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Abstract 

To extract maximum power from the available wind energy, it is necessary that the doubly-fed induction generator (DFIG) based 
wind energy conversion system (WECS) outputs that maximum power at each instant of time for different wind speeds. This can 
be achieved by controlling the rotor voltage of the DFIG. To make it possible, a novel maximum power point tracking (MPPT) 
controller in combination with state and disturbance observers and fixed-time stability notion is proposed in this paper. The 
sliding mode control (SMC) method is used to design the observer-based controller and ensure the robustness. The sliding mode 
state observer is designed while only the measurement of the stator reactive power and rotor speed is required. The modelling 
uncertainties and external disturbances are estimated by the sliding mode disturbance observer without information about their 
upper bounds in advance. Then, the combinatorial effect of uncertainties and disturbances are fully compensated by the designed 
controller. The fixed-time convergence issue is addressed where the bound on the settling time is user-defined using design 
parameters regardless of initial conditions. The elimination of chattering issue is considered in the design of the SMC laws. The 
stability analysis of the closed-loop system is obtained via the Lyapunov stability theory. The validity and robustness of the 
proposed method is tested in Simulink/MATLAB for a DFIG under two different scenarios of wind speed modelling. The 
proposed fixed-time method is also compared with a classical finite-time method. Comparing the results demonstrate that the 
proposed method outperforms the other method. 
© 2017 Elsevier Inc. All rights reserved. 
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1. Introduction 

1.1. Literature review and motivation 

The power rating of commercially available WECS is increasing due to using DFIG as well as enhanced power 
electronic converters [1]. DFIG is one of the commonly utilized wind power generation systems in WECS because of 
its remarkable advantages, including high energy conversion efficiency from various wind speeds, the enhancement 
of the power quality, low converter cost, and minimum power losses compared with the systems with a fully fed 
synchronous generator with full-rated converters [2]. A comprehensive review has been made in [3] to compare the 
different DFIG models in the literature in terms of the impact of DFIG controls as well as short-circuit ratio on stability. 
An energy-shaping controller has been suggested in [4] for DFIG-based wind farm to mitigate sub-synchronous 
control interaction from the energy perspective. In [5], a robust feedback-linearized sliding mode controller has been 
designed for DFIG-based wind power plants to alleviate sub-synchronous control interaction. In [6], a fast frequency 
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response approach has been proposed for a DFIG based on variable power point tracking control to enhance the 
frequency stability. 

One of the main control goals for DFIG based WECS is to optimally harvest the power of the wind turbine for 
different wind speeds, that is named MPPT [12]. Several approaches have been proposed for MPPT of DFIG based 
WECS, with each having its individual benefits and drawbacks. One of the most commonly used methods in the 
industry for MPPT of DFIG based WECS is a combined vector control (VC) with proportional-integral loops. Its key 
advantages are high reliability, decoupling reactive and active power control, and simple structure [7]. However, VC 
cannot give a consistent control performance once there are various operating conditions as the proportional-integral 
parameters are chosen by the one-point linearization, whereas DFIG based WECS is a nonlinear system. Due to the 
presence of uncertainties and nonlinearities in DFIG based WECS originating from random wind energy penetration 
as well as the wind turbine aerodynamics, a lot of nonlinear methods have been employed for MPPT of WECS. For 
example, in [8, 9], the backstepping control approaches have been designed for the nonlinear wind power systems. In 
[10], a nonlinear MPPT controller has been developed for DFIG based WECS where modal analysis has been used to 
reveal its better performance compared to VC.  

Another effective nonlinear method found in the literature to deal with parametric uncertainties and nonlinearities 
as well as external disturbances is the SMC. It is well known that the SMC scheme can provide good robustness 
against perturbations with a strong disturbance rejection and fast response. In [11], the SMC approach has been 
considered to deal with the issue of the complexity of the DFIG based WECS and design a controller for reactive and 
active powers considering uncertainties. In [12], grid-connected rotor voltage has been calculated with no current 
control loops using SMC scheme for DFIG based WECS. However, the traditional sliding mode controller has a 
deficiency of chattering in the control signal due to the utilization of a discontinuous sign function, and this 
disadvantage often limits its applications [13]. In [14], the adaptive SMC method has been employed for DFIG based 
WECS to suppress the undesired impacts of uncertainties and reduce chattering issues. In [15], a chattering-free 
adaptive finite-time SMC has been proposed for WECS to control the generator speed in order to fulfill a MPPT. In 
[16], a comparison has been made in terms of chattering issues and robustness among high-order SMC method and 
PI control scheme first-order SMC for DFIG wind turbine. The results reveal that the high-order SMC approach 
outperforms the other two methods. In [17], the adaptive second-order SMC method has been proposed to reduce 
chattering for floating wind turbine considering collective blade pitch control. However, the complexity of parameters 
and structure of DFIG based WECS are more than the aforementioned floating wind turbines. In [18], a robust 
feedback-linearized SMC method has been proposed for DFIG-based wind farm where robustness to perturbation has 
been ensured by SMC and being independent of pre-specified operations has been ensured by feedback-linearization 
control. Although the experimental tests have been also verified the simulation results, there are no solution for 
reducing chattering issue and only asymptotic stability is proved in this paper. 

The traditional SMC suffers an obvious problem, i.e., asymptotic convergence of the closed-loop system, owing to 
the employment of linear switching manifold [19, 20]. To cope with the disadvantages of asymptotic convergence, 
the terminal SMC (TSMC) approach has been suggested in [21] to realize finite-time convergence. In [22], the finite-
time stability concept has been incorporated with second-order SMC scheme that outperforms the first-order SMC for 
tracking issue of the DFIG torque in terms of chattering reduction and robustness. In [23], a multivariable adaptive 
super-twisting SMC approach has been presented for DFIG based WECS to provide a finite time tracking of the 
optimal powers by smooth regulation of reactive and active powers quantities. However, the presented settling time 
using finite-time approaches relies on the system's initial conditions, which might limit its applications in practice due 
to likely unavailable initial conditions of the system. To handle this problem, the notion of fixed-time stability has 
been initially proposed in [24], which can guarantee that the settling time is bounded globally regardless of the system's 
initial conditions. The convergence time upper bound can be determined and adjusted by the design parameters 
irrespective of the system initial conditions. In [25], fixed-time stability notion has been integrated with a combined 
adaptive sliding mode controller-observer for the chaotic support structures for offshore wind turbines.  

The upper bound of disturbances and uncertainties is required for SMC design that might be unavailable in practice. 
As a result, a lot of disturbance/perturbation observers-based controllers have been designed to cope with this issue. 
In [26], the observer-based adaptive disturbance rejection control has been designed to enhance the power tracking of 
DFIG based WECS with random wind speed. In [27], robust SMC utilizing nonlinear perturbation observer has been 
proposed for DFIG based WECS. The results demonstrate a better performance for the suggested scheme than VC, 
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SMC, and feedback linearization control. In [28], a new Kalman Filtering scheme has been designed as a disturbance 
observer for DFIG based WECS, where the estimated data has been used in the feedback controller. The high-gain 
state and perturbation observer (HGSPO) has been designed to approximate the uncertainties of multi-machine power 
systems [29]. However, an undesirable impact of the peaking phenomenon has been observed in HGSPO. 

Furthermore, state observers can be alternatively used to produce an estimate of the system states and provide the 
estimated data in the control law. The system’s output and input are used as the observer input [30]. The finite-time 
observers, including the Luenberger observer and Kalman filter, were introduced before late 1900 [31, 32] to apply 
for linear systems. The extended Kalman filter suggested for nonlinear systems was not able to deal with the issue of 
the system's parametric uncertainty [33]. Likewise, the nonlinear observers such as the backstepping approach [34], 
adaptive estimators [35], Hamiltonian scheme [36], as well as sub-Lyapunov exponents [37] could only guarantee the 
asymptotic convergence of the estimation errors [38]. Also, observer design for uncertain nonlinear systems has been 
challenging and slow because of the presence of the singular inputs in the nonlinear systems that makes them 
unobservable [39]. The finite-time sliding mode observers have been proposed to deal with the estimation issue of the 
unknown states and parametric uncertainties in a finite time and to provide robustness features [40]. A new fixed-time 
adaptive sliding mode observer based controller has been proposed in [25] to synchronize the support structures for 
offshore wind turbines considering disturbances and parametric uncertainties. In [41], an observer-based robust 
passivity-based controller has been designed for voltage source converter-based multi-terminal high-voltage direct 
current systems connected to an offshore wind farm. The uncertainties and external disturbances have been estimated 
using a linear perturbation observer and then, they have been compensated using a passive controller. A finite-time 
disturbance observer based SMC has been proposed in [42] for WECS with a permanent magnet synchronous 
generator to ensure MPPT in a finite time, alleviate chattering issue, and estimate and reject uncertainties and 
mechanical torque. In [43], sliding mode observer has been employed to provide the online estimation data of the 
DFIG’s perturbation which is then compensated in real-time using a linear state feedback controller. In [27], the 
sliding-mode observer has been designed to estimate the perturbation of DFIG based WECS, and then the estimated 
data is compensated using SMC. However, the stability analysis for the closed-loop system using MPPT controller is 
not given in [27, 43].  

Although the notion of finite-time stability has been successfully used to overcome finite-time convergence issues 
for MPPT of DFIG based WECS (such as [22, 23]), fixed-time stability notion is rarely applied for DFIG based 
WECS. As far as we know, only one research in the literature addressed the fixed-time convergence issue for MPPT 
of DFIG based WECS given in [44]. In this research, the upper bound of disturbances and uncertainties have been 
estimated using fixed-time adaptive estimator. However, this adaptive estimator (used in [44]) is only able to estimate 
the upper bound of uncertainties and disturbances, while the disturbance observer (given in our proposed method in 
[45]) can provide an accurate estimate of the uncertainties and disturbances resulting in decreasing their effects. Hence, 
the use of a disturbance observer (instead of an adaptive estimator) can effectively enhance the system stability [46] 
and tracking performance [47] by providing accurate estimated data in the control law of the SMC method. Also, by 
providing an accurate estimation of the uncertainties and disturbances in the control law, the controller is able to 
compensate their undesired effects more effectively. Subsequently, the switching gain in the control law would be 
reduced to a smaller value (compared with estimating the uncertainty upper bound) resulting in improving the 
robustness and reducing chattering [45, 48]. Additionally, in [44], a special form is considered for the upper bound of 
uncertainties and disturbances that might not be a comprehensive form. Another drawback of [44] is that their designed 
fixed-time state observer is discontinuous using the sign function. Thus, it might create chattering in the control signal 
in practice because the state observer law is utilized in the control law. To solve this issue, a sliding mode observer is 
suggested in this research where the integral of sign function appears in the state observer law [45]. Consequently, the 
observer and control signal will be smoother and chattering free.  

Motivated with the aforementioned discussion and because of the complexity of this system and the presence of 
the strong nonlinearities originated from the wind turbine aerodynamics, together with the parameter uncertainties of 
the generator, and various wind speeds, a fixed-time robust nonlinear observer-based controller needs to be developed 
for MPPT of DFIG based WECS. This method requires overcoming the drawbacks of the relevant and existing 
methods (given in Table 1). Regarding the contribution of the proposed fixed-time observer-based controller in this 
research, a comparison is made in Table 1 among the proposed method in this research and the existing relevant 
methods in the literature for DFIG based WECS in terms of control key features. 
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Table 1. Comparison of theoretical. 

         References 

Performance 

[7] [8] [11] [12] [14] [16] [22] [17] [23] [27] [44] Proposed 

Scheme 

Fixed-time convergence × × × × × × × × × ×   

Finite-time convergence × × × × × ×    ×   

Chattering alleviation ×  ×       × ×  

Obtaining stability analysis × ×        ×   

Robustness ×            

Considering disturbances × × ×          

Considering modelling 

uncertainties 

×  ×          

No requirement of the upper 

bounds of disturbances and 

uncertainties 

× × × ×  × × ×     

System complexity ×       ×     

Combining state and 

disturbance observers-based 

controller 

× × × × × × × × ×  ×  

1.2. Objectives 

The overall aim of this research is to maximize the energy extraction from the available wind energy with various 
speeds by DFIG based WECS. For this purpose, a maximum power point tracking realization needs to be fulfilled. 
Initially, the control problem is analyzed and then, optimal tip speed ratio (OTSR) control approach is used to obtain 
MPPT errors and formulate the problem mathematically. In order for us to achieve the overall aim of this research, 
there are the following specific objectives: 

1. To develop a robust nonlinear sliding mode controller in combination with sliding mode state and disturbance 
observers and fixed-time stability notion where only the measurement of rotor speed and reactive power is 
required, and there is no information about the upper bounds of modelling uncertainties and external 
disturbances in advance.  

2. To eliminate the destructive chattering phenomenon from the control signal (that is inherent issue with 
classical SMC because of using signum function in the SMC laws). 

3. To obtain the fixed-time stability analysis of the closed-loop system using the observer-based controller via 
the Lyapunov stability theory considering the fact that the separation principle does not hold for nonlinear 
systems [49]. 

4. To evaluate the performance of the suggested fixed-time control scheme for a grid-connected DFIG based 
WECS in comparison with that of another classical finite-time control method in Simulink/MATLAB. 

1.3. Contribution 

As compared to the existing methods, the major contribution and novelty of this work can be summarized as 
follows: 

 Designing a combined fixed-time observer-based controller method using the fixed-time stability notion, 
sliding mode control, and sliding mode state and disturbance observers. 
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 Estimating the system states using the proposed sliding mode state observer while only the measurement 
of reactive power and rotor speed is available. 

 Estimating the external disturbances and modelling uncertainties using the proposed sliding mode 
disturbance observer without the knowledge of their upper bounds in advance and then, fully 
compensating their combinatorial effect by the designed sliding mode controller.   

 Proposing a solution for eliminating chattering from the control signal by using integral of sign function 
in the design of SMC laws.  

 Obtaining the fixed-time stability proof of the closed-loop system in both sliding phase and reaching phase 
by choosing a proper candidate Lyapunov function (considering the fact that the separation principle does 
not hold for nonlinear systems) as well as obtaining settling time function (which is independent of the 
system’s initial conditions). 

 Proving the robustness of the proposed method by considering modelling uncertainties and external 
disturbances in the stability analysis as well as testing the robustness in simulation by considering a 
specific model for external disturbances (which is added to the system at 𝑡 = 8(𝑠) in both simulation 
scenarios) and modelling uncertainties. 

1.4. Paper structure 

This paper is organized as follows. In Section 2, the dynamic modelling of DFIG based WECS is given. Section 3 
presents the research design. In this section, the main control problem of this research is initially analyzed and 
mathematically formulated. Then, the required mathematical preliminaries used for the controller design procedure 
are given. Finally, the proposed observer-based controller design is given, and the stability analysis for the closed-
loop system utilizing the proposed approach and Lyapunov stability theory is obtained. In Section 4, the simulation 
results of the proposed method and the finite-time method are given and compared. In Section 5, the conclusions are 
provided.  

2. Model of DFIG based WECS 

The DFIG is a wound rotor induction generator. The stator is directly connected to a fixed frequency three-phase 
grid. The rotor winding is also connected to the grid via two bi-directional power converters (back-to-back ac/dc/ac 
voltage source converters). The output power is capable of being controlled via back-to-back converter control and 
pitch control. Due to the difference between the electrical and mechanical frequencies, the compensating current 
injected in the rotor current has a variable frequency [50]. As a result, the behavior and operation of the DFIG is 
governed using the converters and their controllers. The DFIG has two converters, the Grid Side Converter (GSC) and 
Rotor Side Converter (RSC), that can be independently controlled. The RSC duty is to control the output reactive and 
active power by controlling the rotor current control. The GSC duty is to maintain the voltage of the capacitance 
between two converters (i.e., controlling the DC link voltage) as well as the power factor of the DFIG utilizing the 
control of the reactive power exchanged with the grid. The principle of operation of the DFIG based WECS is 
illustrated in Fig. 1. In this figure, we have: 𝜔௥ is rotor speed; 𝜔௦ is synchronous speed; 𝑃௦ is stator active power; 𝑃௥  
is rotor active power; 𝑃௚ is grid power. 
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Fig. 1. A detailed configuration of the DFIG based WECS. 

2.1. Wind turbine model 

The mechanical power that the turbine can harvest is stated [51]. 

𝑃௠ = ቀ
ଵ

ଶ
ቁ 𝜌𝜋𝑅ଶ𝑣௪௜௡ௗ

ଷ 𝐶௣(𝜆, 𝛽)                                                                                                                                         (1) 

where 𝜌 is density of the air; 𝑣௪௜௡ௗ is the velocity of the wind; 𝑅 is the rotor radius; 𝐶௣(𝜆, 𝛽) is the power coefficient 
(or efficiency coefficient). Power coefficient 𝐶௣ is a function of the blade pitch angle 𝛽 and tip-speed-ratio (TSR) 𝜆; 
where 𝜆 is defined as below 

𝑇𝑆𝑅 = 𝜆 = 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑟𝑜𝑡𝑜𝑟 𝑡𝑖𝑝/𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 =
ఠ೘ோ

௩ೢ೔೙೏
                                                                                                    (2) 

where 𝜔௠ is the wind turbine rotational velocity. 𝐶௣(𝜆, 𝛽) is expressed [52] 

𝐶௣(𝜆, 𝛽) = 𝑐ଵ ቀ
௖మ

ఒ೔
− 𝑐ଷ𝛽 − 𝑐ସቁ 𝑒

ି
೎ఱ
ഊ೔ + 𝑐଺𝜆                                                                                                                  (3) 

where we have, 
ଵ

ఒ೔
=

ଵ

ఒା଴.଴଼ఉ
 −

଴.଴ଷହ

ఉయାଵ
                                                                                                                                                      (4) 

where we have 𝑐ଵ = 0.5176,  𝑐ଶ = 116,  𝑐ଷ = 0.4,  𝑐ସ = 5,  𝑐ହ = 21, and 𝑐଺ = 0.0068 [53]. In this research, the blade 
pitch angle 𝛽 is considered as a constant for simplifying of the modelling of the wind turbine [54].  

2.2. DFIG model 

The generator dynamics have been given by [10, 52] as follows 
ௗ௜೜ೞ

ௗ௧
=

ఠ್

௅ೞሖ
 ቀ−𝑅ଵ𝑖௤௦ + 𝜔௦𝐿௦

ሖ 𝑖ௗ௦ +
ఠೝ

ఠೞ
𝑒௤௦́ −

ଵ

ೝ்ఠೞ
𝑒ௗ௦́ − 𝑣௤௦ +

௅೘

௅ೝೝ
𝑣௤௥ቁ                                                                                 (5) 

ௗ௜೏ೞ

ௗ௧
=

ఠ್

௅ೞሖ
ቀ−𝜔௦𝐿௦

ሖ 𝑖௤௦ − 𝑅ଵ𝑖ௗ௦ +
ଵ

ೝ்ఠೞ
𝑒௤௦́ +

ఠೝ

ఠೞ
𝑒ௗ௦́ − 𝑣ௗ௦ +

௅೘

௅ೝೝ
𝑣ௗ௥ቁ                                                                            (6) 

ௗ௘೜ೞ́

ௗ௧
= 𝜔௕𝜔௦ ቂ𝑅ଶ𝑖ௗ௦ −

ଵ

ೝ்ఠೞ
𝑒௤௦́ + ቀ1 −

ఠೝ

ఠೞ
ቁ 𝑒ௗ௦́ −

௅೘

௅ೝೝ
𝑣ௗ௥ቃ                                                                                            (7) 

ௗ௘೏ೞ́

ௗ௧
= 𝜔௕𝜔௦ ቂ−𝑅ଶ𝑖௤௦ − ቀ1 −

ఠೝ

ఠೞ
ቁ 𝑒௤௦́ −

ଵ

ೝ்ఠೞ
𝑒ௗ௦́ +

௅೘

௅ೝೝ
𝑣௤௥ቃ                                                                                          (8) 

where 𝜔௦ is the synchronous angle velocity; 𝜔௕ is the electrical base velocity; 𝜔௥ is the rotor angle velocity; 𝑒ௗ௦́  and 
𝑒௤௦́  are equivalent d-axis and q-axis (dq-) internal voltages; 𝑖ௗ௦  and 𝑖௤௦  are dq-stator currents; 𝑣ௗ௦  and 𝑣௤௦  are dq- 
stator terminal voltages; 𝑣ௗ௥  and 𝑣௤௥  are dq- rotor voltages; 𝐿௠  is the mutual inductance; and the remaining 
parameters are given in [1, 10, 27, 52] as provided by Eqs. (13), (14), and (15). Note that the q-axis is aligned with 
stator voltage here, whereas the d-axis leads the q-axis. Thus, we have 𝑣ௗ௦ ≡ 0 and 𝑣௤௦ equals to the magnitude of the 
terminal voltage (i.e., 𝑣௤௦ = 𝑣௦ = 1).  

In addition, the stator reactive and active powers can be denoted by the stator currents and voltages as follows  
𝑃௦ = 𝑣௤௦𝑖௤௦ + 𝑣ௗ௦𝑖ௗ௦ = 𝑣௤௦𝑖௤௦                                                                                                                                 (9) 
𝑄௦ = 𝑣௤௦𝑖ௗ௦ − 𝑣ௗ௦𝑖௤௦ = 𝑣௤௦𝑖ௗ௦                                                                                                                                     (10) 

2.3. Shaft system model 

The shaft system is modeled as a single lumped-mass system with the lumped inertia constant 𝐻௠, given in [55]. 
𝐻௠ = 𝐻௧ + 𝐻௚                                                                                                                                                                (11) 

where 𝐻௚  is the inertia constant of the generator and 𝐻௧  is the inertia constant of the wind turbine. The 
electromechanical dynamics is provided as follows, 

ௗఠ೘

ௗ௧
=

ଵ

ଶு೘
(𝑇௠ − 𝑇௘ − 𝐷𝜔௠)                                                                                                                                     (12) 

where 𝐷 is the lumped system damping; 𝜔௠ is the rotational speed of the lumped-mass system that is equal to the 

generator rotor speed 𝜔௥; 𝑇௠ signifies the mechanical torque that is as 𝑇௠ =
௉೘

ఠ೘
. The numerical values of a grid-

connected DIFG based WECS is given in [1, 10, 27, 52]. The system parameters are given as follows. 
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𝜔௕ = 100𝜋 ቀ
௥௔ௗ

௦
ቁ, 𝜔௦ = 1.0 (𝑝. 𝑢. ), 𝜔௥_௕௔௦௘ = 1.29, 𝑣ୱ_௡௢௠ = 1.0 (𝑝. 𝑢. )                                                        (13) 

The DFIG parameters are given as follows.  
𝑃௥௔௧௘ௗ = 5 (𝑀𝑊) , 𝑅௦ = 0.005 (𝑝. 𝑢. ) , 𝑅௥ = 1.1𝑅௦ , 𝐿௠ = 4.0 (𝑝. 𝑢. ) , 𝐿௦௦ = 1.01𝐿௠ , 𝐿௥௥ = 1.005𝐿௦௦ , 𝐿௦

ሖ =

𝐿௦௦ −
௅೘

మ

௅ೝೝ
, 𝑇௥ =

௅ೝೝ

ோೝ
, 𝑅ଵ = 𝑅௦ + 𝑅ଶ, 𝑅ଶ = ቀ

௅೘

௅ೝೝ
ቁ

ଶ

𝑅௥                                                                                (14) 

The wind turbine parameters are given as follows. 

𝜌 = 1.225 ቀ
௞௚

௠యቁ, 𝑅 = 58.59(𝑚ଶ), 𝑣௪௜௡ௗ.௡௢௠ = 12 ቀ
௠

௦
ቁ, 𝜆௢௣௧ = 6.325, 𝐻௠ = 4.4(𝑠), 𝐷 = 0(𝑝. 𝑢. )     (15)  

3. Research design 

Fig. 2 illustrates a schematic diagram of the proposed observer-based controller for MPPT applied to the RSC of 
DFIG based WECS. As this research concentrates on the MPPT objective, only the controller design for the RSC aims 
to be developed where the wind speed is considered to be below the rated value. The OTSR control approach is used, 
so the reference for rotor speed needs to be obtained for defining tracking errors for MPPT. The state and disturbance 
observers give the estimated data in the controller, and then the controller provides two control voltages to be applied 
to the RSC. This proposed sensorless controller requires the feedback of rotor speed and reactive power measurements. 
Also, there is no information about the upper bounds of external disturbances and modelling uncertainties in advance. 

Wind
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Fig. 2. Overall schematic of the proposed controller for RSC of DFIG. 

3.1. Maximum power point tracking (MPPT) 

The maximum power point is described as an operating point of the turbine at which maximum mechanical power 
would be harvested from the turbine [10]. It should be noted that this research aims to develop the MPPT observer-
based controller for the RSC of DFIG based WECS, so the dynamics of the GSC are ignored. The maximum power 
extraction algorithms researched for WECS are classified into four main control approaches (elaborated in [44]), as 
follows. a) OTSR control; b) Optimal torque control; c) Hill-climb search control; d) Power signal feedback control. 
In this research, OTSR is used to obtain tracking error for MPPT and to formulate the problem. Note that the OTSR 
control approach regulates the generator’s rotational speed to its reference in which TSR maintains at its optimal value 
to extract maximum power [56].  
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3.1.1 Problem formulation 

Fig. 3 shows there are maximum values for 𝐶௣(𝜆, 𝛽) with respect to TSR (𝜆) at different values of 𝛽. It can be 
observed that the maximum power coefficient 𝐶௣೘ೌೣ

≅ 0.48 can be attained for the optimal TSR 𝜆௢௣௧ = 8.1 and a 
fixed-pitch turbine 𝛽 ≡ 0 for the grid-connected DFIG (given in Section 3 and [1, 10, 27, 52]). 

 
 
 
 

 
Fig. 3. Power coefficient (𝐶௣) vs. TSR (𝜆) at different pitch angle values. 

Fig. 4. displays mechanical power as a function of rotor velocity for a certain wind speed. The power for a certain 
wind velocity is maximum at the specific value of rotor velocity (called optimum rotor velocity). This is the speed 
which corresponds to optimum TSR (OTSR).  

 
Fig. 4. Mechanical power (𝑃௠) vs. rotor velocity (𝜔௥) at different wind speeds from 8(𝑚/𝑠) to 12(𝑚/𝑠). 

Hence, the DFIG based WECS should be adjusted to operate at OTSR to ensure MPPT. Accordingly, the reference 
of rotor speed should be chosen such that TSR (𝜆) maintains its optimum value (which is the concept of OTSR control 
approach). That is, the MPPT can be achieved by adjusting 𝜆 given by (2) to its optimum value 𝜆௢௣௧. Obviously, the 
power coefficient 𝐶௣ will be maximum 𝐶௣௠௔௫

, when tip-speed-ratio 𝜆 is maintained to its optimum value 𝜆௢௣௧ (see 

Fig. 3). Thus, the reference for the mechanical rotational speed will be as 

𝜔௠௢௣௧
=

ఒ೚೛೟௩ೢ೔೙೏

ோ
                                                                                                                                                                       (16) 

As a result, if 𝜔௠ reaches its optimum value 𝜔௠௢௣௧
, the maximum active power (𝑃௦೘ೌೣ

) will be obtained; i.e., if 

𝜔௠ → 𝜔௠௢௣௧
⇒ 𝑃ୱ (the stator active power/the output electrical power) → 𝑃௠೘ೌೣ

. So, we have 

𝑃௦೘ೌೣ
≈ 𝑃௠೘ೌೣ

=
ଵ

ଶఒ೚೛೟
య 𝜌𝜋𝑅ହ𝐶௣೘ೌೣ

൫𝜆௢௣௧ , 𝛽൯𝜔௠೚೛೟
ଷ                                                                                                                  (17) 

As the rotational velocity of the lumped-mass system 𝜔௠ is equal to the generator rotor velocity 𝜔௥, the MPPT can 
be achieved if the reference of the rotor speed 𝜔௥ೝ೐೑

 is chosen as 𝜔௥ೝ೐೑
≈ 𝜔௠௢௣௧

, while the stator reactive power 𝑄௦ 

is regulated to zero. Hence, we have 

ቊ
𝜔௥ೝ೐೑

≈ 𝜔௠௢௣௧

𝑄௦ೝ೐೑
= 0                                                                                                                                                                                    (18) 
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So, MPPT realization can be achieved by considering the tracking error 𝑒 = [𝑒ଵ 𝑒ଶ]் for stator reactive power 𝑄௦ 
and rotor speed 𝜔௥ as the outputs (using the concept of OTSR control). Thus, we have 

ቊ
𝑒ଵ = 𝜔௥ − 𝜔௥ೝ೐೑

𝑒ଶ = 𝑄௦ − 𝑄௦ೝ೐೑

                                                                                                                                                                       (19) 

where we have 𝜔௥ೝ೐೑
=

 ఒ೚೛೟௩ೢ೔೙೏

ோ
 and 𝑄௦ೝ೐೑

= 0 to achieve the unity power factor [10]. Differentiate the tracking error 

(19) until control input 𝑣ௗ௥  and 𝑣௤௥  clearly appeared, we obtain 

൤
𝑒̈ଵ

𝑒̇ଶ
൨ = ቈ

𝑓ଵ − 𝜔̈௥ೝ೐೑

𝑓ଶ − 𝑄̇௦ೝ೐೑

቉ + 𝐵 ቂ
𝑣ௗ௥

𝑣௤௥
ቃ                                                                                                                                                     (20) 

That can be rewritten as follows 

൞

𝑒̇ଵ = 𝑒ଶ                                                                      

𝑒̇ଶ = 𝑓ଵ + 𝑇ଵ + 𝑑ଵ(𝑡) + Ψଵ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ) − 𝜔̈௥ೝ೐೑

𝑒̇ଷ = 𝑓ଶ + 𝑇ଶ + 𝑑ଶ(𝑡) + Ψଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ) − 𝑄̇௦ೝ೐೑

                                                                                                                                (21) 

where 𝑑ଵ(𝑡)  and 𝑑ଶ(𝑡)  are the model of matched external disturbances; Ψଵ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ)  and Ψଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ)  are 
modelling uncertainties. The sum of external disturbances and modelling uncertainties are considered as: 𝐷ଵ =
𝑑ଵ(𝑡) + Ψଵ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ) and 𝐷ଶ = 𝑑ଶ(𝑡) + Ψଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ). Also, we have 

𝑓ଵ =
்̇೘

ଶு೘
−

ଵ

ଶு೘
ቄ𝑤௕ ቂቀ1 −

ఠೝ

ఠೞ
ቁ ൫𝑒ௗ௦́ 𝑖௤௦ − 𝑒௤௦́ 𝑖ௗ௦൯ −

ଵ

ఠೞ ೝ்
൫𝑒ௗ௦́ 𝑖ௗ௦ + 𝑒௤௦́ 𝑖௤௦൯ቃ +

ఠ್

ఠೞ௅ೞሖ
ቂ

ఠೝ

ఠೞ
൫𝑒௤௦́

ଶ + 𝑒ௗ௦́
ଶ൯ +

𝜔௦𝐿௦
ሖ ൫𝑒௤௦́ 𝑖ௗ௦ − 𝑒ௗ௦́ 𝑖௤௦൯ − 𝑅ଵ൫𝑒ௗ௦́ 𝑖ௗ௦ + 𝑒௤௦́ 𝑖௤௦൯ − 𝑒ௗ௦́ 𝑣ௗ௦ − 𝑒௤௦́ 𝑣௤௦ቃቅ                                                                                            (22) 

𝑓ଶ =
ఠ್

௅ೞሖ
ቀ𝑅ଵ𝑖ௗ௦ + 𝜔௦𝐿௦

ሖ 𝑖௤௦ −
ఠೝ

ఠೞ
𝑒ௗ௦́ −

ଵ

ఠೞ ೝ்
𝑒௤௦́ ቁ 𝑣௤௦ +

ఠ್

௅ೞሖ
ቀ𝜔௦𝐿௦

ሖ 𝑖ௗ௦ − 𝑅ଵ𝑖௤௦ −
ଵ

ఠೞ ೝ்
𝑒ௗ௦́ +

ఠೝ

ఠೞ
𝑒௤௦́ − 𝑣௤௦ቁ 𝑣ௗ௦          (23) 

Also, we consider 𝑢ଵ = 𝑣ௗ௥ , 𝑢ଶ = 𝑣௤௥ , and 𝐵 = ൤
𝑏ଵ 𝑏ଶ

𝑏ଷ 𝑏ସ
൨, then we obtain 

𝑇ଵ = 𝑏ଵ𝑢ଵ + 𝑏ଶ𝑢ଶ                                                                                                                                                       (24) 
𝑇ଶ = 𝑏ଷ𝑢ଵ + 𝑏ସ𝑢ଶ                                                                                                                                                    (25) 

𝑢ଵ =
௕ర భ்ି௕మ మ்

௕భ௕రି௕య௕మ
                                                                                                                                                            (26) 

𝑢ଶ =
௕య భ்ି௕భ మ்

௕మ௕యି௕భ௕ర
                                                                                                                                                           (27) 

Also, we have  

𝑏ଵ =
௅೘ఠ್

ିଶ௅ೝೝு೘
ቀ

௘೏ೞ́

௅ೞሖ ఠೞ
− 𝑖௤௦ቁ                                                                                                                                         (28) 

𝑏ଶ =
௅೘ఠ್

ିଶ௅ೝೝு೘
ቀ

௘೜ೞ́

௅ೞሖ ఠೞ
+ 𝑖ௗ௦ቁ                                                                                                                                          (29) 

𝑏ଷ = −
௅೘ఠ್

௅ೞሖ ௅ೝೝ
𝑣௤௦                                                                                                                                                         (30) 

𝑏ସ =
௅೘ఠ್

௅ೞሖ ௅ೝೝ
𝑣ௗ௦                                                                                                                                                                 (31) 

where 𝐵 is the control gain matrix. As det(𝐵) = −
௅೘

మ ఠ್
మ௩೜ೞ

ଶ௅ೝೝ
మ ு೘௅ೞሖ

ቀ
௘೜ೞ́

௅ೞሖ ఠೞ
+ 𝑖ௗ௦ቁ ≠ 0 and it is invertible. The time derivative 

of 𝑇௠ (given by (12)) is obtained as follows, 

 𝑇̇௠ =
డ ೘்

డఠೝ
×

ௗఠೝ

ௗ௧
+

డ ೘்

డ௩ೢ೔೙೏
×

ௗ௩ೢ೔೙೏

ௗ௧
                                                                                                                                     (32) 

where  
డ ೘்

డఠೝ
=

ଵ

ଶ
𝜌𝐴𝑣௪௜௡ௗ

ଷ ൜𝑐ଵ𝑒
ି௖ହቀ

ೡೢ೔೙೏
ഘೝೃ

ି଴.଴ଷହቁ
ቂ

௖ఱ௖మ௩ೢ೔೙೏
మ

ோమఠೝ
ర −

(ଶ௖మା଴.଴ଷହ௖మ௖ఱା௖ర௖ఱ)௩ೢ೔೙೏

ோఠೝ
య +

଴.଴ଷହ௖మା௖ర

ఠೝ
మ ቃൠ                                            (33) 

డ ೘்

డ௩ೢ೔೙೏
=

ଵ

ଶ
𝜌𝐴𝑣௪௜௡ௗ

ଶ ൜𝑐ଵ𝑒
ି௖ହቀ

ೡೢ೔೙೏
ഘೝೃ

ି଴.଴ଷହቁ
ቂ−

௖ఱ௖మ௩ೢ೔೙೏
మ

ோమఠೝ
య +

(ସ௖మା଴.଴ଷହ௖మ௖ఱା௖ర௖ఱ)௩ೢ೔೙೏

ோఠೝ
మ −

଴.ଵ଴ହ௖మାଷ௖ర

ఠೝ
ቃ −

ଶ௖లோ

௩ೢ೔೙೏
ൠ                (34) 

From now on, the control aim is to design the observer-based controller that guarantees converging the tracking 
errors given in (21) to zero within a fixed time and remains there afterward in the presence of unknown external 
disturbances and modelling uncertainties. Before proceeding with the design of the proposed method, some essential 
mathematical preliminaries that will be utilized for the design procedure are reviewed and provided in the following 
section. 
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3.1.2 Mathematical preliminaries  

Some standard definitions and lemmas related to the fixed-time stability notion that will be utilized throughout this 
research are reviewed and given. The definition of global finite-time and fixed-time stability has been presented in 
[45, 57]. Given 

𝑥̇ = 𝑓(𝑡, 𝑥)                                                                                                                                                         (35) 
where 𝑥 ∈ ℝ௡  is the system state and 𝑓 ∶  ℝ୬ → ℝ௡  is a nonlinear function; 𝑡 is time that is defined to be on the 
interval [𝑡଴, ∞), where 𝑡଴ ∈ ℝା ∪ {0}. The initial conditions of the system are 𝑥(𝑡଴) = 𝑥଴. 

Definition 1 ([58, 59]): The definition of the signum function is provided as below 

𝑠𝑖𝑔𝑛(𝑎) = ൝
1        ; 𝑎 > 0
0        ; 𝑎 = 0
−1     ; 𝑎 < 0

                                                                                                                                       (36) 

Moreover, the below relations are always true 

⎩
⎪
⎨

⎪
⎧

ௗ|௨|

ௗ௧
= 𝑢̇ × 𝑠𝑖𝑔𝑛(𝑢) ; 𝑢̇ =

ௗ௨

ௗ௧

𝑐 × 𝑠𝑖𝑔𝑛(𝑐) = |𝑐|                   

|𝑐 × 𝑠𝑖𝑔𝑛(𝑏)| ≤ |𝑐|                

𝑠𝑖𝑔𝑛(𝑎) × 𝑠𝑖𝑔𝑛(𝑎) = 1        

                                                                                                                                  (37) 

where we have 𝑎 ∈ ℝ − {0} and 𝑏, 𝑐 ∈ ℝ; 𝑢 ≠ 0 that is a differentiable function. 
Definition 2 ([58]): The function of 𝑠𝑖𝑔(𝑥) is defined as 𝑠𝑖𝑔௔(𝑥) = |𝑥|௔𝑠𝑖𝑔𝑛(𝑥), where we have 𝑎 ∈ ℝ. Note that 

𝑎 × 𝑠𝑖𝑔௕(𝑎) = |𝑎|௕ାଵ  is always true. 
Lemma 1 ([60]): For positive constants 𝑎ଵ, 𝑎ଶ, … , 𝑎௡ ∈ ℝ, and 0 < 𝑞 < 2 we obtain 

(𝑎ଵ
ଶ + 𝑎ଶ

ଶ + ⋯ + 𝑎௡
ଶ)

೜

మ ≤  |𝑎ଵ|௤ + |𝑎ଶ|௤ + ⋯ +  |𝑎௡|௤                                                                                              (38) 
Lemma 2 ([61]): Let 𝑎ଵ, 𝑎ଶ, … , 𝑎௡ ≥ 0 , 0 < 𝑏 ≤ 1 and 𝑐 > 1, we have 
∑ 𝑎௜

௕ ≥ (∑ 𝑎௜
௡
௜ୀଵ )௕ ,௡

௜ୀଵ ∑ 𝑎௜
௖ ≥ 𝑛ଵି௖(∑ 𝑎௜

௡
௜ୀଵ )௖௡

௜ୀଵ                                                                                                        (39) 
Lemma 3 (Lyapunov characterization of fixed-time stability [62, 63]): Consider there exist four real numbers 

as 𝜌ଵ, 𝜌ଷ > 0  and 0 < 𝜌ଶ < 1 , 𝜌ସ > 1 , and a continuous radially unbounded 𝑉(𝑥): ℝ௡ → ℝஹ଴  such that 𝑉(0) =

0 , 𝑉(𝑥) > 0  𝑥 ≠ 0 . If any solution 𝑥(𝑡)  of (35) satisfies 𝑉̇(𝑥) ≤ −𝜌ଵ𝑉ఘమ − 𝜌ଷ𝑉ఘర , then the origin of (35) is 

globally fixed-time stable and the settling time function is obtained as 𝑇(𝑥଴) ≤
ଵ

ఘభ(ଵିఘమ)
+

ଵ

ఘయ(ఘరିଵ)
. 

Lemma 4 ([64]): Consider a scalar system as below 

𝑦̇ = −𝛼𝑦
೛

೜ − 𝛽𝑦
೘

೙  , 𝑦(0) = 0                                                                                                                                           (40)     
where 𝛼, 𝛽 > 0, 𝑞 > 𝑝 > 0, 0 < 𝑛 < 𝑚 < 2𝑛. Then, the equilibrium of (40) is fixed-time stable and the settling time 
T is bounded as follows 

𝑇 ≤ 𝑇௠௔௫ : =
ଵ

ఈ

௠

௠ି௡
+

ଵ

ఉ

௤

௤ି௣
                                                                                                                                      (41) 

3.2. Design of the fixed-time observer-based controller and stability analysis 

A new fixed-time state and disturbance observers-based sliding mode controller (FOSMC) is designed for MPPT 
of DFIG based WECS. The FOSMC method is designed by incorporating sliding mode state and disturbance 
observers, sliding mode controller, and fixed-time stability notion where only the measurement of rotor reactive power 
and rotor speed is required. Before proceeding further with the design of the proposed scheme, it should be noted that 
the following assumptions are utilized in this research. 

Assumption 1. The external disturbances and modelling uncertainties 𝐷ଵ and 𝐷ଶ (given in Eq. (21)) are bounded 
and unknown.  

Assumption 2. 𝜔௥ fulfills |𝜔௥| ≤ 𝜂ଵ, and 𝜔̇௥ fulfills |𝜔̇௥| ≤ 𝜂ଶ, where 𝜂ଵ and 𝜂ଶ are known positive constants. 
Assumption 3. The following inequalities holds. 

ቊ
|𝑓(𝑡, 𝑥ො) − 𝑓(𝑡, 𝑥)| ≤ 𝛿ଵ

ห𝑓̇(𝑡, 𝑥ො) − 𝑓̇(𝑡, 𝑥)ห ≤ 𝛿ଶ
                                                                                                                                            (42) 



 Author name / Computer Vision and Image Understanding  000 (2017) 000–000 11 

where 𝛿ଵ  and 𝛿ଶ  are known positive functions for all 𝑡 . Note that we have 𝑥 = [𝑥ଵ, 𝑥ଶ, 𝑥ଷ]் = [𝜔௥ , 𝜔̇௥ , 𝑄௦]் , 𝑥ො =

[𝑥ଵ, 𝑥ොଶ, 𝑥ଷ]் = ൣ𝜔௥ , 𝜔ෝ̇௥ , 𝑄௦൧
்
, 𝑢ଵ = 𝑣ௗ௥ , 𝑢ଶ = 𝑣௤௥, 𝑓(𝑡, 𝑥) = [𝑓ଵ, 𝑓ଶ]், and 𝑓(𝑡, 𝑥ො) = ൣ𝑓መଵ, 𝑓መଶ൧

்
.  

Remark 1. It is worth mentioning that assumptions 1, 2, and 3 are common restrictive conditions for designing the 
observer-based controller for nonlinear systems that have been widely used in many practical publications such as 
[65-67]. 

The tracking error is considered as 𝑒௜ = 𝑥௜ − 𝑥௜ೝ೐೑
 (given by (19)), and its estimation is as 𝑒̂௜ = 𝑥ො௜ − 𝑥௜ೝ೐೑

. The 

error of state observer is defined as 𝑥෤௜ = 𝑥ො௜ − 𝑥௜ . The tracking errors of disturbance observers are defined as  
𝑍ଵ = ℎଵ − 𝑞ଵ                                                                                                                                                                 (43) 

where 𝑞ଵ = 𝑥̇ଵ − ∫ 𝑝ଵ𝑑𝑡 and 𝑝ଵ = 𝑓መଵ + 𝑇ଵ, so we obtain ℎ̇ଵ = 𝐷෡ଵ. Also, we have  
𝑍ଶ = ℎଶ − 𝑞ଶ                                                                                                                                                               (44) 

where 𝑞ଶ = 𝑥ଷ − ∫ 𝑝ଶ𝑑𝑡 and 𝑝ଶ = 𝑓መଶ + 𝑇ଶ, so we obtain ℎ̇ଶ = 𝐷෡ଶ. The sliding surfaces are considered as follows, 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑠ଵ = 𝑒̇ଵ + 𝐴ଵ(𝑒ଵ) + 𝐵ଵ(𝑒ଵ)                    

𝑠ଶ = 𝑠̇ଵ + 𝐴ଶ(𝑠ଵ) + 𝐵ଶ(𝑠ଵ) 

𝑠ଷ = 𝑒̇ଷ + 𝐴ଷ(𝑒ଷ) + 𝐵ଷ(𝑒ଷ)
                   

𝜎ଵ = 𝑥෤̇ଵ + 𝐴ସ(𝑥෤ଵ) + 𝐵ସ(𝑥෤ଵ)                   

𝜎ଶ = 𝑥෤̇ଷ + 𝐴ହ(𝑥෤ଷ) + 𝐵ହ(𝑥෤ଷ)                  

𝜉ଵ = 𝑍ଵ + ∫ 𝐴଺(𝑍ଵ)𝑑𝑡 + ∫ 𝐵଺(𝑍ଵ)𝑑𝑡 

𝜉ଶ = 𝑍ଶ + ∫ 𝐴଻(𝑍ଶ)𝑑𝑡 + ∫ 𝐵଻(𝑍ଶ)𝑑𝑡 

                                                                                                                      (45) 

where we have 𝐴௝(𝜚) = 𝑎௝𝜚

೛ೕ

೜ೕ , 𝐵௝(𝜚) = 𝑏௝𝜚

೘ೕ

೙ೕ , 0 < 𝑝௝ < 𝑞௝ , and 0 < 𝑛௝ < 𝑚௝ < 2𝑛௝; 𝑎௝ ,  𝑏௝ are positive constants. 
The control laws are defined as follows, 

⎩
⎪
⎨

⎪
⎧

𝑇ଵ = −𝑓መଵ + 𝜔̈௥ೝ೐೑
− 𝐴̇ଵ(𝑒ଵ) − 𝐵̇ଵ(𝑒ଵ) − 𝐴ଶ(𝑠ଵ) − 𝐵ଶ(𝑠ଵ) + 𝑢௘௤భ

                

𝑢̇௘௤భ
= ൫−𝛿ଶ − |ℎଵ| − หℎ̇ଵห൯𝑠𝑖𝑔𝑛(𝑠ଶ) − 𝛼ଵ𝑠𝑖𝑔ఉభ(𝑠ଶ) − 𝛼ଶ𝑠𝑖𝑔ఉమ(𝑠ଶ)         

𝑇ଶ = −𝑓መଶ + 𝑄̇௦ೝ೐೑
− 𝐴ଷ(𝑒ଷ) − 𝐵ଷ(𝑒ଷ) + 𝑢௘௤మ

                                                   

𝑢̇௘௤మ
= ൫−𝛿ଶ − |ℎଶ| − หℎ̇ଶห൯𝑠𝑖𝑔𝑛(𝑠ଷ) − 𝛼ଷ𝑠𝑖𝑔ఉభ(𝑠ଷ) − 𝛼ସ𝑠𝑖𝑔ఉమ(𝑠ଷ)        

                                                                        (46) 

where 0 < 𝛽ଵ < 1 and 𝛽ଶ > 1. The state observers (SO) are defined as follows, 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑥ො̇ଵ = −𝐴ସ(𝑥෤ଵ) − 𝐵ସ(𝑥෤ଵ) + 𝑥ො௘௤భ
                                                                                         

𝑥ො̇ଶ = 𝑓መଵ + 𝑇ଵ                                                                                                                            

𝑥ො̇ଷ = 𝑓መଶ + 𝑇ଶ − 𝐴ହ(𝑥෤ଷ) − 𝐵ହ(𝑥෤ଷ) + 𝑥ො௘௤మ
                                                                         

𝑥ො̇௘௤భ
= ቀ−𝜂ଶ − 𝛿ଶ − |ℎଶ| − หℎ̇ଶห − 𝛼଻ห|𝑥ොଶ| + 𝜂ଵห

ఉభ
− 𝛼଼ห|𝑥ොଶ| + 𝜂ଵห

ఉమ
ቁ 𝑠𝑖𝑔𝑛(𝜎ଵ)

−𝛼ହ𝑠𝑖𝑔ఉభ(𝜎ଵ) − 𝛼଺𝑠𝑖𝑔ఉమ(𝜎ଵ)                                                          

𝑥ො̇௘௤మ
= (−𝛿ଵ − |ℎଵ|)𝑠𝑖𝑔𝑛(𝜎ଶ) − 𝛼ଽ𝑠𝑖𝑔ఉభ(𝜎ଶ) − 𝛼ଵ଴𝑠𝑖𝑔ఉమ(𝜎ଶ)                                 

                                            (47) 

where 𝛼௜ , 𝑖 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)  are positive constants. The disturbance observers (DO) are defined as 
follows, 

ቊ
𝐷෡ଵ = ℎ̇ଵ = −𝐴଺(𝑍ଵ) − 𝐵଺(𝑍ଵ) + 𝑞̇ଵ + ℎ௘௤భ

ℎ௘௤భ
= −𝛼ଵଵ𝑠𝑖𝑔ఉభ(𝜉ଵ) − 𝛼ଵଶ𝑠𝑖𝑔ఉమ(𝜉ଵ)      

                                                                                                             (48) 

Also, we have,  

ቊ
𝐷෡ଶ = ℎ̇ଶ = −𝐴଻(𝑍ଶ) − 𝐵଻(𝑍ଶ) + 𝑞̇ଶ + ℎ௘௤మ

ℎ௘௤మ
= −𝛼ଵଷ𝑠𝑖𝑔ఉభ(𝜉ଶ) − 𝛼ଵସ𝑠𝑖𝑔ఉమ(𝜉ଶ)       

                                                                                                             (49) 

where 𝛼ଵଵ, 𝛼ଵଶ, 𝛼ଵଷ, and 𝛼ଵସ are positive constants. 
Theorem 1. Let system (21) satisfy Assumptions 1, 2, and 3. Consider the sliding surfaces (45), control law (46), 

state observer (47), and disturbance observer (48) and (49). The MPPT goal is achieved in fixed time by applying the 
control voltages given by (26) and (27) and using (46). In the meanwhile, the convergence of the estimated data to the 
actual data of the system states are ensured using the SO (47) in fixed time while only the measurement of the reactive 
power and rotor speed are available. Also, the external disturbances and modelling uncertainties are estimated using 
the DO (48) and (49) and the estimated data are provided in the controller. 
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Proof. To obtain the fixed-time stability analysis utilizing the FOSMC method, two following phases must be 
considered. So, we have 

Phase 1 (reaching phase). Consider the following candidate Lyapunov function that satisfies the conditions given 
in Lemma 3, we have 

 𝑉 = |𝑠ଶ| + |𝑠ଷ| + |𝜎ଵ| + |𝜎ଶ| + |𝑥෤ଶ| + |𝜉ଵ| + |𝜉ଶ|                                                                                                    (50) 
Taking time derivative of the candidate function yields 
𝑉̇ = 𝑠̇ଶ𝑠𝑖𝑔𝑛(𝑠ଶ) + 𝑠̇ଷ𝑠𝑖𝑔𝑛(𝑠ଷ) + 𝜎̇ଵ𝑠𝑖𝑔𝑛(𝜎ଵ) + 𝜎̇ଶ𝑠𝑖𝑔𝑛(𝜎ଶ) + 𝑥෤̇ଶ𝑠𝑖𝑔𝑛(𝑥෤ଶ) + 𝜉ଵ̇𝑠𝑖𝑔𝑛(𝜉ଵ) + 𝜉ଶ̇𝑠𝑖𝑔𝑛(𝜉ଶ)          (51) 
Before proceeding further, we need to obtain the time derivative of 𝑠ଶ, 𝑠ଷ, 𝜎ଵ, 𝜎ଶ, 𝑥෤ଶ, 𝜉ଵ, and 𝜉ଶ, to substitute it into 

(51); hence, we have 

𝑠ଶ = 𝑠̇ଵ + 𝐴ଶ(𝑠ଵ) + 𝐵ଶ(𝑠ଵ)                                                                        
௦̇భୀ௘̇మା஺̇భ(௘భ)ା஻̇భ(௘భ) 
ሱ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ሮ                 

𝑠ଶ = 𝑒̇ଶ + 𝐴̇ଵ(𝑒ଵ) + 𝐵̇ଵ(𝑒ଵ) + 𝐴ଶ(𝑠ଵ) + 𝐵ଶ(𝑠ଵ)                                    
௘̇మୀ௙భା భ்ାௗభ(௧)ାஏభ(௫భ,௫మ,௫య)ିఠ̈ೝೝ೐೑

 

ሱ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ሮ  
𝑠ଶ = 𝑓ଵ + 𝑇ଵ + 𝑑ଵ(𝑡) + Ψଵ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ) − 𝜔̈௥ೝ೐೑

+ 𝐴̇ଵ(𝑒ଵ) + 𝐵̇ଵ(𝑒ଵ) + 𝐴ଶ(𝑠ଵ) + 𝐵ଶ(𝑠ଵ)                                             (52) 

Substituting (46) into (52) and then taking its time derivative, one can obtain 

𝑠̇ଶ = 𝑓ଵ̇ − 𝑓መ̇ଵ + 𝑑̇ଵ(𝑡) + Ψ̇ଵ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ) + ൫−𝛿ଶ − |ℎଵ| − หℎ̇ଵห൯𝑠𝑖𝑔𝑛(𝑠ଶ) − 𝛼ଵ𝑠𝑖𝑔ఉభ(𝑠ଶ) − 𝛼ଶ𝑠𝑖𝑔ఉమ(𝑠ଶ)     (53) 
Similarly, using (21) and (46) and then taking its time derivative yields 

𝑠̇ଷ = 𝑓ଶ̇ − 𝑓መ̇ଶ + 𝑑̇ଶ(𝑡) + Ψ̇ଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ) + ൫−𝛿ଶ − |ℎଶ| − หℎ̇ଶห൯𝑠𝑖𝑔𝑛(𝑠ଷ) − 𝛼ଷ𝑠𝑖𝑔ఉభ(𝑠ଷ) − 𝛼ସ𝑠𝑖𝑔ఉమ(𝑠ଷ)    (54) 
For 𝜎ଵ, we have 

𝜎ଵ = 𝑥෤̇ଵ + 𝐴ସ(𝑥෤ଵ) + 𝐵ସ(𝑥෤ଵ)
௫෤̇భୀ௫ො̇భି௫̇భ  
ሱ⎯⎯⎯⎯⎯⎯ሮ 𝜎ଵ = 𝑥ො̇ଵ − 𝑥̇ଵ + 𝐴ସ(𝑥෤ଵ) + 𝐵ସ(𝑥෤ଵ)                                                                        (55) 

Substituting (47) into (55) and then taking its time derivative, we obtain 

𝜎̇ଵ = −𝑥̇ଶ + ቀ−𝜂ଶ − 𝛿ଶ − |ℎଶ| − หℎ̇ଶห − 𝛼଻ห|𝑥ොଶ| + 𝜂ଵห
ఉభ

− 𝛼଼ห|𝑥ොଶ| + 𝜂ଵห
ఉమ

ቁ 𝑠𝑖𝑔𝑛(𝜎ଵ) − 𝛼ହ𝑠𝑖𝑔ఉభ(𝜎ଵ) −

𝛼଺𝑠𝑖𝑔ఉమ(𝜎ଵ)                                                                                                                                                                           (56) 
Similarly, using 𝑥෤̇ଷ = 𝑥ො̇ଷ − 𝑥̇ଷ and (47) and then taking its time derivative yields 

𝜎̇ଶ = 𝑓ଶ̇ − 𝑓መ̇ଶ + 𝑑̇ଶ(𝑡) + Ψ̇ଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ) + (−𝛿ଵ − |ℎଵ|)𝑠𝑖𝑔𝑛(𝜎ଶ) − 𝛼ଽ𝑠𝑖𝑔ఉభ(𝜎ଶ) − 𝛼ଵ଴𝑠𝑖𝑔ఉమ(𝜎ଶ)               (57) 
For 𝑥෤ଶ, we have 

𝑥෤̇ଶ = 𝑥ො̇ଶ − 𝑥̇ଶ

௫̇మୀ௙భା భ்ାௗభ(௧)ାஏభ(௫భ,௫మ,௫య) ୟ୬ୢ ௫ො̇మୀ௙መభା భ் 
ሱ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ሮ 𝑥෤̇ଶ = −𝑓ଵ + 𝑓መଵ + 𝑑ଵ(𝑡) + Ψଵ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ)                                                  

(58) 
Also, we obtain 

𝜉ଵ̇ = 𝑍̇ଵ + 𝐴଺(𝑍ଵ) + 𝐵଺(𝑍ଵ) 
௓̇భୀ௛̇భି௤̇భ 
ሱ⎯⎯⎯⎯⎯⎯ሮ  𝜉ଵ̇ = ℎ̇ଵ − 𝑞̇ଵ + 𝐴଺(𝑍ଵ) + 𝐵଺(𝑍ଵ) 

௛̇భୀି஺ల(௓భ)ି஻ల(௓భ)ା௤̇భା௛೐೜భ  
ሱ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ሮ  𝜉ଵ̇ =

−𝛼ଵଵ𝑠𝑖𝑔ఉభ(𝜉ଵ) − 𝛼ଵଶ𝑠𝑖𝑔ఉమ(𝜉ଵ)                                                                                                                                      (59) 
Similarly, using (44) and (49), we have 
𝜉ଶ̇ = −𝛼ଵଷ𝑠𝑖𝑔ఉభ(𝜉ଶ) − 𝛼ଵସ𝑠𝑖𝑔ఉమ(𝜉ଶ)                                                                                                                      (60) 
Now substituting (53), (54), (56), (57), (58), (59), (60) into (51), yields  

𝑉̇ = ൬𝑓ଵ̇ − 𝑓መ̇ଵ + 𝑑̇ଵ(𝑡) + Ψ̇ଵ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ) + ൫−𝛿ଶ − |ℎଵ| − หℎ̇ଵห൯𝑠𝑖𝑔𝑛(𝑠ଶ) − 𝛼ଵ𝑠𝑖𝑔ఉభ(𝑠ଶ) −

𝛼ଶ𝑠𝑖𝑔ఉమ(𝑠ଶ)൰ 𝑠𝑖𝑔𝑛(𝑠ଶ) + ൬𝑓ଶ̇ − 𝑓መ̇ଶ + 𝑑̇ଶ(𝑡) + Ψ̇ଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ) + ൫−𝛿ଶ − |ℎଶ| − หℎ̇ଶห൯𝑠𝑖𝑔𝑛(𝑠ଷ) − 𝛼ଷ𝑠𝑖𝑔ఉభ(𝑠ଷ) −

𝛼ସ𝑠𝑖𝑔ఉమ(𝑠ଷ)൰ 𝑠𝑖𝑔𝑛(𝑠ଷ) + ൬−𝑥̇ଶ + ቀ−𝜂ଶ − 𝛿ଶ − |ℎଶ| − หℎ̇ଶห − 𝛼଻ห|𝑥ොଶ| + 𝜂ଵห
ఉభ

− 𝛼଼ห|𝑥ොଶ| + 𝜂ଵห
ఉమ

ቁ 𝑠𝑖𝑔𝑛(𝜎ଵ) −

𝛼ହ𝑠𝑖𝑔ఉభ(𝜎ଵ) − 𝛼଺𝑠𝑖𝑔ఉమ(𝜎ଵ)൰ 𝑠𝑖𝑔𝑛(𝜎ଵ) + ൬𝑓ଶ̇ − 𝑓መ̇ଶ + 𝑑̇ଶ(𝑡) + Ψ̇ଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ) + (−𝛿ଵ − |ℎଵ|)𝑠𝑖𝑔𝑛(𝜎ଶ) −

𝛼ଽ𝑠𝑖𝑔ఉభ(𝜎ଶ) − 𝛼ଵ଴𝑠𝑖𝑔ఉమ(𝜎ଶ)൰ 𝑠𝑖𝑔𝑛(𝜎ଶ) + ቀ−𝑓ଵ + 𝑓መଵ + 𝑑ଵ(𝑡) + Ψଵ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ)ቁ 𝑠𝑖𝑔𝑛(𝑥෤ଶ) + ቀ−𝛼ଵଵ𝑠𝑖𝑔ఉభ(𝜉ଵ) −

𝛼ଵଶ𝑠𝑖𝑔ఉమ(𝜉ଵ)ቁ 𝑠𝑖𝑔𝑛(𝜉ଵ) + ቀ−𝛼ଵଷ𝑠𝑖𝑔ఉభ(𝜉ଶ) − 𝛼ଵସ𝑠𝑖𝑔ఉమ(𝜉ଶ)ቁ 𝑠𝑖𝑔𝑛(𝜉ଶ)                                                                     (61) 

Simplifying (61) and using Definition 1 and 2 in Subsection 3.2.1 as well as 𝐷ଵ = 𝑑ଵ(𝑡) + Ψଵ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ), 𝐷ଶ =
𝑑ଶ(𝑡) + Ψଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ), we have 

𝑉̇ ≤ ቚ𝑓ଵ̇ − 𝑓መ̇ଵቚ + ห𝐷̇ଵห − 𝛿ଶ − |ℎଵ| − หℎ̇ଵห − 𝛼ଵ|𝑠ଶ|ఉభ − 𝛼ଶ|𝑠ଶ|ఉమ + ቚ𝑓ଶ̇ − 𝑓መ̇ଶቚ + ห𝐷̇ଶห − 𝛿ଶ − |ℎଶ| − หℎ̇ଶห −

𝛼ଷ|𝑠ଷ|ఉభ − 𝛼ସ|𝑠ଷ|ఉమ + |𝑥̇ଶ| − 𝜂ଶ − 𝛿ଶ − |ℎଶ| − หℎ̇ଶห − 𝛼଻ห|𝑥ොଶ| + 𝜂ଵห
ఉభ

− 𝛼଼ห|𝑥ොଶ| + 𝜂ଵห
ఉమ

− 𝛼ହ|𝜎ଵ|ఉభ − 𝛼଺|𝜎ଵ|ఉమ +
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ቚ𝑓ଶ̇ − 𝑓መ̇ଶቚ + ห𝐷̇ଶห − 𝛿ଵ − |ℎଵ| − 𝛼ଽ|𝜎ଶ|ఉభ − 𝛼ଵ଴|𝜎ଶ|ఉమ + ห𝑓መଵ−𝑓ଵห + |𝐷ଵ| − 𝛼ଵଵ|𝜉ଵ|ఉభ − 𝛼ଵଶ|𝜉ଵ|ఉమ − 𝛼ଵଷ|𝜉ଶ|ఉభ −

𝛼ଵସ|𝜉ଶ|ఉమ                                                                                                                                                                          (62) 
Simplifying (62) and using Assumption 2 and 3 as well as |𝑥෤ଶ| ≤  ห|𝑥ොଶ| + 𝜂ห, we obtain 
𝑉̇ ≤ −𝛼ଵ|𝑠ଶ|ఉభ − 𝛼ଶ|𝑠ଶ|ఉమ − 𝛼ଷ|𝑠ଷ|ఉభ − 𝛼ସ|𝑠ଷ|ఉమ − 𝛼ହ|𝜎ଵ|ఉభ − 𝛼଺|𝜎ଵ|ఉమ − 𝛼଻|𝑥෤ଶ|ఉభ − 𝛼଼|𝑥෤ଶ|ఉమ − 𝛼ଽ|𝜎ଶ|ఉభ −

𝛼ଵ଴|𝜎ଶ|ఉమ − 𝛼ଵଵ|𝜉ଵ|ఉభ − 𝛼ଵଶ|𝜉ଵ|ఉమ − 𝛼ଵଷ|𝜉ଶ|ఉభ − 𝛼ଵସ|𝜉ଶ|ఉమ                                                                                             (63) 
Considering ∆ଵ= 𝑚𝑖𝑛(𝛼ଵ, 𝛼ଷ, 𝛼ହ, 𝛼଻, 𝛼ଽ, 𝛼ଵଵ, 𝛼ଵଷ) and ∆ଶ= 𝑚𝑖 𝑛(𝛼ଶ, 𝛼ସ, 𝛼଺, 𝛼଼, 𝛼ଵ଴, 𝛼ଵଶ, 𝛼ଵସ), we have 
𝑉̇ ≤ −∆ଵ൫|𝑠ଶ|ఉభ + |𝑠ଷ|ఉభ + |𝜎ଵ|ఉభ + |𝑥෤ଶ|ఉభ + |𝜎ଶ|ఉభ + |𝜉ଵ|ఉభ + |𝜉ଶ|ఉభ൯ − ∆ଶ൫|𝑠ଶ|ఉమ + |𝑠ଷ|ఉమ + |𝜎ଵ|ఉమ +

|𝑥෤ଶ|ఉమ + |𝜎ଶ|ఉమ + |𝜉ଵ|ఉమ + |𝜉ଶ|ఉమ൯                                                                                                                                       (64) 
According to Lemma 1 and 2, we obtain  
𝑉̇ ≤ −∆ଵ(|𝑠ଶ| + |𝑠ଷ| + |𝜎ଵ| + |𝜎ଶ| + |𝑥෤ଶ| + |𝜉ଵ| + |𝜉ଶ|)ఉభ − ∆ଶ7ଵିఉమ(|𝑠ଶ| + |𝑠ଷ| + |𝜎ଵ| + |𝜎ଶ| + |𝑥෤ଶ| + |𝜉ଵ| +

|𝜉ଶ|)ఉమ               𝑉̇ ≤ −∆ଵ(𝑉)ఉభ − ∆ଶ7ଵିఉమ(𝑉)ఉమ                                                                                                            (65) 
Considering 𝜌ଵ = ∆ଵ, 𝜌ଶ = 𝛽ଵ, 𝜌ଷ = ∆ଶ7ଵିఉమ , and 𝜌ସ = 𝛽ଶ, yields 
𝑉̇ ≤ −𝜌ଵ𝑉ఘమ − 𝜌ଷ𝑉ఘర                                                                                                                                                  (66) 
Thus, according to lemma 3, we have 𝜌ଵ, 𝜌ଷ > 0, 0 < 𝜌ଶ < 1, and 𝜌ସ > 1; hence, we obtain ∆ଵ> 0, ∆ଶ7ଵିఉమ > 0, 

0 < 𝛽ଵ < 1, and 𝛽ଶ > 1. Also, we have 𝑠ଶ → 0 , 𝑠ଷ → 0 𝑥෤ଶ → 0, 𝜎ଵ → 0, 𝜎ଶ → 0, 𝜉ଵ → 0 and 𝜉ଶ → 0 within fixed 
time given as follows 

 𝑇ଵ ≤
ଵ

ఘభ(ଵିఘమ)
+

ଵ

ఘయ(ఘరିଵ)
                                                                                                                                             (67) 

Therefore, the proof of reaching phase is completed. 
Phase 2 (sliding phase). Based on Lemma 4 and the definition of errors in this section, we have 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑠̇ଵ = −𝐴ଶ(𝑠ଵ) − 𝐵ଶ(𝑠ଵ) 

𝑒̇ଷ = −𝐴ଷ(𝑒ଷ) − 𝐵ଷ(𝑒ଷ) 
                  

𝑥෤̇ଵ = −𝐴ସ(𝑥෤ଵ) − 𝐵ସ(𝑥෤ଵ)                   

𝑥෤̇ଷ = −(𝑥෤ଷ) − 𝐵ହ(𝑥෤ଷ)                        

𝑍ଵ = − ∫ 𝐴଺(𝑍ଵ)𝑑𝑡 − ∫ 𝐵଺(𝑍ଵ)𝑑𝑡 

𝑍ଶ = − ∫ 𝐴଻(𝑍ଶ)𝑑𝑡 − ∫ 𝐵଻(𝑍ଶ)𝑑𝑡 

                               

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑥෤ଶ → 0 ⇒   𝑥ොଶ → 𝑥ଶ                                                                                                                          

𝑠̇ଵ = −𝐴ଶ(𝑠ଵ) − 𝐵ଶ(𝑠ଵ)   ⇒ 𝑠ଵ → 0 ⇒ 𝑒̇ଵ = −𝐴ଵ(𝑒ଵ) − 𝐵ଵ(𝑒ଵ) ⇒ 𝑒ଵ → 0 𝑒̇ଵ = 𝑒ଶ → 0

𝑒̇ଷ = −𝐴ଷ(𝑒ଷ) − 𝐵ଷ(𝑒ଷ)   ⇒  𝑒ଷ → 0                                                                                           
 

𝑥෤̇ଵ = −𝐴ସ(𝑥෤ଵ) − 𝐵ସ(𝑥෤ଵ)  ⇒  𝑥෤ଵ → 0  ⇒  𝑥ොଵ → 𝑥ଵ                                                                    

𝑥෤̇ଷ = −(𝑥෤ଷ) − 𝐵ହ(𝑥෤ଷ)       ⇒  𝑥෤ଷ  → 0  ⇒    𝑥ොଷ → 𝑥ଷ                                                                

𝑍̇ଵ = −𝐴଺(𝑍ଵ) − 𝐵଺(𝑍ଵ)  ⇒  𝑍ଵ  → 0  ⇒    𝐷෡ଵ → 𝐷ଵ                                                                

𝑍̇ଶ = −𝐴଻(𝑍ଶ) − 𝐵଻(𝑍ଶ)  ⇒  𝑍ଶ   → 0  ⇒    𝐷෡ଶ → 𝐷ଶ                                                               

                                               (68)  

Hence, the sliding phase is completed within fixed time given as 

𝑇ଶ ≤ ∑
ଵ

௔ೕ

௠ೕ

௠ೕି௡ೕ
+

ଵ

௕ೕ

௤ೕ

௤ೕି௣ೕ

ସ
௝ୀଵ                                                                                                                                            (69) 

Finally, we have 𝑇 = 𝑇ଵ + 𝑇ଶ; where 𝑇 is the total convergence time. This concludes the proof. ∎ 
Proposition 1. Let system (21) satisfy Assumptions 1, 2, and 3. Consider the sliding surfaces (70), control law 

(71), state observer (72), and disturbance observer (73) and (74). The MPPT goal is achieved in finite time by applying 
the control voltages given by (26) and (27) and using (71). In the meanwhile, the convergence of the estimated data 
to the actual data of the system states are ensured using the SO (72) in finite time while only the measurement of the 
reactive power and rotor speed are available. Also, the external disturbances and modelling uncertainties are estimated 
using the DO (73) and (74) and the estimated data are provided in the controller. 
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⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑠ଵ = 𝑒̇ଵ + 𝐴ଵ(𝑒ଵ)                    

𝑠ଶ = 𝑠̇ଵ + 𝐴ଶ(𝑠ଵ) 

𝑠ଷ = 𝑒̇ଷ + 𝐴ଷ(𝑒ଷ)
                   

𝜎ଵ = 𝑥෤̇ଵ + 𝐴ସ(𝑥෤ଵ)                   

𝜎ଶ = 𝑥෤̇ଷ + 𝐴ହ(𝑥෤ଷ)                  

𝜉ଵ = 𝑍ଵ + ∫ 𝐴଺(𝑍ଵ)𝑑𝑡           

𝜉ଶ = 𝑍ଶ + ∫ 𝐴଻(𝑍ଶ)𝑑𝑡          

                                                                                                                                 (70) 

where we have 𝐴௝(𝜚) = 𝑎௝𝜚

೛ೕ

೜ೕ; 0 < 𝑝௝ < 𝑞௝; 𝑎௝ is positive constant.  

⎩
⎪
⎨

⎪
⎧

𝑇ଵ = −𝑓መଵ + 𝜔̈௥ೝ೐೑
− 𝐴̇ଵ(𝑒ଵ) − 𝐴ଶ(𝑠ଵ) + 𝑢௘௤భ

               

𝑢̇௘௤భ
= ൫−𝛿ଶ − |ℎଵ| − หℎ̇ଵห൯𝑠𝑖𝑔𝑛(𝑠ଶ) − 𝛼ଵ𝑠𝑖𝑔ఉభ(𝑠ଶ) 

𝑇ଶ = −𝑓መଶ + 𝑄̇௦ೝ೐೑
− 𝐴ଷ(𝑒ଷ) + 𝑢௘௤మ

                                 

𝑢̇௘௤మ
= ൫−𝛿ଶ − |ℎଶ| − หℎ̇ଶห൯𝑠𝑖𝑔𝑛(𝑠ଷ) − 𝛼ଶ𝑠𝑖𝑔ఉభ(𝑠ଷ)

                                                                                         (71) 

where 0 < 𝛽ଵ < 1. The state observer (SO) is defined as follows, 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑥ො̇ଵ = −𝐴ସ(𝑥෤ଵ) + 𝑥ො௘௤భ
                                                                                                      

𝑥ො̇ଶ = 𝑓መଵ + 𝑇ଵ                                                                                                                      

𝑥ො̇ଷ = 𝑓መଶ + 𝑇ଶ − 𝐴ହ(𝑥෤ଷ) + 𝑥ො௘௤మ
                                                                                      

𝑥ො̇௘௤భ
= ቀ−𝜂ଶ − 𝛿ଶ − |ℎଶ| − หℎ̇ଶห − 𝛼ସห|𝑥ොଶ| + 𝜂ଵห

ఉభ
ቁ 𝑠𝑖𝑔𝑛(𝜎ଵ) − 𝛼ଷ𝑠𝑖𝑔ఉభ(𝜎ଵ)

𝑥ො̇௘௤మ
= (−𝛿ଵ − |ℎଵ|)𝑠𝑖𝑔𝑛(𝜎ଶ) − 𝛼ହ𝑠𝑖𝑔ఉభ(𝜎ଶ)                                                          

                                                  (72) 

where 𝛼௜ , 𝑖 = (1, 2, 3, 4, 5) are positive constants. The disturbance observer (DO) is defined as follows, 

ቊ
𝐷෡ଵ = ℎ̇ଵ = −𝐴଺(𝑍ଵ) + 𝑞̇ଵ + ℎ௘௤భ

ℎ௘௤భ
= −𝛼଺𝑠𝑖𝑔ఉభ(𝜉ଵ)                    

                                                                                                                           (73) 

Also, we have,  

ቊ
𝐷෡ଶ = ℎ̇ଶ = −𝐴଻(𝑍ଶ) + 𝑞̇ଶ + ℎ௘௤మ

ℎ௘௤మ
= −𝛼଻𝑠𝑖𝑔ఉభ(𝜉ଶ)                    

                                                                                                                         (74) 

where 𝛼଺ and 𝛼଻ are positive constants. 
Remark 2. It should be noted that the idea behind the design of the SMC law of the finite-time method (given in 

Proposition 1) is similar to the one given in [68] that is incorporated with our proposed state and disturbance observers. 

4. Simulation results  

In this section, the applicability and validity of the fixed-time observer-based controller design is tested for MPPT 
of a grid-connected DFIG based WECS (given in [7, 68, 87, 90] and described in Section 3). The proposed fixed-time 
method (FOSMC) in this research is also compared with a finite-time observer-based controller (given in Proposition 
1) to show its effectiveness in improving overall tracking performance than a classical method. The simulation has 
been executed on Simulink/MATLAB by utilizing the solver of ‘ode1be’ and the step-size of 0.01. The design 
parameters for both control methods (i.e., the proposed fixed-time method and the finite-time method) are considered 
the same to make a reasonable comparison among the simulation results.  

The simulation has been done in two different scenarios of wind speed modelling: Scenario 1) Step change of the 
wind speed and Scenario; 2) Random variation of the wind speed. Note that in both scenarios (and both control 
methods), the wind velocity is considered to be below the rated value; i.e., the considered wind speed is from 8(𝑚/𝑠) 
to 12(𝑚/𝑠). The considered design parameters for Scenarios 1 and 2 and for both control methods are given in Table 
2. Also, the system parameters have been given in [1, 10, 27, 52] and in Section 3. The system initial conditions are 
considered as: 𝑥ଵ(0) = 0.1 , 𝑥ଶ(0) = 0, 𝑥ଷ(0) = 0.01 . The models of the disturbances, 𝑑ଵ(𝑡)  and 𝑑ଶ(𝑡) , are 
considered for both scenarios as: 𝑑ଵ,ଶ(𝑡) = 0.01 sin(𝑡), which is added to the system at 𝑡 = 8(𝑠). The modelling 
uncertainties, Ψଵ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ)  and Ψଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ) , are considered as: Ψଵ,ଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ) = 0.014 sin(𝑥1) −
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0.013 cos(𝑥2) − 0.013 sin(𝑥3). Then, the sum of modelling uncertainties and external disturbances of the system are 
defined as: 𝐷ଵ = 𝑑ଵ(𝑡) + Ψଵ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ) and 𝐷ଶ = 𝑑ଶ(𝑡) + Ψଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ) that is estimated by DO. 

Table 2. The considered design parameters for the simulation. 

 
 𝑎ଵ, 𝑏ଵ 𝑎ଶ, 𝑏ଶ 𝑎ଷ, 𝑏ଷ 𝑎ସ, 𝑏ସ 𝑎ହ, 𝑏ହ 𝑎଺, 𝑏଺ 𝑎଻, 𝑏଻ 

Scenario 1 11 11 21 7 7 10 10 
Scenario 2  7 10 5 10 10 0.5 1 

 
 𝛼ଵ 𝛼ଶ 𝛼ଷ 𝛼ସ 𝛼ହ 𝛼଺ 𝛼଻ 𝛼଼ 𝛼ଽ 𝛼ଵ଴ 𝛼ଵଵ 𝛼ଵଶ 𝛼ଵଷ 𝛼ଵସ 

Scenario 1  11 11 5 5 8.5 8.5 8.5 8.5 5.6 5.6 1 1 1 1 
Scenario 2  15 15 10 10 10 10 10 10 10 10 1 1 1 1 

Remark 3. The designer can adjust these arbitrary design parameters (given in Table 2) based on their control goals. 
The system's fixed settling time and control effort can be adjusted by choosing them properly. More importantly, the 
adjustable convergence time can be determined a priori utilizing design parameters irrespective of initial conditions 
using the notion of the fixed-time stability.  

Remark 4. The design parameters (given in Table 2) are chosen in this paper through successive improvements to 
ensure a satisfactory control and observer performances and speed up the convergence rate with minimum energy 
consumption. For instance, controller/observer gains are chosen to ensure a proper trade-off between the convergence 
rates and errors; i.e., greater controller/observer gains usually provide faster convergence rates and higher 
tracking/estimation errors, vice versa. In addition, there are required conditions that must be considered to select these 
design parameters as follows: 

 To avoid singularity issue, 𝑝௝, 𝑞௝, 𝑚௝, and 𝑛௝ must be selected from odd numbers. 
 There are the following required conditions for the design parameters in SMC laws: 0 < 𝛽ଵ < 1; 𝛽ଶ > 1; 

0 < 𝑝௝ < 𝑞௝; 0 < 𝑛௝ < 𝑚௝ < 2𝑛௝. 
 Table 3 provides the controller gains and observer gains of the proposed method with their required 

conditions. 
Table 3. Introducing the design parameters and their required conditions. 

FOSMC method Parameters Requirements 

Controller gains 𝑎ଵ, 𝑏ଵ, 𝑎ଶ, 𝑏ଶ, 𝑎ଷ, 𝑏ଷ, 𝛼ଵ, 𝛼ଶ, 𝛼ଷ, 𝛼ସ 𝑎௝ > 0, 𝑏௝ > 0, 𝛼௜ > 0 

State observer gains 𝑎ସ, 𝑏ସ, 𝑎ହ, 𝑏ହ, 𝛼ହ, 𝛼଺, 𝛼଻, 𝛼଼, 𝛼ଽ, 𝛼ଵ଴ 𝑎௝ > 0, 𝑏௝ > 0, 𝛼௜ > 0 

Disturbance observer gains 𝑎଺, 𝑏଺, 𝑎଻, 𝑏଻, 𝛼ଵଵ, 𝛼ଵଶ, 𝛼ଵଷ, 𝛼ଵସ 𝑎௝ > 0, 𝑏௝ > 0, 𝛼௜ > 0 

The following performance criteria (given in [57]) are used in both scenarios for both control methods to provide a 
numerical comparison among the simulation results of the proposed fixed-time method and the finite-time method 
(given in Proposition 1). 

I. Integral of the square value (ISV) of the control input  

𝐼𝑆𝑉௨ = ∫ 𝑢ଶ௧೑

଴
𝑑𝑡                                                                                                                                                         (75) 

II. Integral of the absolute value of the error (IAE) 

𝐼𝐴𝐸௘೔
= ∫ |𝑒௜|

௧೑

଴
𝑑𝑡                                                                                                                                                     (76) 

III. Integral of the time multiplied by the absolute value of the error (ITAE) 

𝐼𝑇𝐴𝐸௘೔
= ∫ 𝑡|𝑒௜|

௧೑

଴
𝑑𝑡                                                                                                                                                 (77) 

where 𝑡௙ is the total running time. The ITAE and IAE present the numerical measures of tracking performance for a 
whole error curve. The IAE gives an intermediate result, while time is as a term in ITAE that deeply emphasises the 
errors that occur late in time. The energy consumption can be compared using ISV criterion. 

 𝛿ଵ 𝛿ଶ 𝜂ଵ 𝜂ଶ 𝑝௝/𝑞௝ 𝑚௝/𝑛௝ 𝛽ଵ 𝛽ଶ 
Scenario 1 0.2 0.01 0.06 0.001 101/103 105/103 101/103 105/103 
Scenario 2 0.1 0.1 0.6 0.01 101/103 105/103 101/103 105/103 
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4.1. Scenario 1) step change of the wind speed 

Figs. 5 to 9 display the simulation results for the first scenario. Fig. 5 (a) shows the simulation model of the wind 
speed in this scenario, that is, step changes of wind speed. In this scenario, wind speed changes as a series of four 
consecutive steps from 8(𝑚/𝑠) to 12(𝑚/𝑠) to briefly mimic a gust [27]. Fig. 5 (b), (c), and (d) shows the control 
performance and the SO estimation performance for the system states using the proposed fixed-time method 
(FOSMC). In Fig. 5 (b), the estimated data of the generator rotor speed (𝜔ෝ௥) reaches the actual data (𝜔௥) and they 
converge to the reference (𝜔௥ೝ೐೑

). Fig. 5 (c) shows that the observed data (𝜔ෝ̇௥) converges to the actual data (𝜔̇௥) and 

they reach the desired value (𝜔̇௥೏
). In Fig. 5 (d), the convergence of the estimated data of the stator reactive power 

(𝑄෠௦) to the actual data (𝑄௦) is shown as well as their convergences to the reference (𝑄௦ೝ೐೑
). As we can observe from 

Fig. 5 (b), (c), and (d), the observed data of the system states quickly follow the actual data as well as their 
convergences to their references are realized in a very short time with a reasonable performance and small oscillations 
using the proposed FOSMC.  

 

 
Fig. 5. (a) The considered step change of wind speed; (b), (c), and (d) The tracking performance of the system states to their references as 

well as the estimation performance of the system states. 
Fig. 6 shows the tracking errors of the system states to their references using the proposed fixed-time method and 

the finite-time method. As shown in Fig. 6 (a), (b), and (c), the fixed-time method provides a faster convergence rate 
with a less undershoot/overshoot compared to the finite-time method. Fig. 7 (a) illustrates that the MPPT control is 
realized, and the power coefficient reaches to its maximum value using both methods. Fig. 7 (b) shows the 
convergence of the active output power to its reference (that is 𝑃௠೘ೌೣ

, the maximum possible power to extract). It can 
be seen from Fig. 7 (a) and (b), the fixed-time method provides a faster convergence rate with less oscillations 
compared to the finite-time method.  
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Fig. 6. The system tracking errors (a) 𝑒ଵ = 𝜔௥ − 𝜔௥ೝ೐೑
, (b) 𝑒ଶ = 𝜔̇௥ − 𝜔̇௥ೝ೐೑

, (c) 𝑒ଷ = 𝑄௦ − 𝑄௦ೝ೐೑
. 

 
Fig. 7. (a) The tracking performance of the power coefficient to its maximum value. (b) The tracking performance of the active output power 

to its reference (i.e., 𝑃௦ೝ೐೑
≈ 𝑃௠೘ೌೣ

). 

 
Fig. 8. The simulation waveform of the control voltages (a) 𝑣ௗ௥, (b) 𝑣௤௥. 
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Fig. 9. The tracking performance of the estimated data to the actual data of the modelling uncertainties and external disturbances, (a) 𝐷ଵ, (b) 

𝐷ଶ. 
Fig. 8 (a) and (b) shows the control signals of 𝑣ௗ௥  and 𝑣௤௥ , respectively, for both control methods. The control 

voltages of the fixed-time method have less fluctuation compared to the control voltages of the finite-time method. It 
can be also observed that the undesirable chattering phenomenon does not exist in the control signals of both control 
methos. Fig. 9 (a) and (b) show the estimation performance of the modelling uncertainties and external disturbances 
using disturbance observer. The sum of external disturbances (added to the system at 𝑡 = 8(𝑠)) and modelling 
uncertainties are accurately estimated by DO which is fully rejected using the controller. It should be noted that the 
estimation of the modelling uncertainties and external disturbances are fulfilled with no information of their upper 
bounds in advance. In general, the fixed-time method shows a great robustness against the modelling uncertainties 
and external disturbances and provides faster convergence rate with a more reasonable tracking performance compared 
to the finite-time method. 

Table 4. Comparison of the performance indices for Scenario 1. 
Scenario 1 𝐼𝑆𝑉௨భ

 𝐼𝑆𝑉௨మ
 𝐼𝐴𝐸௘భ

 𝐼𝐴𝐸௘మ
 𝐼𝐴𝐸௘య

 𝐼𝑇𝐴𝐸௘భ
 𝐼𝑇𝐴𝐸௘మ

 𝐼𝑇𝐴𝐸௘య
 

Fixed-time 2.2776𝑒 + 07 9.6334𝑒 + 04 0.0827 1.0774 0.0213 0.0450 0.9780 0.2658 
Finite-time 2.5407𝑒 + 07 1.1704𝑒 + 05 0.6738 4.6078 0.3197 6.9360 47.6338 4.3763 

Table 4 provides a comparison of the performance indexes of the fixed-time method and finite-time method. It can 
be seen from Table 4 that the proposed fixed-time method gives lower numerical values for 𝐼𝑆𝑉௨, 𝐼𝐴𝐸௘೔

, and 𝐼𝑇𝐴𝐸௘೔
 

over the finite-time method. Consequently, the proposed method outperforms the other method in terms of these three 
performance criteria. 

4.2. Scenario 2) random variation of the wind speed 

Figs. 10 to 14 show the simulation results for the second scenario. Fig. 10 (a) shows the simulation model of the 
wind speed in this scenario, that is, random wind speed variation. In this scenario, wind speed changes stochastically 
that is started from 8(𝑚/𝑠) and gradually reaching 12(𝑚/𝑠) [27]. In Fig. 10 (b), (c), and (d), the control performance 
and the state observer performance for the system states is shown using the proposed method (FOSMC). Fig. 10 (b) 
shows the convergence of the estimated data of the generator rotor speed (𝜔ෝ௥) to the actual data (𝜔௥) as well as the 
convergence of them to the required trajectory (𝜔௥ೝ೐೑

). In Fig. 10 (c), the observed data (𝜔ෝ̇௥) converges to the actual 

data (𝜔̇௥) and they reach the reference (𝜔̇௥೏
). In Fig. 10 (d), the estimated data of the stator reactive power (𝑄෠௦) reaches 

the actual data (𝑄௦) and they converge to the reference (𝑄௦ೝ೐೑
). As shown in Fig. 10 (b), (c), and (d), the estimated 

data and actual data are tracked in a very short time as well as the convergence of the actual data to their required 
trajectories are realized in a short time with a satisfactory performance. So, the state observer and tracking controller 
in the presence of external disturbances (added to the system at 𝑡 = 8(𝑠)) and modelling uncertainties show an 
effective and reasonable performance thanks to the disturbance rejection.  
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Fig. 10. (a) The considered step change of wind speed. (b), (c), and (d) The tracking performance of the system states to their references as 

well as the estimation performance of the system states. 
In Fig. 11, the tracking errors of the system states to their required trajectories are provided utilizing the fixed-time 

method and the finite-time method. As we can see from Fig. 11 (a), (b), and (c), the convergence time of the proposed 
method is faster than the other one. Also, it can be seen from Fig. 11 (c) that the fixed-time method provides a greater 
robustness against the external disturbances (added to the system at 𝑡 = 8(𝑠)) and modelling uncertainties compared 
to the finite-time method. Fig. 12 (a) shows the convergence of the power coefficient to its maximum value which 
means the MPPT control is realized. Fig. 12 (b) shows the active output power converges to its required trajectory 
𝑃௦ೝ೐೑

≈ 𝑃௠೘ೌೣ
 (which is the maximum possible power to extract). As we can observe from Fig. 12 (a) and (b), a faster 

convergence time is provided using the proposed method in comparison with the finite-time method. 
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Fig. 11. The system tracking errors (a) 𝑒ଵ = 𝜔௥ − 𝜔௥ೝ೐೑

, (b) 𝑒ଶ = 𝜔̇௥ − 𝜔̇௥ೝ೐೑
, (c) 𝑒ଷ = 𝑄௦ − 𝑄௦ೝ೐೑

. 

 
Fig. 12. (a) The tracking performance of the power coefficient to its maximum value. (b) The tracking performance of the power to its 

reference (i.e., 𝑃௦ೝ೐೑
≈ 𝑃௠೘ೌೣ

). 

 
Fig. 13. The simulation waveform of the control voltages (a) 𝑣ௗ௥, (b) 𝑣௤௥. 
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Fig. 14. The tracking performance of the estimated data to the actual data of the modelling uncertainties and external disturbances (a) 𝐷ଵ, (b) 

𝐷ଶ. 

In Fig. 13 (a) and (b), the signals of the control voltages 𝑣ௗ௥  and 𝑣௤௥  for both control methods are provided. As we 
can see from Fig. 13 (a) and (b), there are no chattering issue in the control signals for both control methods which 
shows the effectiveness of the proposed solution for removing chattering. In Fig. 14 (a) and (b), the disturbance 
observer performance for estimating the modelling uncertainties and external disturbances is shown. As we can see 
from Fig. 14, the accuracy and satisfactory performance of the proposed DO for estimating the sum of external 
disturbances (added to the system at 𝑡 = 8(𝑠)) and modelling uncertainties are demonstrated while there was no 
information of their upper bounds in advance. So, as this estimated data is used in the controller for disturbance 
rejection, a great robustness of the proposed FOSMC method is provided and proven from the results.   

Table 5. Comparison of the performance indices for Scenario 2. 
Scenario 2 𝐼𝑆𝑉௨భ

 𝐼𝑆𝑉௨మ
 𝐼𝐴𝐸௘భ

 𝐼𝐴𝐸௘మ
 𝐼𝐴𝐸௘య

 𝐼𝑇𝐴𝐸௘భ
 𝐼𝑇𝐴𝐸௘మ

 𝐼𝑇𝐴𝐸௘య
 

Fixed-time 1.0083𝑒 + 07 6.8157𝑒 + 04 0.1208 1.0135 0.0077 0.0937 0.1819 0.0194 
Finite-time 1.0980𝑒 + 07 7.9376𝑒 + 04 0.3431 1.0378 0.0345 0.3965 0.6099 0.3257 

Table 5 presents a comparison of the performance indexes of the two methods. The proposed fixed-time method 
provides lower numerical values for 𝐼𝑆𝑉௨, 𝐼𝐴𝐸௘೔

, and 𝐼𝑇𝐴𝐸௘೔
 (in most cases) compared to the other method. As a 

result, the proposed method is better than the finite-time method in terms of these three performance criteria. 

5. Conclusion 

In this paper, a novel incorporation of sliding mode controller, sliding mode state and disturbance observers, and 
fixed-time stability notion is done to develop the FOSMC method for MPPT of DFIG based WECS. The FOSMC 
method is designed while only the measurement of the stator reactive power and rotor speed is needed and there is no 
information of the upper bounds of external disturbances and modelling uncertainties in advance. The key advantages 
of the proposed approach are fixed-time convergence, chattering elimination, and strong robustness to unknown 
disturbances and uncertainties. The stability proof is given for the closed-loop nonlinear system using the proposed 
observer-based controller by considering a proper Lyapunov function and considering the separation principle. The 
simulation results of the proposed fixed-time method and a classical finite-time method are carried out. The results of 
simulation and numerical comparison demonstrate that the proposed method has a satisfactory estimation and MPPT 
performance with a fast convergence rate and outperforms the finite-time method. For future works, a combined 
chattering-free robust SMC with deep learning and reinforcement learning is aimed to be developed to provide an 
incorporation of a conventional controller and intelligent controller for MPPT of DFIG based WECS. As for meta-
parameter selection, we will set the problem up as a multi-objective constrained decision process and use a genetic 
algorithm to select the parameters. 
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