
state trellises. On the fading channel, the higher multiplicity 
of the MTCM scheme (Lmin = 2) ensures better asymptotic 
performance compared to it's TCM counterpart (Lmin = 1 for 
conventional TCM with parallel ixansitions in the trellis). 

Fig. 5 contains plots of the painvise error probability upper 
bound3 ( [ 5 ,  eq. (4)]) versus SNR (E, /No)  for the two-state 
rate 4/6 MTCM/(2FSK/4PSK) scheme ( h  = 0.5, 4 = 45') 
and the MTCM/8PSK scheme using SP-I1 [6]. For the 
MTCMBPSK scheme, the one-branch (parallel) error event 
path has the length Lmin = 2 and P = 2.0. The 
d2(free) (= 2.34) of this scheme is determined by the two- 
branch error event path with L = 4(> Lmin). The curves 
drawn are for the error events along the one-branch path 
and the two-branch path. For this scheme, at y = 0, the 
performance is dominated exclusively by the one-branch error 
event. At y = 10, the one-branch error event dominates the 
performance only in the upper SNR range. As y increases, the 
SNR at which the one-branch error event begins to dominate 
the performance also increases. For the MTCM/(2FSW4PSK) 
scheme, the one-branch error event path has the length Lmin = 
2 and P = 3.2. The d2(free) (= 4.0) of this scheme is 
also determined by the one-branch error event path. The 
performance is determined by the single curve drawn to 
represent the probability of this error event, at all values of y. 
The gain of 1.02 dB (due to the higher value of P )  obtained by 

channel, and from 10 log10 (P(2FSK/4PSK)/P(8PSK)) - 

"Note that the bound of [ S ,  eq. (4)] derived for MTCMiMPSK is also valid 
for MTCMffPM when the appropriate squared Euclidean distances are used. 
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TABLE I11 
&(free) AND P FOR MTCMI(ZFSW4PSK) AND MTCM/8PSK 

h = 0.5, $5 = 450 It  = 0.75, 0 = 00 h = 1.0, Q = 0' 
8PSKa 

A' d2(free) P d2  (free) P d2(free) P P 

2 4.0 3.2 4.0 3.8 4.0 4.0 2.0 
4 4.0 4.0 4.0 4.0 4.0 4.0 4.0 
8 4.2 16.0 5.1 16.0 6.0 16.0 16.0 

1 G r r c  6.2 16.0 7.2 16.0 8.0 16.0 16.0 

'Refer Table I1 for d2(free) for the 8PSK scheme. 

y=O y =  10 y=20 

10 11 12 13 14 10 11 12 13 14 10 11 12 13 14 
SNR SNR SNR - EPSK, L -- EPSK, 02 (free), - 2FSKl4PSK. 

Fig. 5.  Painvise error probability versus SNR at various values of 3 for the MTCMI(2FSW4PSK) scheme (h = 0.5, @ = 4 5 O ) ,  and the MTCMBPSK scheme. 

the MTCM/(2FSK/4PSK) scheme at y = 0, increases further 
with higher values of y, due to the contribution of the increased 
d2(free). At y = CO, the gain will be due to the higher d2(free) 
alone (= 101og,, 4/2.34 = 2.33 dB). 

In practical systems (e.g., with nonideal equalizers), where 
residual fading effects influence the performance (assuming 
ideal interleavinddeinterleaving), the fading parameter y may 
be sufficiently large, and the performance may be guided by 
the error event path with length greater than L,;,, as discussed 
in the previous paragraph. Alternately, in systems with no 
interleavinddeinterleaving, the performance is determined by 
d2(free) [5].  Under either of the two circumstances mentioned 
above, the MTCM/(2FSK/4PSK) scheme is expected to per- 
form better than the MTCMBPSK scheme (refer to Tables I1 
and I11 for values of d2 (free) and P). The 2FSW4PSK scheme 
using two 4PSK constellations has an additional advantage 
over the 8PSK scheme with respect to phase jitter sensitivity. 

B. MTCMI(2FSKl8PSK) 

The 2FSW8PSK signal set is used in conjunction with the 
rate 5/8 trellis encoder. The signal assignments to the two- 
state trellis for optimum performance on the fading channel 
(SP-11) are shown in Fig. 6. The values of d2(free) and P 
are listed in Table IV for the MTCM(2FSW8PSK) scheme 
with h = 0.5 ( 4  = 22.5"), and for the MTCM/16PSK 
scheme with set partitionings SP-I and SP-11. Again, when 
applied to MTCM/FPM, SP-I1 is observed to meet the design 
criteria for the AWGN channel and the fading channel. For 
the two-state trellis, the gain in d2(free) over MTCM/16PSK 

is 10log,o 2.34/1.476 = 2.0 dB. The larger value of 
P for the MTCM/(2FSW8PSK) scheme yields a gain of 
10logl0 (1.246/0.188)1'2 = 4.11 dB on the Rayleigh-fading 
channel, and 2.05 dB on the one-sided normal fading channel. 
With increasing h, the gain in d2(free) is limited to 2.0 dB 
by the distances for the 8PSK signal set at the two FSK 
frequencies. For this scheme with non-integer throughput of 
2.5 bps/Hz, there is no equivalent TCM/FPM scheme. 

IV. DISCUSSION 

FPM signal sets have the advantage of providing higher 
values of A i  when compared to their equivalent MPSK signal 
sets (for M > 4).4 In the analysis of MTCM/FPM with 
h 2 0.5, it is observed that the set partitioning designed to 
maximize symbol diversity (asymptotically optimum for the 
Rayleigh fading channel) provides asymptotically optimum 
performance on the AWGN channel as well. When compared 
to MTCMMPSK, coding gain due to d2(free) results in 
improved performance on the AWGN channel and on the 
Rician fading channel with y > 0. When an improvement 
in the value of P occurs (e.g., the two-state MTCMFPM 
scheme), MTCMFPM performs better than MTCM/MPSK 
on the Rician-fading channel (y < m), and on the one-sided 
normal fading channel. 

41t is not practical to use a 2FSW2PSK signal set in place of a 4PSK signal 
set, because A i  of the 4PSK signal set is equal to 2.0, and the maximum value 
of A; achievable with 2FSWMPSK signal sets is also equal to 2.0. Therefore, 
the use of the latter set in place of the former will not provide any coding 
gains. 
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E =  k] F =  

. -  
0,12 
1 ,  9 
2, 6 
3, 3 
4, 0 
5,13 
6,lO 
7. 7 
8. 4 
9. 1 

10 , l  
11, l  
12, E 
13, E 
14, 2 
1 5 , l  - .  

Fig. 6.  Two-state trellis code for the rate 5/6 MTCM (I; = 2, 16-ary signals) 
with Set Partition 11. 

TABLE IV 
d2  (free) AND P FOR MTCM/(2FSW8PSK) AND MTCMI16PSK 

2FSW8PSK h = 0.5, Q = 22.5' 16PSK 

SP-I1 SP-I1 
SP-I SP-I 

S d'(free) &(free) P d'((frce) &(free) P 

2 2.00 2.34 1.25 1.48 1.39 0.19 
4 2.34 2.34 2.00 1.48 1.48 2.00 

8HC 2.34 3.51 2.00 2.34 2.56 2.0 

While making the comparison with MTCM/MPSK, it is im- 
portant to consider the bandwidth expansion of FPM schemes 
over MPSK schemes. The FPM schemes require a greater 90% 
bandwidth (band of frequency containing 90% of the total 
signal power) than MPSK schemes [lo], but the bandwidth 
occupancy is found to be lower than that of MPSK schemes 
at several other values5 of the percentage signal power. The 
complexity of the two schemes is the same, since the only 
difference between the two schemes is in the choice of signal 
sets (FPM or MPSK). 

The MTCM/FPM schemes discussed in this paper also 
have to be compared to their conventional TCM counterparts 
for which FPM was proposed [lo]. On the AWGN channel, 
the MTCM/(2FSK/4PSK) scheme yields performance gains 
over the TCM/(2FSK/4PSK) scheme for the two-state trellis 
and for the 16-state trellis. On the fading channel, the 
MTCM/FPM schemes are superior to the TCM/FPM schemes 
due to the larger value of signal diversity obtained by them 
for the two-state trellis. Again, when the number of states 
is large enough that there are no parallel transitions in 

'It has been shown that the bandwidth occupancy of FPM schemes is lower 
than that of MPSK schemes at (among other values) 91,95.5, and 99% of total 
signal power [15]. With respect to the MPSK signal bandwidth occupancy, 
the 90% bandwidth for h = 0.5 and 1.0 is 1.35 and 1.2 times, respectively, 
while the 91% bandwidth for the same values of h is reduced to 0.95 and 0.9 
respectively. 

the MTCM trellis, the signal diversity is more than that 
obtainable by conventional TCM schemes. This behavior 
on the AWGN channel and on the fading channel is 
consistent with that observed for MTCM/MPSK with respect 
to TCM/MPSK. It must be pointed out that in cases where 
MTCM trellises have parallel transitions and the equivalent 
TCM trellises have none, the TCM scheme may be preferred. 
Compare the eight-state rate 2/3 TCMBPSK scheme 
(d2(free) = 4.586, Lmin = 3) to the eight-state rate 4/6 
MTCMBPSK scheme (d2(frec) = 3.17. Lmin = 2).  Similar 
conclusions hold for the FPM signal sets as well. 

In the comparison of MTCM/FPM to TCM/FPM, since both 
schemes employ FPM signals, the bandwidth occupancy is not 
the issue, but the complexity is. The normalized complexity 
per 2-D signal is defined as c = 2'+"/k [6], where & is the 
number of encoded bits, 2" is the number of states, and k is 
the code multiplicity. Here, 6 defines the connectivity of the 
trellis (i.e., the number of states to which a given state in the 
trellis is connected). For a given number of states and trellis 
connectivity, the complexity of the MTCM scheme is equal 
to l / k  times the complexity of the TCM scheme. Therefore, 
MTCM schemes have a lower normalized complexity per 2-D 
signal. This description of complexity ignores the aspect of 
subset decoding. Indeed, for MTCM schemes, the size of the 
subsets (signals assigned to parallel transitions in the trellis) is 
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larger than that for TCM schemes. For example, for the two- 
state rate 2/3 TCM and rate 4/6 MTCM ( I C  = 2) schemes 
the number of parallel transitions (i.e., the size of the subset) 
equals 2 and 8 respectively. Therefore, the subset decoding 
complexity of MTCM schemes is higher than that of TCM 
schemes. This issue has been addressed in detail in [16]. 

The significance of the simultaneous optimization of the 
design criteria for the AWGN channel and the fading channel 
is evident in Fig. 5.  In this figure, the performance gain 
of MTCM/(2FSW4PSK) over MTCMWPSK for the two- 
state trellis, increases with increasing values of y due to 
the additional contribution of the larger #(free) to the gain 
obtained on the Rayleigh-fading channel due to the increased 
value of P. 

The Nakagami-m fading model and the Rician-fading model 
were both proposed as generalizations of the Rayleigh fading 
model. The performance analysis of trellis codes on the 
fully interleaved (zero memory) nonselective fading channel, 
using the Nakagami-m fading model as an alternative to the 
Rician-fading model, results in a simple expression for the 
error probability upper bound. The analysis of this expression 
is useful in revealing the likenesses and disparities of the 
two “suggested equivalent” fading models. For the extreme 
cases of Rayleigh fading and AWGN (no fading), the upper 
bound agrees perfectly with the results obtained using the 
Rician-fading model. For intermediate cases of fading, an 
examination of the asymptotic expressions for the painvise 
error probabilities for the two fading models reveals that the 
bounds are equivalent only at low SNR’s with the disparity 
becoming considerable at high SNR’s. The disparity is due 
to the diversity introduced by the channel in the asymptotic 
expression for the pairwise error probability calculated with 
the Nakagami-m fading model. In this paper, the performance 
analysjs on the Rician-fading channel is carried out by using 

The special case of one-sided normal fading is represented 
by the Nakagami-m fading model with m = 1/2. For this 
channel, it is shown that the trellis code design parameters are 
the same as those for the Rayleigh-fading channel. 

[5,  eq. ( 4 ~ .  
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