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A Modified Design of Trellis-Coded 
MPSK for the Fading Channel 

Shalini S. Periyalwar, Member, IEEE, and Solomon M. Fleisher, Senior Member, IEEE 

Abstruct-Multiple trellis-coded modulation (MTCM) of MPSK 
employs separate designs, which are optimum at high SNR, for 
the Rayleigh fading channel and the AWGN channel, in order 
to meet the different design criteria for the two channels. The 
separate designs are no longer optimum if the channel conditions 
are interchanged, if the channel is Rician, or if the SNR’s are 
moderate. In this paper, a modified design MTCM (MD) is 
considered, wherein it is shown that the classical AWGN channel 
design can be retained for the Rician fading channel (which is 
Rayleigh and AWGN at the extremes) with any degree of fading, 
by choosing an appropriate signal set of size Mmin. The signal 
set size Mmin depends on the throughput rate and the number 
of parallel transitions between a given pair of states. For a given 
throughput rate and signal diversity, the proposed MTCM (MD) 
schemes achieve a higher value of &(free) and the same or higher 
value of branch distance product when compared to existing 
MTCM schemes designed for the Rayleigh fading channel. The 
improved performance ensuing on the Rician fading channel is 
demonstrated by asymptotic coding gains with respect to existing 
MTCM schemes and simulation results for some of the codes. 
The effect of phase errors due to fading on the MTCM (MD) 
schemes which have increased signal set size in some cases is also 
studied by simulation. 

I. INTRODUCTION 
RELLIS-CODED modulation (TCM), a bandwidth- T efficient coded modulation scheme [ 13, has found 

practical application in high-speed data transmission modems 
for the band-limited telephone channel. Recent interest has 
focused on the design of TCM for the slow fading mobile 
satellite communication channel [2]-[6]. M-ary PSK, with its 
radially symmetric decision regions which are unaffected by 
the fading depth, is the modulation choice for these channels. 
The most extensive work to date on MPSK trellis codes 
for fading channels has been that of Divsalar and Simon. 
They have evaluated the performance of trellis-coded MPSK 
schemes on the fading channel [2] - [5], and have demonstrated 
that multiple TCM (MTCM) schemes transmitting k 2 
2 MPSK signals per trellis branch provide performance gains 
on the fading channel [4], [5]. In [4], it has been shown 
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that the signal diversity and the product of branch distances 
play a major role in the performance of TCM schemes on 
the fading channel. In the conventional TCM scheme [l], 
where the output bits from a rate m/m + 1 encoder are 
assigned a signal from a 2m+1-ary signal set, the signal 
diversity cannot exceed one when parallel transitions exist. In 
the MTCM scheme [8], the output bits from a rate m/m + q 
encoder are assigned signal k-tuples from MPSK signal sets 
of size Mi, with m + q = ~ f = l l o g 2 M i .  When MTCM 
is employed, the signal diversity along parallel transitions 
can be increased to equal k .  In the MTCM scheme with set 
partitioning optimum for the AWGN channel (MTCM (SPA)) 
[9], the signal diversity in the trellis with parallel transitions 
is less than k .  The set partitioning proposed [4] for the fading 
channel (MTCM (SPF)) maximizes the signal diversity along 
the parallel transitions to k ,  but reduces the attainable d2(free). 
In the sequel, it will be shown to what extent the reduced 
d2(free) impairs the attainable performance when the fading 
is not severe @e., Rician channel with strong direct signal 
component). 

In this paper, it will be shown that the classical AWGN 
channel design can be retained for the fading channel with 
any degree of fading, if carried out with the appropriate 
signal set size M = Mmin. The size of the signal set Mmin 
is shown to depend upon the number of parallel transitions 
between a given pair of states and the throughput rate. In 
the proposed MTCM scheme with a modified design (MTCM 
(MD)), the output bits from a rate m/m + 1 trellis encoder 
are assigned multiple signals from an Mm;,-PSK signal set. 
When compared to the MTCM (SPF) design, the MTCM 
(MD) scheme: 1) provides the same signal diversity and the 
same or increased values of the branch distance product, 
and 2) always leads to increased value of d2(free). As a 
result, the performance is always improved on the Rician 
(excluding Rayleigh) fading channel due to the increased 
d2(free), and is improved on any (including Rayleigh) fading 
channel when an increase in branch distance product P takes 
place. When compared to the MTCM (SPA) design, the 
MTCM (MD) scheme, under certain conditions, provides the 
same value of d2(free) as the MTCM (SPA) design, and is 
then asymptotically optimum for both the AWGN channel and 
the fading channels. 

In Section I1 of this paper, the design criteria for trellis codes 
on the AWGN channel and fading channels are reviewed, 
and the differences between the MTCM (SPA) and MTCM 
(SPF) schemes are discussed. The design and performance of 
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the 

Channel 0 
Fig. 1. A TCM system for coherent detection. 

ITCM (MD) schemes are presented in Section 111, ani 
Section IV contains the discussion. 

11. PERFORMANCE OF TRELLIS-CODED SCHEMES 
ON THE AWGN AND FADING CHANNELS 

The general structure of a TCM system for coherent detec- 
tion is shown in Fig. 1. At the transmitter, the m + q ( q  2 1) 
bits out of the trellis encoder are assigned k 2 1 signals from 
an MPSK signal set, where k is referred to as the multiplicity 
of the TCM scheme. The throughput T of the scheme is 
mlk b/s/Hz, and for a given throughput, the number of 
parallel transitions in the trellis increases with k .  The MPSK 
signal set mapping is carried out to meet the design criteria of 
interest. At the receiver, the MPSK signals disturbed by the 
channel are demodulated and Viterbi decoded. On the fading 
channel, interleaving and deinterleaving are employed at the 
transmitter and receiver, respectively. For a coded MPSK 
signal sequence x (x E C ,  where C is the set of allowable 
codeword sequences) and the corresponding received signal 
sequence y, the Viterbi decoder finds the signal sequence 
that is closest to the sequence of received signals in terms of 
the minimization of a distance metric m,(x, y). The decoder 
makes an error by selecting some sequence li: # x if the 
metric m(2,y) 5 m(x,y). The metric m(x,y) is some 
nonnegative function of x given y, and from the point of view 
of computation, it is desirable that the metric have an additive 
property [2] (for example, the maximum likelihood metric). 
The selection of the sequence 2 # x results in an “error 
event.” The average error event probability of the trellis-coded 
scheme is upper bounded by the union bound (41 

x ?EC 

where p(x) denotes the a priori probability of transmitting the 
sequence x, and P(x + 2 )  denotes the error event probabil- 
ity, i.e., the probability that the sequence x # x is the decoded 
sequence given that x is the transmitted sequence. 

On the AWGN channel, the error event probability is 
given as 

where E,/No is the M-ary signal SNR, with E,  being the 
symbol energy and NO the one-sided power spectral density 
of the input noise, L is the length of the error sequence 
x # x, and x1 and i l  are signals in the sequences of x and 
2,  respectively. 

The error event probability on the fading channel with 
ideal interleavinddeinterleaving (assuming perfect recovery of 
frequency and phase) is conditioned on the fading amplitude 
vector p ,  which affects the received signal as y = pTx + n, 
and is given in [4] as 

) 
L 

P ( z  ---f kip) 5 exp -- p;lxl - i l l 2  . (3)  ( 4No 1=1 

Equation (3) applies to the case of ideal channel state infor- 
mation (CSI) being available at the receiver. 

The fading amplitude pl is an r.v. which is assumed to be 
constant over at least one symbol interval, and may be defined 
by the Rician probability density function (pdf) 

where y is the ratio of signal energies in the direct and 
scattered signal components. Here, y = 00 corresponds to the 
AWGN channel, and y = 0 indicates the presence of only the 
diffuse multipath signal and corresponds to Rayleigh fading. 
Divsalar and Simon have derived the error event probability 
bound for trellis-coded signals on the Rician fading channel 
for coherent and differentially coherent demodulation with 
and without CSI. Under the conditions of ideal interleav- 
inddeinterleaving, coherent detection with ideal CSI and a 
Gaussian decoding metric, the error event probability has been 
derived as [4] 

L 
1+Y P(x + 2 )  I n - 

l=1 1 + y + & 1x1 - & I 2  

where E, is the symbol energy averaged over the fading 
amplitude. By applying a simplification to (5 )  in terms of a 
high SNR condition 

- 
n 

the error event probability on the fading channel is shown 
to be independent of d2(free) [4, eq. (S)] (accurate for the 
Rayleigh fading channel only). The expression (5) can be used 
to analyze the error events on the Rayleigh and Rician fading 
channels. 

Using (2) and (5), the following may be determined that [4]. 
1) On the AWGN channel, the performance is guided by 

the minimum squared Euclidean distance of the error events 
[in particular, d2(free)]. 

2) On the fading channel with small values of the fading pa- 
rameter y and under high SNR conditions (6), the performance 
is guided by the error event path with the smallest number of 
symbols at nonzero Euclidean distance’ (denoted as Lmin) and 
by the product P of these nonzero branch distances. 

3 )  On the fading channel with values of y corresponding to 
the presence of a strong direct signal component orland under 

‘With respect to the signals on the correct path. 
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Fig. 2. Two-state trellis for the rate 4/6 MTCM scheme with set partition- 
ing for the AWGN channel and the fading channel. 

moderate SNR conditions, the performance is guided by all of 
the conditions mentioned in statements (1) and (2)  above. 

Thus, the design criterion for trellis-coded schemes on the 
AWGN channel is d2(free), while for the Rayleigh fading 
channel, the design criteria are the quantities Lmin and P.  

To satisfy the respective design criteria for MTCM schemes 
on the AWGN channel and on the fading channel [under the 
condition (6)], Divsalar and Simon have proposed two differ- 
ent set partitioning procedures for MTCM schemes. The signal 
assignments resulting from the two partitioning procedures 
are illustrated for the two-state rate 4/6 ( k  = 2) MTCM 
scheme with 8PSK signals [5] in Fig. 2. The set partitioning 
procedure for the AWGN channel design (SPA) begins with 
the division of the original MPSK signal constellation into 
two subconstellations, comprising the odd- and even-numbered 
signal points. Multiple (or k-tuple) signals from each of these 
subconstellations are assigned to alternate trellis states. For 
trellises with parallel transitions, this partitioning results in 
Lmin < k because the number (four) of MPSK signals in 
the subconstellation is less than the number (eight) of parallel 
transitions. 

To optimize the design for the fading channel [5] where 
Lmin = k is desired, the second set partitioning procedure 
(SPF) employs k-tuple signals from the unpartitioned signal 
constellation. The SPF design results in reduced d2(free) 
(= d2(A,  B )  + d ( A ,  C )  = 4 x d2(0, 1) = 2.34) compared to 
that obtained by using the SPA design (d2(free) = d 2 ( A ,  B )  + 
d 2 ( A ,  C )  = d 2 ( 0 ,  2) + 2 x d2(0, 1) = 3.17) (refer to Fig. 2). 
For small values of y and for high SNR for which this 
scheme is designed, it works very well because d2(free) has 
a negligible effect on the performance. For larger values of 
y, indicating fading with a strong direct signal component, 
or/and under moderate SNR conditions, all three quantities 
influence the performance (see statement 3) above), and the 
reduced d2(free) does have an effect. 

A pictorial analysis of the factors that influence the per- 
formance is given in Fig. 3 for the two-state rate 4/6 MTCM 
scheme (Fig. 2). The upper bound to the error event probability 
(5)  is plotted versus SNR @,/No)  for the SPF design and the 
SPA design with various values of y. For each design, the error 
event probability P ( z  + 2 )  is calculated for the one-branch 
( L  = L m i n ,  d2 > d2(free)) error event2 and the two-branch 
( L  > Lmin, d2 = d2(free)) error event. These error events for 

* L  is the number of symbols at nonzero Euclidean distance and d' is the 
sum of squared Euclidean distances along any error event path. 
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Fig. 3. Error event probability versus SNR ( E s / N ~ )  for various values of 
y for the two-state rate 4/6 MTCM scheme (fading channel design). The 
curves are for the Lmin and &(free) error events. The worst case error event 
probability for the AWGN channel design is also illustrated. 

the SPF design may be identified in Fig. 2 as [(0, O , ) ,  (1,5)] 
and [ ( A ,  B) ,  ( A ,  C)], respectively (assuming that the all-zero 
path is the correct path). The results are given as two separate 
curves. Similarly, the error events for the SPA design in Fig. 2 
are [(O,O), (0,4)] and [ ( A ,  B) ,  ( A ,  C ) ] ,  respectively. For this 
design, a single curve is shown, with the points marked on this 
curve corresponding to the largest (predominant) error event 
probability due to either the two-branch error event (hence, 
d2(free)) (circled) or the one-branch error event (hence, Lmin). 
It is well known that as y + m, the d2(free) error event 
dominates the performance. 

For the SPF design, it can be seen that for y = 0 [Fig. 3(a)], 
the performance is dominated by the error event path with 
Lmin(= 2). As y increases, the d2(free) error event path 
begins to dominate the performance [Fig. 3(b)-(f)]. The SNR 
at which the Lmin error event dominates the performance 
increases with increasing values of y. 

The SPA design with Lmin = 1 is the worst performer for 
y = 0; 10 [Fig. 3(a), (b)]. As y increases above these values, 
it can be seen that the SPA design performs better than the 
SPF design due to its larger value of d2(free). 

Fig. 3 therefore indicates that for small values of y and 
high SNR's, Lmin is clearly the design criterion; but for 
performance on fading channels with strong direct signal 
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components or with moderate SNR conditions, it is essential 
that d2(free) and Lmin be maximized simultaneously. These 
conclusions leave some room for possible improvement of the 
MTCM (SPF) design. 

It must be noted that in cases where MTCM trellises have 
parallel transitions and conventional TCM trellises have none, 
the conventional TCM trellis may provide a higher value of 
d2(free), L,;,, and P than the MTCM trellis. Compare the 
eight-state rate 2 / 3  conventional TCM code (d2(free) = 4.586, 
Lmin = 3, P = 8) to the eight-state rate 4/6 MTCM (SPA) 
scheme (d2(free) = 3.17, Lmin = 2 ,  P = 4) both employing 
8PSK signals. MTCM schemes are found to be superior to 
TCM schemes on the AWGN channel and on the fading 
channel when the number of states is very small, or when 
the number of states is large enough so that the MTCM trellis 
has no parallel transitions. 

In the next section, the proposed modified design of MTCM 
(MTCM (MD)) is discussed. The MTCM (MD) schemes are 
designed to achieve Lmin 2 k (by the appropriate choice of 
the signal set size Adm;,) when the set partitioning is carried 
out as for the AWGN channel design. 

111. CODE DESIGN AND PERFORMANCE 

A. The Signal Set Size 
From each state in the trellis of a rate m/m + q trellis 

encoder, there are 2” transitions, each of which represents 
one of the 2” unique combinations of the m binary input bits. 
When the number of transitions is more than the number of 
states, there are parallel transitions in the trellis (the parallel 
transitions are accounted for by the uncoded bits in the trellis 
encoder). 

In general, the number of parallel transitions between a 
given pair of states for an S-state trellis shown in Fig. 4 can 
be given as 

(7) 

where C is the trellis connectivity (C = 1/2 for a half- 
connected trellis, C = 1 for a fully connected trellis). For 
example, the two-state rate 4/6 MTCM trellis code referred 
to earlier has Nparallel = 8. When they exist, the parallel 
transitions usually account for the “L,;, error events.” While 
designing the scheme for the fading channel, it is therefore 
important that the signal diversity is maximized for the parallel 
transitions, i.e., each of the signal k-tuples assigned to the 
parallel transitions have all distinct elements. 

For the MTCM (MD) scheme, the AWGN channel set 
partitioning is preserved, and the original MPSK signal con- 
stellation is first divided into odd and even subconstellations of 
size M / 2  from which the k-tuple signals assigned to the trellis 
branches are constructed. Since the total number of k-tuples 
constructed from a given subconstellation should be at least 
equal to the 2” transitions from any given state, we require 

Fig. 4. S-state trellis. (a) Fully connected (C = 1). (b) Half-connected 
(C = 1/2).  

This is, in fact, Ungerboeck’s “expanded set” which is op- 
timum for the AWGN channel, generalized into an MTCM 
scheme. 

From the requirement Lmin = k on the parallel transitions, 
it follows that the size of the subconstellation should be at 
least equal to the number of parallel transitions in order to 
avoid common elements in the signal k-tuples assigned to 
those transitions. Thus, we require 

2m+l M 2” - 2 -  or M > -  

The minimum value of M that satisfies both (9) and (8) is 
denoted as Mmin. 

Mmin is determined by (8), i.e., equals the Ungerboeck’s 
expanded set, when 

(9) 2 cs cs . 

log, CS 2 m - r . (10) 

In this case, the MTCM (MD) scheme provides the same value 
of d2(free) as the SPA design, along with the same value of 
Lmin > k and a higher (or equal) value of P as the SPF design. 
Hence, when (10) holds, the MTCM (MD) scheme is optimum 
for both the AWGN channel and the fading channel with 
any degree of fading. Interestingly, MTCM (MD) schemes 
sometimes provide higher values of P when compared with 
MTCM (SPF) (Table 111). This happens when the signal set 
size for the MTCM (SPF) design is not chosen in accordance 
with (8) (refer to the T = 2.5, S = 2, rate 5 / 6  code in 
Table 111). It must be noted that, in MTCM schemes (SPA 
and SPF designs), the number of states does not affect the 
signal set size. 

When Mmin is determined by (9), i.e., (10) does not 
hold, the signal set size required is larger than Ungerboeck’s 
expanded set. This leads to reduced d2(free) when compared 
to the MTCM (SPA) design, and an increased sensitivity to 
phase jitter. However, the loss in d2(free) is less than with the 
MTCM (SPF) design, while Lmin and P are the same. 

Summarizing, we conclude that the proposed MTCM (MD) 
scheme, when compared to MTCM (SPF) with the same 
throughput, always achieves better performance on the fading 
channel with y > 0 due to increased d2(free). When the 
value of P is also higher than in the MTCM (SPF) design, 
the MTCM (MD) scheme achieves better performance on any 
fading channel. If (10) holds, the MTCM (MD) scheme does 
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not require an increase in signal set size with respect to the 
MTCM (SPA) or the MTCM (SPF) schemes, and consequently 
provides a single design optimum for both the AWGN and the 
fading channels. If (10) does not hold, Adm;" is double the 
size of the Ungerboeck expanded signal set, which leads to 
an increased phase error sensitivity. However, the increased 
value of d2(free) with respect to the MTCM (SPF) design 
may overcompensate for the deterioration in performance due 
to phase errors (as shown in the simulation example). These 
conclusions are clarified below by a comparative analysis of 
the proposed MTCM (MD) schemes and existing MTCM 
(SPF) schemes. 

B. MTCM (MD) Schemes for the Fading Channel 

MTCM (MD) schemes employ a rate m/m + 1 trellis 
encoder, with each of the 2m+1 unique combinations of output 
bits being assigned a phase-modulated signal k-tuple, with 
the signal set size Mmin determined by (8) and (9). The 
generation of subsets is shown in Table I for the (two-state) 
rate 314 and 415 MTCM (MD) schemes with multiplicity 
IC = 2, with the addition being modulo-Mmin. In Table I, the 
Mmin/2-PSK signal subconstellations of even-numbered sig- 
nals from the original Mm;,-PSK signal set are illustrated. 
Subsets A and B are constituted of these signals. Subsets C 
and D are constituted of the subconstellation of odd-numbered 
signals. These subsets are assigned to trellis transitions in 
the two-state trellis such that d2(free) is maximized. The 
generation of subsets for the (two-state) rate 415 MTCM (MD) 
scheme with multiplicity k = 4 is shown in Table I1 with the 
addition being modulo-Mmin. 

Table 111 lists d2(free), L,;,, and P for the different 
schemes. It also provides a comparison to existing MTCM 
schemes on the basis of the same throughput rate r and 
&,in. The value of d2(free) has been calculated by using the 
generalized transfer function technique proposed by Biglieri in 
[7] for conventional TCM systems. Fig. 5 illustrates the trellis 
structures used for some of the MTCM (MD) schemes which 
are discussed below. 

1) Two-State Rate 213 Code (C = 1, r = 1 b / s / H z ,  
k = 2): For this code, employing signals from a QPSK 
signal set, set construction on the lines of Table I is quite 
straightforward. The signal assignment to the two-state trellis 
is as follows: A = [(00),(22}];  B = A + (02);  C = 
A + { 13);  D = B + (1 3 ) .  The trellis assignments and the 
performance of this code are the same as that for the rate 
214 MTCM code of Divsalar and Simon [8]. 

2) Four-State Rate 314 Code (C = 1, r = 1.5 b / s / H z ,  
and k = 2): The signals are assigned to the trellis branches 
from an 8PSK signal set. Since Mmin is determined by (8) 
and is the same for S = 4 as for S = 2, subsets for this 
code may be derived by an odd-even split of the elements 
in the subsets given for the two-state trellis in Table I as 
A = [{00},{44)]; B = [(22},(66)];  C = A + (04);  
D = B + (04);  E = A + (15);  F = B + (15);  G = 
C + { 15);  H = D + { 15) .  For this code, the minimum 
Euclidean distance for an error event along the parallel path 
is equal to 2 x d 2 ( 0 ,  4) = 2 x 4sin2(7r/2) = 8. The minimum 

TABLE I 

5 / 6  MTCM (MD) COnES WITH k = 2 
GENERATION OF SUBSETS FOR THE TWO-STATE RATE 3/4, 4/5, AND 

4 I 

410 

6 10 14 
12 I 

Subset A: 

1. All pairs of points 0 0  0 0  
on axes 2 2  4 4  

4 4  8 8  
6 6  12 12 

2. All points on sub-axes 
with diagonal 
counterparts 

2 10 
6 14 
10 2 
14 6 

3. All remaining points 
at 2700, I@, 900 

d;, (A 1 4.0 4.0 

Subset B: 

Add to subset A 0 4  0 8  

d;, (AB)  4.0 1.17 

Subset C, D: 

Add to subsets A, B 1 5  1 5  

dim (A .C ) 4.0 1.386 

dim (BSJ) 4.0 1.386 

TABLE I1 
GENERATION OF SUBSETS FOR THE TWO-STATE RATE 4/5 AND 

5/6 MTCM (MD) CODES WITH k = 4 

1. All pairs of points 
on axes 

0 0 0 0  
4 4 4 4  

12 12 12 12 
8 8 8 8  1 

2. All points on sub-axes 2 10 2 10 

counterparts 10 2 10 2 
6 14 6 14 

14 6 14 6 

with diagonal 

3. All remaining points 
at 270°, 1800,900 

d:, (A 1 8.0 

Subset 8: 

Add to subset A 

1 1 3  9 5 

8.0 

8.0 

squared Euclidean distance for the two-branch error event 
path is also equal to 2 x d 2 ( 0 ,  2) + d2(0,4) = 8sin2(7r/4) + 
4sin2(7r/2) = 8, and therefore d2(free) = 8.0. The parallel 
paths have Lmin = 2 and P = 4sin2(7r/2) x 4sin2(7r/2) = 

1 r- 
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r S 

TABLE I11 
PERFORMANCE OF MTCM (MD) SCHEMES IN TERMS OF #(free) L,,, AND P 

MTCM (MD) MTCM 

Code M k 4;- L,,, D Code M k 4;- L,,, D Design 

2 
1 4  

8 

2 415 16 2 277 2 2 416 8 2 234 2 2 [5]Fading 1 2 o  a /M 1 317  12 2 $ 1:: 1 1 7 1  I 
TCM (conventional) is better 

4/5 16 4 8 4 4 4/12 8 4 468 4 4 [5lFading 
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Fig. 5. Trellis structures for: (a) two-state code, (b)  four-state code, etc., 

16. This code achieves the same d2(free), L,i,, and P as the 
four-state rate 6/12 MTCM (SPA) scheme with 8PSK signals 
[9]. Note that the latter scheme with k = 4 has a higher 
multiplicity which may result in a larger error coefficient. 

3) Eight-State Rate 314 Code (C = 1, r = 1.5 b / s / H z ,  
k = 2): The 16 signal subsets for this code are derived by 
further splitting the eight signal subsets listed in 2)  (because 
Mmin is the same as for the four-state code above). There 
are no parallel transitions. This code achieves d2(free) = 
d2(0,4) + d 2 ( 0 ,  1) + d2(0,3) = 4sin2(r/2) + 4sin2(r/8) + 
4sin2(3r/8) = 8.0, Lmin = 3, and P = 8. The rate 316 
(k = 2 )  MTCM (SPF) scheme with 8PSK signals [5]  has 
d2(free) = 5.17, Lmin = 3, and P = 8. Although both 
schemes employ SPSK signals, a higher value of d2(free) is 
obtained with the MTCM (MD) code, giving an asymptotic 
coding gain of 1.9 dB on the AWGN channel. The simulation 
results in Fig. 6 for this code are discussed in Section 111-C. 

4) Two-State Rate 415 Code (C = 1, r = 2 b / s / H z ,  k = 2): 
The subsets for this code (Mmin = 16) are given in Table I. 
With subsets A and C assigned to state 0, and subsets D 
and B assigned to state 1, this code has a minimum squared 
Euclidean distance along the parallel path = 4sin2(r /8)  + 
4sin2(5=/8) = 4.0, Lmin = 2, and P = (4sin2(r/8) x 
4sin2(5=/8)) = 2 .  The two-branch error event achieves 
d2(free) = 2 x (4sin2(r/16) + 4sin2(3r/16)) = 2.77. The 
two-state rate 4/6 ( k  = 2) MTCM (SPF) scheme [5]  with 
8PSK signals has d2(free) = 2.34, Lmin = 2, and P = 2 .  For 
the same values of Lmin and P ,  the MTCM (MD) scheme has 
a higher value of d2(free). 

5) Four-State Rate 4 / 5  Code (C = 1, r = 2 b / s / H z ,  
k = 2): For this code (Mmin = 8), the elements of the eight 
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1 E-02 
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D 
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! 1E-03 
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1 E-04 

MDIlOdB) I 
-4- 1 

1E-05 I I I I 
d 5 6 7 
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Fig. 6. Bit error probability versus SNR (Eb/No) for various values of y 
for the eight-state rate 3 /4  (IC = 2, 8PSK) MTCM (MD) scheme and the 
eight-state rate 3 /6  (IC = 2, 8PSK) MTCM scheme. 

1E-01 L 

1E-05 I I I I I 
4 5 6 7 8 

SNR (dB) 

Fig. 7. Bit error probability versus SNR (Eb/No) for various values of y 
for the four-state rate 4/5 (IC = 2, SPSK) MTCM (MD) scheme and the 
four-state rate 4/5 (IC = 2, 4/8PSK) MTCM scheme. 

signal subsets are as follows: A = [ { 0 0} , { 2 2 } ,  { 4 4), { 6 6)]; 
B = A + (04); C = A + (02); D = A + ( 0 6 ) :  E = A + 
(15);  F = B + (15); G = C + (15); and H = D + 
{ 1 5). Subsets A-D and subsets E - H  are assigned to alter- 
nate trellis states, giving d2(free) = d2(0, 2) + 2d2(0, 1) = 
3.17, Lmin = 2, and P = 4.0. The four-state rate 415 
( I C  = 2) MTCM scheme with a hybrid QPSK/8PSK signal set 
[5] has d2(free) = 2.586, Lmin = 2, and P = 1.17. The larger 
values of d2(free) and P result in improved performance. 
The simulation results presented for this code in Fig. 7 are 
discussed in Section 111-C. 

6)  Four-State Rate 516 Code (C = 1, r = 2.5 b / s / H z ,  
IC = 2): For this code (Mmin = 16), the signal sub- 
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7 8 9 10 11 12 13 
SNR (dB) 

Fig. 8. Bit error probability versus SNR (E*/No)  for various values of y 
for the four-state rate 5/6 ( k  = 2, 8PSK) MTCM (MD) scheme and the 
four-state rate 5 / 6  ( k  = 2, 8PSK) MTCM scheme. 

sets are as follows: A = [(00), (2 lo), {44),  (6 14}, ( 8 8 ) ,  
{102},(1212},{146}]; B = A + (08); C = A + (04);  
D = A + (012); E = A + (15);  F = B + (15);  
G = C + (1 5); and H = D + (1 5). This code achieves 
d2(free) = 4 x d2(0,2) = 2.34, Lmin = 2, and P = 2. The 
four-state rate 516 ( I C  = 2) MTCM (SPF) scheme with 8PSK 
signals [5] gives d2(free) = 1.757, Lmin = 2, and P = 1.17. 
The simulation results presented for this code in Fig. 8 are 
discussed in Section 111-C. 

7) Two-State Rate 415 Code (C = 1, r = 1 b/.s/Hz, 
k = 4): This code with Mmin = 16 achieves d2(free) = 
2(d2(0 ,  2) + d2(0, 10)) = 8.0 and P = 4.0 for the error event 
along a parallel transition. The two-state rate 4/12 MTCM 
(SPF) scheme with 8PSK signals [5] achieves d2(free) = 4.68 
and P = 4.0. Again, a larger value of d2(free) is obtained by 
the MTCM (MD) code. 

C.  Performance 

On the Rayleigh fading channel, for a given value of r 
and L,;,, the performance of the MTCM (MD) schemes 
is equivalent to the MTCM (SPF) schemes (if and when 
both codes have the same branch distance product P). The 
advantages of the MTCM (MD) schemes are greatest on the 
fading channel with y > 0, or under moderate SNR conditions, 
when the performance is influenced by all three parameters 
d2(free), L,;,, and P (as discussed in Section 11). For given 
values of r and L,i,, the gains offered by the increased 
d2(free) (and P )  in MTCM (MD) schemes as compared to 
MTCM schemes are illustrated for some of these codes in 
Figs. 6-9 by simulation results for the bit error probability P,, 
versus SNR = Eb/No, where E,, is the unfaded bit energy. 

The simulation programs used to obtain the plots 
in Figs. 6-9 are adapted from the software developed 
for the shadowed Rician fading model in the Canadian 
Mobile Satellite Communications (MSAT) Program [lo]. 

1E-02 t 

MD (phase error) 

I =.nc f 
I -  "" 

9 10 11 12 13 
SNR (dB) 

Fig. 9. Bit error probability versus SNR (Eb/>Vo) for various values of y for 
the four-state rate 5/6 ( k  = 2, 8PSK) MTCM (MD) scheme and the four-state 
rate 5/6 ( k  = 2, BPSK) MTCM scheme in the presence of phase jitter. 

A convolutional interleaver-deinterleaver [ 111 is employed, 
with the degree of interleaving equal to 4 and the depth 
of interleaving equal to 1. Coherent demodulation of the 
MPSK signals is implied. It is assumed that the phase of 
the received signal is unaffected by the fading process. The 
Viterbi algorithm with the minimum distance metric is used 
to decode the trellis-coded symbols. Amplitude CSI is used in 
the decoding process. The bandwidth B of the fading process, 
normalized with respect to the symbol rate, is assumed to be 
0.3. The effect of phase jitter due to the fading process is 
included only in Fig. 9, where the two codes compared have 
different signal set sizes. Simulation results are presented for 
different values of y, including y = cc (AWGN channel). 

The curves plotted in Fig. 6 are for the eight-state rate 
314 ( I C  = 2, 8PSK) MTCM (MD) scheme (L,in = 3, 
d2(free) = 8.0, P = 8) discussed in Section III-B3), and 
for the eight-state rate 316 ( I C  = 2, 8PSK) MTCM (SPF) 
scheme [5]  (L,in = 3, d2(free) = 5.17, P = 8). Since 
the values of Lmin and P are the same of both schemes, it 
can be expected that both schemes have similar performance 
on the Rayleigh fading channel (y = 0), as confirmed by 
the simulation results. Elsewhere in Fig. 6, the MTCM (MD) 
scheme has improved performance due to the higher value of 
d2(free). The improvement is already obvious for y = 10 dB, 
and increases with y. While the coding gains are small over 
the range of SNR's plotted, the asymptotic (high SNR) coding 
gain due to d2(free) is 1.9 dB. 

Fig. 7 illustrates the bit error probability for the four- 
state rate 415 ( I C  = 2, 8PSK) MTCM (MD) scheme with 
Lmin = 2, d2(free) = 3.17, and P = 4 [see Section III- 
BS)], and for the four-state rate 415 ( I C  = 2, 8PSK) 
MTCM (SPF) scheme [5] with Lmin = 2, d2(free) = 
2.586, and P = 1.17. In this case, the gains in both P 
and &(free) contribute to the improved performance of the 
MTCM (MD) scheme at all values of y. At y = 0, the 
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performance gain is due to the larger value of P and is asymp- 
totically equal to 10 l o g l O ( P ~ ~ T C ~ ~  ( ~ ~ D ) / P M T C M ) ~ I ~ ~ ~ ~  = 

1010g ,~ (4 /1 .17 )~ /~  = 2.67 dB. On the AWGN channel, the 
performance is improved due to the coding gain of 0.9 dB in 
d2(free). The smaller gain in d2(free) as compared to the gain 
in P results in a smaller improvement in performance on the 
AWGN channel as compared to the Rayleigh fading channel. 
For y = 10 dB, the performance improvement is due to a 
mixture of the gains in d2(free) and P. 

The curves in Fig. 8 are for the four-state rate 5/6 ( k  = 2, 
16PSK) MTCM (MD) scheme with Lmin = 2, d2(free) 
= 2.3432, and P = 2 [see Section III-B6)], and the four-state 
rate 5/6 ( k  = 2,8PSK) MTCM (SPF) scheme [5] with Lmin = 
2, d2(free) = 1.757 and P = 1.17. The asymptotic gain in 
P of 10l0g,,(2/1.17)~/~ = 1.2 dB, and in d2(free) (also 
1.2 dB), results in improved performance on the Rayleigh, 
Rician, and AWGN fading channels. Again, the nature of 
the performance gains on these channels is similar to that 
described in the last paragraph. For this MTCM (MD) scheme, 
which has an increased signal set size, it is of interest to 
examine if the performance gains will prevail when the effect 
of phase noise due to fading is included. In Fig. 9, the results 
are plotted for the y = 10 dB Rician fading channel, with 
a fading bandwidth of 0.3. For this channel, the phase error 
standard deviation was observed to be 18.62'. The probability 
distribution of the phase error on the Rician fading channel 
is given in [12]. The sensitivity of the schemes to phase 
error was studied by attenuating [lo] the phase error by an 
arbitrary factor of 4 (assuming that the phase recovery circuits 
will compensate for some of the distortion introduced by 
the channel). Again, the MTCM (MD) scheme demonstrates 
performance gains over the MTCM (SPF) scheme, although 
the latter scheme demonstrates less sensitivity to phase error 
than the former. 

IV. DISCUSSION 

Under the conditions (6) of high SNR and fading character- 
istics close to the Rayleigh model (y = 0), trellis code design 
for the fading channel has been based [4] on maximizing 
the minimum signal diversity Lmin and P .  However, under 
moderate SNR conditions, or in the case of fading with 
strong direct signal reception (y > 0), the AWGN channel 
design criterion d2(free) also plays a role, along with the 
quantities Lmin and P. This observation makes it possible 
to improve the code design and the attainable performance on 
the Rician fading channel with y > 0. The curves of error 
event probability versus SNR presented in Section I1 illustrate 
the potential gains that may be obtained. 

One way to realize an improvement in the performance 
on the fading channel is the proposed modified design of 
trellis-coded MPSK, MTCM (MD), based on set partitioning 
optimum for the AWGN channel, but with a signal set of size 
Mmin chosen to meet the fading channel design criteria. 

Table I11 contains the values of d2(free), Lmi,, and P for 
the MTCM (MD) schemes along with results for the MTCM 
(SPA and SPF) schemes for comparison. The simulation results 
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presented in Figs. 6-9 for some illustrative cases indicate 
that the MTCM (MD) schemes provide performance gains 
over MTCM (SPF) schemes, with no penalty in bandwidth or 
complexity. The gains are small for the range of SNR values 
plotted, but they increase to provide the asymptotic values at 
high SNR's. 

The MTCM (MD) schemes differ from MTCM (SPA) 
schemes in that an additional constraint Lmin 2 k is imposed. 
This constraint sometimes limits the achievable value of 
d2(free) to values that are lower than that obtained when 
the schemes are designed to maximize d2(free) alone (e.g., 
compare the two-state codes for the rate 4/6 MTCM [(SPF) 
and (SPA)] schemes and the rate 4/5 MTCM (MD) scheme]. 
However, when the value of Mmjn is determined by (S), which 
is the redundant signal set size of Ungerboeck, the MTCM 
(MD) design proposed for the fading channel is optimum for 
the AWGN channel as well (the eight-state rate 3/4 MTCM 
(MD) scheme serves as an example). 

The size of the signal set Mmin depends on the signal 
multiplicity (throughput rate) and the number of parallel 
transitions in the trellis. In contrast, the signal set in MTCM 
(usually 8PSK or lower) is independent of the number of 
parallel transitions in the trellis. This is, in fact, the basic 
difference between the MTCM (MD) design and the MTCM 
(SPA) design. It must be observed that the restriction of 
signal set size to 8PSK (or lower) implies that it will not 
be possible to construct MTCM schemes with more than 
eight parallel transitions to achieve Lmin = IC.  Thus, for 
a rate 5/6 code with k = 2, the two-state trellis with 
16 parallel transitions will only have L = 1 (< k ) .  On the 
other hand, the larger signal set size (16PSK) used for some 
of the codes in this paper is prone to larger errors due to 
phase noise. This issue is addressed in the simulation results 
presented in Fig. 9 for the four-state rate 5 /6  MTCM (MD) 
scheme (16PSK signals) in comparison with the four-state rate 
5/6 MTCM (SPF) scheme (SPSK signals). It is observed that 
the performance gains offered by the MTCM (MD) scheme 
prevail, although the MTCM (MD) scheme is clearly more 
sensitive to phase jitter than the MTCM (SPF) scheme. Under 
severe phase error conditions, the performance of the MTCM 
(MD) schemes with larger signal set sizes (e.g., the rate 
5/6 code discussed above) may be worse than their MTCM 
(SPF) counterparts. Note, however, that the size of the signal 
subset assigned to transitions between a given pair of states 
is the same for both schemes since the MTCM (MD) scheme 
contains only even-numbered or only odd-numbered signals 
in the subset, while the MTCM (SPF) scheme contains all 
the signals in the subset. Therefore, with respect to subset 
decoding, both schemes are affected by phase errors to the 
same extent. 

The encoder-modulator for multiple trellis-coded schemes 
can be described by the Calderbank-Mazo representation [ 131. 
Fig. 10 is an implementation of the encoder-modulator for the 
four-state rate 3/4 ( k  = 2, SPSK) MTCM (MD) scheme. For 
the three input bits b l ,  b2, and b3, the output signal two-tuples 
are x1 = 4b3 + b4 + 2blb5 and 2 2  = b4 + 2blb5 + 4b2b3b4, 
with b4 and b5 being the delayed bits. The maximum likelihood 
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Fig. 10. Calderbank- Mazo representation of the encoder-modulator for 
the eight-state rate 3 / 4  MTCM (MD) scheme. 

decoder for trellis-coded schemes is the well-known Viterbi 
decoder. 
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