
A Residual Gradient Fuzzy Reinforcement Learning Algorithm
for Differential Games

Mostafa D. Awheda1 • Howard M. Schwartz1

Received: 17 November 2015 / Revised: 2 November 2016 / Accepted: 27 November 2016 / Published online: 16 February 2017

� Taiwan Fuzzy Systems Association and Springer-Verlag Berlin Heidelberg 2017

Abstract In this work, we propose a new fuzzy rein-

forcement learning algorithm for differential games that

have continuous state and action spaces. The proposed

algorithm uses function approximation systems whose

parameters are updated differently from the updating

mechanisms used in the algorithms proposed in the litera-

ture. Unlike the algorithms presented in the literature

which use the direct algorithms to update the parameters of

their function approximation systems, the proposed algo-

rithm uses the residual gradient value iteration algorithm to

tune the input and output parameters of its function

approximation systems. It has been shown in the literature

that the direct algorithms may not converge to an answer in

some cases, while the residual gradient algorithms are

always guaranteed to converge to a local minimum. The

proposed algorithm is called the residual gradient fuzzy

actor–critic learning (RGFACL) algorithm. The proposed

algorithm is used to learn three different pursuit–evasion

differential games. Simulation results show that the per-

formance of the proposed RGFACL algorithm outperforms

the performance of the fuzzy actor–critic learning and the

Q-learning fuzzy inference system algorithms in terms of

convergence and speed of learning.

Keywords Fuzzy control � Reinforcement learning �
Pursuit–evasion differential games � Residual gradient

algorithms

1 Introduction

Fuzzy systems have been widely used in a variety of

applications in many different fields in engineering, busi-

ness, medicine and psychology [1]. Fuzzy systems have

also influenced research in other different fields such as in

data mining [2]. Fuzzy systems are also known by a

number of names such as fuzzy logic controllers (FLCs),

fuzzy inference systems (FISs), fuzzy expert systems, and

fuzzy models. FLCs have recently attracted considerable

attention as intelligent controllers [3, 4]. FLCs have been

widely used to deal with plants that are nonlinear and ill-

defined [5–7]. They can also deal with plants with high

uncertainty in the knowledge about their environments

[8, 9]. However, one of the problems in adaptive fuzzy

control is which mechanism should be used to tune the

fuzzy controller. Several learning approaches have been

developed to tune the FLCs so that the desired performance

is achieved. Some of these approaches design the fuzzy

systems from input–output data by using different mecha-

nisms such as a table lookup approach, a genetic algorithm

approach, a gradient-descent training approach, a recursive

least squares approach, and clustering [10, 11]. This type of

learning is called supervised learning where a training data

set is used to learn from. However, in this type of learning,

the performance of the learned FLC will depend on the

performance of the expert. In addition, the training data set

used in supervised learning may be hard or expensive to

obtain. In such cases, we think of alternative techniques

where neither a priori knowledge nor a training data set is

& Mostafa D. Awheda

mawheda@sce.carleton.ca

Howard M. Schwartz

schwartz@sce.carleton.ca

1 Department of Systems and Computer Engineering, Carleton

University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6,

Canada

123

Int. J. Fuzzy Syst. (2017) 19(4):1058–1076

DOI 10.1007/s40815-016-0284-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s40815-016-0284-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40815-016-0284-8&domain=pdf

required. In this case, reward-based learning techniques,

such as reinforcement learning algorithms, can be used.

The main advantage of such reinforcement learning algo-

rithms is that they do not need either a known model for the

process nor an expert to learn from [12].

Reinforcement learning (RL) is a learning technique that

maps situations to actions so that an agent learns from the

experience of interacting with its environment [13, 14].

Reinforcement learning has attracted attention and has

been used in intelligent robot control systems [15–26].

Reinforcement learning has also been used for solving

nonlinear optimal control problems [27–38]. Without

knowing which actions to take, the reinforcement learning

agent exploits and explores actions to discover which

action gives the maximum reward in the long run. Different

from supervised learning, which is learning from input-

output data provided by an expert, reinforcement learning

is adequate for learning from interaction by using very

simple evaluative or critic information instead of instruc-

tive information [13]. Most of the traditional reinforcement

learning algorithms represent the state/state-action value

function as a lookup table for each state/state-action-pair

[13]. Despite the theoretical foundations of these algo-

rithms and their effectiveness in many applications, these

reinforcement learning approaches cannot be applied to

real applications with large state and action spaces

[13, 18, 39–42]. This is because of the phenomenon known

as the curse of dimensionality caused by the exponentially

grown number of states when the number of state variables

increases [13]. Moreover, traditional reinforcement learn-

ing approaches cannot be applied to differential games,

where the states and actions are continuous. One of the

possible solutions to the problem of continuous domains is

to discretize the state and action spaces. However, this

discretization may also lead to the problem of the curse of

dimensionality that appears when discretizing large con-

tinuous states and/or actions [13, 18, 26]. To overcome

these issues that lead to the problem of the curse of

dimensionality, one may use a function approximation

system to represent the large discrete and/or continuous

spaces [10, 13, 43, 44]. Different types of function

approximation systems are used in the literature, and the

gradient-descent-based function approximation systems are

among the most widely used ones [13]. In addition, the

gradient-descent-based function approximation systems are

well suited to online reinforcement learning [13].

1.1 Related Work

Several fuzzy reinforcement learning approaches have

been proposed in the literature to deal with differential

games (that have continuous state and action spaces) by

using gradient-descent-based function approximation

systems [16, 26, 43, 45–47]. Some of these approaches

only tune the output parameters of their function approxi-

mation systems [16, 43, 46], where the input parameters of

their function approximations are kept fixed. On the other

hand, the other approaches tune both the input and output

parameters of their function approximation systems

[26, 45, 47].

In [43], the author proposed a fuzzy actor–critic learning

(FACL) algorithm that uses gradient-descent-based FISs as

function approximation systems. The FACL algorithm only

tunes the output parameters (the consequent parameters) of

its FISs (the actor and the critic) by using the temporal

difference error (TD) calculated based on the state value

function. However, the input parameters (the premise

parameters) of its FISs are kept fixed during the learning

process. In [46], the authors proposed a fuzzy reinforce-

ment learning approach that uses gradient-descent-based

FISs as function approximation systems. Their approach

only tunes the output parameters of the function approxi-

mation systems based on the TD error calculated based on

the state value functions of the two successive states in the

state transition. In [16], the authors proposed the general-

ized probabilistic fuzzy reinforcement learning (GPFRL)

algorithm, which is a modified version of the actor–critic

learning architecture. The GPFRL algorithm uses gradient-

descent-based FISs as function approximation systems.

The GPFRL only tunes the output parameters of its func-

tion approximation systems based on the TD error of the

critic and the performance function of the actor. In [26], the

authors proposed a fuzzy learning approach that uses a time

delay neural network (TDNN) and a FIS as gradient-des-

cent-based function approximation systems. Their

approach tunes the input and output parameters of the

function approximation systems based on the TD error

calculated based on the state-action value function. In [47],

the authors proposed a fuzzy actor–critic reinforcement

learning network (FACRLN) algorithm based on a fuzzy

radial basis function (FRBF) neural network. The

FACRLN uses the FRBF neural networks as function

approximation systems. The FACRLN algorithm tunes the

input and output parameters of the function approximation

systems based on the TD error calculated by the temporal

difference of the value function between the two successive

states in the state transition. In [45], the authors proposed

the QLFIS algorithm that uses gradient-descent-based FISs

as function approximation systems. The QLFIS algorithm

tunes the input and output parameters of the function

approximation systems based on the TD error of the state-

action value functions of the two successive states in the

state transition. However, all these fuzzy reinforcement

learning algorithms [16, 26, 43, 45–47] use what so-called

direct algorithms described in [48] to tune the parameters

of their function approximation systems. Although direct

M. D. Awheda, H. M. Schwartz: A Residual Gradient Fuzzy Reinforcement Learning Algorithm for Differential Games 1059

123

algorithms have been widely used in the tuning mechanism

of the parameters for the function approximation systems,

the direct algorithms may lead the function approximation

systems to unpredictable results and, in some cases, to

divergence [48–52].

1.2 Main Contribution

In this work, we propose a new fuzzy reinforcement learning

algorithm for differential games, where the states and actions

are continuous. The proposed algorithm uses function

approximation systems whose parameters are updated dif-

ferently from the updating mechanisms used in the algo-

rithms proposed in [16, 26, 43, 45–47]. Unlike the algorithms

presented in the literature which use the direct algorithms to

tune their function approximation systems, the proposed

algorithm uses the residual gradient value iteration algorithm

to tune the input and output parameters of its function

approximation systems. The direct algorithms tune the

parameters of the function approximation system based on

the partial derivatives of the value function at the current

state st, whereas the residual gradient algorithms tune the

parameters of the function approximation system based on

the partial derivatives of the value function at both the cur-

rent state st and the next state stþ1. The direct and residual

gradient algorithms are presented in Sect. 2.1. The direct

algorithms may not converge to an answer in some cases,

while the residual gradient algorithms are always guaranteed

to converge to a local minimum [48–52]. Furthermore, we

take this opportunity to also present the complete derivation

of the partial derivatives that are needed to compute both the

direct and residual gradient algorithms. To the best of our

knowledge, the derivation of the partial derivatives has never

been explicitly shown. Table 1 shows a brief comparison

among some fuzzy reinforcement learning algorithms and

the proposed algorithm.

We investigate the proposed algorithm on different

pursuit–evasion differential games because this kind of

games is considered as a general problem for several other

problems such as the problems of wall following, obstacle

avoidance, and path planning. Moreover, pursuit–evasion

games are useful for many real-world applications such as

search and rescue, locating and capturing hostile intruders,

localizing and neutralizing environmental threads, and

surveillance and tracking [18, 45]. The proposed algorithm

is used to learn three different pursuit–evasion differential

games. In the first game, the evader is following a simple

control strategy, whereas the pursuer is learning its control

strategy to capture the evader in minimum time. In the

second game, it is also only the pursuer that is learning.

However, the evader is following an intelligent control

strategy that exploits the advantage of the maneuverability

of the evader. In the third game, we make both the pursuer

and the evader learn their control strategies. Therefore, the

complexity of the system will increase as the learning in a

multi-robot system is considered as a problem of a

‘‘moving target’’ [53]. In the multi-robot system learning,

each robot will try to learn its control strategy by inter-

acting with the other robot which is also learning its control

strategy at the same time. Thus, the best-response policy of

each learning robot may keep changing during learning in

multi-robot system. The proposed algorithm outperforms

the FACL and QLFIS algorithms proposed in [43] and [45]

in terms of convergence and speed of learning when they

all are used to learn the pursuit–evasion differential games

considered in this work.

This paper is organized as follows: Preliminary concepts

and notations are reviewed in Sect. 2. The QLFIS algo-

rithm proposed in [45] is presented in Sect. 3. Section 4

presents the pursuit–evasion game. The proposed RGFACL

algorithm is introduced in Sect. 5. The simulation and

results are presented in Sect. 6.

2 Preliminary Concepts and Notations

The direct and the residual gradient algorithms and the

fuzzy inference systems are presented in this section.

Table 1 Comparison among some fuzzy reinforcement learning algorithms and the proposed algorithm

Algorithm Type of gradient-

descent method

Input parameters of function

approximation systems

Output parameters of function

approximation systems

FACL [43] Direct Fixed Tuned

Algorithm proposed in [46] Direct Fixed Tuned

GPFRL [16] Direct Tuned Tuned

Algorithm proposed in [26] Direct Tuned Tuned

FACRLN [47] Direct Tuned Tuned

QLFIS [45] Direct Tuned Tuned

The proposed algorithm Residual Tuned Tuned

1060 International Journal of Fuzzy Systems, Vol. 19, No. 4, August 2017

123

2.1 Direct and Residual Gradient Algorithms

Traditional reinforcement learning algorithms such as the

Q-learning algorithm and the value iteration algorithm rep-

resent the value functions as lookup tables and are guaran-

teed to converge to optimal values [13]. These algorithms

have to be combined with function approximation systems

when they are applied to real applications with large state and

action spaces or with continuous state and action spaces. The

direct and the residual gradient algorithms described in [48]

can be used when the traditional Q-learning and the value

iteration algorithms are combined with function approxi-

mation systems. In [48], the author illustrated with some

examples that the direct algorithms may converge fast but

may become unstable in some cases. In addition, the author

showed that the residual gradient algorithms converge in

those examples and are always guaranteed to converge to a

local minimum. Another study presented in [51] shows that

the direct algorithms are faster than the residual gradient

algorithms only when the value function is represented in a

tabular form. However, when function approximation sys-

tems are involved, the direct algorithms are not always faster

than the residual gradient algorithms. In other words, when

function approximation systems are involved, the residual

gradient algorithms are considered as the superior algorithms

as they are always guaranteed to converge, whereas the direct

algorithms may not converge to an answer in some cases.

Other different studies [49, 50, 52] confirm the results pre-

sented in [48] in terms of the superiority of the residual

gradient algorithms as they are always shown to converge.

To illustrate the difference between the direct algorithms and

the residual gradient algorithms, we will give two different

examples of these algorithms: the direct value iteration

algorithm (an example of the direct algorithms) and the

residual gradient value iteration algorithm (an example of the

residual gradient algorithms).

2.1.1 The Direct Value Iteration Algorithm

For Markov decision processes (MDPs), the value function

VtðstÞ at the state st for approximation of the reinforcement

rewards can be defined as follows [46, 54],

VtðstÞ ¼ E
X1

i¼t

ci�tri

()
ð1Þ

where c 2 ½0; 1Þ is a discount factor and ri is the immediate

external reward that the learning agent gets from the

learning environment.

The recursive form of Eq. (1) can be defined as follows

[46, 54],

VtðstÞ ¼ rt þ cVtðstþ1Þ ð2Þ

The temporal difference residual error, Dt, and the mean

square error, Et, between the two sides of Eq. (2) are given

as follows,

Dt ¼ rt þ cVtðstþ1Þ½ � � VtðstÞ
�

ð3Þ

Et ¼
1

2
D2
t ð4Þ

For a deterministic MDP, after transition from a state to

another, the direct value iteration algorithm updates the

weights of the function approximation system as follows

[48],

wtþ1 ¼ wt � a
oEt

owt

ð5Þ

where wt represents the input and output parameters of the

function approximation system that needs to be tuned, a is

a learning rate, and the term oEt

owt
is defined as follows,

oEt

owt

¼ Dt

oDt

owt

¼ � rt þ cVtðstþ1Þ � VtðstÞ½ �: o

owt

VtðstÞ ð6Þ

Thus,

wtþ1 ¼ wt þ a rt þ cVtðstþ1Þ � VtðstÞ½ �: o

owt

VtðstÞ ð7Þ

The direct value iteration algorithm updates the derivative
oEt

owt
as in Eq. (6). This equation shows that the direct value

iteration algorithm treats the value function Vtðstþ1Þ in the

temporal error Dt as a constant. Therefore, the derivative
oVtðstþ1Þ

owt
will be zero. However, the value function Vtðstþ1Þ is

not a constant, and it is a function of the input and output

parameters of the function approximation system, wt.

Therefore, the derivative
oVtðstþ1Þ

owt
should not be assigned to

zero during the tuning of the input and output parameters of

the function approximation system.

2.1.2 The Residual Gradient Value Iteration Algorithm

The residual gradient value iteration algorithm updates the

weights of the function approximation system as follows

[48],

wtþ1 ¼ wt � a
oEt

owt

ð8Þ

where

oEt

owt

¼ Dt

oDt

owt

¼ rt þ cVtðstþ1Þ � VtðstÞ½ �: o

owt

cVtðstþ1Þ �
o

owt

VtðstÞ
� �

ð9Þ

Thus,

M. D. Awheda, H. M. Schwartz: A Residual Gradient Fuzzy Reinforcement Learning Algorithm for Differential Games 1061

123

wtþ1 ¼ wt � a rt þ cVtðstþ1Þ � VtðstÞ½ �: o

owt

cVtðstþ1Þ �
o

owt

VtðstÞ
� �

ð10Þ

The residual gradient value iteration algorithm updates the

derivative oEt

owt
as in Eq. (9). In this equation, the residual

gradient value iteration algorithm treats the value function

Vtðstþ1Þ in the temporal error Dt as a function of the input

and output parameters of the function approximation sys-

tem, wt. Therefore, the derivative
oVtðstþ1Þ

owt
will not be

assigned to zero during the tuning of the input and output

parameters of the function approximation system. This will

make the residual gradient value iteration algorithm per-

forms better than the direct value iteration algorithm in

terms of convergence [48].

2.2 Fuzzy Inference Systems

Fuzzy inference systems may be used as function approx-

imation systems so that reinforcement learning approaches

can be applied to real systems with continuous domains

[10, 13, 43]. Among the most widely used FISs are the

Mamdani FIS proposed in [55] and the Takagi–Sugeno–

Kang (TSK) FIS proposed in [56, 57]. The FISs used in this

work are zero-order TSK FISs with constant consequents.

Each FIS consists of L rules. The inputs of each rule are

n fuzzy variables, whereas the consequent of each rule is a

constant number. Each rule l (l ¼ 1; . . .; L) has the fol-

lowing form,

Rl : IF s1 is Fl
1; . . .; and sn is Fl

n THEN zl ¼ kl

ð11Þ

where si (i ¼ 1; . . .; n) is the ith input state variable of the

fuzzy system, n is the number of input state variables, and

Fl
i is the linguistic value of the input si at the rule l. Each

input si has h membership functions. The variable zl rep-

resents the output variable of the rule l, and kl is a constant

that describes the consequent parameter of the rule l. In this

work, Gaussian membership functions are used for the

inputs and each membership function (MF) is defined as

follows,

lF
l
i ðsiÞ ¼ exp � si � m

r

� �2
� �

ð12Þ

where r and m are the standard deviation and the mean,

respectively.

In each FIS used in this work, the total number of the

standard deviations of the membership functions of its

inputs is defined as H, where H ¼ n� h. In addition, the

total number of the means of the membership functions of

its inputs is H. Thus, for each FIS used in this work, the

standard deviations and the means of the membership

functions of the inputs are defined, respectively, as rj and

mj, where j ¼ 1; . . .;H. We define the set of the parame-

ters of the membership functions of each input, XðsiÞ, as

follows,

Xðs1Þ¼ fðr1;m1Þ;ðr2;m2Þ; . . .;ðrh;mhÞg
Xðs2Þ¼ fðrhþ1;mhþ1Þ;ðrhþ2;mhþ2Þ; . . .;ðr2h;m2hÞg

:

:

:

XðsnÞ¼ fðrðn�1Þhþ1;mðn�1Þhþ1Þ;ðrðn�1Þhþ2;mðn�1Þhþ2Þ; . . .;ðrH ;mHÞg
ð13Þ

The output of the fuzzy system is given by the following

equation when we use the product inference engine with

singleton fuzzifier and center-average defuzzifier [10].

ZðstÞ ¼
PL

l¼1

Qn
i¼1 l

Fl
i ðsiÞ

� �
kl

h i

PL
l¼1

Qn
i¼1 l

Fl
i ðsiÞ

	
 ¼
XL

l¼1

UlðstÞkl ð14Þ

where st ¼ ðs1; . . .; snÞ is the state vector, lF
l
i describes the

membership value of the input state variable si in the rule l,

and UlðstÞ is the normalized activation degree (normalized

firing strength) of the rule l at the state st and is defined as

follows:

UlðstÞ ¼
Qn

i¼1 l
Fl
i ðsiÞPL

l¼1

Qn
i¼1 l

Fl
i ðsiÞ

	
 ¼ xlðstÞPL
l¼1 xlðstÞ

ð15Þ

where xlðstÞ is the firing strength of the rule l at the state st,

and it is defined as follows,

xlðstÞ ¼
Yn

i¼1

lF
l
i ðsiÞ ð16Þ

We define the set of the parameters of each firing strength

of each rule in each FIS, XðxlÞ, as follows,

Xðx1Þ ¼ fðr1;m1Þ; ðrhþ1;mhþ1Þ; . . .; ðrðn�1Þhþ1;mðn�1Þhþ1Þg
Xðx2Þ ¼ fðr1;m1Þ; ðrhþ1;mhþ1Þ; . . .; ðrðn�1Þhþ2;mðn�1Þhþ2Þg

:

:

:

XðxhÞ ¼ fðr1;m1Þ; ðrhþ1;mhþ1Þ; . . .; ðrH ;mHÞg
Xðxhþ1Þ ¼ fðr1;m1Þ; ðrhþ2;mhþ2Þ; . . .; ðrðn�1Þhþ1;mðn�1Þhþ1Þg

:

:

:

XðxLÞ ¼ fðrh;mhÞ; ðr2h;m2hÞ; . . .; ðrH ;mHÞg
ð17Þ

1062 International Journal of Fuzzy Systems, Vol. 19, No. 4, August 2017

123

3 The Q-Learning Fuzzy Inference System
Algorithm

The QLFIS algorithm is a modified version of the algo-

rithms presented in [46] and [26]. The QLFIS algorithm

combines the Q-learning algorithm with a function

approximation system and is applied directly to games with

continuous state and action spaces. The structure of the

QLFIS algorithm is shown in Fig. 1. The QLFIS algorithm

uses a function approximation system (FIS) to estimate the

state-action value functions Qðst; uÞ. The QLFIS algorithm

also uses a function approximation system (FLC) to gen-

erate the continuous action. The QLFIS algorithm tunes the

input and output parameters of its function approximation

systems [45]. The QLFIS algorithm uses the so-called

direct algorithms described in [48] as a mechanism to tune

the input and output parameters of its function approxi-

mation systems.

3.1 Update Rules for the Function Approximation

System (FIS)

The input parameters of the FIS are the parameters of the

Gaussian membership functions of its input: the standard

deviations rj and the means mj. On the other hand, the

output parameters of the FIS are the consequent (or con-

clusion) parts of the fuzzy rules, kl. To simplify notations,

we refer to the input and output parameters of the FIS as wQ.

Thus, the update rules of the input and output parameters for

the FIS of the QLFIS algorithm are given as follows [45],

wQ
tþ1 ¼ wQ

t þ qDt

oQtðst; ucÞ
owQ

t

ð18Þ

where q is a learning rate for the FIS parameters, and Dt is

the temporal difference error that is defined as follows,

Dt ¼ rt þ cQtðstþ1; ucÞ � Qtðst; ucÞ ð19Þ

where rt is the reward received at time t, c is a discount

factor, and Qtðst; ucÞ is the estimated state-action value

function at the state st.

The term
oQtðst ;ucÞ

owQ
t

in Eq. (18) is computed as in [45] as

follows,

oQtðst; ucÞ
okl

¼ UlðstÞ ð20Þ

oQtðst; ucÞ
orj

¼ kl � Qtðst; ucÞP
l xlðstÞ

xlðstÞ
2ðsi � mjÞ2

ðrjÞ3
ð21Þ

oQtðst; ucÞ
omj

¼ kl � Qtðst; ucÞP
l xlðstÞ

xlðstÞ
2ðsi � mjÞ

ðrjÞ2
ð22Þ

3.2 Update Rules for the Function Approximation

System (FLC)

Likewise the FIS, the input parameters of the FLC are the

parameters of the Gaussian membership functions of its

input: the standard deviations rj and the means mj. On the

other hand, the output parameters of the FLC are the

consequent (or conclusion) parts of the fuzzy rules, kl. We

refer to the input and output parameters of the FLC as wu.

Thus, the update rules of the input and output parameters

for the FLC of the QLFIS algorithm are given as follows

[45],

wu
tþ1 ¼ wu

t þ sDt

out

owut

uc � ut

rn

� �
ð23Þ

where s is a learning rate for the FLC parameters, uc is the

output of the FLC with a random Gaussian noise. The term
out
owu

t
in Eq. (23) can be calculated by replacing Qtðst; ucÞ

with ut in Eqs. (20), (21) and (22) as follows,

out

okl
¼ UlðstÞ ð24Þ

out

orj
¼ kl � utP

l xlðstÞ
xlðstÞ

2ðsi � mjÞ2

ðrjÞ3
ð25Þ

out

omj

¼ kl � utP
l xlðstÞ

xlðstÞ
2ðsi � mjÞ

ðrjÞ2
ð26Þ

4 The Pursuit–Evasion Game

The pursuit–evasion game is defined as a differential game

[58]. In this game, the pursuer’s objective is to capture the

evader, whereas the evader’s objective is to escape from the

pursuer or at least prolong the capture time. Figure 2 shows

the model of the pursuit–evasion differential game. The

equations of motion of the pursuer and the evader robots can

be described by the following equations [59, 60],

_xj ¼ Vj cosðhjÞ
_yj ¼ Vj sinðhjÞ
_hj ¼ Vj

Lj
tanðujÞ

ð27Þ

Fig. 1 The QLFIS technique [45]

M. D. Awheda, H. M. Schwartz: A Residual Gradient Fuzzy Reinforcement Learning Algorithm for Differential Games 1063

123

where j represents both the pursuer ‘‘p’’ and the evader

‘‘e’’, Vj represents robot j’s speed, hj is the orientation of

robot j, ðxj; yjÞ is the position of robot j, Lj represents the

wheelbase of robot j, and uj represents robot j’s steering

angle, where uj 2 ½�ujmax
; ujmax

�.
In this work, we assume that the pursuer is faster than

the evader by making Vp [Ve. It is also assumed that the

evader is more maneuverable than the pursuer by making

uemax
[upmax

. A simple classical control strategy that can be

used to define the control strategies of the pursuer and the

evader, in a pursuit–evasion game, can be given as follows,

uj ¼
�ujmax

: dj � ujmax

dj: �ujmax
� dj � ujmax

ujmax
: djujmax

8
<

: ð28Þ

and,

dj ¼ tan�1 ye � yp

xe � xp

� �
� hj ð29Þ

where dj represents the angle difference between the

direction of robot j and the line-of-sight (LoS) to the other

robot.

To capture the evader in a pursuit–evasion game when

the pursuer uses the simple control strategy described by

Eqs. (28) and (29), the angle difference dp has to be

driven to zero by the pursuer. Thus, the control strategy

of the pursuer in this case is to drive this angle difference

to zero. On the other hand, the control strategy of the

evader is to escape from the pursuer and keep the dis-

tance between the evader and the pursuer as large as

possible. The evader can do so by following the intelli-

gent control strategy described by the following two rules

[11, 45, 60, 61]:

1. If the distance between the evader and the pursuer is

greater than a specific distance �d, the control strategy

of the evader is defined as follows,

ue ¼ tan�1 ye � yp

xe � xp

� �
� he ð30Þ

2. If the distance between the evader and the pursuer is

less than or equal to the distance �d, the evader exploits

its higher maneuverability, and the control strategy for

the evader in this case is given as follows,

ue ¼ ðhp þ pÞ � he ð31Þ

The distance �d is defined as follows,

�d ¼ Lp

tanðupmax
Þ ð32Þ

The pursuer succeeds to capture the evader if the dis-

tance between them is less than the capture radius dc.

The distance between the pursuer and the evader is

defined by d and is given as follows,

d ¼
ffi
ðxe � xpÞ2 þ ðye � ypÞ2

q
ð33Þ

5 The Proposed Algorithm

In this work, we propose a new fuzzy reinforcement

learning algorithm for differential games that have con-

tinuous state and action spaces. The proposed algorithm

FISs as function approximation systems: an actor (fuzzy

logic controller, FLC) and a critic. The critic is used to

estimate the value functions VtðstÞ and Vtðstþ1Þ of the

learning agent at two different states st and stþ1,

respectively. The values of VtðstÞ and Vtðstþ1Þ will

depend on the input and output parameters of the critic.

Unlike the algorithms proposed in [16, 26, 43, 45–47]

which use the direct algorithms to tune the parameters of

their function approximation systems, the proposed

algorithm uses the residual gradient value iteration

algorithm described in [48] to tune the input and output

parameters of its function approximation systems. It has

been shown in [48–52] that the direct algorithms may

not converge to an answer in some cases, while the

residual gradient algorithms are always guaranteed to

converge. The proposed algorithm is called the RGFACL

algorithm. The structure of the proposed RGFACL

algorithm is shown in Fig. 3. The input parameters of

the critic are the parameters of the MFs of its inputs, rj
and mj (where j ¼ 1; . . .;H). The output parameters of

the critic are the consequent parameters of its rules, kl
(where l ¼ 1; . . .; L). To simplify notations, we refer to

the input and output parameters of the critic as wC.

Similarly, the input parameters of the actor are the

parameters of the MFs of its input rj and mj, and the

Fig. 2 Pursuit–evasion model

1064 International Journal of Fuzzy Systems, Vol. 19, No. 4, August 2017

123

output parameters of the actor are the consequent

parameters of its rules kl. To simplify notations, we refer

to the input and output parameters of the actor as wA.

The temporal difference residual error, Dt, is defined as

follows,

Dt ¼ rt þ cVtðstþ1Þ � VtðstÞ ð34Þ

5.1 Adaptation Rules for the Critic

In this subsection, we derive the adaptation rules that the

proposed algorithm uses to tune the input and output

parameters of the critic. For the sake of completeness,

we are going to present the complete derivation of the

partial derivatives that are needed by the proposed

algorithm.

The mean squared error, E, of the temporal difference

residual error, Dt, is defined as follows,

E ¼ 1

2
D2
t

ð35Þ

The input and output parameters of the critic are updated

based on the residual gradient method described in [48] as

follows,

wC
tþ1 ¼ wC

t � a
oE

owC
t

ð36Þ

where wC
t represents the input and output parameters of the

critic at time t, and a is a learning rate for the parameters of

the critic.

The QLFIS algorithm proposed in [45] uses the so-

called direct algorithms described in [48] to define the term
oE
owC

t

. On the other hand, the proposed algorithm defines the

term oE
owC

t

based on the residual gradient value iteration

algorithm which is also described in [48] as follows,

oE

owC
t

¼ Dt c
oVtðstþ1Þ

owC
t

� oVtðstÞ
owC

t

" #
ð37Þ

The proposed algorithm treats the value function Vtðstþ1Þ
in the temporal difference residual error Dt as a function of

the input and output parameters of its function approxi-

mation system (the critic), wC
t . Unlike the QLFIS algo-

rithm, the proposed algorithm will not assign a value of

zero to the derivative
oVtðstþ1Þ

owC
t

during the tuning of the input

and output parameters of the critic. This is because the

value function Vtðstþ1Þ is a function of the input and output

parameters of the critic wC
t , and its derivative

oVtðstþ1Þ
owC

t

should

not be assigned to zero all the time.

From Eq. (37), Eq. (36) can be rewritten as follows,

wC
tþ1 ¼ wC

t � a rt þ cVtðstþ1Þ � VtðstÞ½ �: c
o

owC
t

Vtðstþ1Þ �
o

owC
t

VtðstÞ
" #

ð38Þ

The derivatives of the state value functions, VtðstÞ and

Vtðstþ1Þ, with respect to the output parameters of the critic,

kl, are calculated from Eq. (14) as follows,

oVtðstÞ
okl

¼ UlðstÞ ð39Þ

where l ¼ 1; . . .; L.

Similarly,

oVtðstþ1Þ
okl

¼ Ulðstþ1Þ ð40Þ

where UlðstÞ and Ulðstþ1Þ are calculated by using Eq. (15)

at the states st and stþ1, respectively.

We use the chain rule to calculate the derivatives
oVtðstÞ
orj

and
oVtðstþ1Þ

orj
. We start with the derivative

oVtðstÞ
orj

which is

calculated as follows,

Fig. 3 The proposed RGFACL algorithm

M. D. Awheda, H. M. Schwartz: A Residual Gradient Fuzzy Reinforcement Learning Algorithm for Differential Games 1065

123

oVtðstÞ
orj

¼ oVtðstÞ
oxlðstÞ

:
oxlðstÞ
orj

ð41Þ

where j ¼ 1; . . .;H.

The term
oVtðstÞ
oxlðstÞ is calculated as follows,

oVtðstÞ
oxlðstÞ

¼ oVtðstÞ
ox1ðstÞ

oVtðstÞ
ox2ðstÞ

. . .
oVtðstÞ
oxLðstÞ

� �
ð42Þ

We first calculate the term
oVtðstÞ
ox1ðstÞ as follows,

oVtðstÞ
ox1ðstÞ

¼ o

ox1ðstÞ

P
l xlðstÞklP
l xlðstÞ

� �
¼ k1 � VtðstÞP

l xlðstÞ
ð43Þ

Similarly, we can calculate the terms
oVtðstÞ
ox2ðstÞ, ..., and

oVtðstÞ
oxLðstÞ.

Thus, Eq. (42) can be rewritten as follows,

oVtðstÞ
oxlðstÞ

¼ k1 � VtðstÞP
l xlðstÞ

k2 � VtðstÞP
l xlðstÞ

. . .
kL � VtðstÞP

l xlðstÞ

� �
ð44Þ

On the other hand, the term
oxlðstÞ
orj

in Eq. (41) is calculated

as follows,

oxlðstÞ
orj

¼ ox1ðstÞ
orj

ox2ðstÞ
orj

. . .
oxLðstÞ
orj

� �T
ð45Þ

The derivative
ox1ðstÞ
orj

can be calculated based on the defi-

nition of x1ðstÞ given in Eq. (16) as follows,

ox1ðstÞ
orj

¼ o

orj

Yn

i¼1

lF
1
i ðsiÞ

" #

¼ o

orj
lF

1
1 ðs1Þ � lF

1
2 ðs2Þ � � � � � lF

1
n ðsnÞ

h i

ð46Þ

We then substitute Eq. (12) into Eq. (46) as follows,

ox1ðstÞ
orj

¼ o

orj
exp � s1 � m1

r1

� �2
 !"

� exp � s2 � mhþ1

rhþ1

� �2
 !

� � � �

� exp �
sn � mðn�1Þhþ1

rðn�1Þhþ1

� �2
 !#

ð47Þ

Thus, the derivatives
ox1ðstÞ
or1

,
ox1ðstÞ
or2

, …, and
ox1ðstÞ
orH

are cal-

culated as follows,

ox1ðstÞ
or1

¼ 2ðs1 �m1Þ2

r3
1

x1ðstÞ

ox1ðstÞ
or2

¼ 0

:

:

:

ox1ðstÞ
orhþ1

¼ 2ðs2 �mhþ1Þ2

r3
hþ1

x1ðstÞ

ox1ðstÞ
orhþ2

¼ 0

:

:

:

ox1ðstÞ
orðn�1Þhþ1

¼
2ðsn �mðn�1Þhþ1Þ2

r3
ðn�1Þhþ1

x1ðstÞ

ox1ðstÞ
orðn�1Þhþ2

¼ 0

:

:

:

ox1ðstÞ
orH

¼ 0

ð48Þ

Thus, from Eq. (48), the derivative
ox1ðstÞ
orj

ðj¼ 1; . . .;HÞ can

be rewritten as follows,

ox1ðstÞ
orj

¼
2ðsi�mjÞ2

r3
j

x1ðstÞ if ðrj;mjÞ 2Xðx1Þ

0 if ðrj;mjÞ 62Xðx1Þ

8
><

>:
ð49Þ

where the term si is the ith input state variable of the state

vector st and is defined as follows,

si ¼

s1 if ðrj;mjÞ 2 Xðs1Þ
s2 if ðrj;mjÞ 2 Xðs2Þ

:

:

:

sn if ðrj;mjÞ 2 XðsnÞ

8
>>>>>>>><

>>>>>>>>:

ð50Þ

We can rewrite Eq. (49) as follows,

ox1ðstÞ
orj

¼ nj;1
2ðsi � mjÞ2

r3
j

x1ðstÞ ð51Þ

where

nj;1 ¼
1 if ðrj;mjÞ 2 Xðx1Þ
0 if ðrj;mjÞ 62 Xðx1Þ

�
ð52Þ

1066 International Journal of Fuzzy Systems, Vol. 19, No. 4, August 2017

123

Similarly, we can calculate the derivatives
ox2ðstÞ
orj

as follows,

ox2ðstÞ
orj

¼ o

orj

Yn

i¼1

lF
2
i ðsiÞ

" #

¼ o

orj
lF

2
1 ðs1Þ � lF

2
2 ðs2Þ � � � � � lF

2
n ðsnÞ

h i
ð53Þ

ox2ðstÞ
orj

¼ o

orj
exp � s1 � m1

r1

� �2
 !"

� exp � s2 � mhþ1

rhþ1

� �2
 !

� � � �

� exp �
sn � mðn�1Þhþ2

rðn�1Þhþ2

� �2
 !#

ð54Þ

Thus, the derivatives
ox2ðstÞ
or1

, ..., and
ox2ðstÞ
orH

are calculated as

follows,

ox2ðstÞ
or1

¼ 2ðs1 �m1Þ2

r3
1

x2ðstÞ

ox2ðstÞ
or2

¼ 0

:

:

:

ox2ðstÞ
orhþ1

¼ 2ðs2 �mhþ1Þ2

r3
hþ1

x2ðstÞ

ox2ðstÞ
orhþ2

¼ 0

:

:

:

ox2ðstÞ
orðn�1Þhþ1

¼ 0

ox2ðstÞ
orðn�1Þhþ2

¼
2ðsn�mðn�1Þhþ2Þ2

r3
ðn�1Þhþ2

x2ðstÞ

ox2ðstÞ
orðn�1Þhþ3

¼ 0

:

:

:

ox2ðstÞ
orH

¼ 0

ð55Þ

Thus, from Eq. (55), the derivatives
ox2ðstÞ
orj

ðj¼ 1; . . .;HÞ can

be rewritten as follows,

ox2ðstÞ
orj

¼
2ðsi � mjÞ2

r3
j

x2ðstÞ if ðrj;mjÞ 2 Xðx2Þ

0 if ðrj;mjÞ 62 Xðx2Þ

8
><

>:

ð56Þ

We can rewrite Eq. (56) as follows,

ox2ðstÞ
orj

¼ nj;2
2ðsi � mjÞ2

r3
j

x2ðstÞ ð57Þ

where

nj;2 ¼ 1 if ðrj;mjÞ 2 Xðx2Þ
0 if ðrj;mjÞ 62 Xðx2Þ

�
ð58Þ

Similarly, we can calculate the derivatives
ox3ðstÞ
orj

,
ox4ðstÞ
orj

, ...,

and
oxLðstÞ
orj

. Thus, Eq. (45) can be rewritten as follows,

oxlðstÞ
orj

¼ nj;1
2ðsi � mjÞ2

r3
j

x1ðstÞ nj;2
2ðsi � mjÞ2

r3
j

x2ðstÞ
"

. . . nj;L
2ðsi � mjÞ2

r3
j

xLðstÞ
#T

ð59Þ

where

nj;l ¼
1 if ðrj;mjÞ 2 XðxlÞ
0 if ðrj;mjÞ 62 XðxlÞ

�
ð60Þ

Hence, from Eqs. (44) and (59), the derivative
oVtðstÞ
orj

ðj ¼
1; . . .;HÞ in Eq. (41) is then calculated as follows,

oVtðstÞ
orj

¼ 2ðsi � mjÞ2

r3
j

�
XL

l¼1

nj;l
kl � VtðstÞP

l xlðstÞ
xlðstÞ ð61Þ

Similarly, we calculate the derivative
oVtðstþ1Þ

orj
as follows,

oVtðstþ1Þ
orj

¼ 2ðs0i � mjÞ2

r3
j

�
XL

l¼1

nj;l
kl � Vtðstþ1ÞP

l xlðstþ1Þ
xlðstþ1Þ

ð62Þ

where

s0i ¼

s01 if ðrj;mjÞ 2 Xðs1Þ
s02 if ðrj;mjÞ 2 Xðs2Þ

:

:

:

s0n if ðrj;mjÞ 2 XðsnÞ

8
>>>>>>>><

>>>>>>>>:

ð63Þ

where s0i is the ith input state variable of the state vector stþ1.

We also use the chain rule to calculate the derivatives
oVtðstÞ
omj

and
oVtðstþ1Þ

omj
. We start with the derivative

oVtðstÞ
omj

which

is calculated as follows,

oVtðstÞ
omj

¼ oVtðstÞ
oxlðstÞ

:
oxlðstÞ
omj

ð64Þ

The term
oVtðstÞ
oxlðstÞ is calculated as in Eq. (44), and the term

oxlðstÞ
omj

is calculated as follows,

M. D. Awheda, H. M. Schwartz: A Residual Gradient Fuzzy Reinforcement Learning Algorithm for Differential Games 1067

123

oxlðstÞ
omj

¼ ox1ðstÞ
omj

ox2ðstÞ
omj

. . .
oxLðstÞ
omj

� �T
ð65Þ

We first calculate the term
ox1ðstÞ
omj

by using Eq. (16) as follows,

ox1ðstÞ
omj

¼ o

omj

Yn

i¼1

lF
1
i ðsiÞ

" #

¼ o

omj

lF
1
1 ðs1Þ � lF

1
2 ðs2Þ � � � � � lF

1
n ðsnÞ

h i
ð66Þ

We then substitute Eq. (12) into Eq. (66) as follows,

ox1ðstÞ
omj

¼ o

omj

exp � s1 � m1

r1

� �2
 !"

� exp � s2 � mhþ1

rhþ1

� �2
 !

� � � �

� exp �
sn � mðn�1Þhþ1

rðn�1Þhþ1

� �2
 !#

ð67Þ

Thus, the derivatives
ox1ðstÞ
om1

,
ox1ðstÞ
om2

, ..., and
ox1ðstÞ
omH

are cal-

culated as follows,

ox1ðstÞ
om1

¼ 2ðs1 � m1Þ
r2

1

x1ðstÞ

ox1ðstÞ
om2

¼ 0

:

:

:

ox1ðstÞ
omhþ1

¼ 2ðs2 � mhþ1Þ
r2
hþ1

x1ðstÞ

ox1ðstÞ
omhþ2

¼ 0

:

:

:

ox1ðstÞ
omðn�1Þhþ1

¼
2ðsn � mðn�1Þhþ1Þ

r2
ðn�1Þhþ1

x1ðstÞ

ox1ðstÞ
omðn�1Þhþ2

¼ 0

:

:

:

ox1ðstÞ
omH

¼ 0

ð68Þ

Thus, from Eq. (68), the derivative
ox1ðstÞ
omj

ðj ¼ 1; :::;HÞ can

be rewritten as follows,

ox1ðstÞ
omj

¼
2ðsi � mjÞ

r2
j

x1ðstÞ if ðrj;mjÞ 2 Xðx1Þ

0 if ðrj;mjÞ 62 Xðx1Þ

8
<

:

ð69Þ
We can rewrite Eq. (69) as follows,

ox1ðstÞ
omj

¼ nj;1
2ðsi � mjÞ

r2
j

x1ðstÞ ð70Þ

where si is defined as in Eq. (50), andnj;1 is defined as in Eq. (52).

Similarly, we can calculate the term
ox2ðstÞ
omj

as follows,

ox2ðstÞ
omj

¼ o

omj

Yn

i¼1

lF
2
i ðsiÞ

" #

¼ o

omj

lF
2
1 ðs1Þ � lF

2
2 ðs2Þ � � � � � lF

2
n ðsnÞ

h i ð71Þ

ox2ðstÞ
omj

¼ o

omj

exp � s1 � m1

r1

� �2
 !"

� exp � s2 � mhþ1

rhþ1

� �2
 !

� � � �

� exp �
sn � mðn�1Þhþ2

rðn�1Þhþ2

� �2
 !#

ð72Þ

Thus, the derivatives
ox2ðstÞ
om1

,
ox2ðstÞ
om2

, ..., and
ox2ðstÞ
omH

are cal-

culated as follows,
ox2ðstÞ
om1

¼ 2ðs1 �m1Þ
r2

1

x2ðstÞ

ox2ðstÞ
om2

¼ 0

:

:

:

ox2ðstÞ
omhþ1

¼ 2ðs2 �mhþ1Þ
r2
hþ1

x2ðstÞ

ox2ðstÞ
omhþ2

¼ 0

:

:

:

ox2ðstÞ
omðn�1Þhþ1

¼ 0

ox2ðstÞ
omðn�1Þhþ2

¼
2ðsn�mðn�1Þhþ2Þ

r2
ðn�1Þhþ2

x2ðstÞ

ox2ðstÞ
omðn�1Þhþ3

¼ 0

:

:

:

ox2ðstÞ
omH

¼ 0

ð73Þ

1068 International Journal of Fuzzy Systems, Vol. 19, No. 4, August 2017

123

Thus, from Eq. (73), the derivative
ox2ðstÞ
omj

ðj¼ 1; :::;HÞ can

be rewritten as follows,

ox2ðstÞ
omj

¼
2ðsi � mjÞ

r2
j

x2ðstÞ if ðrj;mjÞ 2 Xðx2Þ

0 if ðrj;mjÞ 62 Xðx2Þ

8
<

:

ð74Þ

We can rewrite Eq. (74) as follows,

ox2ðstÞ
omj

¼ nj;2
2ðsi � mjÞ

r2
j

x2ðstÞ ð75Þ

where si is defined as in Eq. (50), and nj;2 is defined as in

Eq. (58).

Similarly, we can calculate the terms
ox3ðstÞ
omj

,
ox4ðstÞ
omj

, ...,

and
oxLðstÞ
omj

. Thus, Eq. (65) can be rewritten as follows,

oxlðstÞ
omj

¼ nj;1
2ðsi � mjÞ

r2
j

x1ðstÞ nj;2
2ðsi � mjÞ

r2
j

x2ðstÞ � � � nj;L
2ðsi � mjÞ

r2
j

xLðstÞ
" #T

ð76Þ

where nj;l is defined as in Eq. (60).

From Eqs. (44) and (76), the derivative
oVtðstÞ
omj

in Eq. (64)

is calculated as follows,

oVtðstÞ
omj

¼ 2ðsi � mjÞ
r2
j

�
XL

l¼1

nj;l
kl � VtðstÞP

l xlðstÞ
xlðstÞ ð77Þ

Similarly, we can calculate the derivative
oVtðstþ1Þ

omj
as

follows,

oVtðstþ1Þ
omj

¼ 2ðs0i � mjÞ
r2
j

�
XL

l¼1

nj;l
kl � Vtðstþ1ÞP

l xlðstþ1Þ
xlðstþ1Þ

ð78Þ

Hence, From Eqs. (38), (61), (62), (77) and (78), the input

parameters mj and rj of the critic are updated at each time

step as follows,

rj;tþ1 ¼rj;t�a rtþcVtðstþ1Þ�VtðstÞ½ �: c
oVtðstþ1Þ
orj;t

�oVtðstÞ
orj;t

� �

ð79Þ

mj;tþ1 ¼ mj;t � a rt þ cVtðstþ1Þ � VtðstÞ½ �: c
oVtðstþ1Þ
omj;t

� oVtðstÞ
omj;t

� �

ð80Þ

Similarly, From Eqs. (38), (39), (40), the output parameters

kl of the critic are updated at each time step as follows,

kl;tþ1 ¼ kl;t

� a rt þ cVtðstþ1Þ � VtðstÞ½ �: c
oVtðstþ1Þ

okl;t
� oVtðstÞ

okl;t

� �

ð81Þ

5.2 Adaptation Rules for the Actor

The input and output parameters of the actor, wA, are

updated as follows, [45],

wA
tþ1 ¼ wA

t þ bDt

out

owA
t

uc � ut

rn

� �
ð82Þ

where b is a learning rate for the actor parameters, uc is the

output of the actor with a random Gaussian noise. The

derivatives of the output of the FLC (the actor), ut, with

respect to the input and output parameters of the FLC can

be calculated by replacing VtðstÞ with ut in Eq. (39),

Eqs. (61) and (77) as follows,

out

okl
¼ UlðstÞ ð83Þ

out

orj
¼ 2ðsi � mjÞ2

r3
j

�
XL

l¼1

nj;l
kl � utP
l xlðstÞ

xlðstÞ ð84Þ

out

omj

¼ 2ðsi � mjÞ
r2
j

�
XL

l¼1

nj;l
kl � utP
l xlðstÞ

xlðstÞ ð85Þ

Hence, From Eqs. (82), (84) and (85), the input parameters

rj and mj of the actor (FLC) are updated at each time step

as follows,

rj;tþ1 ¼ rj;t þ bDt

out

orj;t

uc � ut

rn

� �
ð86Þ

mj;tþ1 ¼ mj;t þ bDt

out

omj;t

uc � ut

rn

� �
ð87Þ

Similarly, From Eqs. (82) and (83), the output parameters kl
of the actor (FLC) are updated at each time step as follows,

kl;tþ1 ¼ kl;t þ bDt

out

okl;t

uc � ut

rn

� �
ð88Þ

The proposed RGFACL algorithm is given in Algorithm 1.

M. D. Awheda, H. M. Schwartz: A Residual Gradient Fuzzy Reinforcement Learning Algorithm for Differential Games 1069

123

Example This example illustrates how to use the equa-

tions associated with the proposed algorithm to tune the

input and output parameters of the FISs (actor and critic) of

a learning agent. We assume that the actor of the learning

agent has two inputs, st ¼ ðs1; s2Þ. That is, n ¼ 2. We

assume that the output of the actor is a crisp output. The

critic of the learning agent has the same inputs as the actor,

st ¼ ðs1; s2Þ, and with a crisp output. Thus, the fuzzy rules

of the actor and the critic can be described as in Eq. (11), as

follows,

RlðactorÞ: IF s1 is Al
1 and s2 is Al

2 THEN

zl ¼ al
ð89Þ

RlðcriticÞ: IF s1 is Cl
1 and s2 is Cl

2 THEN

zl ¼ cl
ð90Þ

The linguistic values of the actor’s inputs, Al
1 and Al

2, are

functions of the means and the standard deviations of the

MFs of the actor’s inputs, and al is a constant that repre-

sents the consequent part of the actor’s fuzzy rule Rl. On

the other hand, the linguistic values of the critic’s inputs,

Cl
1 and Cl

2, are functions of the means and the standard

deviations of the MFs of the critic’s inputs, and cl repre-

sents the consequent part of the critic’s fuzzy rule Rl.

We assume that each input of the two inputs to the FISs

(actor and critic) has three Gaussian MFs, h ¼ 3. That is, the

input parameters of each FIS are rj and mj, where j ¼
1; . . .;H and H ¼ n� h ¼ 6. In addition, each FIS has nine

rules, L ¼ hn ¼ 9. That is, the output parameters of each FIS

are nine parameters (al for the actor and cl for the critic),

where l ¼ 1; . . .; 9. The parameters of the MFs of each input

XðsiÞ, ði ¼ 1; 2Þ, defined by Eq. (13) can be given as follows,

Xðs1Þ ¼ fðr1;m1Þ; ðr2;m2Þ; ðr3;m3Þg
Xðs2Þ ¼ fðr4;m4Þ; ðr5;m5Þ; ðr6;m6Þg

ð91Þ

On the other hand, the set of the parameters of each firing

strength of each rule in each FIS, XðxlÞ, defined by

Eq. (17) is given as follows,

Xðx1Þ ¼ fðr1;m1Þ; ðr4;m4Þg
Xðx2Þ ¼ fðr1;m1Þ; ðr5;m5Þg
Xðx3Þ ¼ fðr1;m1Þ; ðr6;m6Þg
Xðx4Þ ¼ fðr2;m2Þ; ðr4;m4Þg
Xðx5Þ ¼ fðr2;m2Þ; ðr5;m5Þg
Xðx6Þ ¼ fðr2;m2Þ; ðr6;m6Þg
Xðx7Þ ¼ fðr3;m3Þ; ðr4;m4Þg
Xðx8Þ ¼ fðr3;m3Þ; ðr5;m5Þg
Xðx9Þ ¼ fðr3;m3Þ; ðr6;m6Þg

ð92Þ

The term nj;l defined by Eq. (60) can be calculated based on

the following matrix,

nj;l ¼

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

2
666666664

3
777777775

6�9

ð93Þ

To tune the input and output parameters of the actor and

critic, we follow the procedure described in Algorithm (1).

After initializing the values of the input and output

parameters of the actor and critic, learning rates, and the

Algorithm 1 The Proposed Residual Gradient Fuzzy Actor Critic Learning Algorithm:
(1) Initialize:

(a) the input and output parameters of the critic, ψC .
(b) the input and output parameters of the actor, ψA.

(2) For each EPISODE do:
(3) Update the learning rates α and β of the critic and actor, respectively.
(4) Initialize the position of the pursuer at (xp, yp) = 0 and the position of the evader randomly at (xe, ye), and then
calculate the initial state st.
(5) For each ITERATION do:
(6) Calculate the output of the actor, ut, at the state st by using Eq. (14) and then calculate the output uc =
ut + n(0, σn).
(7) Calculate the output of the critic, Vt(st), at the state st by using Eq. (14).
(8) Perform the action uc and observe the next state st+1 and the reward rt.
(9) Calculate the output of the critic, Vt(st+1), at the next state st+1 by using Eq. (14).
(10) Calculate the temporal difference error, Δt, by using Eq. (34).
(11) Update the input and output parameters of the critic, ψC , by using Eq. (79), Eq. (80) and Eq. (81).
(12) Update the input and output parameters of the actor, ψA, based on Eq. (86), Eq. (87) and Eq. (88).
(13) Set st ← st+1.
(14) Check Termination Condition.
(15) end for loop (ITERATION).
(16) end for loop (EPISODE).

1070 International Journal of Fuzzy Systems, Vol. 19, No. 4, August 2017

123

inputs, the output ut of the actor at the current state st is

calculated by using Eq. (14) as follows,

ut ¼
P9

l¼1

Q2
i¼1 l

Fl
i ðsiÞ

� �
al

h i

P9
l¼1

Q2
i¼1 l

Fl
i ðsiÞ

� � ð94Þ

To solve the exploration/exploitation dilemma, a random

noise nð0; rnÞ with a zero mean and a standard deviation rn
should be added to the actor’s output. Thus, the new output

(action) uc will be defined as uc ¼ ut þ nð0;rnÞ.
The output of the critic at the current state st is calcu-

lated by using Eq. (14) as follows,

VtðstÞ ¼
P9

l¼1

Q2
i¼1 l

Fl
i ðsiÞ

� �
cl

h i

P9
l¼1

Q2
i¼1 l

Fl
i ðsiÞ

� � ð95Þ

The learning agent performs the action uc and observes the

next state stþ1 and the immediate reward rt. The output of

the critic at the next state stþ1 is then calculated by using

Eq. (14), which is in turn used to calculate the temporal

error Dt by using Eq. (34). Then, the input and output

parameters of the actor can be updated by using Eqs. (86),

(87) and (88). On the other hand, the input and output

parameters of the critic can be updated by using Eqs. (79),

(80) and (81).

6 Simulation and Results

We evaluate the proposed RGFACL algorithm, the FACL

algorithm and the QLFIS algorithm on three different

pursuit–evasion games. In the first game, the evader is

following a simple control strategy, whereas the pursuer is

learning its control strategy to capture the evader in min-

imum time. In the second game, it is also only the pursuer

that is learning. However, the evader in this game is fol-

lowing an intelligent control strategy that exploits the

advantage of the maneuverability of the evader. In the third

game, we make both the pursuer and the evader learn their

control strategies. In multi-robot learning systems, each

robot will try to learn its control strategy by interacting

with the other robot which is also learning at the same time.

Therefore, the complexity of the system will increase as the

learning in a multi-robot system is considered as a problem

of a ‘‘moving target’’ [53]. In the problem of a moving

target, the best-response policy of each learning robot may

keep changing during learning until each learning robot

adopts an equilibrium policy. It is important to mention

here that the pursuer, in all games, is assumed to not know

the dynamics of the evader nor its control strategy.

We use the same learning and exploration rates for all

algorithms when they are applied to the same game. Those

rates are chosen to be similar to those used in [45]. We

define the angle difference between the direction of the

pursuer and the line-of-sight (LoS) vector of the pursuer to

the evader by dp. In all games, we define the state st for the

pursuer by the two input variables which are the pursuer

angle difference dp and its derivative _dp. In the third game,

we define the state st for the evader by the two input

variables which are the evader angle difference de and its

derivative _de. Three Gaussian membership functions (MFs)

are used to define the fuzzy sets of each input.

In all games, we assume that the pursuer is faster than

the evader, and the evader is more maneuverable than the

pursuer. In addition, the pursuer is assumed to not know the

dynamics of the evader nor its control strategy. The only

information the pursuer knows about the evader is the

position (location) of the evader. The parameters of the

pursuer are set as follows, Vp ¼ 2:0m/s, Lp ¼ 0:3m and

up 2 ½�0:5; 0:5�. The pursuer starts its motion from the

position ðxp; ypÞ ¼ ð0; 0Þ with an initial orientation hp ¼ 0.

On the other hand, the parameters of the evader are set up

as follows, Ve ¼ 1m/s, Le ¼ 0:3m and ue 2 ½�1:0; 1:0�.
The evader starts its motion from a random position at each

episode with an initial orientation he ¼ 0. The sampling

time is defined as T ¼ 0:05s, whereas the capture radius is

defined as dc ¼ 0:1m.

6.1 Pursuit–Evasion Game 1

In this game, the evader is following a simple control

strategy defined by Eq. (30). On the other hand, the pursuer

is learning its control strategy with the proposed RGFACL

algorithm. We compare our results with the results

obtained when the pursuer is following the classical control

strategy defined by Eqs. (28) and (29). We also compare

our results with the results obtained when the pursuer is

learning its control strategy by the FACL and the QLFIS

algorithms. We define the number of episodes in this game

as 200 and the number of steps (in each episode) as 600.

For each algorithm (the FACL, the QLFIS and the pro-

posed RGFACL algorithms), we ran this game 20 times

and we averaged the capture time of the evader over this

number of trials.

Table 2 shows the time that the pursuer takes to capture

the evader when the evader is following a simple control

strategy and starts its motion from different initial posi-

tions. The table shows the capture time of the evader when

the pursuer is following the classical control strategy and

when the pursuer is learning its control strategy by the

FACL algorithm, the QLFIS algorithm and the proposed

RGFACL algorithm. From Table 2, we can see that the

capture time of the evader when the pursuer learns its

control strategy by the proposed RGFACL algorithm is

M. D. Awheda, H. M. Schwartz: A Residual Gradient Fuzzy Reinforcement Learning Algorithm for Differential Games 1071

123

very close to the capture time of the evader when the

pursuer follows the classical control strategy. This shows

that the proposed RGFACL algorithm achieves the per-

formance of the classical control.

6.2 Pursuit–Evasion Game 2

In this game, the evader is following the control strategy

defined by Eqs. (30) and (31) with the advantage of using

its higher maneuverability. On the other hand, the pursuer

in this game is learning its control strategy with the pro-

posed RGFACL algorithm. Similar to game 1, we compare

our results obtained when the pursuer is learning by the

proposed RGFACL algorithm with the results obtained

when the pursuer is following the classical control strategy

defined by Eqs. (28) and (29). We also compare our results

with the results obtained when the pursuer is learning its

control strategy by the FACL and the QLFIS algorithms. In

[45], it is assumed that the velocity of the pursuer and

evader are governed by their steering angles so that the

pursuer and evader can avoid slips during turning. This

constraint will make the evader slow down its speed

whenever the evader makes a turn. This will make it easy

for the pursuer to capture the evader. Our objective is to see

how the proposed algorithm and the other studied algo-

rithms will behave when the evader makes use of the

advantage of the maneuverability without any velocity

constraints. Thus, in this work, we take this velocity con-

straints out so that both the pursuer and the evader can

make fast turns without any velocity constraints. In this

game, we use two different numbers for the episodes (200

and 1000), whereas the number of steps (in each episode) is

set as 3000. For each algorithm (the FACL, the QLFIS and

the proposed RGFACL algorithms), we ran this game 20

times and, then, averaged the capture time of the evader

over this number of trials.

Tables 3 and 4 show the time that the pursuer takes to

capture the evader when the evader is following the control

strategy defined by Eqs. (30) and (31) with the advantage

of using its higher maneuverability. The number of epi-

sodes used here is 200 for Table 3 and 1000 for Table 4.

The tables show that the pursuer fails to capture the evader

when the pursuer is following the classical control strategy

and when learning by the FACL algorithm. Table 3 shows

that the pursuer succeeds to capture the evader in all 20

trials only when the pursuer is learning by the proposed

RGFACL algorithm. When learning by the QLFIS algo-

rithm, the pursuer succeeds to capture the evader only in

20% of the 20 trials. On the other hand, Table 4 shows that

the pursuer always succeeds to capture the evader only

when the pursuer is learning with the proposed RGFACL

algorithm. However, when learning with the QLFIS algo-

rithm, the pursuer succeeds to capture the evader only in

50% of the 20 trials. Tables 3 and 4 show that the proposed

RGFACL algorithm outperforms the FACL and the QLFIS

algorithms. This is because the pursuer using the proposed

RGFACL algorithm to learn its control strategy always

succeeds to capture the evader in less time as well as in a

less number of episodes.

6.3 Pursuit–Evasion Game 3

Unlike game 1 and game 2, both the evader and the pursuer

are learning their control strategies in this game. In multi-

robot learning systems, each robot will try to learn its

control strategy by interacting with the other robot which is

also learning its control strategy at the same time. Thus, the

complexity of the system will increase in this game as the

learning in a multi-robot system is considered as a problem

of a ‘‘moving target’’ [53]. We compare the results

obtained by the proposed algorithm with the results

obtained by the FACL and QLFIS algorithms. Unlike the

first two pursuit–evasion games, we do not use the capture

time of the evader as a criterion in our comparison in this

game. This is because both the pursuer and the evader are

learning. That is, a small capture time by the pursuer

Table 3 The time that the

pursuer trained by each

algorithm takes to capture an

evader that follows an

intelligent control strategy. The

number of episodes here is 200

Algorithm Evader

(-9, 7) (-7, -10) (6, 9) (3, -9)

Classical strategy No capture No capture No capture No capture

The proposed RGFACL 13.05 100% 14.30 100% 11.65 100% 11.15 100%

QLFIS 23.20 20% 23.55 20% 25.45 20% 21.35 20%

FACL No capture No capture No capture No capture

Table 2 The time that the pursuer trained by each algorithm takes to

capture an evader that follows a simple control strategy. The number

of episodes here is 200

Algorithm Evader

(-5, 9) (-10, -6) (7, 4) (5, -10)

Classical strategy 10.70 12.40 8.05 11.20

The proposed RGFACL 10.80 12.45 8.05 11.25

QLFIS 10.95 12.50 8.05 11.35

FACL 11.50 13.50 8.65 12.25

1072 International Journal of Fuzzy Systems, Vol. 19, No. 4, August 2017

123

learning its control strategy by one of the learning algo-

rithms can have two different indications; the first one is

that the learning algorithm is working well as the pursuer

succeeds to capture the evader quickly. The second indi-

cation, on the other hand, is that the learning algorithm is

not working properly as the evader does not learn how to

escape from the pursuer. Therefore, we compare the paths

of the pursuer and the evader learning their control

strategies by the learning algorithms with the paths of the

pursuer and the evader following the classical control

strategy defined by Eqs. (28) and (29).

In game 3, the pursuer starts its motion from the position

ðxp; ypÞ ¼ ð0; 0Þ with an initial orientation hp ¼ 0. On the

other hand, the evader starts its motion from a random

position at each episode with an initial orientation he ¼ 0.

We run game 3 twice. In the first run, we set the number of

the episodes in this game to 200, whereas the number of

steps in each episode is set to 3000. The results of the first

run are shown in Figs. 4, 5 and 6 when the evader starts its

motion from the position ðxe; yeÞ ¼ ð�10;�10Þ. These

figures show the paths of the pursuer and the evader

(starred lines) when learning by the FACL, the QLFIS, and

the proposed RGFACL algorithms, respectively. The paths

of the pursuer and the evader following the classical con-

trol strategy are also shown in the figures (dotted lines).

The results of the first run show that the proposed

RGFACL algorithm outperforms the FACL and the QLFIS

algorithms as the performance of the proposed algorithm is

close to the performance of the classical control strategy. In

the second run of game 3, we set the number of the epi-

sodes in this game to 500, whereas the number of steps in

each episode is set to 3000. The results of the second run

are shown in Figs. 7, 8 and 9 when the evader starts its

motion from the position ðxe; yeÞ ¼ ð�10;�10Þ. The fig-

ures show that the performance of the proposed RGFACL

algorithm and the performance of the QLFIS algorithm are

close to the performance of the classical control strategy

and both algorithms outperform the FACL algorithm.

Table 4 The time that the

pursuer trained by each

algorithm takes to capture an

evader that follows an

intelligent control strategy. The

number of episodes here is 1000

Algorithm Evader

(-9, 7) (-7, -10) (6, 9) (3, -9)

Classical strategy No capture No capture No capture No capture

The proposed RGFACL 12.70 100% 13.15 100% 11.30 100% 10.90 100%

QLFIS 20.25 50% 21.60 50% 19.60 50% 19.20 50%

FACL No capture No capture No capture No capture

Fig. 4 The paths of the pursuer and the evader when learning by the

FACL algorithm proposed in [43] (starred lines) against the paths of

the pursuer and the evader when following the classical strategy

defined in Eqs. (28) and (29) (dotted lines). The number of episodes

used here is 200

Fig. 5 The paths of the pursuer and the evader when learning by the

QLFIS algorithm proposed in [45] (starred lines) against the paths of

the pursuer and the evader when following the classical strategy

defined in Eqs. (28) and (29) (dotted lines). The number of episodes

used here is 200

Fig. 6 The paths of the pursuer and the evader when learning by the

proposed RGFACL algorithm (starred lines) against the paths of the

pursuer and the evader when following the classical strategy defined

in Eqs. (28) and (29) (dotted lines). The number of episodes used here

is 200

M. D. Awheda, H. M. Schwartz: A Residual Gradient Fuzzy Reinforcement Learning Algorithm for Differential Games 1073

123

7 Conclusion

In this work, we propose a new fuzzy reinforcement

learning algorithm for differential games that have contin-

uous state and action spaces. The proposed algorithm uses

FISs as function approximation systems: an actor (fuzzy

logic controller, FLC) and a critic. The proposed algorithm

tunes the input and output parameters of its function

approximation systems (the actor and the critic) differently

from the tuning mechanisms used in the algorithms pro-

posed in the literature. The proposed algorithm uses the

residual gradient value iteration algorithm as a mechanism

in tuning the parameters of its function approximation

systems, whereas the algorithms proposed in the literature

use the direct algorithms in their mechanisms to tune the

parameters of their function approximation systems. The

proposed algorithm is called the RGFACL algorithm. It has

been shown in the literature that the residual gradient

algorithms are superior to the direct algorithms as the

residual gradient algorithms are always guaranteed to

converge, whereas the direct algorithms may not converge

to an answer in some cases. For ease of implementation, the

complete derivation of the partial derivatives that are nee-

ded by the proposed algorithm is presented in this work. The

proposed algorithm is used to learn three different pursuit–

evasion games. We start with the game where the pursuer

learns its control strategy and the evader follows a simple

control strategy. In the second game, the pursuer learns its

control strategy and the evader follows an intelligent control

strategy that exploits the advantage of higher maneuver-

ability. In the third game, we increase the complexity of the

system by making both the pursuer and the evader learn

their control strategies. Simulation results show that the

proposed RGFACL algorithm outperforms the FACL and

the QLFIS algorithms in terms of performance and the

learning time when they all are used to learn the pursuit–

evasion games considered in this work.

References

1. Passino, K.M., Yurkovich, S.: Fuzzy control. Addison Wesley

Longman, Inc., Menlo Park (1998)

2. Marin, N., Ruiz, M.D., Sanchez, D.: Fuzzy frameworks for

mining data associations: fuzzy association rules and beyond.

Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. 6(2), 50–69

(2016)

3. Micera, S., Sabatini, A.M., Dario, P.: Adaptive fuzzy control of

electrically stimulated muscles for arm movements. Med. Biol.

Eng. Comput. 37(6), 680–685 (1999)

4. Daldaban, F., Ustkoyuncu, N., Guney, K.: Phase inductance

estimation for switched reluctance motor using adaptive neuro-

fuzzy inference system. Energy Convers. Manag. 47(5), 485–493

(2005)

5. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-fuzzy and soft

computing: a computational approach to learning and machine

intelligence. Prentice Hall, Upper Saddle River (1997)

6. Labiod, S., Guerra, T.M.: Adaptive fuzzy control of a class of

SISO nonaffine nonlinear systems. Fuzzy Sets Syst. 158(10),

1126–1137 (2007)

Fig. 7 The paths of the pursuer and the evader when learning by the

FACL algorithm proposed in [43] (starred lines) against the paths of

the pursuer and the evader when following the classical strategy

defined in Eqs. (28) and (29) (dotted lines). The number of episodes

used here is 500

Fig. 8 The paths of the pursuer and the evader when learning by the

QLFIS algorithm proposed in [45] (starred lines) against the paths of

the pursuer and the evader when following the classical strategy

defined in Eqs. (28) and (29) (dotted lines). The number of episodes

used here is 500

Fig. 9 The paths of the pursuer and the evader when learning by the

proposed RGFACL algorithm (starred lines) against the paths of the

pursuer and the evader when following the classical strategy defined

in Eqs. (28) and (29) (dotted lines). The number of episodes used here

is 500

1074 International Journal of Fuzzy Systems, Vol. 19, No. 4, August 2017

123

7. Lam, H.K., Leung, F.H.F.: Fuzzy controller with stability and

performance rules for nonlinear systems. Fuzzy Sets Syst. 158(2),

147–163 (2007)

8. Hagras, H., Callaghan, V., Colley, M.: Learning and adaptation of

an intelligent mobile robot navigator operating in unstructured

environment based on a novel online Fuzzy-Genetic system.

Fuzzy Sets Syst. 141(1), 107–160 (2004)

9. Mucientes, M., Moreno, D.L., Bugarn, A., Barro, S.: Design of a

fuzzy controller in mobile robotics using genetic algorithms.

Appl. Soft Comput. 7(2), 540–546 (2007)

10. Wang, L.X.: A Course in Fuzzy Systems and Control. Prentice

Hall, Upper Saddle River (1997)

11. Desouky, S.F., Schwartz, H.M.: Self-learning fuzzy logic con-

trollers for pursuit-evasion differential games. Robot. Auton.

Syst. 59, 22–33 (2011)

12. Barto, A.G., Sutton, R.S., Anderson, C.W.: Neuronlike adaptive

elements that can solve difficult learning control problems. IEEE

Trans. Syst. Man Cybern. 5, 834–846 (1983)

13. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Intro-

duction, 1.1. MIT press, Cambridge (1998)

14. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement

learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)

15. Awheda, M.D., Schwartz, H.M.: The residual gradient FACL

algorithm for differential games. IN: IEEE 28th Canadian Con-

ference on Electrical and Computer Engineering (CCECE),

pp. 1006–1011 (2015)

16. Hinojosa, W., Nefti, S., Kaymak, U.: Systems control with gen-

eralized probabilistic fuzzy-reinforcement learning. IEEE Trans.

Fuzzy Syst. 19(1), 51–64 (2011)

17. Rodrı́guez, M., Iglesias, R., Regueiro, C.V., Correa, J., Barro, S.:

Autonomous and fast robot learning through motivation. In:

Robotics and Autonomous Systems, vol. 55.9, pp. 735–740.

Elsevier (2007)

18. Schwartz, H.M.: Multi-agent machine learning: a reinforcement

approach. Wiley, New York (2014)

19. Awheda, M.D., Schwartz, H.M.: A decentralized fuzzy learning

algorithm for pursuit-evasion differential games with superior

evaders. J. Intell. Robot. Syst. 83(1), 35–53 (2016)

20. Awheda, M.D., Schwartz, H.M.: A fuzzy learning algorithm for

multi-player pursuit-evasion differential games with superior

evaders. In: Proceedings of the 2016 IEEE International Systems

Conference, Orlando, Florida (2016)

21. Awheda, M.D., Schwartz, H.M.: A fuzzy reinforcement learning

algorithm using a predictor for pursuit-evasion games. In: Pro-

ceedings of the 2016 IEEE International Systems Conference,

Orlando, Florida (2016)

22. Smart, W.D., Kaelbling, L.P.: Effective reinforcement learning

for mobile robots. In: IEEE International Conference on Robotics

and Automation, Proceedings ICRA’02, 4 (2002)

23. Ye, C., Yung, N.H.C., Wang, D.: A fuzzy controller with

supervised learning assisted reinforcement learning algorithm for

obstacle avoidance. IEEE Trans. Syst. Man Cybern. Part B:

Cybern. 33(1), 17–27 (2003)

24. Kondo, T., Ito, K.: A reinforcement learning with revolutionary

state recruitment strategy for autonomous mobile robots control.

Robot. Auton. Syst. 46, 111–124 (2004)

25. Gutnisky, D.A., Zanutto, B.S.: Learning obstacle avoidance with

an operant behavior model. Artif. Life 10(1), 65–81 (2004)

26. Dai, X., Li, C., Rad, A.B.: An approach to tune fuzzy controllers

based on reinforcement learning for autonomous vehicle control.

IEEE Trans. Intell. Transp. Syst. 6(3), 285–293 (2005)

27. Luo, B., Wu, H.N., Huang, T.: Off-policy reinforcement learning

for H1 control design. IEEE Trans. Cybern. 45.1, 65–76 (2015)

28. Luo, B., Wu, H.N., Li, H.X.: Adaptive optimal control of highly

dissipative nonlinear spatially distributed processes with neuro-

dynamic programming. IEEE Trans. Neural Netw. Learn. Syst.

26.4, 684–696 (2015)

29. Luo, B., Wu, H.N., Huang, T., Liu, D.: Reinforcement learning

solution for HJB equation arising in constrained optimal control

problem. In: Neural Networks, vol. 71, pp. 150–158. Elsevier

(2015)

30. Modares, H., Lewis, F.L., Naghibi-Sistani, M.B.: Integral rein-

forcement learning and experience replay for adaptive optimal

control of partially-unknown constrained-input continuous-time

systems. In: Automatica, vol. 50.1, pp. 193–202. Elsevier (2014)

31. Dixon, W.: Optimal adaptive control and differential games by

reinforcement learning principles, J. Guid. Control Dyn. 37.3,

1048–1049 (2014)

32. Luo, B., Wu, H.N., Li, H.X.: Data-based suboptimal neuro-con-

trol design with reinforcement learning for dissipative spatially

distributed processes, Ind. Eng. Chem. Res. 53.19, 8106–8119

(2014)

33. Wu, H.N., Luo, B.: Neural network based online simultaneous

policy update algorithm for solving the HJI equation in nonlinear

control. IEEE Trans. Neural Netw. Learn. Syst. 23.12, 1884–1895

(2012)

34. Xia, Z., Zhao, D.: Online reinforcement learning control by

Bayesian inference. IET Control Theory Appl. 10(12),

1331–1338 (2016)

35. Liu, Y.J., Gao, Y., Tong, S., Li, Y.: Fuzzy approximation-based

adaptive backstepping optimal control for a class of nonlinear

discrete-time systems with dead-zone. IEEE Trans. Fuzzy Syst.

24(1), 16–28 (2016)

36. Zhu, Y., Zhao, D., Li, X.: Using reinforcement learning tech-

niques to solve continuous-time non-linear optimal tracking

problem without system dynamics. IET Control Theory Appl.

10(12), 1339–1347 (2016)

37. Kamalapurkar, R., Walters, P., Dixon, W.E.: Model-based rein-

forcement learning for approximate optimal regulation. Auto-

matica 64, 94–104 (2016)

38. Jiang, H., Zhang, H., Luo, Y., Wang, J.: Optimal tracking control

for completely unknown nonlinear discrete-time Markov jump

systems using data-based reinforcement learning method. Neu-

rocomputing 194, 176–182 (2016)

39. Sutton, R.S.: Learning to predict by the methods of temporal

differences. Mach. Learn. 3(1), 9–44 (1988)

40. Dayan, P., Sejnowski, T.J.: TD(k) converges with probability 1.

Mach. Learn. 14, 295–301 (1994)

41. Dayan, P.: The convergence of TD(k) for general k. Mach. Learn.

8(3–4), 341–362 (1992)

42. Jakkola, T., Jordan, M., Singh, S.: On the convergence of

stochastic iterative dynamic programming. Neural Comput. 6,

1185–1201 (1993)

43. Jouffe, L.: Fuzzy inference system learning by reinforcement

methods. IEEE Trans. Syst. Man Cybern. C 28.3, 338–355 (1998)

44. Bonarini, A., Lazaric, A., Montrone, F., Restelli, M.: Rein-

forcement distribution in fuzzy Q-learning. Fuzzy Sets Syst.

160(10), 1420–1443 (2009)

45. Desouky, S.F., Schwartz, H.M.: Q (k)-learning adaptive fuzzy

logic controllers for pursuit–evasion differential games. Int.

J. Adapt. Control Signal Process. 25(10), 910–927 (2011)

46. Givigi Jr., S.N., Schwartz, H.M., Lu, X.: A reinforcement

learning adaptive fuzzy controller for differential games. J. Intell.

Robot. Syst. 59, 3–30 (2010)

47. Wang, X.S., Cheng, Y.H., Yi, J.Q.: A fuzzy Actor–Critic rein-

forcement learning network. Inf. Sci. 177(18), 3764–3781 (2007)

48. Baird, L.: Residual algorithms: reinforcement learning with

function approximation. In: ICML, pp. 30–37 (1995)

49. Boyan, J., Moore, A.W.: Generalization in reinforcement learn-

ing: safely approximating the value function. In: Advances in

M. D. Awheda, H. M. Schwartz: A Residual Gradient Fuzzy Reinforcement Learning Algorithm for Differential Games 1075

123

Neural Information Processing Systems, vol. 7, pp. 369–376.

Cambridge, MA, The MIT Press (1995)

50. Gordon, G.J.: Reinforcement learning with function approxi-

mation converges to a region. In: Advances in Neural Infor-

mation Processing Systems, vol. 13, pp. 1040–1046. MIT Press

(2001)

51. Schoknecht, R., Merke, A.: TD(0) converges provably faster than

the residual gradient algorithm. In: ICML (2003)

52. Tsitsiklis, J.N., Roy, B.V.: An analysis of temporal-difference

learning with function approximation. IEEE Trans. Autom.

Control 42(5), 674–690 (1997)

53. Bowling, M., Veloso, M.: Multiagent learning using a variable

learning rate. Artif. Intell. 136(2), 215–250 (2002)

54. Van Buijtenen, W.M., Schram, G., Babuska, R., Verbruggen,

H.B.: Adaptive fuzzy control of satellite attitude by reinforce-

ment learning. IEEE Trans. Fuzzy Syst. 6(2), 185–194 (1998)

55. Mamdani, E.H., Assilian, S.: An experiment in linguistic syn-

thesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7.1,

113 (1975)

56. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its

applications to modelling and control. IEEE Trans. Syst. Man

Cybern. SMC 15(1), 116–132 (1985)

57. Sugeno, M., Kang, G.: Structure identification of fuzzy model.

Fuzzy Sets Syst. 28, 15–33 (1988)

58. Isaacs, R.: Differential Games. Wiley, New York (1965)

59. LaValle, S.M.: Planning Algorithms. Cambridge University

Press, Cambridge (2006)

60. Lim, S.H., Furukawa, T., Dissanayake, G., Whyte, H.F.D.: A

time-optimal control strategy for pursuit-evasion games prob-

lems, In: International Conference on Robotics and Automation,

New Orleans, LA (2004)

61. Desouky, S.F., Schwartz, H.M.: Different hybrid intelligent sys-

tems applied for the pursuit–evasion game. In: 2009 IEEE

International Conference on Systems, Man, and Cybernetics,

pp. 2677–2682 (2009)

Mostafa D. Awheda received

his B.Sc. degree in control engi-

neering from the College of Elec-

tronic Technology, Bani Walid,

Libya. Mr. Awheda received his

M.Sc. in control engineering from

Lakehead University, Thunder

Bay, Canada. Right now, Mr.

Awheda is pursuing his Ph.D. in

electrical engineering at Carleton

University, Ottawa, Canada. Mr.

Awheda’s research interests

include machine learning, fuzzy

control, and intelligent control

systems.

Howard M. Schwartz (S’85-

M’87-SM’11) received the

B.Eng. degree in Civil Engi-

neering from McGill University,

Montreal, QC, Canada in 1981,

and the M.S. in Aeronautics and

Astronautics in 1982 and the

Ph.D. degree in Mechanical

Engineering in 1987 from the

Massachusetts Institute of

Technology (MIT), Cambridge,

MA, USA. He is currently a

Professor with the Department

of Systems and Computer

Engineering, Carleton Univer-

sity, Ottawa, ON, Canada. His research interests include adaptive and

intelligent systems, reinforcement learning, robotics, system model-

ing, and system identification. His most recent research is in multi-

agent learning with applications to teams of mobile robots.

1076 International Journal of Fuzzy Systems, Vol. 19, No. 4, August 2017

123

	A Residual Gradient Fuzzy Reinforcement Learning Algorithm for Differential Games
	Abstract
	Introduction
	Related Work
	Main Contribution

	Preliminary Concepts and Notations
	Direct and Residual Gradient Algorithms
	The Direct Value Iteration Algorithm
	The Residual Gradient Value Iteration Algorithm

	Fuzzy Inference Systems

	The Q-Learning Fuzzy Inference System Algorithm
	Update Rules for the Function Approximation System (FIS)
	Update Rules for the Function Approximation System (FLC)

	The Pursuit--Evasion Game
	The Proposed Algorithm
	Adaptation Rules for the Critic
	Adaptation Rules for the Actor

	Simulation and Results
	Pursuit--Evasion Game 1
	Pursuit--Evasion Game 2
	Pursuit--Evasion Game 3

	Conclusion
	References

