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Abstract. We consider the problem of having a team of guards learn a joint cooperative
strategy to pursue and capture a high speed invader before the invader can reach a ter-
ritory. In this scenario, the invader is also simultaneously learning its optimal strategy
to avoid capture and get as close as possible to the territory. This conflict of interest
between the learning agents makes the problem challenging. We adopt the guarding a
territory game framework to model the problem, and consider the use of reinforcement
learning, particularly the fuzzy actor-critic learning method, to train the players to find
their optimal strategies simultaneously. To our knowledge, this is the first work to in-
vestigate the development of multi-agent learning for a high speed super invader in the
game of guarding a territory. Simulation results from this study demonstrate that all the
players are able to learn their optimal behaviors simultaneously.

Keywords: Reinforcement learning, Fuzzy logic controller, Guarding a territory
game, Multi-agent systems, Apollonius circle, Fuzzy actor-critic learning

1. Introduction. The guarding a territory differential game was first introduced by
Isaacs [1]. The game is played between two players (the invader and the guard). The goal
of the guard is to intercept the invader as far as possible from the territory. Whereas,
the goal of the invader is to avoid capture and get as close as possible to the territory.
Practical applications of the game can be found in protecting critical infrastructures, such
as nuclear facilities, transportation systems and emergency services, from physical attacks
and in protecting international borders against illegal entries and smuggling activities.

The guarding a territory game has been investigated previously in the literature [2, 3].
However, in these published literature [2, 3], the authors of the studies assumed that the
players have a priori knowledge of their optimal behaviors. As such, these papers applied
fixed algorithms with no learning. In this paper, we consider the other possibility of the
game where the players do not have a priori knowledge of their optimal behaviors. We
do so by investigating the use of a learning algorithm to train the players to find their
optimal behaviors simultaneously.

Several papers [4–6] have investigated ways to use learning algorithms, particularly
reinforcement learning algorithms, to solve differential game problems. The majority
of these works applied the well-known Q-learning method [7]. The Q-learning method
have yielded many useful results for problems with small finite state and action spaces.
However, this approach is not suitable for problems with continuous state and action
spaces. This is because the Q-learning method requires a priori discretization of the
continuous spaces. As such, if a finely grained discretization is done so as to obtain good
accuracy, this will result in heavy memory requirements and slow learning procedures [8,9].
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This paper investigates the use of the fuzzy actor-critic learning (FACL) method to
solve the guarding a territory problem. The FACL method makes use of the fuzzy logic
controller (FLC) to effectively deal with the problem of continuous state and action spaces.
Some elements of this learning method were presented in [10, 11] for the case of a single
guard against a low speed invader. In [10], the FACL method was used to train only
the guard in the game. In this scenario, the invader followed a fixed strategy with no
learning. Simulation results in [10] demonstrated that the guard was able to learn its
optimal strategy to capture the invader in an effective way. The possibility of both the
single guard and the low speed invader learning simultaneously was investigated in [11].
Simulation results presented in [11] demonstrated that both players, the invader and the
guard, were able to learn their optimal strategies simultaneously. This work extends the
approach presented in [10,11] to investigate a more complex problem which involves two
guards against a high speed invader. In this scenario, all three players have no a priori
knowledge of their optimal behaviors and therefore are simultaneously learning. To our
knowledge, this is the first work to investigate how a group of guards can work together
to effectively capture a high speed super invader.

The main contributions of this paper are: (i) the proposal of a novel multi-agent learning
method to train all the robot agents simultaneously; (ii) the investigation of a cooperative
control strategy to capture a high speed super invader using multiple guards; (iii) the
design of instantaneous reward functions for the learning process of the players; and (iv)
the choice of inputs that define the state.

The remainder of the paper is organized as follows. Preliminary concepts are presented
in Section 2. Section 3 describes the FACL method and provides specifics for the design
of the control system. We introduce the Apollonius circle and subsequently present the
Apollonius circle approach to determine the optimal strategy of the players in Section 4.
Section 5 presents the simulation results that demonstrate the performance of the learning
agents. Detail analyses and discussions of the simulation results will be provided. Finally,
conclusions and future work are summarized in Section 6.

2. Preliminaries.

2.1. The guarding a territory differential game. Isaacs’ [1] guarding a territory
game between two players is a zero-sum differential game played in the continuous domain.
Adopting unicycle robots as our players in the game, the dynamics of any one of the players
(the invader or the guard) is defined as [12]

ẋ = V cos θ (1)

ẏ = V sin θ (2)

θ̇ = ω (3)

where V is the linear speed of the robot, ω is the angular speed of the robot, [x, y] is the
geometrical location of the robot and θ is the orientation of the robot with respect to the
global x-axis.

In order to simplify the problem, the territory T is assumed to be a circle with center
CT and radius RT . The payoff P (ūG, ūI) of the game is the Euclidean distance between
the position of the invader I and the territory T at game termination defined as

P (ūG, ūI) =
√

(xI − xCT
)2 + (yI − yCT

)2 −RT

where ūG and ūI are the strategies of the guard and the invader respectively. For simplicity,
the game terminates when the distance between the invader and the guard is less than
the capture radius RC of the guard. Since the payoff implies how close the invader
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Figure 1. Three-player game setup: a superior invader against two inferior guards.

could get to the territory at game termination, it is rational that the invader choose
its strategy ūI to minimize the payoff and the guard ūG to maximize it. Our research
is focused on investigating the use of a learning algorithm to train the invader and the
guard simultaneously in order to find their respective optimal strategies u∗I , u

∗
G.

We made certain assumptions in the game. The game environment is obstacle-free.
The game is played in a two-dimensional bounded space, such that if any player attempts
to move out of the game area, the player will remain at its current position. The players
have perfect information of the geometrical location of the other players. All the players
have a constant speed, but not necessary the same speed. At any time instant t, the
players have perfect knowledge of the control decisions chosen by their opponents prior
to t, but none regarding the future control decisions their opponents will choose.

2.2. Problem formulation. In this section, we formulate the three-player game that
we make use of to investigate the learning process of the players in the game of guarding
a territory. In our formulation, the players have no a priori knowledge of their optimal
behaviors. The three-player game consist of two guards against a high speed invader, as
shown in Fig. 1. Also shown in Fig. 1, the game area was chosen as a square area of size
30× 30 units. We increase the complexity of the guarding a territory problem by setting
the invader to be 30 percent faster than the two guards. As such, the invader is superior
to the two guards. In this paper, we refer to any player with speed greater than that of
the other players as a superior player. The speed of the invader was arbitrarily selected
taking into consideration the length of a simulation run and how it will present in the
paper. We have done simulations with the invader at different speeds with similar results.

The goal of this problem is to investigate the possibility of the two guards learning a
joint cooperative strategy to capture the superior invader before it reaches the territory.
We also expect the invader to learn its optimal behavior to avoid capture and get as close
as possible to the territory. kindly note that the dimensions of the robots shown in Fig. 1
does not represent the size of the robot nor the type of robot used in our simulation. The
robots shown in Fig. 1 are used only for illustrative purposes.

3. Reinforcement learning. Reinforcement learning is a type of machine learning that
can be used to train an agent to optimize some reward function through interaction with
the initially unknown environment. Reinforcement learning is different from supervised
learning. In supervised learning, the agent learns with the desired input-output pattern
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provided by an external supervisor [13]. However, in reinforcement learning, there is no
external supervisor to guide the learning process of the agent. The agent has no knowledge
of the desired output. Therefore, the agent must explore its available actions to discover
which actions yield the most reward. The agent must also exploit what it already knows
in order to improve its performance in the long run. The overall goal of the agent is
to learn a policy (i.e. a mapping from states to actions) that maximizes its long-term
cumulative reward [13].

The policy can be in the form of a look-up table, if the state and action spaces are
discrete and small in number. However, if the state and action spaces are large or in the
continuous domain, it is intractable to maintain a look-up table. In this case, function
approximators, such as the FLC, can be used to represent the continuous state and action
spaces in an effective way [10,14]. The FLC has two significant advantages when used as
a function-approximation technique: First, the FLC permits human heuristic knowledge
to be incorporated in the control design; Secondly, the learning process can be localized
to only the consequent parameters [15,16].

A class of reinforcement learning methods called actor-critic methods can be combined
with the FLC to solve problems in the continuous domain [10, 14]. Actor-critic methods
have a separate memory structure to represent the decision mechanism (actor) indepen-
dent of the value function estimator (critic) [13]. We make use of the FLC to implement
both the actor and the critic. When actor-critic learning is combined with the FLC, the
approach is sometimes called the FACL method [10,14].

In this paper, we apply the FACL method in solving the guarding a territory problem.
The advantage of the FACL method is that it does not require a priori discretization of
the continuous spaces. As such, the FACL has the characteristics of fast action selection
and lower memory requirement making it the suitable approach to solve the guarding a
territory problem in continuous time. This section describes the FACL method and also
provides specifics for the design of the fuzzy controller.

3.1. Fuzzy control system design. In this section, we present details of the design of
the controller for the multi-agent high speed invader guarding a territory problem. The
design of the FLC essentially involves:

1. Choosing the controller model.
2. Choosing the method for fuzzification and defuzzification, and the type of fuzzy

inference engine.
3. Choosing the inputs to the controller.
4. Designing the fuzzy sets and the fuzzy rules.

In our design, the FLC is implemented using the zero-order Sugeno fuzzy model [17].
We make use of the singleton method for fuzzification, the product inference engine for the
fuzzy inference engine and the weighted average method for defuzzification. The choice
of the model of the FLC, and the methods for fuzzification and defuzzification are based
on a priori knowledge of the problem.

We now define the inputs to the controller. We propose making use of state variables
that describe the state of the environment to define the inputs to the controller. Our
choice of inputs are similar to those used in [11] for the case of a single guard and a low
speed invader. However, in our particular scenario, we defined two additional inputs for
the high speed super invader. These additional inputs will enable the superior invader
learn with the information of the location of the second guard. Five inputs in total were
chosen for the high speed invader. In the following we provide detail description of these
inputs. How one chooses the states or inputs to the actor and the critic is important for
learning success.
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Figure 2. The inputs to the controller of guard 1, G1.

For the inputs to the controller of any one of the guards, we propose the use of three
state variables. The first state variable describe the position of the territory with respect
to the guard and the other two state variables describe the position of the invader with
respect to the guard. We take for example the inputs to the controller of guard 1, G1.
The first variable θG1T is the angle between the global x-axis and guard 1’s line of sight
towards the territory, as shown in Fig. 2. The domain of the variable θG1T is defined as
[−π, π]. The variable θG1T describe the position of the territory with respect to guard 1.
The second variable dxG1I

and the third variable dyG1I
are the components of the Manhattan

distance between the invader and guard 1, as shown in Fig. 2. The domain of dxG1I
and

dyG1I
is defined as [−30, 30]. The variables dxG1I

and dyG1I
describe the position of the

invader with respect to guard 1. Therefore, the vector of state variables x̄G1
and x̄G2

that
define the inputs to the controller of guard 1, G1, and guard 2, G2, are given as

x̄G1
= [θG1T , d

x
G1I

, dyG1I
] (4)

x̄G2
= [θG2T , d

x
G2I

, dyG2I
] (5)

respectively. Our objective in choosing three state variables to define the inputs to the
controller of the guards is to investigate whether the guards are able to learn in a decen-
tralized manner. In other words, it was done to investigate the possibility of both guards
jointly working to capture the superior invader with no form of communication between
the guards.

For the inputs to the controller of the superior invader, we propose the use of five state
variables. The first variable θIT describe the position of the territory with respect to the
invader. The second variable dxIG1

and the third variable dyIG1
describe the position of

guard 1, with respect to the invader. Similarly, the fourth variable dxIG2
and the fifth

variable dyIG2
describe the position of guard 2, with respect to the invader. Therefore, the

vector of state variables x̄I that define the inputs to the controller of the invader is given
as

x̄I = [θIT , d
x
IG1

, dyIG1
, dxIG2

, dyIG2
] (6)

We make use of triangular membership functions to define all the fuzzy sets in the var-
ious input domains. Ten symmetrical and uniformly spread triangular membership func-
tions were defined for the angle variable θ. The variable θ describe the inputs: θIT , θG1T
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and θG2T . Similarly, seven triangular membership functions were defined for the Manhat-
tan distance variable d. The variable d describe the inputs: dxIG1

, dyIG1
, dxIG2

, dyIG2
, dxG1I

,
dyG1I

, dxG2I
, and dyG2I

.
Since the FLC is implemented using a zero-order Sugeno fuzzy model, any rule l in the

fuzzy rule base defined for the controller of the guards will take the form

Ru(l) : IF θGT is Al
1, d

x
GI is Al

2, and dyGI is Al
3,THEN φl

t(x̄t) = cl (7)

where Al
1 in θGT , Al

2 in dxGI and Al
3 in dyGI are fuzzy sets in the antecedent, φl

t(x̄t) is the
output of rule l at time step t, and cl is the constant consequent parameter for rule l.

Similarly, for the controller of the high speed invader any rule l in the fuzzy rule base
will take the form

Ru(l) : IF θIT is Bl
1, d

x
IG1

is Bl
2, d

y
IG1

is Bl
3, d

x
IG2

is Bl
4, and dyIG2

is Bl
5,

THEN φl
t(x̄t) = cl (8)

where Bl
1 in θIT , Bl

2 in dxIG1
, Bl

3 in dyIG1
, Bl

4 in dxIG2
and Bl

5 in dyIG2
are fuzzy sets in the

antecedent.
For the invader, we apply a total of 10× 7× 7× 7× 7 = 24010 fuzzy rules. However,

for each of the guards, we apply a total of 10× 7× 7 = 490 fuzzy rules. We observe that
there is an exponential growth in the number of fuzzy rules as the dimension of the input
space increases. This is due to the fact that the the product inference engine requires an
exhaustive list of all possible permutation of the fuzzy rules. In fuzzy logic, this problem
is well-known as the curse of dimensionality [18]. To increase the computational efficiency
of the system we made use of triangular membership functions to define all the fuzzy sets.
As a result, only the rules that are active (or have non-zero firing strength) will contribute
to the overall output of the system. The remaining rules will have zero membership value.

The degree of fulfillment (or firing strength) ψl
t(x̄t) of any rule l will take the form

ψl
t(x̄t) = T [µAl

1
(θGT ), µAl

2
(dxGI), µAl

3
(dyGI)] (9)

where T [.] implies the T-norm operator and µAl
1
(θGT ) provides the membership value

of the input variable θGT . We make use of the singleton method for fuzzification, the
product inference engine for the fuzzy inference engine, and the weighted average method
for defuzzification. Therefore, the overall crisp output φt(x̄t) of the controller is given as

φt(x̄t) =

L∑
l=1

ψl
tc

l

L∑
l=1

ψl
t

=
L∑
l=1

ϕl
tc

l (10)

where L is the total number of fuzzy rules and ϕl
t is the normalized degree of fulfillment

for rule l defined as

ϕl
t =

ψl
t

L∑
l=1

ψl
t

(11)
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Figure 3. FACL scheme for the guarding a territory problem.

3.2. The FACL Method. The FACL scheme for the guarding a territory problem is
shown in Fig. 3. The dotted circle enclosing the critic blocks in Fig. 3, signifies that we are
referring to the same critic. We abstracted the robot and its environment to the system
block, as shown in Fig. 3.

The role of the actor is to generate the continuous control action Ut(x̄t). In our imple-
mentation, Ut(x̄t) translates to the desired heading angle of the robot. To generate the
correct control actions, the actor maintains a vector W which has as many components
as the number of fuzzy rules. The components of the vector W are used as the conse-
quent parameters in the defuzzification procedure for the actor in Eq. (10). Therefore,
the output of the actor is given as

Ut(x̄t) =
L∑
l=1

ϕl
tW

l
t (12)

A key issue of reinforcement learning is balancing exploration and exploitation. To
cause sufficient exploration of the action space in the FACL algorithm, a Gaussian white
noise parameter Nt with mean zero and variance σ2

t is added to the continuous control
action Ut(x̄t) to produce the final control action U ′t(x̄t), as shown in Fig. 3. The adjusted
control action U ′t(x̄t) is used to run the game.

The role of the critic is to predict the sum of future discounted rewards (or the state-
value function) Vt in reinforcement learning given as

Vt = rt+1 + γrt+2 + γ2rt+3 + · · ·

=
∞∑
k=0

γkrt+k+1 (13)

where γ ∈ [0, 1] is the discounting factor and r is the external reinforcement signal. Notice
Eq. (13) can also be written recursively as

Vt = rt+1 + γVt+1. (14)

The critic is able to make a good estimate of the state-value function by maintaining a
vector ζ which has as many components as the number of fuzzy rules. The components
of the vector ζ are used as the consequent parameters in the defuzzification procedure for
the critic in Eq. (10). Therefore, the output of the critic is given as

Vt(x̄t) =
L∑
l=1

ϕl
tζ

l
t (15)
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Algorithm 1 FACL algorithm

1: Initialize V (.) = 0, W l = 0, ζ l = 0 for l = 1, · · · , L.
2: for each time step t do
3: Obtain the inputs x̄t.
4: Compute the control action Ut(x̄t) in Eq. (12).
5: Estimate the state-value function Vt(x̄t) in Eq. (15).
6: Use Ut(x̄t) to run the game for the current time step t.
7: Obtain the new inputs x̄t+1 and the reward rt+1 at time t+ 1.
8: Estimate the state-value function Vt(x̄t+1) in Eq. (15).
9: Compute the TD error ∆t+1 in Eq. (16).

10: Adapt W l
t+1 in Eq. (17) and ζ lt+1 in Eq. (18) for l = 1, · · · , L.

11: end for

The external reinforcement signal rt+1 received from the environment after executing
action Ut(x̄t) in state x̄t and transitioning to state x̄t+1 is used to compute a temporal
difference (TD) error ∆t+1 given by

∆t+1 = rt+1 + γVt+1(x̄t+1)− Vt(x̄t) (16)

We provide details of the external reinforcement signal rt+1 in Section 3.3.
The TD error is used to adapt the actor and the critic. To prevent large adaption steps

of the actor in the wrong direction, a more stable way to adapt the actor is to use only
the sign of the TD error ∆t+1 and the exploration Nt [16]. The adaptation law for the
actor is therefore given as

W l
t+1 = W l

t +

{
β sign[Nt∆t+1]

∂Ut(x̄t)

∂W l
t

}
(17)

where β ∈ [0, 1] is the learning rate of the actor. The adaptation law for the critic is given
as

ζ lt+1 = ζ lt +

{
α∆t+1

∂Vt(x̄t)

∂ζ lt

}
(18)

where α ∈ [0, 1] is the learning rate of the critic. The partial derivate in Eqs. (17) and (18)
is easily determined from Eqs. (12) and (15) respectively to be

∂Ut(x̄t)

∂W l
t

=
∂Vt(x̄t)

∂ζ lt
= ϕl

t (19)

The FACL algorithm is summarized in Algorithm 1 [10]. This FACL algorithm was
implemented in [10, 11] for the case of a single guard and a low speed invader. In our
high speed super invader and multi-guard problem, the states/inputs, the fuzzy rules
and the rewards had to be modified for learning success. In comparison to the method
proposed in [10,11], we increased the number of inputs to the invader from three to five.
These additional inputs resulted in an increase in the number of fuzzy rules from 490 to
24010. The two additional inputs will enable the invader learn with the information of
the location of the second guard. For each of the guards, we propose the use of three
inputs as described in Section 3.1. Our goal is to investigate if the guards can learn to
capture the high speed super invader with no direct communication between the guards.
It will be interesting to investigate the possibility of the guards learning a decentralized
control strategy to capture the high speed invader. In Section 3.3, we provide specifics
for the design of the reward functions.
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3.3. Reward function. In the guarding a territory game, one may use the payoff ob-
tained at game termination to reward the performance of the learning agents. However,
delaying the reward so that it is only received at game termination will result in a slow
learning procedure and will also make the learning process difficult. This is because by
game termination the agents would have taken many actions. As such, it would be dif-
ficult to know which actions were good and should be rewarded, and which were bad
and should be penalized. In reinforcement learning, this problem is well-known as the
temporary credit assignment problem [19].

To improve the learning process of the agents, one may introduce instantaneous rewards
to the environment [20, 21]. Instantaneous rewards provide immediate reinforcement to
compensate for the delayed reward. As a result, the agents would learn instantaneously
which actions they take are good and which are bad. The reward function must be
designed such that it reflects the goal of the agents.

3.3.1. Reward function for the invader. The reward function for the invader RI
t+1 is de-

signed using a method similar to the one proposed in [6] for the case of a single guard
against a low speed invader. In our particular scenario, we modified the reward function
for the invader such that the invader learns with the information of the location of the
multiple guards. This is essential to ensure that the invader is able to learn its optimal
behavior to get as close as possible to the territory before capture occurs. In the following
we provide detail description of the reward function for the invader.

The reward function RI
t+1 for the high speed invader has three components. The first

component δIT gives a positive reward if the invader moves closer to the territory T and
a negative reward otherwise, given as

δIT = distICT
(t)− distICT

(t+ 1) (20)

where distICT
(t) denotes the Euclidean distance between the invader I and the center of

the territory CT at time step t. The second component δIG1 gives a positive reward if the
invader moves farther from guard 1 and a negative reward otherwise, given as

δIG1 = distIG1(t+ 1)− distIG1(t) (21)

Similarly, the third component δIG2 gives a positive reward if the invader moves farther
from guard 2 and a negative reward otherwise, given as

δIG2 = distIG2(t+ 1)− distIG2(t) (22)

Putting the three components together results in the reward function given in Eq. (23)

RI
t+1 = DδIT + J1δIG1 + J2δIG2 (23)

where D, J1, J2 are constants that determine the importance attached to the various
components of the reward function.

A trade-off between moving farther from the guards and moving closer to the territory
has to be reached. For example, if we choose D as a large number, this will make the
invader move towards the territory while ignoring the guard. On the other hand, if we
choose J1, and J2 as a large number, this will make the invader overly afraid of the guards.
As a result, the invader will prefer a longer path to reach the territory. In Section 5, we
provide details of how we set the values of these constants D, J1, and J2.

3.3.2. Reward function for the guard. For the reward function of any one of the guards,
we propose the use of two components. The first component gives a positive reward
if the guard moves closer to the invader and a negative reward otherwise. While the
second component gives a positive reward if the guard moves closer to the territory and
a negative reward otherwise. We take for example the reward function RG1

t+1 for guard 1.



10 C. V. ANALIKWU, AND H. M. SCHWARTZ

 

Step 2: Incrementally search 
for the optimum point to 
intercept the invader. 

y 

x 

Step 1: Move in-between 
the invader and the 
territory. 

Territory  

Invader  

Guard 

Figure 4. The guard’s reward function description.

The first component δG1I gives a positive reward if guard 1 moves closer to the invader
and a negative reward otherwise, given as

δG1I = distG1I(t)− distG1I(t+ 1) (24)

The second component δG1T gives a positive reward if guard 1 moves closer to the territory
and a negative reward otherwise, given as

δG1T = distG1T (t)− distG1T (t+ 1) (25)

Therefore, the reward functions RG1
t+1 and RG2

t+1 for guard 1 and guard 2 are given as

RG1
t+1 = PδG1I +MδG1T (26)

RG2
t+1 = PδG2I +MδG2T (27)

respectively. Where P and M are constants that determine the importance attached to
the various components of the reward functions.

The reward function for the guard is illustrated in Fig. 4. A trade-off between moving
closer to the territory and moving closer to the invader must be reached. For example, if
we choose P as a large number, the guard will directly pursue after the invader, which is
an irrational strategy well studied in [6]. On the other hand, if we choose M as a large
number, this will make the guard ignore the invader and move towards the territory. In
Section 5, we provide details of how we set the values of the constants P and M .

4. The optimal strategies of the players. When the players have the same speed,
the optimal strategies of the players can be determined using the perpendicular bisector
approach [1]. However, when the players do not have the same speed, it would be difficult,
if not impossible, to use the same approach to determine the optimal strategies of the
players. In this section, we briefly introduce the Apollonius circle and subsequently present
the Apollonius circle approach to determine the optimal strategies of the players when
the invader is superior to two guards. We make use of the Apollonius circle solution only
for the purpose of evaluating the players’ learning outcome.

4.1. The Apollonius circle. Consider the Apollonius circle AC formed by the invader
I and the guard G as shown in Fig. 5. In this scenario, the guard is superior to the
invader (i.e. VG > VI). The Apollonius circle will always encircle the inferior player. If
we pick any point M1, M2, on the Apollonius circle as shown in Fig. 5, both players can
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Figure 5. The Apollonius circle AC constructed for an inferior invader I
against a superior guard G.

reach that point at the same time, given their individual speeds. Let λ be the ratio of the
speeds of the players, such that

λ =
VG

VI

=
|GM1|
|IM1|

=
|GM2|
|IM2|

(28)

where |GM1| denotes the Euclidean distance between the position of the guard G and the
point M1. The center of the Apollonius circle CAC and its radius RAC can be computed
using

CAC =

(
xG − λ2xI

1− λ2
,
yG − λ2yI

1− λ2

)
(29)

RAC =
λ
√

(xG − xI)2 + (yG − yI)2

1− λ2
(30)

respectively [22,23].

4.2. The optimal strategy of a superior invader against two inferior guards.
Consider the scenario presented in Fig. 6. In this scenario, there are two guards in the
game against a high speed super invader. The invader is located at position I, the first
guard (i.e. guard 1) is located at position G1 and the second guard (i.e. guard 2) is located
at position G2. The Apollonius circle formed by the invader and each guard is also shown
in Fig. 6. The Apollonius circle will encircle the guards, since the guards are the inferior
players. As shown in Fig. 6, AC1 denotes the Apollonius circle formed between the invader
and guard 1, while AC2 denotes the Apollonius circle formed between the invader and
guard 2.

In order to simplify the problem, we assume that the environment is bounded such that
it is impossible for the invader to go around any of the Apollonius circles. Therefore, for
this scenario, the optimal strategy of all three players is to move to the point O6. The
point O6 is the closest the invader can get to the territory as well as the farthest from the
territory the guards can intercept the invader. The point O6 must be recomputed at each
time instant.

The invader, guard 1 and guard 2 must find their respective strategies ūI = ū∗I , ūG1
=

ū∗G1
and ūG2

= ū∗G2
, in order to optimize their payoffs. Should any one of the guards fail to

find its optimal strategy, this may lead to adjacent Apollonius circles no longer intersecting
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Figure 6. The optimal strategy of a superior invader I against two inferior
guards G1 and G2.

each other (i.e. an opening between the adjacent Apollonius circles). A rational invader
should be able to exploit this opening between adjacent Apollonius circles to achieve a
more favorable payoff. Likewise, should the invader fail to find its optimal strategy, the
guards should be able to achieve a more favorable payoff assuming they play rationally.

5. Simulation results. In this section, we apply the reinforcement learning method
described in Section 3 to the guarding a territory game. We make use of the problem
formulated in Section 2.2 to simulate and evaluate the performance of the players. In our
simulations, all the players in the game (the invader and the guards) are simultaneously
learning. We set the learning rates of the actor and the critic in the FACL algorithm as
follows: β0 = 0.05 in Eq. (17), α0 = 0.1 in Eq. (18). The variance of the exploration noise
σ and the discount factor γ are set as follows: σ2

0 = 1 and γ = 0.5. The decay rates of the
learning factors after each epoch k are set as follows: βk+1 = 0.994kβ0, αk+1 = 0.999kα0,
and σ2

k+1 = 0.994kσ2
0. The values for the learning rates, the exploration noise and the

discount factor were chosen based on a priori knowledge of the problem.
The Kinematic equations of the players given in Eqs. (1 - 3) were solved in simulation

using the second-order Runge-Kutta method [12]. The sampling time is set to 10 mil-
liseconds. The players have a constant linear speed throughout the game. However, the
angular speed ωt of any one of the players is given as

ωt = K(Ut − θt) (31)

where K is the proportional gain, Ut is the desired heading angle obtained from the
controller and θt is the current heading angle of the player relative to the global x-axis.
We set K = 1, whereas, Ut is determined using Eq. (12).

The total simulation time for an epoch is set to 60 seconds. An epoch describes a single
run of the game, which starts when the players are in their initial positions and ends when
the game meets a terminating condition. The game terminates if the simulation timer for
an epoch expires, the invader reaches the territory or the invader is within the capture
radius RC of the guards. We set RC = 2 units for all the guards.

Each epoch is carried out in two phases: a training phase where the learning occurs
and a test phase where the players apply what they have learned. In the training phase,
we set the players’ initial positions at random in specified training regions, whereas in
the test phase, we set the players’ initial positions at fixed locations. We record only the
payoff obtained in the test phase. We average the payoff over 10 learning trials. In this
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Algorithm 2 Train-Test Algorithm

1: Initialize p = 1, k = 1.
2: while p ≤ 10 do
3: Initialize W l = 0, ζ l = 0 for l = 1, · · · , L.
4: while k ≤ 500 do
5: Run training epoch with the players’ initial positions assigned at random in

training area.
6: Adapt W l

t+1 in Eq. (17) and ζ lt+1 in Eq. (18) for l = 1, · · · , L.
7: Run test epoch with the players’ initial positions fixed at assigned test

locations.
8: Record the payoff achieved.
9: k = k + 1.

10: end while
11: Record the average payoff achieved.
12: p = p+ 1.
13: end while

 

Figure 7. The game setup for a superior invader against two inferior guards.

scenario, a single learning trial describes one complete cycle of the game which contains
500 training epochs and 500 test epochs. The procedure is summarized in Algorithm 2 [6].
In Algorithm 2, k and p denote the current index of the epoch and the learning trial
respectively. The objective of the Test-Train algorithm is to investigate whether the
training performed in one area can be applied to other regions.

5.1. Simulation of the multi-agent superior invader guarding a territory prob-
lem. The game setup is shown in Fig. 7. In this scenario, there are three players in
the game: two guards and a high speed invader. We set the speed of the guards to
VG1 = VG2 = 1 unit/second, while the speed of the invader is set to VI = 1.3 units/second.
Therefore, the invader is 30 percent faster than the guards.

The training regions for the players are illustrated in Fig. 7. We set the test location
for Guard 1 at [5, 5] and its initial orientation to 0 radians. The test location for Guard
2 is set at [25, 25] and its initial orientation to −π/2 radians. Similarly, we set the test
location for the invader at [5, 25] and its initial orientation to 0 radians. The center
of the territory CT is located at [22, 8] and the radius RT = 3 units. The Apollonius
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Figure 8. FACL simulation: The trajectory plot of the final epoch for a
superior invader against two inferior guards with guard 2 located at coor-
dinate [25, 25] absent.

 Figure 9. The average payoff plot for a superior invader against two infe-
rior guards with guard 2 located at coordinate [25, 25] absent.

circles constructed in Fig. 7 describe the regions the guards can reach before the invader.
Although the Apollonius circles do not completely encircle the territory, the guards should
be able to intercept the invader before the invader reaches the territory. This is possible
if the guards exploit their 2 units capture radius.

For the reward function of the invader given in Eq. (23), we set the parameters D = 3.0,
J1 = 1.0 and J2 = 1.0. The parameter D describes the importance the invader attaches
to moving towards the territory, while J1 and J2 describes the importance the invader
attaches to moving farther away from guard 1 and guard 2 respectively. The value of the
parameter D was chosen to be three times the value of the parameters J1 and J2 so that
the invader places greater importance on moving towards the territory.

Similarly, for the reward function of guard 1 and guard 2 given in Eq. (26) and Eq. (27)
respectively, we set the parameters P = 1.1 and M = 1.0. The parameter P describes
the importance the guard attaches to moving towards the invader, while M describes the
importance the guard attaches to moving towards the territory. Both components of the
reward functions described in Eq. (26) and Eq. (27) will work jointly to guide the guards
to determine the optimal point in-between the invader and the territory that maximizes
the capture distance of the invader from the territory, as illustrated in Fig. 4.
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 Figure 10. FACL simulation: The trajectory plot of the final epoch for a
superior invader against two inferior guards with guard 2 located at coor-
dinate [25, 25] present

 Figure 11. The average payoff plot for a superior invader against two
inferior guards with guard 2 located at coordinate [25, 25] present.

We run the simulation for 500 epochs with guard 2 located at [25, 25] absent. This is
done to investigate whether a single guard can defend the territory in this scenario. The
trajectories of the learning agents at the final epoch are shown in Fig. 8. We observe in
Fig. 8 that guard 1 alone cannot stop the superior invader from reaching the territory. As
shown in Fig. 8, the guard made an attempt to move as close as possible to the invader to
effect capture. However, the invader learned its optimal strategy to aim for the region of
the territory that it can reach before the guard. In this paper, we make use of the payoff
obtained at game termination to evaluate the performance of the learning agents. We run
the present simulation for 10 learning trials using the Test-Train algorithm. The payoff
averaged over 10 learning trials is shown in Fig. 9. We observe in Fig. 9 that, on average,
the learning process is complete after 100 epochs. From the 100th epoch onwards, the
invader is able to reach the territory regardless of what the single guard did.

We introduce guard 2 into the game and run the simulation for 500 epochs. The
trajectories of the learning agents at the final epoch are shown in Fig. 10. We observe at
the final epoch shown in Fig. 10 that the two guards are able to work jointly to capture
the superior invader. The guards are able to implicitly cooperate to capture the invader
although there is no direct communication between the guards. This is possible because
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the flow of information of the presence of a second guard in the game is transmitted to
the other guard through the motion of the invader. In other words, guard 1 has implicit
information about the presence of guard 2 in the game through the motion of the invader.

The payoff averaged over 10 learning trials is shown in Fig. 11. The average payoff
converges to 5.34 units. In order to compare the player’s performance to the optimal
strategy given by the Apollonius circle approach, we run one test epoch where all three
players apply their optimal strategy (with no learning). The optimal strategy gives the
payoff value of 5.13 units, as shown in Fig. 11. We observe in Fig. 11 that there is only
a minor difference, approximately 0.21 units, between the average payoff obtained using
the learning algorithm and the payoff given by the optimal strategy. This demonstrates
that all three players are able to learn their optimal strategies using the FACL algorithm.

5.2. Discussion. When designing the controller inputs for the three-player game, we
initially thought that the guards would require explicit information about the position of
the other guard. However, as the simulation results demonstrates, the information about
the existence of the second guard is implicitly transmitted through the motion of the
invader. As such, the information about the location of the second guard is not required
and that drastically simplified the computational complexity of the system.

The simulation results presented in this section also demonstrated that the learning
algorithm was able to determine the optimal strategies of all three players in an effective
way. We observe in Section 5.1 that a single guard was not able to stop the superior
invader from reaching the territory. However, when we introduced an additional guard
to the game, both guards were able to work jointly to intercept the invader before it can
reach the territory. The guards were able to implicitly cooperate to capture the superior
invader although there is no direct communication between the guards. This demonstrates
that the players were able to learn in a decentralized manner.

The simulation results further demonstrated that the training in one area can be applied
to other regions. As shown in Fig. 7, the test locations for the players are fixed locations
within the specified area. Specifically, the test locations for the invader and the guards
are 1.5 units distance away from their respective training regions. As demonstrated by
the simulation results in Section 5.1, the agents were able to perform optimally in the test
locations although they had received no previous training in these locations.

6. Conclusions and future work. This paper investigated the use of reinforcement
learning to train the players (the invader and the guards) in the game of guarding a
territory. We made use of multi-robot systems as our players in the game. We demon-
strated that multi-robot systems with conflicting interests can learn their optimal strate-
gies against their opponents using reinforcement learning technique. We designed a control
system to guide the players in the game. Our control system was designed using the FLC.
With the aid of reinforcement learning we tuned the control system to improve the perfor-
mance of the players. The combination of the FLC with reinforcement learning resulted
in the FACL method.

In many practical applications of the guarding a territory game in the real-world, the
invader (intruder) may have speed greater than the speeds of the guards. Therefore,
we considered the possibility of a scenario where the invader is faster than two guards.
Simulation results from this study demonstrated that the two guards were able to learn
their optimal strategies to defend the territory in an effective way although there was no
direct communication between the two guards. Our designed control system was able to
guide all three players in this scenario to achieve their optimal performance.
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In conclusion, the simulation results demonstrates that our designed control system
with reinforcement learning is able to effectively guide multi-robot systems to determine
their optimal strategies against their opponent in the game of guarding a territory. Future
work will extend this study to investigate the more general scenario of multiple invaders
against multiple guards. It would be interesting to investigate how behaviors emerge in
such a scenario, such as the different possible collaborations of a team of guards defending
the territory against the invaders. This study will be highly beneficial especially as the
future looks towards autonomous multi-robot systems for security and surveillance.
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