
1

A Comparison of Mobile Robot Pose Estimation
using Non-linear Filters: Simulation and

Experimental Results
Zongwen Xue and Howard Schwartz

Department of System and Computer Engineering
Carleton University

1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6

F

Abstract—This paper explores and compares the nature of the
non-linear filtering techniques on mobile robot pose estimation.
Three non-linear filters are implemented including the extended
Kalman filter (EKF), the unscented Kalman filter (UKF) and the
particle filter (PF). The criteria of comparison is the magnitude
of the error of pose estimation, the computational time, and
the robustness of each filter to noise. The filters are applied to
two applications including the pose estimation of a two-wheeled
robot in an experimental platform and the pose estimation of
a three-wheeled robot in a simulated environment. The robots
both in the experimental and simulated platform move along a
non-linear trajectory like a circular arc or a spiral. The perfor-
mance of their pose estimation are compared and analysed in
this paper.

Index Terms—extended Kalman filtering; unscented Kalman
filtering; particle filtering; Monte Carlo Methods; mobile robot
tracking; Pose estimation.

1 INTRODUCTION

In order to fulfill the desired tasks, mobile robots
are required to localize themselves precisely. Gen-
erally, pose estimation is referred to as the ability
to estimate the position and orientation of a mo-
bile robot from noisy measurements. The Extended
Kalman Filter (EKF) [1] is a standard approach to
perform data fusion and state estimation.

The EKF is based on Taylor-series expansion of
nonlinear system functions, and then expectations
are used to compute and update mean and covari-
ance of state distribution [2], [3]. However, given
the high non-linearity of the system, the EKF is
prone to introduce large errors or even diverge [3].

The UKF [7] was proposed on the assumption
that it is generally easier to approximate the state
distribution of a Gaussian random variable (GRV)
than to locally linearize a non-linear function. It
implicitly captures the first and second moments
of the state distribution of a GRV [8].

However, the analytical approaches such as the
UKF and the EKF are not applicable to the non-
Gaussian filtering problems [9]. The Sequential
Monte Carlo (SMC) filter is an alternative approach
and can improve performance of state estimate.
The SMC-based method is also referred to as the
particle filter (PF). The PF is to approximate the
posterior PDF directly by a large set of random
sample points (particles). The particles drawn from
a known PDF are propagated through the system
model. The true statistical distribution of the state
vector can be estimated by means of the particles
and their importance weight [10].

Many studies have been conducted to compare
the nature of the EKF, UKF and the PF for trajectory
tracking and position estimation [4]–[6]. The results
of our experiments and simulations provide the
additional evidences that:

1) The PF has outperforms the EKF and the
UKF in terms of accuracy and robustness on
the highly non-linear systems with the non-
Gaussian noise.

2) The UKF has almost the same level of accu-
racy to the EKF but it needs more computa-
tional efforts.

3) The PF has the most computational cost. Thus
it it often not practical for the real time appli-
cations.

2

This paper is structured as follows: Section 2.1
presents the model of the mobile robot and the
measurement model in the simulation. The archi-
tecture of the experiment and the model of a two-
wheeled robot is described in Section 2.2. Section
3 introduces the theories and implementations of
underlying non-linear filtering approaches includ-
ing the EKF, UKF and the PF. Finally, the results
and the numerical analysis of the simulation and
experiments are illustrated and explained in Section
4.

2 APPLICATIONS TO MOBILE ROBOTICS

2.1 A Simulated Environment

2.1.1 System Model of Three-Wheeled Robot

In the simulations, a three-wheeled vehicle mobile
robot is simulated as shown in Fig. 1. The model of
the mobile robot is depicted in Fig. 2. It is assumed
that the robot moves on a 2D horizontal plane. The
robot model has been derived assuming no slip-
page in [11]. The robot is driven by its rear wheels
and the front wheel is a steering wheel. One refers
to the combination of position and orientation as
the pose of a robot. Thus the system state of the
pose of the robot is defined as Xk = (xk, yk, θk)

T

where xk and yk specify the coordinates of the point
M in the Cartesian plane in Fig. 2. The point M is
mid-distance between rear wheels of the robot. The
term θk denotes the robot tuning angle with respect
to x-axis of the Cartesian plane. The term δ is the
turning angle of the front wheel with respect to the
robot’s longitudinal orientation.

Fig. 1. Three wheeled omni-steer mobile robot

The model of the robot is described by the fol-
lowing stochastic differential equations (SDE) [12]:

Ẋ(t) = f(X) + ẇ (1)

Fig. 2. Model of Mobile Robot

where f(·) is a nonlinear system function. The term
w specifies an additive zero-mean random process
noise. The differential equation of the state vector
for the robot model has the form:ẋẏ

θ̇

 =

 v cos θ
v sin θ
v
L tan δ

+

wxwy
wθ

 (2)

where v specifies the robot longitudinal velocity,
and θ̇ is the chassis instantaneous angular veloc-
ity. The term δ characterizes the vehicle’s steering
wheel angle, and L denotes the distance between
the rear and front wheels’ axles. In all forthcoming
simulations, L is set equal to 5 cm.

The process noise w in the simulations is a zero
mean Gaussian random variable(GRV). It includes
all kinds of errors that can not be detected by
odometers such as range error, turn error and drift
error. Moreover, the process noise w is independent
of the system states. The standard deviations of the
process noise w in all the simulations are assumed
to be σx = σy = 1cm and σθ = π

180rad. The covari-
ance matrix of the process noise can be defined as:
Q = E[wwT] where wx ∼ N (0, σ2x), wy ∼ N (0, σ2y)
and wθ ∼ N (0, σ2θ).

2.1.2 Measurement Model

Three measurements are available at each time step
as shown in Fig. 3. The range r1 and r2 are the
measurements of the distances from the robot to
the landmark 1 and landmark 2. The bearing α
represents the angular measurement between the
mobile robot’s longitude and the line from the robot
to the landmark 3.

3

Fig. 3. Model of Measurement System

zk =

r1kr2k
αk

 = h(xk) + ηk

=

√

(xk − xL1)2 + (yk − yL1)2√
(xk − xL2)2 + (yk − yL2)2

arctan(
yL3 − yk
xL3 − xk

)− θk

+

ηr1ηr2
ηα

 (3)

where (xL1, yL1), (xL2, yL2) and (xL3, yL3) specify
the Cartesian coordinates of the landmarks 1, 2
and 3 respectively. The terms xk and yk denote
the Cartesian coordinates of the robot location. The
terms ηr1, ηr2 and ηα represent additive zero-mean
Gaussian noise of the measurements. The standard
deviations of the measurement noise are σr1, σr2
and σα with respect to the measurements of r1, r2
and α. Thus ηr1 ∼ N (0, σ2r1), ηr2 ∼ N (0, σ2r2) and
ηα ∼ N (0, σ2α). We assume that the standard devi-
ations of the measurement errors are σr1 = 5cm,
σr2 = 5cm and σα = π

180rad in the simulations. The
measurements are taken at a frequency of 5 Hz.
That is, the sample period is Ts = 0.2s.

2.2 Experimental Platform
A robot experimental platform is necessary and
useful at evaluating the performance of pose
estimation. An experimental platform which is
called the Mobile Cooperating Robot Test Plat-
form(MCRTP) is utilized in the experiments to per-
form mobile robot pose estimation. The MCRTP
is a low cost, scalable, cooperative robot test sys-
tem. It consists of the Arduino-based differential
robots and a camera system. The camera system

is a combination of a USB digital camera and a
software application. It can track and broadcast
robot positions over a wireless network.

2.2.1 Architecture
The MCRTP has a client-server architecture. The
camera system and a computer are classified as
the server. One or more mobile robots are thought
of as the remote workstations. The camera system
consists of a USB digital camera and a software
application running on a computer. The camera is
fixed at the ceiling on the top of the experimental
area. It is connected to the computer with a USB
cable. The Arduino-based mobile robot embeds a
XBee receiver which allows its actuator and sen-
sors to be accessed remotely through a wireless
network. Fig. 4 presents the architecture of the
experimental platform. The mobile robots in the

Fig. 4. Architecture of the Experimental Platform

MCRTP is controlled by Romeo-All in one Controller,
an Arduino compatible microcontroller. The robots
as shown in Fig. 5 are small, two-wheeled, battery
powered robots. The key hardware components
of the robot are the Arduino microcontroller, the
motor shield, and the XBee chip. Arduino is an
open source computing platform designed specifi-
cally for running external devices such as motors
and sensors [13]. The Arduino compatible board
uses an Atmega328 microcontroller. The board was
powered by one 7.4v LiPo(1600mAh) rechargeable
battery and the motors (298:1 Micro Metal Gear
Motor) were rated at 6V with a 298:1 gear ratio. The
computer exchanges data with the mobile robots
through a ZigBee wireless network as illustrated in
Fig. 4.

4

Fig. 5. A 2-wheeled mobile robot with a font-facing
LCD display.

In order to track the motions of the mobile robots,
a software application which is called the vision
system is running on the computer of the exper-
imental platform. The vision system is developed
in C++ and it is running on the Windows oper-
ating systems. The vision system makes use of a
USB camera to locate the robots and communicates
with the robots through a XBee transmitter. The
USB camera (Logitech HDc615) records images and
visually tracks the positions of the robots.

In order to identify the robot, the recorded im-
ages are processed by another software application,
the Open Computer Vision Library (OpenCV) [14].
The OpenCV software library can filter images by
colours. The colours are identified by the OpenCV
software library with respect to a HSV (hue, satu-
ration, value) value. Each robot is equipped with a
rectangular colour identifier. The OpenCV software
library employs an algorithm, namely, the Canny
edge detection algorithm to identify the rectangular
color identifier which is attached on top of the
robot. The positions of the robot are identified
individually with respect to its colour identifier
by the OpenCV software library. A screenshot of
OpenCV vision system is presented in Fig.6.

The computer running the MCRTP system has
a 3.3 GHz Intel Core i3 processor and 4G RAM.
The operating system is Windows 7 32-bit. It has
enough computing power to efficiently implement
all tasks including all the software tasks and the
external hardware tasks in the experiments.

Fig. 6. Screenshot of the OpenCV vision system, On
the left robots is identified by colour. On the right is
the filtered view for an individual colour.

2.2.2 The Mobile Robot and Its Actuator

The MCRTP uses Arduino-based autonomous
robots in the experiments. The differential two
wheeled robots are steered by spinning the wheels
at different speeds with respect to one another. The
left and right wheels of a robot are driven by two
different motors. The motor’s speed is controlled
by the digital input which is a duty cycle value
written to the motor pins. The duty cycle values are
scalars between 0 and 255. Each duty cycle scalar
is relative to 127 (both wheels are stopped), and
scalars less than 127 spin the wheel backwards, and
scalars greater than 127 spin the wheel forwards.

Notice that the robots are running an open loop
system in the experiments. That is, there is no feed-
back of the system states to reflect the effect of the
programmed actions. For example, the robot may
not run in a straight path even though the same
digital inputs are applied to the motors that drive
the left and the right wheels. This of course is the
expected result due to electro-mechanic difference
which is modelled as part of the process noise.

There are many factors that contribute to the
process noise including the battery strength, the
traction of the surface, the difference between the
left and the right wheels of the robots. Moreover,
two motors on each mobile robot have different
levels of noise and cannot produce exactly the
same torques even if they are applied to the same
inputs(the same voltage). First the sizes of the robot
wheels of the robots are usually slightly differ-
ent from the manufacturer standard. These would
cause calculation errors of the robot’s speed. Sec-
ond, since the sizes of the two wheels on each robot
cannot be the same exactly, it leads to a calculation
error of the robot’s turning angle. The wheels of
a robot also may slip on the ground during the

5

experiment. Finally, battery strength is probably
one of the most significant factors determining the
torque on the wheels. All the above errors may
lead to inconsistent results of the robot’s actual
displacements.

The mobile robots are equipped with gear-motors
with 298 : 1 metal gearbox which has a Free-Run
speed of 100RPM at 6V . The circumference of
robot wheels is 131.95mm. Thus the maximum
speed of a mobile robot along a straight path can
be calculated as 0.7215ft/sec and 22.0cm/sec. A
sample interval T0 ≤ 100ms (corresponding to a
displacement of less than 3.0cm) would be reason-
able.

After conducting some tests to evaluate the pro-
cess noise, the result indicates the process error
is about 5% of the total length of the trajectory.
We finally determine that the process error in our
experiments can be set σvL = σvR = 1.0cm ≈ 2.5
pixels. We also assume that all process errors are
additive Gaussian white noise.

2.2.3 System Model of the Differential Drive Robot
In order to perform pose estimation with the non-
linear filters, the system dynamic model of the
mobile robots is required. The derivation of the
system dynamic model is shown from Eqn.4 to
Eqn.17. In Fig.7, the term R denotes the instanta-

X

Y

y

x

x'

y'

θ

O'

O

R

l

Fig. 7. Kinematic Model of a Differential Drive Mobile
Robot.

neous curvature radius of the robot trajectory with
relation to the center of the axis. The term l specifies

the distance between axles of the two wheels. In our
case, the length l is equal to 3.7 cm. Let υR and υL
be the linear velocities of the right and left wheel
respectively. Analytically, these linear velocities can
be expressed as

υR =

(
R+

l

2

)
ω (4)

υL =

(
R− l

2

)
ω (5)

where ω is the the angular velocity of the robot.
Solving for ω yields:

ω =
υR

R+ l
2

(6)

ω =
υL

R− l
2

(7)

and set Eqn. (6) equal to Eqn. (7):

υR

R+ l
2

=
υL

R− l
2

⇒ υR

(
R− l

2

)
= υL

(
R+

l

2

)
R(υR − υL) =

l

2
(υR + υL)

R =
l

2
× υR + υL
υR − υL

(8)

substituting Eqn. (8) back into Eqn.(6) yields:

ω =
υR(

l

2
× υR + υL
υR − υL

)
+
l

2

=
υR

l

2

(
υR + υL
υR − υL

+
υR − υL
υR + υL

)
ω =

1

l
υR −

1

l
υL (9)

Finally, substituting (8) and (9) into υ = Rω yields:

υ =
1

2
(υR + υL) (10)

The stochastic differential equations of the kine-
matic model of the differential drive mobile robots
are:

6

Ẋ = f(X) + w (11)

=

ẋẏ
θ̇

 =

v cos θ
v sin θ
ω

+

wxwy
wθ

=

1
2(υR + υL) cos θ
1
2(υR + υL) sin θ

1
l υR −

1
l υL

+

wxwy
wθ

 (12)

Ẋ =

1
2 cos θ 1

2 cos θ
1
2 sin θ 1

2 sin θ
1
l −1

l

[υR
υL

]
(13)

+

1
2 cos θ 1

2 cos θ
1
2 sin θ 1

2 sin θ
1
l −1

l

[wvR
wvL

]
(14)

where

wx =
1

2
cos θ(wvR + wvL) (15)

wy =
1

2
sin θ(wvR + wvL) (16)

wθ =
1

l
(wvR − wvL) (17)

2.2.4 The Sensor of The Measurement System
The measurements in the experiments are of the
state directly. Therefore, the measurement model
has the form:

zk =

xkyk
θk

+

ηxηy
ηθ

 (18)

As described in Sec.2.2.1, the task of the camera
system in the MCRTP is to track the mobile robots.
The camera system consists of a digital camera
and a software application. The digital camera is
a Logitech HDc615 webcam set which is capable of
recording images with a 640× 480 frame size. The
digital images can be captured and sent back to
the computer periodically during the experiment.
The images are processed by the OpenCV to gen-
erate the different filtered images with respect to
the robot’s coloured identifier. Finally, the mobile
robot’s real-time positions and orientations are cal-
culated.

In order to evaluate the accuracy of the camera
system, we conducted another experiment by com-
paring the real measurements of a tape with the
readings from the camera system. The experiment
was conducted by dividing the experimental area
into 35(5×7) squares and each has the same size (1
foot in square). The pixels in x and y directions

of each square are recorded. If we assume the
square in the middle of frame is perfect and without
distortion, the maximum error can be calculated by
comparing the difference of the number of pixels in
x and y directions of each square with the number
of pixels of the assumed perfect square.

The maximum error in x-direction yielded from
the experiments is about ±9 pixels (correspond-
ing to 3.5cm). Whereas the maximum error in
y-direction is about ±3 pixels (corresponding to
1.2cm). Thus the total error yielded in the exper-
iment would be less than 4cm and the camera has
an accumulative positional accuracy of over 96%.
In this case, we can set the standard deviation of
the measurement errors σx and σy with respect to
the movements along the x and y directions as
σx = 4cm ≈ 10 pixels and σy = 1.2cm ≈ 3.0 pixels.
In the experiments, we noticed that the noise of
the camera system is relatively small. Moreover,
most of the measurement errors are produced by
the distortion of the lens which has non-Gaussian
distribution. In order to compare the performance
of the filters on the basis of the measurements dis-
turbed by the noise with zero mean and Gaussian
distribution, white noise is deliberately added into
each measurement in the experiments as follows
wx ∼ N (0, σ2x), wy ∼ N (0, σ2y) and wθ ∼ N (0, σ2θ)
where σx = 10 pixels, σy = 10 pixels and σθ =
5π/180.

3 NONLINEAR FILTERING ALGORITHMS FOR
MOBILE ROBOT POSE ESTIMATION

3.1 Extended Kalman Filtering

In the implementation of the EKF, the system model
f(X) can be represented by a set of first-order
nonlinear differential equations:

Ẋ = f(X) + w (19)

where Ẋ = [ẋ, ẏ, θ̇]T characterizes the system states.
The term f(X) is a set of non-linear differential
equations, and w defines a matrix representing the
random process noise. The process noise wk is a
zero-mean GRV, and its covariance matrix can be
defined as:

wk =

wxwy
wθ

 Qk = E[wkw
T
k] (20)

Thus the process noise covariance matrix is given
as Qk = diag(w2

x, w
2
y, w

2
θ).

7

The measurement model normally is given by
z = h(x) + η. The term η is a zero-mean random
measurement error. The measurement model can
also be written in discrete form as zk = h(xk) + ηk.
The covariance matrix of the measurement noise
R is defined as R = E(ηηT). The discrete form
of the measurement error covariance is given by
Rk = diag{η2r , η2α}.

In order to linearize the non-linear system and
measurement functions, a first-order approximation
is used to compute the system dynamics matrix
F and the measurement matrix H . The system
functions are linearized around the current state
estimate by taking the partial derivatives of the
system function f(·) and the measurement function
h(·) [2]. The Jacobian of the system dynamics matrix
F and the measurement matrix H are derived as,

F =
∂f(x)

∂x

∣∣∣∣
x=x̂

H =
∂h(x)

∂x

∣∣∣∣
x=x̂

(21)

To approximate the fundamental matrix φk, we
need to use a Taylor-series expansion for eFTs [15]
and implement the fundamental matrix φk as,

φk = I + FTs +
F 2T 2

s

2!
+
F 3T 3

s

3!
+ · · · (22)

where Ts represents the sampling time period and I
is an identity matrix. Generally, in order to simplify
computation, only the first two terms of Eqn. (22)
are chosen to approximate the fundamental matrix:

φk ≈ I + FTs (23)

The same equation set as the Kalman filter can be
applied in our application. The subscript k to the
Jacobians φ, W , H , and V indicates that they are
different and need to be updated at each time step:

x̂-
k = f(x̂k−1, uk−1, 0) (24)

P -
k = φkPk−1φ

T
k +WkQk−1W

T
k (25)

Kk = P -
kH

T
k (HkP

-
kH

T
K + VkRkV

T
k)-1 (26)

x̂k = x̂-
k +Kk(zk − h(x̂-

k, 0)) (27)
Pk = (I −KkHk)P

-
k (28)

The EKF is aimed at approximating the posterior
PDF, p(xk|zk) by linearizing the non-linear system
functions. Many practical applications have ob-
tained satisfactory results by using the EKF. How-
ever, with increasing level of system nonlinearity,
the estimation error of the EKF is expected to in-
crease. It is also very hard to tune the performance
of the EKF. Moreover, the derivation of Jacobian
matrices are difficult and sometimes even impossi-
ble to obtain [16].

3.2 Unscented Kalman Filtering
To mitigate the difficulties of the EKF implemen-
tation, Julier and Uhlmann(1997) developed the
UKF to provide an alternative solution to the non-
linearity problems [7]. Like the EKF, the UKF is
specific for nonlinear systems and it is a recursive
MMSE (minimum mean square error) estimator.
The UKF avoids using Jacobian matrices to linearize
the non-linear system and measurement models.
Instead, the UKF uses a method referred to as
the unscented transformation (UT) to estimate the
distribution of state variables. A set of sample
points (sigma points) is deterministically selected
by the UT. These sample points are then propagated
through the true non-linear system functions and
a set of transformed sample points is generated.
Finally, the propagated mean and covariance of the
transformed sample points are calculated to yield
the posterior state estimate. The UKF is based on
the assumption that it is easier to approximate a
PDF than to linearize an arbitrary nonlinear func-
tion [7]. .

The first step of the UKF implementation is the
state vector augmentation. A n-dimension state
vector x needs to be restructured and augmented
with q-term process noise. The dimension of the
augmented state vector is na = n+ q:

xak−1 = [xk−1, wk−1]
T (29)

The process model can be rewritten as a function
of xak−1 to calculate the a priori state estimate,

x̂k = f(xak−1) (30)

The augmented a priori state estimate and its co-
variance matrix are restructured as:

xak =

[
x̂k

0q×1

]
P ak =

[
P̂k Pkxv

Pkxv
Qk

]
(31)

where Qk is the covariance matrix of the process
noise and the input of the update stage with respect
to the equations that we have previously given by
Eqn.(26)–(28).

The algorithm of the unscented Kalman filtering
is given as:

1) The augmented state vector xak with the mean
x̄a and covariance P ak is approximated by
2na + 1 weighted points given by

[Xk,Wk] = sigmaPoints(xak, P
a
k)

where Wk ∈ R2na+1 is a vector of weights,
Xk = {xi,k}{i=1,...,2na+1} defines 2na + 1 sigma

8

points. The 2na + 1 sigma points and the
corresponding weights are generated by the
function sigmaPoints [8] to approximate the
augmented state space xak and the covariance
P ak . The sigmaPoints function is given as:

X0,k−1 = xak−1 W0 = l/(na + l)

Xi,k−1 = xak−1 + Si Wi = 1/2(na + l)

Xi+na,k−1 = xak−1 − Si Wi+na = 1/2(na + l)

where i = 1, . . . , na; the term l is a fine
tuner that can be used to reduce the overall
prediction error. The term Si is the ith column
of the matrix square root of (na + l)P ak−1. The
term Si can be obtained by taking Cholesky
factorization of (na + l)P ak−1:

A = SiS
T
i = (na + l)P ak−1

Si = cholesky(A) =
√

(na + l)P ak−1

where (na + l)P ak−1 is a diagonal and upper
triangular matrix. The matrix Si is generated
by Cholesky factorization and it is also an
upper triangular matrix. The ith sigma point
has its corresponding normalized weight Wi.

2) The set of sigma points is propagated through
the process model to compute the trans-
formed set of sigma points:

Xi,k = f(Xi,k−1, uk−1)

where j = 1, . . . , 2na + 1
3) The a priori estimate is then computed by

the weighted mean of the transformed sigma
points and their corresponding weights:

x̂-
k =

2na+1∑
i=1

Wi,k(Xk)i

4) The last step of prediction stage is to compute
the priori error covariance:

P -
k =

2na+1∑
i=1

Wi,k[X̂ -
i,k − x̂-

k][X̂ -
i,k − x̂-

k]
T

5) In order to implement the update stage, we
must compute the predicted observation of
each sigma point Xi,k through the measure-
ment function:

zi,k = h(Xi,k), i = 1, · · · , 2na + 1

6) The priori expected measurement vector is
computed by the weighted mean of the pre-
dicted observation for each sigma point:

ẑ-
k =

2na+1∑
i=1

Wi,kzi,k

7) Compute the error covariance matrices:

Pẑkẑk =

2na+1∑
i=1

Wi,k(ẑi,k − ẑ-
k)(ẑi,k − ẑ-

k)
T +R

Px̂kẑk =

2na+1∑
i=1

Wi,k(X̂i,k − x̂-
k)(ẑi,k − ẑ-

k)
T

where:
• The term Pẑkẑk is the innovation covariance
and Px̂kẑk specifies the cross correlation ma-
trix.
• The term R is the covariance matrix of the
measurement noise;
• The term ẑi,k specifies the predicted mea-
surement for each sigma point and ẑ-

k repre-
sents the priori expected measurement.
• The term X̂i,k is ith transformed sigma point
and x̂-

k specifies the priori state estimate.
8) Compute the Kalman gain:

Kk = PxzP
−1
zz

9) Compute the a posteriori state estimate with
the priori measurement vector ẑ-

k:

x̂k = x̂-
k +Kk(zk − ẑ-

k)

10) Finally, compute the posteriori estimate of the
error covariance as follows:

Pk = P -
k −KkPẑkẑkK

T
k

3.3 Particle Filtering and Bootstrap Algorithm
The EKF and UKF can only capture the first and
second moments of state distribution of a Gaussian
random variable. When the system model is highly
nonlinear or the true distribution of state variable
is non-Gaussian, both filters are prone to have
large errors. The PF has the appealing convergence
properties without being subject to any linearity
or Gaussianity constraints. Particle filtering is a
technique which implements the recursive Bayesian
filter with Monte Carlo (MC) methods and sequen-
tial importance sampling (SIS) [17]. Unlike the UKF
which uses a deterministic set of samples to ap-
proximate PDF, the PF uses point mass to represent
probability densities. That is, the PF approximates

9

the posterior PDF by a set of random samples (par-
ticles) and their associated weights. The number
of samples can be set sufficiently large to make
the approximation as accurate as necessary [18].
As the number of samples approaches infinity, the
performance of the posterior PDF approximation is
equivalent to the optimal Bayesian estimate:

lim
N→∞

P̂ (xk|zk)→ P (xk|zk)

The Bayesian filter is aimed at constructing the
posterior PDF of the state vector xk given all
available information. If z1:k denotes all the mea-
surements up to the time step k, the posterior
PDF at time step k can be expressed as P (xk|z1:k).
The Bayesian recursive filter is composed of two
phases: the prediction and the update phases. The
prediction phase propagates the posterior PDF of
the state vector of xk−1 forward to the priori state
distribution xk. Given P (xk−1|zk−1), the priori PDF
of the state vector P (xk|zk−1) at k > 0 is obtained
as [18]:

P (xk|z1:k−1) =

∫
P (xk|xk−1)P (xk−1|z1:k−1)dxn−1

(32)
The update phase incorporates the new measure-
ment zk and updates the priori PDF to the posterior
PDF of time step k:

P (xk|z0:k) =
P (zk|xk)P (xk|z1:k−1)

P (zk|z1:k−1)
(33)

where the denominator of Eq. (33) P (zk|z1:k−1) can
be extended as an expression of integrals:

P (zk|z1:k−1) =

∫
P (zk|xk)P (xk|z1:k−1)dxk (34)

The integrals of Eq. (34) can be calculated by Monte
Carlo methods. The posterior PDF P (x0:k|z1:k) is ap-
proximated by a set of N random samples xi0:t with
associated normalized weights W i

k (
∑N

i=1W i
k = 1).

(Note: k is the index of the time step and i is the
particle index). The weights W i

k are referred to as
the ”probability mass” of their associated samples
(particles) [18]. The posterior PDF is expressed in
the discrete distribution

∑N
i=1W i

kδxi
0:k

.
Notice that it is often impossible to draw samples

directly from the the posterior PDF P (xk|zk) [17]. To
overcome this difficulty, the importance sampling
q(xk) is introduced. Suppose that the particle xik
is a sample drawn from a proposal distribution
q(x1:k|z1:k) which is referred to as importance weight.

We can define the weights as:

W i
k =

P (xi1:k|z1:k)
q(xi1:k|z1:k)

(35)

In Bayesian processing, we need to sequentially
estimate the posterior distribution P (xk|zk) from
P (xk−1|zk−1). The importance density q(x1:k|z1:k)
also needs to be estimated sequentially.

The sequential representation of the importance
weight [18] is given as:

W i
k =W i

k−1
P (zk|xik)P (xik|xik−1)
q(xik|xik−1, zk−1)

, i = 1, . . . , N, (36)

A major problem of the SIS algorithms is the
degeneracy of particles’ weights. Since the variance
of the importance weights increases over time, a
few samples hold most of the importance weights,
and other samples have zero importance weights in
a long run [19]. This causes the algorithm to fail as
there are not enough particles that can be used to
approximate the posterior distribution. Moreover,
a large portion of computational effort is wasted
in propagating the particles with little weights and
those particle would have a very small contribution
to the representation of the posterior distribution.

An additional step known as resampling has to
be introduced into the algorithm to resolve this de-
generacy problem [20]. Resampling can be thought
of as a procedure of eliminating particles with low
probability (small weights) and replicating particles
with high probability (large weights) [10]. Resam-
pling involves mapping the weighted random mea-
sure {xi0:k,W i

0:k} onto the equally weighted random
measure {xj0:k, 1/N}. So after resampling, a set of N
new particles with the same weights W i

k = 1/N is
generated to replace the empirical weighted distri-
bution.

In our simulations and experiments, Systematic
Resampling, the most widely used resampling al-
gorithm, is applied in the update phase. The sys-
tematic resampling calculates the cumulative sum
of the normalized weight W i

c =
∑i

j=1Wj which
is associated to each particle. A set of N ordered
numbers with regular intervals of 1/N is defined
and acts as an equally spaced ”comb”. The comb is
offset by a random number drawn from a uniform
distribution over U [1, N]. The comb is then com-
pared with the the cumulative sum ofW i

c to create a
resampled set of numbers u1:N = {uj :

∑i−1
k=1Wk

n ≤
uj ≤

∑i
k=1Wk

n} [9].
Fig.8 illustrates the systematic resampling

scheme with an example of N = 5 samples. In

10

this example, the samples with the labels 1 and 4
in the original set are eliminated and the samples
3 and 5 are replicated once for each. Finally, the
original set of samples N = 1, . . . , 5 is translated to
the resampled set which consists of labels of the
original set as 2, 3, 3, 5, 5.

Fig. 8. Example of Systematic Resampling Scheme

The bootstrap algorithm used in the simulation
was developed by Gordon, Salmond and Smith
[9] in 1993. It is the first practical PF that was
applied to tracking problems. The bootstrap PF
and its variants are the most popular algorithms
among all PF techniques due to its simplicity of
implementation.

As mentioned previously, the PF degenerates due
to the increasing variance of importance weights.
A way to reduce the degeneracy is to find an
importance distribution that minimizes the weight
variance [18].

q(xk|xk−1, zk) = P (xk|xk−1, zk) (37)

The proposal distribution can be decomposed by
Bayes rule:

P (xk|xk−1, zk) =
P (xk−1, zk|xk)× P (xk)

P (xk−1, zk)
(38)

The term P (xk−1, zk|xk) is expanded further as:

P (xk−1, zk|xk) =P (zk|xk−1, xk)× P (xk−1|xk)

=P (zk|xk−1, xk)×
[
P (xk|xk−1)P (xk−1)

P (xk)

]
(39)

Substitute Eqn. (39) into Eqn.(38) and we have:

P (xk|xk−1, zk) =
P (zk|xk−1, xk)× P (xk|xk−1)× P (xk−1)

P (xk−1, zk)
(40)

We can use Bayes’ rule to expand the denominator
of Eqn. (40) further:

P (xk−1, zk) = P (zk|xk−1)× P (xk−1) (41)

Since the measurements are assumed to be inde-
pendent of past states, thus we can write that:

P (zk|xk−1, xk) = P (zk|xk) (42)

Finally, the expression of the proposal distribution
with the minimum variance is derived as:

P (xk|xk−1, zk) = P (xk|xk−1) = q(xk|xk−1, zk) (43)

Leading to:

q(xk|xk−1, zk) = P (xk|xk−1) (44)

As shown in Eqn.(44), the bootstrap PF simply
uses the prior distribution to calculate the impor-
tance sampling distribution. This means the most
recent measurement data is not incorporated into
the weight update.

The corresponding weight depends only on the
likelihood P (zk|xk) and its calculation is simplified
from Eq. (36):

Wk =Wk−1 ×
P (zk|xk)P (xk|xk−1)

P (xk|xk−1)
=Wk−1 × P (zk|xk)

(45)

The simplicity of the implementation of the boot-
strap filter is also its major shortcoming. Since
the latest measurement does not contribute to the
importance updating, this causes the variance of
the weights to increase at each time step. In order
to achieve convergence of the filter, resampling is
required to be performed at each time step [18].

The bootstrap filter can be implemented as fol-
lows:

1) Initialization:
a) Initialize the process noise covariance

matrix as Q = diag(σ2x, σ
2
y , σ

2
θ) and mea-

surement noise covariance matrix as R =
diag(η2r , η

2
α).

b) Initialize the a priori estimate error co-
variance matrix is P−x ;

c) Draw a set of initial samples from
xi0 ∼ P (x0):

xi0 = x0 +

√
(P−x0) ∗µ, µ ∼ N (0, 1) (46)

11

where i = 1, . . . , N
d) Set k = 1.

2) Importance Sampling:

a) Draw a set of new particles x̂i(−)k to ap-
proximate the a priori importance density
q(xk|xik−1) as:

x
i(−)
k = f(xk−1) +

√
Q× µ× T (47)

where µ ∼ N (0, 1); T is the sample time
period and i = 1, . . . , N .
Note: as described previously, we use the
prior distribution x

i(−)
k only to calculate

the importance sampling distribution in
the bootstrap filter, thus we can set: xik =

x
i(−)
k .

b) Generate the likelihood: P (Zk|xik) with
the particle xik and the latest measure-
ment Zk :
Calculate zik through the measurement
model h(·) with the newly generated par-
ticles xik:

zik = h(xik); (48)

Compute the likelihood of the current
particle given the standard deviation of
the measurement noise: ηr, ηα:

Lik =
1

ηr
√

2π
exp

(
−

(zk,r − zik,r)2

2σr

)

× 1

ηα
√

2π
exp

(
−

(zk,α − zik,r)2

2ηα

)
(49)

c) Assign each particle a weight, W i
k by

Eqn. (45) :

Ŵ i
k = Lik ×W i

k−1, i = 1, . . . , N. (50)

where W i
k−1 = 1/N after each resam-

pling.
d) Normalize the importance weights:

Ŵ i
k =

W i
k∑N

j=1W
j
k

(51)

3) Resampling:
The bootstrap filtering algorithm requires to
implement Systematic Resampling at each time
step.
[{xjk,W

j
k, i

j}Nj = 1] = RESAMPLE
[{xik,W i

k}Ni = 1]

a) At time step k, a set of particles with their
associated weights is given: {xik,W i

k}; i =
1, . . . , N ;

b) Initialize the CDF: c1 = 0; Construct CDF:
ci = ci−1 +W i

k, i = 2, . . . , N .
c) Sample u1 ∼ U(0, 1) and start at bottom

of CDF: ij = 1.
d) Move along the CDF for j = 2, . . . , N :
• Define uniform distributed variable:
ûj = u1 + j−1

N ;
• Determine the index ij : i = i+ 1 while
uj > ci;

• Assign a new sample xjk = xik and it’s
weight: Wj

k = 1
N ; assign parent ij = i.

e) Finally, a new set of N particles and their
weights (1/N) are obtained as {xjk,W

j
k};

for j = 1, . . . , N .
4) Output:

Generate a new set as {x̂ik, Ŵ i
k}. The state is

eventually updated by means of the particles
as:

x̂(k) =
1

N

N∑
i=1

x̂ik (52)

5) Set k = k + 1 and go to step 2)

4 NUMERICAL ANALYSIS AND RESULTS

4.1 Simulation Results of Pose Estimation on A
Three-Wheeled Mobile Robot

The EKF, UKF and the bootstrap PF are applied
to perform pose estimation in the simulations. The
performance and the computational time of each
filter in terms of pose estimation are compared. The
filters were implemented in MATLAB on a 2.4 GHz
Intel Core 2 Quad processor. Each filter is applied
to execute 50 runs of Monte Carlo simulation to
perform the pose estimation. All filters were ap-
plied to estimate the system state xk = (xk, yk, θk)

T

recursively.
As described in Section 2.1, both the process

model and the measurement model are non-linear.
The mobile robot moves along a non-linear trajec-
tory which is composed of straight lines and circles
as shown in Fig.9. Three measurements including
the range r1, r2 and the bearing α are available at
each time step.

The bootstrap particle filter (BPF) is implemented
with sample sizes of 500, 1000, 2500 respectively.
The simulated mobile robot moves along a pro-
grammed path from 0s to 160s with the uniform

12

Fig. 9. The real path of Mobile Robot (solid line).

sampling period of T = 0.2s. All units are centime-
ter in length and radian in angle. The robot moves
from its initial pose (x, y, θ)T = (400, 500, 0)T .

The simulation executes 50 Monte Carlo trials
using the EKF, the UKF and the bootstrap filter
(sample size: 500, 1000, 2500) respectively. Each
simulation trial consists of N = 800 epochs. The
average RMSE (the root mean square difference
between the true values and the state estimates) are
computed by the following equation:

RMSE =
1

n

n∑
j=1

√√√√ 1

N

N∑
i=1

(xij − x̂ij)2 (53)

where:
• xij specifies the true simulated system state j for
ith simulation. (j = 1, . . . , N ; i = 1, . . . , n).
• x̂ij is the estimate of system state j for ith simu-
lation.
• System state index: j = 1, . . . , N ,(In our case,
N = 800).
• Simulation trial index: i = 1, . . . , n, (In our case,
n = 50).
The average RMS error and the variance of each
filter are calculated with respect to the position and
orientation. The comparison of position estimates
is given in Table 1 and illustrated in Fig.10 and
Fig.11. The comparison of heading estimate is given
in Table 2 and illustrated in Fig. 12 and Fig.13. The
computational time of each filter is given in Table
3 and illustrated in Fig. 14.

Notice that the UKF uses 2na + 1 = 19 sigma
points to perform pose estimation. Since the mea-
surement model in the simulation is introduced
in a nonlinear fashion, the augmented vector as
shown in Eqn.(29) has to be expanded to include

TABLE 1
Averaged RMS Position Error in Centimeters(50

Trials)

Algorithm RMSE-Position VAR
EKF 2.3864 0.0077

UKF(19 Sigma Points) 2.3748 0.0076
Bootstrap Filter(n=500) 1.0587 0.1293

Bootstrap Filter(n=1000) 0.8080 0.05390
Bootstrap Filter(n=2500) 0.4433 0.02223

the observation terms [7]. Thus the dimension of
the augmented state vector is na = n + nw + nη =
3 + 3 + 3 = 9. The augmentation introduces more
sigma points which lead to more computational
complexity of the UKF implementation. However,
the measurement noise is processed by the algo-
rithm and retains the same order of accuracy as the
uncertainty in the state vector.

Fig. 10. Illustration of RMSE on Position Estimation

TABLE 2
Time-Averaged RMS Heading Error in Centimeters

Algorithm RMSE-Heading VAR
EKF 0.0164 1.5576E-7
UKF 0.0103 1.3545E-7

Bootstrap Filter(n=500) 0.0033425 3.4369E-7
Bootstrap Filter(n=1000) 0.0031204 1.8517E-7
Bootstrap Filter(n=2500) 0.0018395 1.0983E-7

Table 1 and 2 indicate that the EKF provides
the worst performance among the three filters. The
UKF has slightly better performance than the EKF

13

Fig. 11. Illustration of Variance of RMSE on Position
Estimation

Fig. 12. Illustration of RMSE on Orientation Estima-
tion

TABLE 3
Computational Time

Algorithm Time(s) Relative
EKF 1.5203 1.00
UKF 26.3848 17.36

Bootstrap PF (n=500) 866.23 569.78
Bootstrap PF (n=1000) 1738.13 1143.28
Bootstrap PF (n=2500) 4378.73 2880.18

on state estimate of position. However, the compu-
tational time of the UKF is more than 10 times than
that of the EKF. The EKF is definitely a better choice

Fig. 13. Illustration of Variance on Orientation Esti-
mation

Fig. 14. A Comparison of Computational Time of the
EKF, UKF and Bootstrap Filter with 500,1000,2500
particles

than the UKF on the robot pose estimation in our
simulation.

It is also clearly noticeable in Fig.10 and Fig.12
that the bootstrap filter has a much smaller RMSE
both on the position and orientation estimates in
comparison to the EKF and UKF. Although the
bootstrap filter leads to a much higher quality of
state estimation, it takes around 860 seconds to per-
form the pose estimation (500 particles) for a trial
with 160-sec navigation time. In order to implement
the BPF in practice, it would be feasible to use
parallel computation to implement a bootstrap PF
in a high-level language such as C++.

Fig.17 illustrates the performance comparison of
the bootstrap filter with 500, 1000, 2500 samples.
It shows that the average RMSE decreases as the
number of samples increases. This is another ad-
vantage of the PF. Unlike the EKF and the UKF,

14

Fig. 15. A comparison of RMS errors of position:
EKF,UKF,Bootstrap Filter(2500 samples)

Fig. 16. A comparison of RMS errors of heading:
EKF,UKF,Bootstrap Filter(2500 samples)

the performance of the PF can be easily tuned
by adjusting the number of samples. We finally
conclude that the bootstrap filter is the best filter if
the computational cost is not our primary concern.
However, if the computation cost is critical, the EKF
is considered as the most efficient approach which
also provides relatively good performance.

4.2 Experimental Results of Pose Estimation
on A Differential Drive Mobile Robot

The non-linear filters including the EKF, UKF and
the BPF are implemented to perform pose estima-
tion on the basis of the system model and the
measurement model in the experiments. The robots
are programmed to move along a circular path.
Two digital inputs which control the motors’ speeds
are recorded by an interrupt handler every 0.1

Fig. 17. A comparison of RMS errors for position
of the EKF and Bootstrap Filter with 500,1000,2500
samples

Fig. 18. The Camera Recorded Path of Mobile Robot
in the Experiments(Solid line).

second. Simultaneously, the robot’s trajectories are
recorded by the camera systems. The data collected
in the experiments are post-processed by the filters
to perform pose estimation. The task of the non-
linear filters is to estimate the system state Xk =
(xk, yk, θk)

T . Finally, the pose estimate of each filter
are compared with each other and compared with
the trajectory that is recorded by the camera system.

The mobile robot moves in a circular path in a
clockwise direction as shown in Fig. 18. However,
the robot’s real paths often deviate from the pro-
grammed paths in the experiments due to the pro-
cess noise. Fig.19 and Fig.20 illustrate the RMSE of
the estimate of positions and headings with respect
to each non-linear filter. As described earlier, the
data is collected on-line by the robot control system

15

Fig. 19. A comparison of RMS errors of position:
EKF,UKF,Bootstrap Filter(2500 samples)

Fig. 20. A comparison of RMS errors of heading:
EKF,UKF,Bootstrap Filter(2500 samples)

and the measurement system in the experiments.
The collected data is then processed off-line by the
non-linear filters to perform pose estimation. In
order to compare the filter’s performance on pose
estimation, some statistical methods are employed.
We performed 50 Monte Carlo trials with each
non-linear filter to calculate pose estimates on the
basis of the experimental data. The RMSE of the
filters is averaged and then compared. The average
RMSE (the root mean square difference between
the recorded pose by the camera and the state
estimates) are computed by Eqn.(53).

Th average RMSE and its variance of the robot
position estimate are presented in Table 4 and
illustrated in Fig.21. The RMSE and variance of

TABLE 4
Time-Averaged RMS Position Error in Centimeters

Algorithm RMSE-Position VAR
EKF 7.7979 1.2979
UKF 7.1039 0.8222

Bootstrap Filter(n=500) 7.1676 0.98542
Bootstrap Filter(n=1000) 6.8544 1.0388
Bootstrap Filter(n=2500) 6.8261 1.0168

Fig. 21. Comparison of RMSE of position: the EKF,
UKF, the Bootstrap Filter. (A illustration of data in
Table 4)

TABLE 5
Time-Averaged RMS Heading Error in Centimeters

Algorithm RMSE-Heading VAR
EKF 0.081901 1.4480E-5
UKF 0.062322 1.2456E-5

Bootstrap Filter(n=500) 0.081878 2.2368E-5
Bootstrap Filter(n=1000) 0.081309 1.4738E-5
Bootstrap Filter(n=2500) 0.081030 8.5285E-6

TABLE 6
Computational Time

Algorithm Time(s) Relative
EKF 0.1857 1.00
UKF 3.3612 18.10

Bootstrap PF (n=500) 98.1565 528.58
Bootstrap PF (n=1000) 195.223 1051.3
Bootstrap PF (n=2500) 486.416 2619.4

the robot orientations are presented in Table 5.
The computational time of each filter is presented
in Table 6. It is clearly noticeable that the EKF’s
performance is not as good as the other two filters.
However, it is still the most efficient algorithm. It
takes only 0.18 seconds to complete the computa-

16

tion of the pose estimation. The UKF has a better
performance than the EKF and the bootstrap filter
(500 particles) on the state estimation. Although the
UKF takes about 3.4 seconds (around 18 times more
than the EKF) to perform the pose estimation, it is
still much less than the 20 seconds of navigational
time. Clearly, in our experiments, the UKF is a bet-
ter choice than the EKF since the UKF can achieve
a higher quality of pose estimation with relatively
acceptable computational time.

The result of the simulations in Section 4.1 indi-
cates that the bootstrap filter provides a much bet-
ter performance over the EKF and UKF. However,
based on the experimental results, the bootstrap
filter can only provide a close or a slightly better
performance over the UKF on pose estimation. The
bootstrap filter (2500 particles) only outperforms
by about 5% over the UKF in terms of the RMSE
of positions. To perform the pose estimation for a
trial of 20 seconds, the bootstrap filter takes around
100 seconds to complete the computation of 500
particles. Obviously, the computational time of the
bootstrap filter is too high to perform on-line pose
estimation in the experiments.

Table 4 also indicates that an increase in the num-
ber of particles can reduce the RMSE for the BPF.
However, the change in performance is negligible
as the number of particles increases from N = 1000
to 2500. Since the UKF has better performance
than the EKF and much less computational time
than the PF, we finally conclude that the UKF is
the best filter to perform the state estimate in the
experiments.

Unlike the simulation in Section 4.1, we deter-
mine the UKF as the best non-linear filter for the ex-
periments. We notice that the level of non-linearity
of the experimental models is lower than the non-
linearity of the system models in our simulations.
The camera system measures the state variables
directly. That is, the measurement system of the
experimental platform has a linear model. Whereas
the measurement system has a non-linear model
in the simulations. This is the major difference
between the experiments and the simulations in
terms of non-linearity.

Meanwhile, many factors contribute to producing
the errors that have Gaussian and non-Gaussian
distribution in the experiments. These errors in-
clude, but are not limit to the process noise, obser-
vational noise and model definition errors. Since it
is difficult to evaluate some of these errors precisely
such as the noise of the motors and the effect of

the uneven wheels of the robot, the filters cannot
achieve a better quality of pose estimation without
evaluating of the effect of all these errors.

Based on the experimental result as shown in
Table 4, the local linearization method of the EKF
is not sufficient to approximate the posterior den-
sity of the experimental system. The UKF captures
the first and second order moments of the state
distribution of the Gaussian random variables. It
appears to achieve a better representation of the
experimental non-linear system over the EKF. The
PF can perform the pose estimation without being
subject to any linearity or Gaussianity constraints
of the systems. However, its performance is only
slightly better than the UKF. Furthermore, it is
difficult to apply the PF to real time pose estimation
due to its prohibitive computational time.

Finally, we can conclude that it is not necessary to
perform the pose estimation with the PF. The UKF
is the best choice to perform the pose estimation in
the experiments.

5 CONCLUSION

This paper compares a brief outlook of three ap-
proaches to nonlinear filtering: the EKF, UKF and
the BPF. To approximate the posterior PDF of state
estimation, the EKF linearizes the system functions
with a Taylor-series expansion. The implementation
of the EKF is difficult and error prone since it has
to take more effort to derive underlying Jacobian
matrices. The UKF and the BPF approximate the
PDF of state variable with a number of samples.
The UKF uses a deterministic set of samples and
generally has better quality on state estimation over
the EKF. The BPF approximates the posterior PDF
of state variables with a set of random samples.

In our simulations and experiments, the EKF is
clearly the most efficient approach with the least
computational load among all the three filters. The
UKF needs more than 10 times the computational
effort than the EKF. The EKF and the UKF are
both practical filters to perform on-line robot pose
estimation since their computational time is much
less than the time of robot navigation. The com-
putational time of the BPF implementation with
500 to 2500 particles is 500 to 3000 times more
than that of the EKF. Normally, it is not practical
to perform real time pose estimation with the PF
unless some extra measures are applied such as the
parallel computations.

The result of the simulations and experiments
indicate that the UKF outperforms the EKF and

17

the PF has the best pose estimation accuracy. The
PF has appealing performance on pose estimation
on highly non-linear systems. However it generally
cannot be applied on real time applications due
to its prohibitive computational cost. For a system
with a relatively low level of non-linearity, it is
generally not necessary to perform pose estimation
with the PF. The UKF and the EKF are both the
practical choices to localize robots in real time
applications. However, the PF is also a favourable
choice if the system functions is highly non-linear.

The performance of the EKF and UKF is diffi-
cult to tune. This is another advantage of the PF.
The performance of the PF can be easily tuned
by adjusting the number of samples. If a parallel
implementation is feasible, we can conclude that
the particle-based filter is the best choice among
the three nonlinear filtering approaches. However,
the EKF and the UKF are certainly the options to
be considered when the computational time is a
critical concern such as in real time applications .

In the future, it would be interesting to inves-
tigate the adaptive particle filter (APF) which can
automatically determine the number of needed par-
ticles over time. It would be interesting to compare
the data from the three filters in this paper with
the performance of the APF implementation which
aims at finding a balance point between the com-
putational load and the required accuracy.

REFERENCES

[1] S. F. Schmidt, “The kalman filter-its recognition and devel-
opment for aerospace applications,” Journal of Guidance,
Control, and Dynamics, vol. 4, no. 1, pp. 4–7, 1981.

[2] P. Zarchan and H. Musoff, Fundamentals of Kalman filtering:
a practical approach. AIAA, 2005, vol. 208, ch. 7.

[3] U. HENNING, J. Timmer, and J. Kurths, “Nonlinear dy-
namical system identification from uncertain and indi-
rect measurements,” International Journal of Bifurcation and
Chaos, vol. 14, no. 06, pp. 1905–1933, 2004.

[4] J.-S. Gutmann and D. Fox, “An experimental comparison
of localization methods continued,” in Intelligent Robots
and Systems, 2002. IEEE/RSJ International Conference on,
vol. 1. IEEE, 2002, pp. 454–459.

[5] M. St-Pierre and D. Gingras, “Comparison between the
unscented kalman filter and the extended kalman filter for
the position estimation module of an integrated naviga-
tion information system,” in Intelligent Vehicles Symposium,
2004 IEEE. IEEE, 2004, pp. 831–835.

[6] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell,
J. Jansson, R. Karlsson, and P.-J. Nordlund, “Particle filters
for positioning, navigation, and tracking,” Signal Process-
ing, IEEE Transactions on, vol. 50, no. 2, pp. 425–437, 2002.

[7] S. J. Julier and J. K. Uhlmann, “New extension of the
kalman filter to nonlinear systems,” in AeroSense’97. In-
ternational Society for Optics and Photonics, 1997, pp.
182–193.

[8] S. J. Julier and J. K. Uhlmann, “Unscented filtering and
nonlinear estimation,” Proceedings of the IEEE, vol. 92,
no. 3, pp. 401–422, 2004.

[9] N. J. Gordon, D. J. Salmond, and A. F. Smith, “Novel
approach to nonlinear/non-gaussian bayesian state esti-
mation,” in Radar and Signal Processing, IEE Proceedings F,
vol. 140, no. 2. IET, 1993, pp. 107–113.

[10] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the
Kalman filter: Particle filters for tracking applications. Artech
House Publishers, 2004, ch. 3.

[11] C. Samson, “Time-varying feedback stabilization of car-
like wheeled mobile robots,” The International journal of
robotics research, vol. 12, no. 1, pp. 55–64, 1993.

[12] C. Samson, K. Ait-Abderrahim et al., “Mobile robot con-
trol. part 1: Feedback control of nonholonomic wheeled
cart in cartesian space,” 1990.

[13] Arduino. (2012, 10) Arduino - introduction. [Online].
Available: http://arduino.cc/en/Guide/Introduction

[14] opencv dev team. (2013, 4) Opencv 2.5.4.0 documentation.
[Online]. Available: http://docs.opencv.org/index.html

[15] R. E. Kalman and R. S. Bucy, “New results in linear fil-
tering and prediction theory,” Journal of basic Engineering,
vol. 83, no. 3, pp. 95–108, 1961.

[16] S. J. Julier, “The scaled unscented transformation,” in
American Control Conference, 2002. Proceedings of the 2002,
vol. 6. IEEE, 2002, pp. 4555–4559.

[17] J. V. Candy, Bayesian Signal Processing: Classical, Modern
and Particle Filtering Methods. Wiley-Interscience, 2011,
vol. 54, ch. 3.

[18] ——, Bayesian Signal Processing: Classical, Modern and Par-
ticle Filtering Methods. Wiley-Interscience, 2011, vol. 54,
ch. 7.

[19] A. Doucet, “On sequential monte carlo methods for
bayesian filtering, dept. eng., univ. cambridge,” UK, Tech.
Rep, Tech. Rep., 1998.

[20] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp,
“A tutorial on particle filters for online nonlinear/non-
gaussian bayesian tracking,” Signal Processing, IEEE Trans-
actions on, vol. 50, no. 2, pp. 174–188, 2002.

