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A game theoretic approach to swarm robotics
doi:10.1533/abbi.2005.0021

S. N. Givigi, Jr. and H. M. Schwartz
Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada

Abstract: In this article, we discuss some techniques for achieving swarm intelligent robots through
the use of traits of personality. Traits of personality are characteristics of each robot that, altogether,
define the robot’s behaviours. We discuss the use of evolutionary psychology to select a set of traits
of personality that will evolve due to a learning process based on reinforcement learning. The use of
Game Theory is introduced, and some simulations showing its potential are reported.

Key words: Game theory, swarm intelligence, adaptive systems, traits of personality.

INTRODUCTION

Swarm intelligence may be defined as a distributed
problem-solving technique based on self-organization the-
ory and inspired by collective social behaviour (Bonabeau
et al. 1999). Moreover, the main natural (or biological) base
for swarm intelligence is social insect colonies, which are
simple individually but present a highly complex social be-
haviour based on (supposedly) very simple rules (Dorigo
et al. 2004). Also, they have almost no direct communica-
tion, but are able to overcome difficult tasks by observing
changes in the environment performed by other individu-
als (Bonabeau et al. 1999; Dorigo et al. 2004).

In practice, swarm intelligence is not intended to gener-
ate a rational individual entity, as classical Artificial Intelli-
gence proposes (Bonabeau et al. 1999). However, through
investigation of simple computational models that may be
implemented in simple machines, it tries to explore how
complex tasks might be performed by a social entity due to
behaviours that are not directly predicted by the particular
characteristics of each individual (Dorigo et al. 2004). For
example, if we have a society with a majority of peaceful
agents, when some aggressive individuals enter the com-
munity, we cannot say that the majority will make the new
individuals become peaceful. It is our purpose to try to
predict such behaviours through modelling and simula-
tion in order to justify techniques that may be used in a
swarm-based robotic environment.
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For the purpose of this work, we defined the following
design guidelines:

1. The algorithms the robots must execute are simple (com-
putationally) and may be run by simple digital signal
processor (DSP) (or even field programmable gate array
(FPGA)) chips.

2. The robots’ sensory capacity is limited and supposed to
be the same.

3. The message exchanging is very limited or inexistent.
When (and if) the robots communicate with each other,
no guarantee is given that the message will be received
or, if it is received, that the content of the message was
understood.

4. The robots are able to sense the presence of other robots
and, for simulation sake, the position of targets or ene-
mies.

To observe the emergence of group behaviours, we rely
on the concept of ‘personality traits’ (Givigi and Schwartz
2005; Mynsk 1986). Through the adaptation of personality
traits the underlying behaviour of each robot changes, and
by changing each robot’s behaviour, the group’s behaviour
also changes (Bonabeau et al. 1999).

SOCIAL MODELLING USING GAME THEORY

One of the major successes in the field of economics and
social sciences in the past decades has been the application
of Game Theory to the modelling of social interactions of
rational entities for the prediction of outcomes of conflicts
among them (Myerson 1991). It turns out that the same ap-
proach may be used in the modelling of robot swarms, since
their formation may be thought of as a social interaction of
individuals (Bonabeau et al. 1999).

Game Theory can be defined as ‘the study of mathe-
matical models of conflict and cooperation between intel-
ligent rational decision-makers’ (Myerson 1991). There-
fore, it seems natural to explore this technique in order to
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S. N. Givigi, Jr. and H. M. Schwartz

represent the behaviour of robots, since robots may be re-
garded as ‘intelligent rational decision-makers’. Although
in our case their rationality is limited, this does not impair
the application of the theory. For example, evolutionary
models have been developed using Game Theory where,
obviously, the agents involved cannot be regarded as ‘intel-
ligent rational’ entities (Maynard 1982) and the situations
they usually are involved in concern mainly conflict and
cooperation.

One very important thing to notice is what is meant
by conflict. Conflict does not mean fight or engagement
and does not presuppose an enemy. Even teammates have
conflicts and even one single individual has conflicts. It is
not our intention to analyse conflicts from a philosophical
point of view, but we do not restrain ourselves on the usual
definition of conflict as the fight between contraries. For
our purposes, a conflict is established when one trait of
personality leads to a different action than another trait
of personality or when one robot has individual interests
that are against another robot’s interests, but we suppose
they have the same task objective. In this context, we are
interested in modelling relationships between robots that
are on the same side and we do not intend to model fights
between groups of robots.

Our goal is to establish a theoretical framework that
might lead to a stability criterion linked to the idea of equi-
libria in games (Weiss 1999). We also want to verify how
well the inferences made inside the theory may represent
learning based on the assumptions made by the framework.

REPRESENTATION OF THE ENVIRONMENT

The way the environment is represented has a great in-
fluence on which techniques may be used to control the
robots as well as in how the payoff tables used by Game
Theory are implemented. To reduce the robots’ compu-
tational requirements, the environment is represented by
potential fields in a technique known as Co-Fields (Mamei
et al. 2004).

Co-fields are based upon cooperation through social po-
tential fields (Chalmers et al. 2004). Each robot is con-
sidered to be a particle with a given position in a fixed
time. The environment, containing the other robots, obsta-
cles and enemies, is represented individually by potential
fields. The potential fields represent attraction or repul-
sion among the objects. In the approach presented here,
the meaning of the field is determined by the robot through
the adaptation of personality traits as discussed in the next
section. For now, we may say that the algorithm the robot
is running might prefer a downhill approach (where the
robot looks for a low potential valley within its represen-
tation) or an uphill approach (where the robot pursues a
peak) depending on the task it has and the personalities it
developed.

For each robot, according to the potential field cre-
ated by any object it perceives, we may write the ‘force’
(Borenstein and Koren 1989) acting over it by

�FT =
∑

attractive

�Fi +
∑

repulsive

�Fj (1)

where, again, the attractive and repulsive forces are defined
differently for each robot. As a result, each individual robot
perceives the world in a different way than the others. The
differences in the representations may result from the
learning of new traits of personality or from noise in
the sensors. Either way, the robot will have some out-
come from its reading. In Equation (1), �FT is the resultant
of the individual forces (attractive and repulsive) acting on
the robot.

The direction of the robot’s movement is the direction
of the resultant force. Observe that the force may be rep-
resented as

�FT = ∣∣ �FT
∣∣ �d F (2)

where �d F is the unit vector in the direction of the resultant
force. In other words, it is

�d F =
�FT

| �FT | (3)

We use this notation to emphasize that the fields just define
the direction of the movement, but the final decision to
move in this direction and the velocity of the movement
are determined by the personality traits as defined in next
section.

PERSONALITY TRAITS

One of the suggestions of the Theory of Evolution is that
animals have emotions (Darwin 1965). Moreover, these
emotions are shared by the same species. Also, traits of
personality (term that is used interchangeably with emo-
tions) are important to the maintenance of objectives and
collaboration (Mynsk 1986). Using these ideas, we define
a way robots may react to their environment (Givigi and
Schwartz 2005).

In our problem, the robots are assumed, initially, to be
homogeneous in configuration and capabilities (understood
as the set of traits of personality available to each one of
them). However, like ants in a colony, they should differ
from each other to better perform a complex task. But we do
not want to add complexity to our algorithms. To solve this
dilemma, we make use of personality traits. Therefore, the
algorithms are the same for every robot, but changing these
numerical values (the ‘traits’) will change the behaviour
of individual robots. Although simple, this idea is very
powerful and joined with reinforcement learning may lead
to a heterogeneous population that is able to specialize for
executing some tasks but at the same time may learn how
to execute a different action if it is necessary.

Personality traits are represented by real numbers γ i.
They are used to represent the individual intentions when
faced with changes in the environment. At each time t,
the robot may take one action αi chosen from a set of
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A game theoretic approach to swarm robotics

possible actions A. If we define X as the state of the robot
and Y as the state of the environment, we may establish
a function f : X × Y × A → X × Y, i.e. a function that
maps the current states of a robot and the environment to
different states through the execution of an action. The
problem then becomes to determine a way to represent the
states X and Y and relate them to the actions A. Clearly, if
we increase the number of represented states and possible
actions, the number of possibilities for the function f in-
creases exponentially. This could be regarded as the main
problem when a symbolic representation of the world is
used.

The choice of actions is made considering the traits of
personality a robot has and the payoffs related to each
action at a given moment in time. By payoffs we mean
the reward or penalty that may come from executing a
specific action. For example, if by performing an action
the robot gets closer to its objective, it receives a reward
(a positive number that represents the possible success of
the action); on the other hand, if as a consequence of an
action the robot is damaged or increased its risk of being
damaged, it receives a penalty (a negative number that
represents the failure of the action). Notice that the payoffs
may change according to a change in the representation of
the environment. We may give an example of human beings
to explain this. In our diet we usually would not consider
eating worms. However, if we were lost in a jungle, we
would do anything that would keep us alive. In the same
way, a robot can change the values of its payoffs if the
environment as it perceives it changes.

Since the states of the system are represented using
potential fields as described in the previous section, we
avoid the proliferation of actions that the robot can take. In
the simulations to come, the robots will always choose the
uphill or downhill algorithm (plus the choice to stay put).
One thing that should be stressed here is that the uphill or
downhill move does not need to be on the exact direction of
the gradient, but, with variations in the personality traits,
the uphill or downhill move has to keep an angle between
+90◦ and −90◦ with the gradient. Then, when the state is
recognized, the action is chosen according to the formula,
known as the randomised strategy (Kaelbling 1996), which
is useful for leading the robot to ‘explore’ new actions
and not just ‘exploit’ learnt sequence of actions. The next
equation demonstrates the randomised strategy.

P(αi |s ) = k
V(s ,αi )/T∑n

j=1 k
V(s ,α j )/T

(4)

In Equation (4), P is the probability that action αi will be
executed when the state is s. The term k is a coefficient
that defines how often the robot will explore new solutions
or exploit the ones it already knows as better ones. When
k increases, the probability that the robot will explore new
choices decreases and vice versa. T is a temperature param-
eter inspired in Boltzmann theory of statistical mechan-
ics. It is desired that over time, T decreases to diminish

exploration (Kaelbling 1996). The value function V(.) is
related to the action under consideration and the current
state. V(.) is the long-term expected reward and not just the
instantaneous one. This means that the decisions the robot
takes are based in the expectation to solve the problem
(find a target or perform a predefined task) and not just in
the instantaneous reward. This difference is implemented
in the personalities, for, since robots learn over time, they
will develop the capability to ‘predict’ the payoffs of their
actions. And finally n is the number of possible actions that
a robot may perform (in our present case it is the number of
different strategies available for the robot). In this article,
in all simulations we will use k = e (i.e. exp(1) = 2.7183)
and T = 1. T = 1 means that we do not reduce exploration
as time goes by. k = e means that the robots have a pref-
erence for exploitation of already-learnt strategies but are
also open to exploration (Kaelbling 1996).

As stated before, this approach (Equation (4)) permits
that we exploit the better solutions found so far, but also
allows us to explore new possibilities. Since our states are
simple and the number of actions is limited, the task to
update the values V(.) does not take much computational
power. When we use game theory to represent the payoffs
a robot receives from the environment, we need a way to
represent the overall payoff a robot will get during the
execution of the task. To do that, it is more cost-effective
to incorporate the value function V(.) in another function
that considers the traits of personality. Therefore, let us
define some cost functions εi that represent how well a
personality trait contributed for the success of the robot.
These functions are arbitrary and defined on the basis of the
problem under consideration (Givigi and Schwartz 2005).
When an action αi is chosen to be executed, all personality
traits γ are then updated.

The effect of the action taken is evaluated using the
equation

E(γ1, γ2, γ3, . . . , γn , s t , αi , t) =
n∑

j=1

γ j ε j (s t , αi , t) (5)

where the individual cost functions ε j are related to how
beneficial for the robot the execution of action αi is accord-
ing to each personality trait γ j and, therefore, determines
the reward and/or penalty related to the trait of personal-
ity. Furthermore, we assume that the weights γ i (i.e. the
personality traits) are normalized, so

n∑
j=1

γ j = 1; γ j ≥ 0 (6)

The action chosen is the one with the largest value

V(s , αi ) = E(γ1, γ2, . . . , s t , αi , t)

−E(γ1, γ2, . . . , s t−1, α j , t − 1) (7)

i.e. the one that makes the highest improvement in the over-
all value function. Equation (7) takes into account all the
traits of personality γ i and the environment as represented
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S. N. Givigi, Jr. and H. M. Schwartz

Table 1 Zero-sum game example

Game 5.1.1 Player B strategies

B1 B2 B3 B4 B5 B6

Player A Strategies A1 4 −4 3 2 −3 3
A2 −1 −1 −2 0 0 4
A3 −1 2 1 −1 2 −3

at time t (the next time step) and t − 1 (the immediate past
step). Action αi is the action under consideration and α j
is the action taken at time step t − 1. Finally, s t is the state
that the robot perceives the environment to be in at time t,
and s t−1 is the state the robot perceived the environment
to be in at time t − 1. Notice that, in most applications, it
is not necessary to keep the quantity E (.) at time t − 1.
However, for consistency, we represent it in Equation (7).

Moreover, some procedure for evolving the person-
alities is necessary. Its main purpose is to diminish the
dilemma between stability and adaptability (plasticity) of
learning. The adaptation law used is

γi (t) = γi (t − 1) + η�γi (t) (8)

where η is the learning rate for the personalities, i.e. a
real value in the interval [0, 1], and defining �εi (t) =
εi (s t , α j , t) − εi (s t−1, αk, t − 1), where α j is the action
taken at time t and αk was the action taken at time t − 1,
the step is

�γi (t) = �εi (t)∑n
j=1 �ε j (t)

(9)

Equations (8) and (9) imply, because of the presence of
all personality traits in the denominator, that each trait
of personality influences the others. Therefore, changing
a singular trait will affect the way all the others work.
Furthermore, the convergence of Equation (8) is highly
dependent on the value of the learning rate η: if this is
small, the convergence is too slow and the robots take
too long to adapt to new situations; if it is too high, the
system chatters a lot around some value before it converges
and when it does, it has a large probability to go to a
local maximum (minimum). In our simulations, we use a
small value for this term for a smoother convergence. The
difference equation in Equation (8) is in the same form
used in the reinforcement learning literature. More details
may be found in (Kaelbling et al. 1996).

SIMULATION RESULTS

To demonstrate the ideas presented so far, we will now in-
troduce three simulations that will incrementally become
more complex and, together, will show how powerful the
approach suggested is. We start, in the section A Zero-Sum
Game Example, by a zero-sum (matrix) game wherein no
saddle point exists and therefore mixed strategies must be

Table 2 Optimal mixed strategies

Strategy Optimal frequency (%)

Player A
A1 24
A2 21
A3 55

Player B
B1 0
B2 36
B3 0
B4 57
B5 0
B6 7

used.1 We will compare the theoretical optimal solution
with the results obtained by the learning procedure de-
picted in this work. In the section Robots Leaving a Room,
we make things a little bit more complex and model a
robotic conflict, using a non–zero-sum game. Moreover,
this time, we will have more players (three robots) and the
reward will not be only the payoff table, but a combina-
tion of payoffs and goal achievement. Finally, in the sec-
tion Tracking a Target, we introduce a situation in which
the robots do not perceive the environment completely.
Therefore, we will make use of potential fields for the rep-
resentation of the environment and a still more complex
learning procedure.

A zero-sum game example

The game that we will analyse in this section is reported in
(Straffin 1993) and represented in Table 1. This is a zero-
sum game, meaning that the payoffs for each player always
add to zero. For example, if player A plays the strategy A1
and player B plays the strategy B1, player A gets rewarded
4 units while player B gets a penalty of 4; whereas, if player
B decides to play strategy B2, it gets a reward of 4 units
while player A gets penalized 4 units.

As may be seen in Table 1, there is no saddle point for
the game; therefore, there must be a mixed strategy set
for both players. The optimal strategies, calculated using
a linear programming solver such as the Simplex, for both
players, are shown in Table 2.

1 For a gentle introduction to game theory, refer to Straffin (1993). For a
more complete reference, see Vorob’ev (1977).
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A game theoretic approach to swarm robotics

Table 3 Experimental results obtained for player B

Strategy Optimal (%) Experimental Experimental
average (%) standard

deviation

B1 0 0 0
B2 36 18.03 36.95
B3 0 0 0
B4 57 60.49 46.60
B5 0 0 0
B6 7 21.48 40.09

We suppose that player A always plays its best strategies
(24% A1, 21% A2, 55% A3) and player B starts playing all
strategies equally; i.e. each strategy will have a probability
of 16.67% of being used. The question we want to answer
is: If we use personalities as described above, will the robot
learn to play the best mixed strategy? If not, will there be
any improvement over time?

The algorithm followed by player B is as follows.

Algorithm 1
1. Define the payoffs for the game to be according to the

matrix

M =

 4 −4 3 2 −3 3

−1 −1 −2 0 0 4
−1 2 1 −1 2 −2


 (10)

2. Initialise learning rate η = 0.01.
3. Define and initialise six personality traits γi = 1

6 , i =
1, . . . , 6.

4. Repeat steps 5 to 9 for 1,000 repeated games.
5. Player A randomly chooses one of its strategies to play

using the probabilities: 24% of using strategy A1, 21% of
using strategy A2, 55% of using strategy A3. The action
chosen is then called a.

6. Player B randomly chooses one of its strategies, using the
equation

P(Bi ) = eγi∑n
j=1 eγ j

(11)

The action chosen is then called b. Equation (11) is
Equation (4) with k = e (exp(1) = 2.7183), T = 1 and
V (s , αi .) = γi .

7. The payoff for player B is −Mab . Therefore, update the
personality trait

γb = γb − ηMab (12)

This equation is of the same form as Equation (8); how-
ever, the step size, −Mab , is represented directly from
the payoff table.

8. Normalize all personality traits γ i so that (implementa-
tion of Equation (6))

6∑
j=1

γ j = 1; γ j ≥ 0 (13)

9. Record the payoff for player B (−Mab ).

As seen in the algorithm above, we have defined six
traits of personality, one for each strategy. Observe that
this is not necessary and we could have used a much larger
number of personalities (or, on the other hand, a smaller
number) to characterize our player. Our goal was just to
make the simulation more straightforward. Therefore, the
value functions as defined in Equation (7) are V (s , αi ) =
γi . The learning rate (η = 0.01), resulted in a smooth
convergence to the stable final personality traits. Moreover,
we set the values in Equation (4) (Equation (11) above) to
be k = e (exp(1) = 2.7183) and T = 1, which leads to more
exploitation of already-learnt strategies than exploration of
new approaches (Kaelbling et al. 1996).

We then ran the simulation for 30 times and collected
the final probabilities of using each one of the 6 strategies at
player B’s disposal as well as the value that the same player
obtained in each simulation. The average of such results
and their respective standard deviation are summarized in
Table 3. One may notice that, indeed, the procedure made
the personalities vary around its optimal. Furthermore, we
observe that the disadvantageous strategies B1 and B3 were
never used. Moreover, strategy B5, which is dominated by
strategy B2, was never used. The learning procedure even
caught the subtlety that B2 dominates B5. Furthermore,
the average payoff for player B was 0.0664 with a standard
deviation of 0.0292, very close to the theoretical value of
the game, 0.07 (Straffin 1993).

Now we ask a different question: what if player A
changes its strategy, drifting away from the optimal? Will
player B respond to the change? We ran another set of 30
simulation sets, but after 500 repetitions of the game player
A assumes a different mixed strategy (70%, 20%, 10%),
trying to take advantage of the overuse of strategies B4 and
B6 by player B. In this scenario, the first 500 games pre-
sented the same results as analysed before. However, for
the next 500 games, player B switches to strategy B2 almost
100% of the time in order to take advantage of player A’s
poor choice of strategies. As a result, the payoff of the last
games is, on average, 2.63, much higher than that of the
previous games. The only other strategy used was B5, but,
as it is dominated by B2, it is used less than 0.001% of the
time.

The importance of this example resides in the fact that
the robot is able to learn from experience when the task is
represented in terms of a game. Furthermore, it shows that
even when the opponent changes its strategy, the learning
procedure adapts the personality traits and the robot’s be-
haviours change accordingly.

Robots leaving a room

Our second simulation is similar to the one introduced and
reported in (Yingying et al. 2002). The set-up is the follow-
ing. Three robots of 1 unit in diameter are located in a room
with dimensions 8 × 8 (corners at (0, 0), (0, 8), (8, 8) and
(8, 0)). There is a door centred at (3, 8) and with dimen-
sions so that just one robot may pass. Inside the room, there
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Figure 1 Artistic depiction of the problems of robots leaving a room.

Table 4 Modelling of a game between two robots
trying to leave a room

Robots leaving a room Player B

Walk Wait

Player A Walk −1 X
Wait Y 0

are three robots located at positions (3 + 3
√

2, 8 − 3
√

2),
(3, 6) and (3 − 3

√
2, 8 − 3

√
2), i.e. at a distance 6 units

from the door (Fig. 1). It is assumed that one robot knows
the positions of the other two without any noise, and it is
also assumed that the robots move only in a straight line
from their initial position toward the centre of the door
with fixed speed, 1 unit/s. The problem may be described
as a game shown in Table 4, which has the payoffs for
player A. The values X and Y in the table must follow the
rule

X ∈ Z+ and Y ∈ Z− (14)

where the values for X and Y will depend on how important
reward and penalty are in the modelling. The complete
algorithm is as follows:

Algorithm 2
1. Define the payoffs for the robots 1 and 3 in Figure 1 to

be according to the matrix

M1 =
[−1 1

−1 0

]
(15)

i.e. where X = 1 and Y = −1 (see Table 4 and
Equation (14)). For player 2, define a different payoff
table as

M2 =
[−1 3

−1 0

]
(16)

where X = 3 and Y = −1 (see Table 4 and
Equation (14)). The values are different such that robot
2’s expected reward is more representative than its ex-
pected penalty.

2. Initialise learning rate η = 0.01.
3. Each robot will have two personality traits, initialised as

γi = 1
2 , i = 1, 2, which define which strategy (Walk or

Wait in Table 4) the robot will play.
4. Repeat steps 5 to 11 for 100 repeated games. Keep a

counter j with the number of the game.
5. Robots walk at the fixed speed until they get to a position

they cannot move without hitting each other.
6. When they get to this position, all of them take a de-

cision to move or to wait for the other according to
their personalities. The probability to move is given in
Equation (4), where, k = e (exp(1) = 2.7183), T = 1 and
V (s , αi ) = γi . Therefore, Equation (4) becomes

P (Walk) = eγ1

eγ1 + eγ2
(17)

The probability the robot will wait for the other is

P (Wait) = 1 − P (Walk) (18)

The action taken by each robot is represented by Al ,
where l = 1, 2, 3.

7. For each robot l = 1, 2, 3, execute step 8.
8. If all the robots are still in the room, each one of them

will play two games. If the robot has already left the
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A game theoretic approach to swarm robotics

Figure 2 Artistic depiction of the simulation environment.

room, it will not play. If l = 1 or l = 3 (the robots 1 and
3 in Fig. 1), the robot gets its payoffs according to the
matrix shown in Equation (15). If l = 2 (robot 2 in the
middle in Fig. 1), the robot gets the rewards according
to Equation (16). The payoffs will be represented by
Rlm , where l is the index of the robot and m is the index
of the opponent robot. For example, R12 is the payoff
for robot 1 against robot 2. Notice that R12 �= R21.

9. If there is no collision, the robot moves; otherwise, it
keeps its current position for one time step.

10. For every game played, update the personality related
to the action chosen according to the equation

γAl = γAl + ηRlm (19)

Equation (19) is the implementation of Equation (8).
Notice that the personality trait is updated two times
per time step.

11. Normalize all personality traits γ i so that (implementa-
tion of Equation (6))

2∑
k=1

γk = 1; γk ≥ 0 (20)

The results obtained after these 100 repetitions were
very interesting. First of all, one of the robots on the sides
(robots 1 and 3) converged to a purely ‘cooperative’ robot
(i.e. its personality trait for waiting for the others became
1), whereas the other robot on the side converged to a
purely ‘competitive’ robot (i.e. its personality trait for al-
ways walking became 1). Secondly, the robot in the middle
chooses its actions on a 50–50 basis. As a result, the aver-
age of the 100 games is 10.04s and standard deviation of
1.82. Also, 24 out of the 100 repetitions obtained the best
solution of 8s (Yingying et al. 2002).

One may notice that the robots did not work only on their
own advantage. Table 4 shows that the strategy ‘Wait’ is
dominated by the strategy ‘Walk’. However, behaving the

way they did made the overall result much better for the
group. This is one of the interesting results that will be
exploited in the next simulation.

In another version of the simulation shown, we consid-
ered another payoff for the robots that included how well
they had performed the task of leaving the room. Knowing
that the best solution is 8s, we defined payoffs of the form

1
t−8+1 , where t is the time the robots took to leave the room,
that were added to the list of actions taken by each robot.
However, this did not result in a noticeable improvement
of convergence and was dropped. The result suggests that
the approach proposed works well with only local informa-
tion and global information (total time to leave the room)
did not increase the overall convergence of the algorithm.

Tracking a target

We now make use of all the ideas presented in this arti-
cle, and define a more complex and challenging simulation
mission to be accomplished by several robots working to-
gether. We set up the simulation environment as shown
in Figure 2. In this figure, we depict a target (a tank) and
several robots that are moving around it. Their objectives
are to find the target and go back to the base. In our simula-
tion environment, the position of the target changes from
simulation to simulation and the robots perceive the en-
vironment as potential fields (Gaussian potential fields).
Each single robot is able to identify the target potential
field, the other robots’ fields and the base’s field. No noise
is added to the readings and some delay is possible in the
measurements. We also assume that the low-level dynam-
ics of the robots and the control loops necessary to stabilize
them are already implemented.

Each robot has three traits of personality: ‘courage’
(γ 1), ‘fear’ (γ 2) and ‘cooperation’ (γ 3), which influence
which action the robot will take. For example, a coura-
geous robot may pursue the gradient of the target, while
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S. N. Givigi, Jr. and H. M. Schwartz

a cooperative and fearful one may tend to huddle to-
gether with other robots in order to look for the target
as a group. Again, these behaviours are derived from our
assumptions on the definition of the ‘emotions’ of the
robots.

For this simulation, the environment is supposed to be
in only two states: θ1, meaning high risk for the robot (of
being shot), and θ2, which means that the robot is in a
low risk of being shot. The decision about which state the
robot is in is psychological; i.e. it depends on the values
of traits of personality of each robot. In this way, if a
robot is ‘courageous’, high risk has a different meaning in
comparison with a ‘fearful’ robot.

Let σ (.) be a function determining the threshold in
separating states θ1 and θ2. Let also γ1 be the trait ‘courage’,
γ2 be ‘fear’ and γ3 be ‘cooperation’. Define FMax as the
maximum potential field found so far. We then define the
probability for the robot to identify the environment as
state θ1 (high risk) as

P(θ1|s ) = |FT |
|FMax| − σ (γ1, γ2, γ3) (21)

Since the traits of personality are normalized (as explained
in the last sections), we chose the threshold function to be

σ (γ1, γ2, γ3) = γ1 − γ2 − γ3 (22)

Therefore, if the trait of personality γ1, ‘courage’, is
dominant, the probability the robot will identify the en-
vironment as being ‘high risk’ will decrease. On the
other hand, since P (θ2|s ) = 1 − P (θ1|s ), the probability
increases when ‘fear’ (γ2) and ‘cooperation’ (γ3) are dom-
inant. Notice that P(.) could be out of the interval [0, 1] if
that happens we simply truncate it.

In the same way, only two actions are possible. We shall
call themα1, which means to follow an uphill approach
(getting closer to the dangerous target), and α2, which
means to follow a downhill path (according to danger).
Table 5 describes the payoffs related to each decision when
the robot identifies the environment to be in each specific
state. The values in Table 5 are empirical, and by choosing
different payoffs the robots would end up with different
behaviours. Also notice that the table is not exactly a payoff
table as we had in the previous examples; in this case we do
not have a conflict among the robots. The numbers in the
table mean that when the robot perceives the state to be
in the ‘high risk’ state θ1, it is more ‘profitable’ to execute
action α2, and when the robot finds itself in the ‘low risk’
state θ2, the robot would prefer to execute action α1. Later
on (in Equation (23)), we will see that the choice is not so
straightforward, but in general the rules just explained will
be applied.

After the robot identifies the target, it gets back to the
base with its estimation of the target location. The closer
the robot gets to the target, the greater the danger of be-
ing shot (at each time step we divide the potential field
where the robot is by the maximum value of the field –
the position of the target – and according to this number,

Table 5 Utility payoffs for states

Utility payoffs States

θ1 θ2

Actions
α1 −1 5
α2 4 −2

randomly shoot at the robot simulating an action taken by
the enemy). When the robot is shot, we assume that it is
still operational, but has to go back to the base in order to
avoid malfunctioning. Actually, since we may have a large
number of robots, this assumption is not necessary, but by
making use of it, we simplify our simulation environment.
When the robot is shot, we artificially increase its ‘fear’ trait
of personality in order to avoid being shot in the future.
The task ‘get back to base’ is hardwired in this approach,
and after the robot identifies the target it just follows the
track back to safety. Notice that this behaviour is artificial
and not desired, for the robot must be able to help other
robots in need even if it is on its way back to the base.
However, we do not implement this feature for the sake of
simplicity.

The traits of personality are defined as follows:

1. Courage (γ 1): The robot goes in the direction of dan-
ger, i.e. in the direction of the increasing potential field;
therefore, this trait makes it more likely for the robot to
identify the environment as in the ‘low-risk’ state (state
θ2 in Table 5).

2. Fear (γ 2): The robot goes in the opposite direction of
danger, i.e. in the direction of the decreasing potential
field; therefore, this trait makes it more likely for the
robot to identify the environment as in the ‘high-risk’
state (state θ1).

3. Cooperation (γ 3): Robots tend to huddle together in order
to decrease the possibility of being shot. This trait makes
the robots work together. Notice that the set of other
robots may be incomplete.

The behaviour in 3 is explained by the assumption in
the simulation that the chance of the robot being shot
is inversely proportional to the number of robots hud-
dled together. This is not a deliberate hypothesis; in fact,
the same assumption has been taken when studying the
formation of patterns of animals in the wild (flock forma-
tion, fish schooling, etc.) (Dawkins 1989).

To choose an action, we use the value function V :
X × A → R in Equation (23), which maps the state of
the environment and the action under consideration to a
reward. In the case of game theory we need to calculate
the expected value of the value function E{V|(s , αi )} for
all possible actions αi . We can think of this as a game
against nature (Straffin 1993), in which the environment is
supposed to play with a mixed strategy P(θi |s ). Therefore,
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A game theoretic approach to swarm robotics

the expected outcome of the game in Table 5 is

V(s , α1) = E{V|(s , α1)} = −1(P(θ1|s )E(γ̄ , s , α1, t))

+ 5(P(θ2|s )E(γ̄ , s , α1, t))

V(s , α2) = E{V|(s , α2)} = 4(P(θ1|s )E(γ̄ , s , α2, t))

− 2(P(θ2|s )E(γ̄ , s , α2, t))

(23)

Equation (23) is the application of game theory expecta-
tion calculation to the framework introduced in the section
Personality Traits. Actually, this equation is just the im-
plementation of Equation (7) in terms of game theory.

Then, the action is chosen randomly on the basis of the
probability (Equation (4), where k = e(exp(1) = 2.7183),
T = 1)

P(αi ) = e V(s ,αi )∑2
j=1 e V(s ,α j )

(24)

The complete algorithm for the simulation is as follows.

Algorithm 3
1. Initialise a rectangular space of dimensions 47 × 41

units.
2. Define the base to be in the left lower corner of the

rectangular space. Set the initial position of all robots to
the base.

3. Randomly select the position of the target (XT, YT) any-
where inside the rectangular space as well as the stan-
dard deviation σ (this value must be chosen between the
values 10 and 20), define the Gaussian field

T(x, y) = Ke− 1
2

(x−XT )2

σ2 e− 1
2

(y−YT )2

σ2 (25)

where K is a term to scale the sensitivity of the robots.
We chose it to be K = 100

σ
√

2π
.

4. Initialise each personality trait to a random value be-
tween [0, 1]. Normalize them so that they add up to 1, i.e.∑3

j=1 γ j = 1; γ j ≥ 0. Set the learning rate η = 0.01.
5. When the robot is located at the position (XR, YR), de-

fine the field around each robot to be

R(x, y) = 1

σ
√

2π
e− 1

2
(x−XR)2

σ2 e− 1
2

(y−YR)2

σ2 (26)

where σ = 4 for every robot.
6. For each time step t, repeat all the steps below.
7. For each robot i = 1, . . . , n, repeat steps 8 to 22.
8. Get the position (xi , yi ) of robot i.
9. Calculate the gradient ∇T(xi , yi ) = ∂T(xi ,yi )

∂x
�i +

∂T(xi ,yi )
∂y

�j at the current position of the robot.
10. Calculate the gradient of each robot’s field ∇ Rj =

∂ Rj (xi ,yi )
∂x

�i + ∂ Rj (xi ,yi )
∂y

�j at the current position of the
robot

11. Each robot has at its disposal two possible actions (or
strategies). Strategy α1 follows the direction of the uphill
unit vector

�ui = ∇T(xi , yi ) + ∑
j �=i ∇ Rj (xi , yi )∣∣∇T(xi , yi ) + ∑
j �=i ∇ Rj (xi , yi )

∣∣

Strategy α2 follows the direction of the downhill unit
vector

�di = − ∇T(xi , yi ) + ∑
j �=i ∇ Rj (xi , yi )∣∣∇T(xi , yi ) + ∑
j �=i ∇ Rj (xi , yi )

∣∣

12. Calculate

P(θ1|s t ) = |T(xi , yi ) − ∑
j �=i Rj (xi , yi )|

|FMax|
− γ1 + γ2 + γ3

where |FMax| is the maximum field found so far. Set
P(θ2|s t ) = 1 − P(θ1|s t ).

13. Calculate the reward ε1(·) for the personality trait γ 1,
‘courage’. For action α1 ‘follow the uphill gradient’,
the reward is ε1(s t , α1, t) = ∇T(xi , yi ) · �ui . Notice that
this value is positive if the angle between the gradi-
ent ∇T and the uphill unit vector �ui is in the in-
terval (−90◦, 90◦) and negative otherwise. For ac-
tion α2, ‘follow the downhill gradient’, the reward is
ε1(s t , α2, t) = ∇T(xi , yi ) · �di . Notice that this value is
positive if the angle between the gradient ∇T and the
downhill unit vector �di is in the interval (−90◦, 90◦) and
negative otherwise. In other words, the personality trait
‘courage’ returns a larger value if the direction of the
movement is closer to the gradient of the target. Since
�ui and �di are constituted by a summation of the gradient
of the target and the gradients of the robots (step 11 of
the algorithm), the direction that is closer to the danger
is preferred.

14. Calculate the reward ε2(.) for the personality trait γ2,
‘fear’. For action α1 ‘follow the uphill gradient’, the re-
ward is ε2(s t , α1, t) = (∑

j �=i ∇ Rj (xi , yi )
) · �ui . Notice

that this value is positive if the angle between the sum-
mation of gradients

(∑
j �=i ∇ Rj (xi , yi )

)
and the uphill

unit vector �ui is in the interval (−90◦, 90◦) and negative
otherwise. For action α2, ‘follow the downhill gradient’,
the reward is ε2(s t , α2, t) = (∑

j �=i ∇ Rj (xi , yi )
) · �di .

Notice that this value is positive if the angle between
the summation of gradients

(∑
j �=i ∇ Rj (xi , yi )

)
and the

downhill unit vector �di is in the interval (−90◦, 90◦) and
negative otherwise. In other words, the personality trait
‘fear’ returns a larger reward for the action that moves
the robot closer to other robots.

15. Calculate the reward ε3(.) for the personality trait γ3,
‘cooperation’. For both actions, the reward is calculated
as ε3(s t , αk, t) = ∑

j �=i Rj (xk, yk), for k = 1, 2, where
(xk, yk) is the future position of the robot. Let �pi be the
robot’s current position and |�vi | the speed of the robot,
which, in our case, is 1 unit/s. For action α1 ‘follow the
uphill gradient’, the reward function ε3(.) is evaluated
at (x1, y1) = ( �pi + �ui · |�vi |). For action α2, ‘follow the
downhill gradient’, the reward function ε3(.) is evalu-
ated at (x2, y2) = ( �pi + �di · |�vi |). The personality trait
‘cooperation’ assumes that when the robot moves closer
to other robots, the survival of the groups is enhanced.
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S. N. Givigi, Jr. and H. M. Schwartz

16. Calculate the overall cost functions

E1 = E(γ̄ , s t , α1, t) =
3∑

j=1

γ j ε j (s t , α1, t) (27)

and

E2 = E(γ̄ , s t , α2, t) =
3∑

j=1

γ j ε j (s t , α2, t) (28)

Equations (30) and (31) are implementations of
Equation (5).

17. Calculate the expected values for the execution of each
action

V(s , α1) = E{V|(s , α1)} = (−P(θ1|s ) + 5P(θ2|s ))E1
V(s , α2) = E{V|(s , α2)} = (4P(θ1|s ) − 2P(θ2|s ))E2

(29)

Equation (32) is the expectation of a game against nature
(Straffin 1993). Actually, this is exactly Equation (23),
which is Equation (7). The difference in Equation (7) is
not necessary in here, since the greatest value V(s , αi )
will always maximize the difference predicted in
Equation (7). This would not be true if other value
functions (not based on game theory) were considered.

18. Calculate the probability of executing action α1 as

P(α1) = e V(s ,α1)

e V(s ,α1) + e V(s ,α2)
(30)

Set P(α2) = 1 − P(α1). Equation (33) is Equation (4),
where k = e , T = 1 and n = 2.

19. Randomly select the function to be executed using the
probabilities in step 18.

20. Calculate the step for the adaptation of traits of person-
ality (Equation (9))

�γi (t) = �εi (t)∑n
j=1 �ε j (t)

(31)

21. Update the personality traits using the adaptation law
(Equation (8))

γi (t) = γi (t − 1) + η�γi (t) (32)

22. Calculate the probability of a robot being shot as

P(shot) = T(xi , yi ) − ∑
j �=i Rj (xi , yi )

max(T(xi , yi ))
· 0.01 (33)

If the robot is shot, go back to base.
23. When all robots are back to base, end the execution.

Since we chose a low value for the learning rate (η =
0.01), it is expected to have a slow convergence of the
traits of personality to a steady state value. Results for
one arbitrarily chosen robot are depicted in Figure 3. This
figure indicates that the traits of personality do converge
to a steady state value. In this figure, the value function is
V(s t , αk), where αk is the action executed at time t. Notice
that the value function varies around some range (this is
not necessarily the case; until further proof, this should
be taken as a particularity of the simulation analysed). We
may notice that the robot becomes a ‘fearful’ robot (γ2

Figure 3 Value function and personality traits of one robot.

increases, while the other traits decrease). Therefore, we
may hypothesize that this particular robot is in some kind
of cluster of robots, which makes variations on the cost
functions for the particular traits more difficult. Moreover,
the particular values of the personalities are characteristic
of the one simulation at hand. Had we had a different
initialisation, we could have got to different steady state
values for the traits of personality, since the environment
changes considerably as well as the robots’ initial conditions
(the initial values for the traits of personality). Table 6
shows that in a given run, all the robots do converge to a
steady state value and they are related to each other. This is
not necessarily true for different payoff tables (like Table 5)
and reward functions (ε1, ε2, ε3) and must be considered
(until further proof) as a particularity of the simulation
set-up under analysis.

To evaluate the quality of the simulations, we measure
the quality of the target location by the robots. When the
ith robot goes back to base, it records the position (xSi , ySi ),
where it was shot (recall that we suppose that the robot just
goes back to base when it is shot). Therefore, if (xT, yT) is
the actual position of the target, the error of the best tar-
get location is min(‖(xT, yT) − (xSi , ySi )‖), i = 1, . . . , n,
where n is the number of robots in the simulation. We also
measure the total time that it takes for all the robots to get
back to base, and the average location error for all robots in
the simulation. The results are shown in Table 7, wherein
we have the average and standard deviation of the target lo-
cation error, total time of the missions and average location
error for all robots. All the results are obtained through 10
executions of the target-tracking mission.

The results indicate that some robot behaviours are in-
dependent of the number of robots in the fleet. There is
also a tendency to get a better location of the target with an
increasing number of robots. This is due to our assump-
tion that the robots are less likely to get shot when they are
in larger numbers (Equation (36)) by means of huddling
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A game theoretic approach to swarm robotics

Table 6 Convergence of the personality traits

Number of robots Courage (γ 1) Fear (γ 2) Cooperation (γ 3)

Average Standard Average Standard Average Standard
deviation deviation deviation

10 0.1648 0.1377 0.1158 0.1435 0.7194 0.2743
20 0.2451 0.1006 0.2381 0.1713 0.5167 0.2316
30 0.1299 0.0930 0.3066 0.1827 0.5636 0.1692

Table 7 Simulation results

Number of robots Target location error Total time Location error for all robots

Average Standard Average Standard Average Standard
deviation deviation deviation

10 12.2000 6.5201 93.3000 55.6698 17.3810 7.7339
20 9.5880 3.8975 136.1000 45.4715 15.5337 5.4713
50 8.4136 3.9315 322.5000 117.8740 15.3012 5.5135

together, which has been observed in the simulations. In
fact, to visualize better the effect of the other robots in how
a robot decides to act, we considered the enemy (the tank)
to be more accurate and replaced Equation (36) by

P(shot) = T(xi , yi ) − 10
∑

j �=i Rj (xi , yi )

max(T(xi , yi ))
· 0.1 (34)

i.e. the robots are 10 times more likely to be shot than
predicted in the algorithm (therefore, the probability is
multiplied by 0.1 instead of 0.01). Also, the presence of
other robots in the neighbourhood makes it more unlikely
for a robot to be shot (this is the meaning of the factor 10 in
the equation above). In this way, robots will take advantage
of the increase in the number of robots in the neighbour-
hood. Table 7 also indicates that as the number of robots
increases, the total time for target location also increases,
although not linearly. This happens for two different rea-

Figure 4 State of the robots during the simulation.

sons. First of all, the robots take longer to leave the base
(we assume that just one robot leaves the base at each time
step). Secondly, as we have a larger number of robots,
the chance of being shot decreases (again, Equation (37))
and, therefore, they take much longer to get back to
base.

Another aspect observed in the simulations was the be-
haviour of robots after some of them were shot. Since the
reward ε2(.) for the personality trait γ2, ‘fear’, calculated
on step 14 of Algorithm 3, decreases (since the number of
active robots decreases), the reward ε1(.) for the trait of
personality γ1, ‘courage’, gets more important for the re-
maining robots and they ‘attack’ the target more directly.
However, when we used the probability on Equation (36)
(as in the simulation illustrated in Fig. 3), the traits ‘fear’
and ‘cooperation’ are always more important, given rise to
the most interesting behaviour observed in the simulation:
the tendency for the robots to huddle together. In most
simulations, they formed a big group and kept like that
until the individual robots were being shot by the enemy.
This may also be seen in Table 7, for as we increase the
number of robots, the average distance to the target slightly
decreases. This is also a result from the emergent huddling
behaviour. Figure 4 shows a picture of the state of the
robots in the simulation. We can see that the robots do
huddle together, but some of them (the more courageous
ones) move farther from the centre of the swarm. How-
ever, they are more likely to be shot (a result seen from
Equation (36)).

CONCLUSION

Biologically, we observe that animals react to stimuli they
receive from their environment. However, the way the
reaction takes place is still very debatable. Some suggest
that what causes it is learning (especially when humans
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are involved, which gives rise to the definition of cul-
ture), while others argue that hereditary (genetic) traits
are more important. Without taking sides, we suggest that
a mix of both is in action when animal behaviours are
taken into account. Therefore, we introduce in this arti-
cle the idea of learning behaviours based on parameters,
called personality traits (Yingying et al. 2002), that are
predefined.

To do that, we introduce the combination of personality
traits with game theory (Givigi and Schwartz 2005). We
also link these ideas with the representation of the environ-
ment using potential fields (Mamei et al. 2004). Moreover,
methods borrowed from reinforcement learning (Kaelbling
et al. 1996) and swarm intelligence (Bonabeau 1999) are
used to create a general algorithm for traits’ adaptation.
We complement the meta-algorithm with its realization in
several particular simulations.

The simulations shown indicate that the modelling with
game theory, together with the use of personality traits
that determine how robots will behave, is a powerful tool
to solve a wide variety of problems. We saw that the
problems ranging from zero-sum games to more com-
plex simulations were successfully solved. The first simu-
lation, the zero-sum game, shows that the technique may
be successfully applied to games. Moreover, the outcome
of the game tends to the theoretical optimal. The sec-
ond simulation, the robots leaving a room, shows that
both competition and cooperation may be modelled in
the form of a game (Straffin 1993). Finally, the third
simulation, robots tracking a target, shows how conflict-
ing influences may lead to the adoption of compromising
strategies.

Furthermore, the emergence of individual behaviours
(the cooperative and competitive robots in the simulation
of robots leaving a room; and the tendency for the robots
to perform the task by huddling together and tracking the
target in a group in the last simulation) demonstrates that
even a small number of personality traits may result in
quite complex group behaviours.
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